New Series of Polar and Nonpolar Platinum Iodates A2Pt(IO3)6 (A

New Series of Polar and Nonpolar Platinum
Iodates A2Pt(IO3)6 (A = H3O, Na, K, Rb, Cs)
Bing-Ping Yang,* Chun-Li Hu, Xiang Xu, and Jiang-Gao Mao*
Supporting Information
Table S1. Selected bond lengths (Å) for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6
(A = Na, K, Rb, Cs)
Table S2. Calculation of dipole moment for IO3 and PtO6 polyhedra and net dipole moment
for a unit cell in α-(H3O)2Pt(IO3)6 (D = Debyes).
Table S3. State energies (eV) of the highest valence band (H-VB) and the lowest conduction
band (L-CB) of the crystal α-(H3O)2Pt(IO3)6.
Figure S1. X-ray diffraction powder patterns for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and
A2Pt(IO3)6 (A = Na, K, Rb, Cs).
Figure S2. Infrared spectra for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na,
K, Rb, Cs).
Figure S3. UV-Vis diffuse reflectance spectra for β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na,
K, Rb, Cs).
Figure S4. TGA and DSC diagrams for β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb,
Cs).
S8. Computational method.
S1
Table S1. Selected bond lengths (Å) for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6
(A = Na, K, Rb, Cs)
α-(H3O)2Pt(IO3)6
Bond
Length(Å)
Bond
Length(Å)
Pt(1)−O(3) × 3
2.050(13)
O(1W)∙∙∙O(1)#1
2.008(19)
Pt(1)−O(3) × 3
2.112(12)
O(1W)∙∙∙O(1)#2
2.009(15)
I(1)−O(1)
1.790(12)
O(1W)∙∙∙O(1)#3
2.009(15)
I(1)−O(2)
1.795(12)
O(1W)∙∙∙O(2)#4
2.336(17)
I(1)−O(3)
1.867(12)
O(1W)∙∙∙O(2)#5
2.336(16)
O(1W)∙∙∙O(2)#6
2.336(19)
β-(H3O)2Pt(IO3)6
Pt(1)−O(3) × 6
1.998(6)
O(1W)∙∙∙O(2)#2
2.605(9)
I(1)−O(1)
1.788(6)
O(1W)∙∙∙O(2)#3
2.606(6)
I(1)−O(2)
1.815(6)
O(1W)∙∙∙O(2)#4
2.606(7)
I(1)−O(3)
1.888(7)
O(1W)∙∙∙O(1)#5
2.924(8)
I(1)−O(1)#1
2.467(7)
O(1W)∙∙∙O(1)#6
2.924(8)
O(1W)∙∙∙O(3)#8
3.219(12)
O(1W)∙∙∙O(1)#1
2.924(10)
O(1W)∙∙∙O(3)#9
3.220(12)
O(1W)∙∙∙O(3)#7
3.219(12)
Symmetry transformations used to generate equivalent atoms:
α-(H3O)2Pt(IO3)6: #1 x, y, z; #2 1-y, x-y, z; #3 1-x+y, 1-x, z; #4 1+y, 1-x+y, 0.5+z; #5 1-x, -y,
0.5+z; #6 x-y, x, 0.5+z; β-(H3O)2Pt(IO3)6: #1 x-y+1/3,x-1/3,-z+2/3; #2 1-x+y, 1-x, z; #3 1-y,
x-y, z; #4 x, y, z; #5 4/3-x, 2/3-y, 2/3-z; 1/3+y, 2/3-x+y, 2/3-z; #6 -1/3+x, -2/3+y, 1/3+z; #7
5/3-y, 1/3+x-y, 1/3+z #8 2/3-x+y, 4/3-x, 1/3+z
Bond
Na2Pt(IO3)6
K2Pt(IO3)6
Rb2Pt(IO3)6
Cs2Pt(IO3)6
Pt(1)−O(3) × 6
1.997(10)
1.996(8)
1.997(6)
1.994(8)
I(1)−O(1)
1.782(9)
1.789(8)
1.786(6)
1.785(9)
I(1)−O(2)
1.811(10)
1.811(8)
1.797(7)
1.796(10)
I(1)−O(3)
1.905(10)
1.878(8)
1.890(6)
1.881(9)
I(1)−O(1)#1
2.432(10)
2.489(8)
A(1)−O(1) × 3
2.904(13)
2.886(9)
2.985(6)
3.099(9)
A(1)−O(2) × 3
2.570(11)
2.714(9)
2.874(7)
3.006(11)
A(1)−O(3) × 3
2.997(19)
3.179(11)
3.069(7)
3.140(9)
Symmetry transformations used to generate equivalent atoms: #1 x-y+1/3,x-1/3,-z+2/3.
S2
Table S2. Calculation of dipole moment for IO3 and PtO6 polyhedra and net dipole moment
for a unit cell in α-(H3O)2Pt(IO3)6 (D = Debyes)
α-(H3O)2Pt(IO3)6 (Z = 1)
Dipole moment (D)
Polar unit (a unit cell)
x-component
y-component z-component total magnitude
IO3
−0.8302
2.1569
−15.766
15.9345
−2.2829
0.3594
−15.766
15.9342
−1.4527
−1.7975
−15.766
15.9343
0.8302
−2.1569
−15.766
15.9344
2.2829
−0.3594
−15.766
15.9341
1.4527
1.7975
−15.766
15.9341
PtO6
0
0
0.2364
0.2364
Net dipole moment
0
0
−94.3582
94.3582
3
Cell Volume
389.3 Å
Table S3. State energies (eV) of the highest valence band (H-VB) and the lowest conduction
band (L-CB) of the crystal α-(H3O)2Pt(IO3)6
Compound
k-point
H-VB
L-CB
G (0.000, 0.000, 0.000)
−0.07123
1.86837
A (0.000, 0.000, 0.500)
0
1.64938
H (−0.333, 0.667, 0.500)
−0.2311
1.77469
α-(H3O)2Pt(IO3)6
K (−0.333, 0.667, 0.000)
−0.05723
1.69948
G (0.000, 0.000, 0.000)
−0.07123
1.86837
M (0.000, 0.500, 0.000)
−0.02828
1.64111
L (0.000, 0.500, 0.500)
−0.18216
1.70358
H (−0.333, 0.667, 0.500)
−0.2311
1.77469
S3
simulated for -(H3O)2Pt(IO3)6
Intensity(A.U.)
experimental
10
20
30
40
50
60
2  (Degree)
simulated for -(H3O)2Pt(IO3)6
Intensity(A.U.)
experimental
10
20
30
40
2  (Degree)
S4
50
60
simulated for Na2Pt(IO3)6
Intensity(A.U.)
experimental
10
20
30
40
50
60
2  (Degree)
simulated for K2Pt(IO3)6
Intensity(A.U.)
experimental
10
20
30
40
2  (Degree)
S5
50
60
simulated for Rb2Pt(IO3)6
Intensity(A.U.)
experimental
10
20
30
40
50
60
2  (Degree)
simulated for Cs2Pt(IO3)6
Intensity(A.U.)
experimental
10
20
30
40
50
60
2  (Degree)
Figure S1. X-ray diffraction powder patterns for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and
A2Pt(IO3)6 (A = Na, K, Rb, Cs).
S6
100
T%
1639
80
560
724
3473
(H3O)2Pt(IO3)6
645
60
787
4000
3000
2000
1000
-1
Wavelength(cm )
100
1646
3444
80
T%
525
60
(H3O)2Pt(IO3)6
40
795
666
20
4000
3000
2000
1000
-1
Wavelength(cm )
S7
100
80
Na2Pt(IO3)6
T%
60
40
519
20
784 671
0
4000 3500 3000 2500 2000 1500 1000
500
-1
Wavelength(cm )
100
80
K2Pt(IO3)6
505
T%
60
40
20
789
677
0
4000 3500 3000 2500 2000 1500 1000
-1
Wavelength(cm )
S8
500
100
80
T%
60
504
Rb2Pt(IO3)6
40
811
20
793
0
4000 3500 3000 2500 2000 1500 1000
678
500
-1
Wavelength(cm )
100
T%
80
60
510
Cs2Pt(IO3)6
40
798
685
20
4000 3500 3000 2500 2000 1500 1000
500
-1
Wavelength(cm )
Figure S2. Infrared spectra for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na,
K, Rb, Cs)
S9
Figure S3. UV-vis diffuse reflectance spectra for β-(H3O)2Pt(IO3)6 and A2Pt(IO3)6 (A = Na,
K, Rb, Cs).
S10
S11
S12
Figure S4. TGA and DSC diagrams for β-(H3O)2Pt(IO3)6 and A2Pt(IO3)6 (A = Na, K, Rb, Cs).
S8. Computational Method. Calculations of electronic structure and NLO properties for
α-(H3O)2Pt(IO3)6 were performed using CASTEP based on density function theory (DFT).1,2
Norm-conserving pseudopotential was used to treat the electron-core interactions, and
GGA-PBE was chosen as exchange-correlation function.3,4 The following orbital electrons
were treated as valence electrons: Pt-5d96s1, I-5s25p5, O-2s22p4, and H-1s1. The
Monkhorst-Pack k-point sampling of 3 × 3 × 6 and a cutoff energy of 750 eV was adopted for
α-(H3O)2Pt(IO3)6.
Calculations of SHG susceptibility were performed according to the static formula
developed by Rashkeev et al. and Chen et al. based on length-gauge formalism within the
independent-particle approximation.5-7 To ensure the convergence of SHG coefficients, 178
empty bands were used for the optical properties calculations of α-(H3O)2Pt(IO3)6.
References:
(1) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.;
Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717-2744.
(2) Milman, V.; Winkler, B.; White, J. A.; Pickard, C. J.; Payne, M. C.; Akhmatskaya, E. V.;
Nobes, R. H. Int. J. Quantum Chem. 2000, 77, 895-910.
S13
(3) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
(4) Lin, J. S.; Qteish, A.; Payne, M. C.; Heine, V. Phys. Rev. B: Condens. Matter Mater.
Phys. 1993, 47, 4174-4180.
(5) Aversa, C.; Sipe, J. E. Phys. Rev. B Condens. Matter Mater. Phys. 1995, 52,
14636-14645.
(6) Rashkeev, S. N.; Lambrecht, W. R. L.; Segall, B. Phys. Rev. B Condens. Matter Mater.
Phys. 1998, 57, 3905-3919.
(7) Li, J.; Lee, M. H.; Liu, Z. P.; Chen, C. T.; Pickard, C. J. Phys. Rev. B Condens. Matter
Mater. Phys. 1999, 60, 13380-13389.
S14