New Series of Polar and Nonpolar Platinum Iodates A2Pt(IO3)6 (A = H3O, Na, K, Rb, Cs) Bing-Ping Yang,* Chun-Li Hu, Xiang Xu, and Jiang-Gao Mao* Supporting Information Table S1. Selected bond lengths (Å) for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb, Cs) Table S2. Calculation of dipole moment for IO3 and PtO6 polyhedra and net dipole moment for a unit cell in α-(H3O)2Pt(IO3)6 (D = Debyes). Table S3. State energies (eV) of the highest valence band (H-VB) and the lowest conduction band (L-CB) of the crystal α-(H3O)2Pt(IO3)6. Figure S1. X-ray diffraction powder patterns for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb, Cs). Figure S2. Infrared spectra for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb, Cs). Figure S3. UV-Vis diffuse reflectance spectra for β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb, Cs). Figure S4. TGA and DSC diagrams for β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb, Cs). S8. Computational method. S1 Table S1. Selected bond lengths (Å) for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb, Cs) α-(H3O)2Pt(IO3)6 Bond Length(Å) Bond Length(Å) Pt(1)−O(3) × 3 2.050(13) O(1W)∙∙∙O(1)#1 2.008(19) Pt(1)−O(3) × 3 2.112(12) O(1W)∙∙∙O(1)#2 2.009(15) I(1)−O(1) 1.790(12) O(1W)∙∙∙O(1)#3 2.009(15) I(1)−O(2) 1.795(12) O(1W)∙∙∙O(2)#4 2.336(17) I(1)−O(3) 1.867(12) O(1W)∙∙∙O(2)#5 2.336(16) O(1W)∙∙∙O(2)#6 2.336(19) β-(H3O)2Pt(IO3)6 Pt(1)−O(3) × 6 1.998(6) O(1W)∙∙∙O(2)#2 2.605(9) I(1)−O(1) 1.788(6) O(1W)∙∙∙O(2)#3 2.606(6) I(1)−O(2) 1.815(6) O(1W)∙∙∙O(2)#4 2.606(7) I(1)−O(3) 1.888(7) O(1W)∙∙∙O(1)#5 2.924(8) I(1)−O(1)#1 2.467(7) O(1W)∙∙∙O(1)#6 2.924(8) O(1W)∙∙∙O(3)#8 3.219(12) O(1W)∙∙∙O(1)#1 2.924(10) O(1W)∙∙∙O(3)#9 3.220(12) O(1W)∙∙∙O(3)#7 3.219(12) Symmetry transformations used to generate equivalent atoms: α-(H3O)2Pt(IO3)6: #1 x, y, z; #2 1-y, x-y, z; #3 1-x+y, 1-x, z; #4 1+y, 1-x+y, 0.5+z; #5 1-x, -y, 0.5+z; #6 x-y, x, 0.5+z; β-(H3O)2Pt(IO3)6: #1 x-y+1/3,x-1/3,-z+2/3; #2 1-x+y, 1-x, z; #3 1-y, x-y, z; #4 x, y, z; #5 4/3-x, 2/3-y, 2/3-z; 1/3+y, 2/3-x+y, 2/3-z; #6 -1/3+x, -2/3+y, 1/3+z; #7 5/3-y, 1/3+x-y, 1/3+z #8 2/3-x+y, 4/3-x, 1/3+z Bond Na2Pt(IO3)6 K2Pt(IO3)6 Rb2Pt(IO3)6 Cs2Pt(IO3)6 Pt(1)−O(3) × 6 1.997(10) 1.996(8) 1.997(6) 1.994(8) I(1)−O(1) 1.782(9) 1.789(8) 1.786(6) 1.785(9) I(1)−O(2) 1.811(10) 1.811(8) 1.797(7) 1.796(10) I(1)−O(3) 1.905(10) 1.878(8) 1.890(6) 1.881(9) I(1)−O(1)#1 2.432(10) 2.489(8) A(1)−O(1) × 3 2.904(13) 2.886(9) 2.985(6) 3.099(9) A(1)−O(2) × 3 2.570(11) 2.714(9) 2.874(7) 3.006(11) A(1)−O(3) × 3 2.997(19) 3.179(11) 3.069(7) 3.140(9) Symmetry transformations used to generate equivalent atoms: #1 x-y+1/3,x-1/3,-z+2/3. S2 Table S2. Calculation of dipole moment for IO3 and PtO6 polyhedra and net dipole moment for a unit cell in α-(H3O)2Pt(IO3)6 (D = Debyes) α-(H3O)2Pt(IO3)6 (Z = 1) Dipole moment (D) Polar unit (a unit cell) x-component y-component z-component total magnitude IO3 −0.8302 2.1569 −15.766 15.9345 −2.2829 0.3594 −15.766 15.9342 −1.4527 −1.7975 −15.766 15.9343 0.8302 −2.1569 −15.766 15.9344 2.2829 −0.3594 −15.766 15.9341 1.4527 1.7975 −15.766 15.9341 PtO6 0 0 0.2364 0.2364 Net dipole moment 0 0 −94.3582 94.3582 3 Cell Volume 389.3 Å Table S3. State energies (eV) of the highest valence band (H-VB) and the lowest conduction band (L-CB) of the crystal α-(H3O)2Pt(IO3)6 Compound k-point H-VB L-CB G (0.000, 0.000, 0.000) −0.07123 1.86837 A (0.000, 0.000, 0.500) 0 1.64938 H (−0.333, 0.667, 0.500) −0.2311 1.77469 α-(H3O)2Pt(IO3)6 K (−0.333, 0.667, 0.000) −0.05723 1.69948 G (0.000, 0.000, 0.000) −0.07123 1.86837 M (0.000, 0.500, 0.000) −0.02828 1.64111 L (0.000, 0.500, 0.500) −0.18216 1.70358 H (−0.333, 0.667, 0.500) −0.2311 1.77469 S3 simulated for -(H3O)2Pt(IO3)6 Intensity(A.U.) experimental 10 20 30 40 50 60 2 (Degree) simulated for -(H3O)2Pt(IO3)6 Intensity(A.U.) experimental 10 20 30 40 2 (Degree) S4 50 60 simulated for Na2Pt(IO3)6 Intensity(A.U.) experimental 10 20 30 40 50 60 2 (Degree) simulated for K2Pt(IO3)6 Intensity(A.U.) experimental 10 20 30 40 2 (Degree) S5 50 60 simulated for Rb2Pt(IO3)6 Intensity(A.U.) experimental 10 20 30 40 50 60 2 (Degree) simulated for Cs2Pt(IO3)6 Intensity(A.U.) experimental 10 20 30 40 50 60 2 (Degree) Figure S1. X-ray diffraction powder patterns for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb, Cs). S6 100 T% 1639 80 560 724 3473 (H3O)2Pt(IO3)6 645 60 787 4000 3000 2000 1000 -1 Wavelength(cm ) 100 1646 3444 80 T% 525 60 (H3O)2Pt(IO3)6 40 795 666 20 4000 3000 2000 1000 -1 Wavelength(cm ) S7 100 80 Na2Pt(IO3)6 T% 60 40 519 20 784 671 0 4000 3500 3000 2500 2000 1500 1000 500 -1 Wavelength(cm ) 100 80 K2Pt(IO3)6 505 T% 60 40 20 789 677 0 4000 3500 3000 2500 2000 1500 1000 -1 Wavelength(cm ) S8 500 100 80 T% 60 504 Rb2Pt(IO3)6 40 811 20 793 0 4000 3500 3000 2500 2000 1500 1000 678 500 -1 Wavelength(cm ) 100 T% 80 60 510 Cs2Pt(IO3)6 40 798 685 20 4000 3500 3000 2500 2000 1500 1000 500 -1 Wavelength(cm ) Figure S2. Infrared spectra for α-(H3O)2Pt(IO3)6, β-(H3O)2Pt(IO3)6, and A2Pt(IO3)6 (A = Na, K, Rb, Cs) S9 Figure S3. UV-vis diffuse reflectance spectra for β-(H3O)2Pt(IO3)6 and A2Pt(IO3)6 (A = Na, K, Rb, Cs). S10 S11 S12 Figure S4. TGA and DSC diagrams for β-(H3O)2Pt(IO3)6 and A2Pt(IO3)6 (A = Na, K, Rb, Cs). S8. Computational Method. Calculations of electronic structure and NLO properties for α-(H3O)2Pt(IO3)6 were performed using CASTEP based on density function theory (DFT).1,2 Norm-conserving pseudopotential was used to treat the electron-core interactions, and GGA-PBE was chosen as exchange-correlation function.3,4 The following orbital electrons were treated as valence electrons: Pt-5d96s1, I-5s25p5, O-2s22p4, and H-1s1. The Monkhorst-Pack k-point sampling of 3 × 3 × 6 and a cutoff energy of 750 eV was adopted for α-(H3O)2Pt(IO3)6. Calculations of SHG susceptibility were performed according to the static formula developed by Rashkeev et al. and Chen et al. based on length-gauge formalism within the independent-particle approximation.5-7 To ensure the convergence of SHG coefficients, 178 empty bands were used for the optical properties calculations of α-(H3O)2Pt(IO3)6. References: (1) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Condens. Matter 2002, 14, 2717-2744. (2) Milman, V.; Winkler, B.; White, J. A.; Pickard, C. J.; Payne, M. C.; Akhmatskaya, E. V.; Nobes, R. H. Int. J. Quantum Chem. 2000, 77, 895-910. S13 (3) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868. (4) Lin, J. S.; Qteish, A.; Payne, M. C.; Heine, V. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 4174-4180. (5) Aversa, C.; Sipe, J. E. Phys. Rev. B Condens. Matter Mater. Phys. 1995, 52, 14636-14645. (6) Rashkeev, S. N.; Lambrecht, W. R. L.; Segall, B. Phys. Rev. B Condens. Matter Mater. Phys. 1998, 57, 3905-3919. (7) Li, J.; Lee, M. H.; Liu, Z. P.; Chen, C. T.; Pickard, C. J. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 60, 13380-13389. S14
© Copyright 2026 Paperzz