Particulate organic carbon transport between and within the terrestrial and marine environment Suggested Reading • Lateral transport of POC – Ohkouchi et al 2002 Science 298 1224-1227. – Mollenhauer & Eglinton 2007 L&O 52 558-576. • POC transfer from land to the oceans – Drenzek et al 2007 Mar. Chem. 103 146-162. • Fossil OC cycling – Drenzek et al 2007 Mar. Chem. 103 146-162. – Petsch et al. 2001 Science 292 1127-1131. age of bulk organic carbon in surface marine sediments 14 C age (yr) 0 5000 10000 15000 0 1000 2000 Water Depth (m) 14C 3000 4000 river-dominated shelf abyssal anoxic shelf basin OMZ open shelf continental slope 5000 6000 7000 1 Old carbon in the modern marine environment Possible origin(s) of non-zero 14C ages for OC carbon in marine surface sediments: • 1. Delivery of “pre-aged” terrestrial OC of vascular plant origin • 2. Relict OC (“kerogen”) inputs from erosion of sedimentary rocks • 3. Sediment redistribution processes - Bioturbation - Lateral advection • 4. Black Carbon [NEXT LECTURE] A Brief Overview of the Global Organic Carbon Cycle ATMOSPHERIC CO2 (750) terrestrial primary production SEDIMENTARY ROCKS (KEROGEN) (15,000,000) p we hysic ath al eri ng LAND PLANTS (570) humification SOILS (1,600) uplift marine primary production riv er tra or eo ns po lian rt OCEAN BIOTA (3) POC (20) DOC (680) OC burial burial MODERN OCEAN SEDIMENTS (100) (units=1015gC) Modified after Hedges (1992) Sizes of boxes are not to scale 2 Selected observations from molecular 14C studies of sedimentary organic matter Take home messages: • Lateral transport of [particulate] organic matter is widespread in the ocean, complicating interpretation of sedimentary records, and models of carbon export and burial. • Not all molecules are created equal in terms of their propensity to move around in the environment. • Timescales of export of terrestrial organic matter vary significantly as a consequence of factors that we only poorly understand. The Global Organic Carbon Cycle ATMOSPHERIC CO2 (750) terrestrial primary production SEDIMENTARY ROCKS (KEROGEN) (15,000,000) p we hysic ath al eri ng LAND PLANTS (570) humification SOILS (1,600) uplift marine primary production riv er tra or eo ns po lian rt OCEAN BIOTA (3) POC (20) DOC (680) OC burial burial MODERN OCEAN SEDIMENTS (100) (units=1015gC) Modified after Hedges (1992) Sizes of boxes are not to scale 3 “Molecular Sedimentology” Using coupled molecular and microfossil 14C measurements to study pre- and post-depositional phenomena Premise: • Marine algal biomarker compounds (e.g., alkenones, sterols) and planktonic forams both encode surface ocean-derived signatures (incl. 14C content of DIC). • Age discrepancies must therefore indicate different subsequent fates. • Marine organic matter is predominantly associated with the fine fraction of sediments – prone to resuspension and redistribution. • Foraminiferal tests are coarse, sand-sized particles – less susceptible to redistribution by bottom currents. Approach: • Use 14C relationships between planktonic foraminifera, algal biomarkers (e.g., alkenones), and bulk OC isolated from the same sediment intervals as a tool to examine diagenetic & sedimentological processes (lateral transport, bioturbation). C37 “alkenone” E. Huxleyi The Bermuda Rise Atlantic Ocean Located northeast of Bermuda. A deep ocean (~ 4500m water depth) sediment drift. Unusually high sediment accumulation rates. Bermuda Island Subject of numerous paleoceanographic studies. Sediment box core studied using molecular carbon-14 methods. 4 Sedimentological Controls on Geochemical Records from the Bermuda Rise Age difference (vs planktonic forams) %CaCO3 10 20 30 K U37' 0.6 0.8 alkenones 0 5000 TOC 0 5000 FFIC 0 5000 0 Age (Calendar years) 500 1000 1500 2000 Ohkouchi et al. 2002 Nova Scotia Cape Cod Bermuda 5 Satellite image of E. huxleyi bloom off Newfoundland in the western Atlantic on 21st July, 1999. This way to Cape Cod P.E.I. ew N fo Nova Scotia d un nd la Bermuda is ~1000 km away Science goes in circles! HEBBLE Study area 6 Lateral transport of organic matter to the Bermuda Rise ? Namibian margin (Benguela Upwelling region) 2-12 cm (pre-bomb) alkenones: 1180 yrs ~ Reservoir age 0-2 cm alkenones and bulk OC modern age Nam ibia 1000 0 0-1 cm alkenones 2500 yr bulk OC 2270 yr foraminifera 25 yr -1500 -2500 -3500 Elevation (m) -500 -4500 -5500 Data from Mollenhauer et al., 2003 7 14C ages of Namibian margin sedimentary components (core 226660-5) 0 20 40 Total organic carbon Depth (cm) 60 80 Total organic carbon Alkenones Alkenones 100 120 Plantonic forams ( G. bulloides) 140 160 0 5000 10000 15000 0 1000 14 14 C age (yr) 2000 3000 4000 5000 C age difference vs forams (yr) Mollenhauer et al., 2003 Accumulation maximum (depocenter) on upper continental slope a) 9 10 11 12 13 14 15 16 17 -19 1000 -20 -21 9 -23 8 7 6 -25 5 -26 4 3 -27 2 -28 1 -29 0 TOC (%) -24 Lüderitz 10 -22 Walvis Bay Water Depth [m] (Vp=1500 m/s) 8 S N 1200 erosion? increased accumulation 1400 1600 Distance [km] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 b) -30 20 m Sites of increased accumulation in protected locations (depocenters): Implication of current controlled sedimentation Seismic data processing: André Janke Mollenhauer et al., 2002 8 California Borderland Basins California Borderland Basins - Anoxic laminated sediments - High sedimentation rates Sediment and organic matter deposition in the Santa Monica Basin Te rre str ial se dim en t Present Day ~15km Particle resuspension and Organic matter export from lateral transport surface ocean productivity shelf flank flank Low oxygen/anoxic Sediment bottom waters focusing This Study: 3 sites from each basin, 2 from flanks, 1 from anoxic depocenter Analysis of core-top and one “prebomb“ (pre-1950) sediment horizon Radiocarbon dates for TOC, foraminfera, alkenones and fatty acids (C16 – C28) Sediment focusing depocenter Mollenhauer & Eglinton, in press. 9 Santa Monica Basin NW flank Depocenter MC50 MC49 organic carbon (wt. %) 0 1 2 3 organic carbon (wt. %) 4 1 2000 year of deposition year of deposition 3 4 5 6 - Advective supply of pre-aged alkenones Alkenone-foram 14C offsets smaller in depocenter than flank sediments: 1900 1800 1700 1600 1500 1300 2 2000 1900 1400 Alkenones systematically 14C depleted relative to planktic forams: Radiocarbon dated planktic forams alkenones bulk OC 1200 - Superior preservation of labile, autochthonous carbon under anoxic conditions? 1800 1700 1600 Allochthonous (advected) 1500 1400 1300 0.7 0.8 0.9 1 1.1 Radiocarbon content (fMC) 0.7 0.8 0.9 1 1.1 Radiocarbon content (fMC) Flank (oxic) 29-57% (alkenones) Depocenter (anoxic) 21-30% (alkenones) Bermuda Rise Namibian Slope Chilean Margin NW African Slope Santa Barbara Basin Namibian Shelf Scotian Shelf (Emerald Basin) New England Shelf (Mud Patch) Gulf of Mexico Oman Margin Indian Ocean Gardar/Bjorn Drift Argentine Basin S. China Sea 8000 6000 14 Age difference ( C years) Alkenones younger than forams Alkenones older than forams Alkenone-planktonic foram 14C age relationships 4000 2000 0 -2000 -4000 Sample 10 Estimates of advective alkenone contributions Assumptions: Δ14C of indigenous alkenones = Δ14C of forams Δ14C of advected alkenones = -1000 permil (infinite 14C age) Advected alkenone contribution (%) 60 Bermuda Rise Benguela Scotian Margin New England margin Gulf of Mexico Arabian Sea Santa Barbara Basin Indian Ocean NE Pacific Ocean ( (Stn M)) 50 40 30 20 10 0 -10 Eglinton et al. unpublished Comparison of alkenone and TOC 14C ages in surficial (< 3 cm) marine sediments 10000 9000 14 Alkenone C age (years BP) 8000 7000 6000 5000 1:1 e lin 4000 3000 2000 1000 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 14 TOC C age (years BP) 11 Advection of POC in the Panama Basin Druffel et al., 1998 Catching lateral particle transport in the act Lin eW 12 Line W physical oceanographic and biogeochemical flux studies Sediment trap moorings Sinking particle flux & Δ14C (3000 m Station) Fall bloom Spring bloom -2 -1 Mass flux (mg m d ) 400 300 200 100 0 0 14 Δ C (‰) 50 968 m 1976 m 2938 m -50 6/1 7/1 8/1 9/1 10/1 11/1 12/1 1/1 2/1 3/1 4/1 5/1 Date 13 Alkenones in Sinking particles (3000 m Station) Fall bloom Spring bloom 300 200 100 Alkenone conc -1 (nC mg ) n Mass flux -2 -1 (mg m d ) 400 0 10 5 0 30 Alkenone T o ( C) 25 1976 m 2938 m 20 15 10 5 6/1 7/1 8/1 9/1 10/1 11/1 12/1 1/1 2/1 3/1 4/1 5/1 Date Dynamics of Carbon Export in the Arctic Ocean BGOS mooring 2004-2005 - Virtually land-locked ocean, deep basin waters (esp. Canada Basin) partially isolated. - Has the largest percentage of shelf area of all the World’s oceans. - Biogeochemical processes strongly influenced by sea-ice coverage/dynamics. 14 4 b) 2 0 -2 -4 40 c) OM CaCO3 Opal Lithogenic 30 20 10 d) -24 -120 -160 -25 -200 13 0 δ C (‰) 14 Δ C (‰) Time-series measurements at BGOS mooring-A (3083m) -2 -1 Flux (mgm d ) Current speed (cm/s) Ice cover (%) a) 100 80 60 40 20 0 -240 -26 -280 9/1 10/111/112/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1 9/1 2004 Date 2005 Advective particulate carbon supply to the Canada Basin 15 Additional evidence for advective OC supply to the sea floor (i) Increased material fluxes in deep, relative to shallow, sediment traps deployed near continental slopes (Honjo et al., 1982; Biscaye et al., 1988; Thomsen & van Weering, 1998). (ii) High suspended particle concentrations near the seafloor (bottom nepheloid layer; McCave, 1983; Gardner & Sullivan, 1981) or associated with the detachment of intermediate nepheloid layers from the upper slope (INLs; Biscaye et al., 1988; Pickart, 2000). (iii) Carbon and oxygen imbalances in the deep ocean (Jahnke et al., 1996). (iv) Old 14C ages of OC on suspended particles in slope waters (Bauer et al., 2001). (v) 14C age of particles on slope waters intercepted by sediment traps (Anderson et al., 1994; Hwang et al., 2004). (vi) The isotopic and molecular composition of deep sea sediments (Freudenthal et al., 2001; Benthien & Müller, 2000). Organic matter cycling on continental margins: Importance of lateral transport Terrigenous input 16 Organic matter cycling on continental margins: Importance of lateral transport Terrigenous input The Global Organic Carbon Cycle ATMOSPHERIC CO2 (750) terrestrial primary production SEDIMENTARY ROCKS (KEROGEN) (15,000,000) p we hysic ath al eri ng LAND PLANTS (570) humification SOILS (1,600) uplift marine primary production riv er tra or eo ns po lian rt OCEAN BIOTA (3) POC (20) DOC (680) OC burial burial sediment redistribution MODERN OCEAN SEDIMENTS (100) (units=1015gC) Modified after Hedges (1992) Sizes of boxes are not to scale 17 The Global Organic Carbon Cycle ATMOSPHERIC CO2 (750) terrestrial primary production SEDIMENTARY ROCKS (KEROGEN) (15,000,000) p we hysic ath al eri ng LAND PLANTS (570) humification marine primary production riv er tra or eo ns po lian rt SOILS (1,600) OCEAN BIOTA (3) uplift POC (20) DOC (680) OC burial sediment redistribution MODERN OCEAN SEDIMENTS (100) burial (units=1015gC) Modified after Hedges (1992) Sizes of boxes are not to scale Overarching Questions • • • What is the age of terrestrial (vascular plant-derived) carbon discharged by rivers to the ocean? Where in the drainage basin do terrestrial organic carbon signatures emanate from? How do terrestrial organic carbon residence times vary with drainage basin properties? Relevance • • • Timescales of change in terrestrial vs oceanic carbon cycle in response to climate variations/anthropogenic perturbations. Understand pathways of terrestrial organic matter transport. Interpretation of marine and terrestrial proxy records from marine sediments. 18 Δt plant wax lipids 1000 Ob-1 bulk 1500 Riverine 1° & 2° prodn Ob-2 bulk 2000 C age (years b.p.) ac i n- Ob-1 Ob-2 Mackenzie 500 14 d d ac i C 30 0 C 28 C 24 C 26 n- n- ac i ac i d d Bulk vs molecular-level analysis of riverine organic matter n- 14C 2500 3000 3500 4000 6000 8000 Fossil (kerogen) OC 10000 id 30 C C 28 n- n- ac n26 C ac ac id id id ac n24 C Dickens et al. in prep. Drenzek et al 2007 Mackenzie bulk 12000 19 Molecular multi-isotopic studies of riverine organic matter Mackenzie Cowichan (Saanich) Columbia Eel Ob Danube Pettaquamscutt Mississippi Unare (Cariaco) Congo Beni Waiapu Beaufort Sea Molecular Multi-Isotopic - River-dominated (Mackenzie) - Old organic carbon inputs Studies of Marine Sediments Box Core Surface Grab Particulate Washington Margin - River-dominated (Columbia R) 20 Radiocarbon ages of vascular plant wax biomarkers in Washington Margin and Beaufort Sea surface sediments Carbon number 21 TOC 22 23 24 25 26 27 28 29 30 31 32 0 WM St2 TOC WM St2 FA WM St2 HC BS St5 TOC BS St5 FA BS St5 HC 500 Washington Margin (St 2, 83 m) 1500 14 C age (yr) 1000 4000 Beaufort Sea (St 5, 25 m) 6000 8000 10000 12000 Drenzek et al., in press; Eglinton, unpublished results Drainage Basin Area 100 0 -100 Δ C (permil) 0 -100 -200 Sediment Load -200 -300 14 -300 14 Δ C (permil) 100 -400 ave acid D14C -500 -400 -500 ave acid D14C -600 -600 10000 100000 1000000 10 2 100 Sediment Load (Mt/yr) Drainage Basin Area (km ) ave acid D14C 100 Sediment Yield 0 - Discharge - Elevation - Vegetation type - Bedrock type -200 -300 14 Δ C (permil) -100 Still to evaluate: -400 -500 -600 10 100 1000 10000 2 Sediment yield (t/km /yr) 21 Δ14C of long-chain plant wax lipids vs river latitude ave acid D14C ave OH D14C ave HC D14C -200 In c rea sin g 14 Δ C (permil) 0 14 Ca ge -400 at hi g he r la ti tu de s -600 0 20 40 60 Relationship between climate, vegetation & continental residence times in central W. Africa -35 C3-dominated vegetation (rainforest) -34 -33 -130 -32 arid if -31 Δ14C age (n-C24 alcohol–forams) -30 3000 Increa 2500 2000 1500 1000 Contains bomb 14C 500 -135 icat ion of d rain ag -140 -145 e ba si n sing r esiden ce tim -150 -155 e δD n-C24 alcohol (‰ VSMOW) δ13C n-C24 alcohol (‰ VPDB) Latitude N/S -160 n-C24 alcohol 0 0 1000 2000 3000 4000 5000 6000 Calendar age 7000 8000 9000 10000 Schefuss et al., unpublished 22 Temporal relationship between wax biosynthesis and aeolian transport - rapid but not necessarily young? Carbon isotopic composition of dustfall sample off NW Africa Abundance δ13C (‰) Δ14C (‰) Total Organic Carbon 1.02 % -18.93 -149.6 1260 ± 40 Black Carbon 0.24 % -15.13 -231.7 2070 ± 35 12 μg/gdw -27.9 -80.8 649 ± 143 Fractions Plant wax alcohols 14C age (yr BP) Eglinton et al., 2003 Isotopic characterization of size-fractionated sediments from the Washington Margin Upper slope Outer shelf Washington Margin (Columbia R) 23 Radiocarbon ages of individual fatty acids in size-fractionated sediments WM3 WM4 • Terrestrial (long-chain) fatty acids older in slope than shelf surface sediments - Aging during lateral transport? Outer shelf • Terrestrial fatty acid age increases with increasing grain-size -More rapid nepheloid layer transport of fine particles? Upper slope Aging during transport? • Can 14C measurements on vascular plant markers yield information on timescales of across-margin transport of sedimentary particles? Grain size Uchida et al., unpublished results The Global Organic Carbon Cycle ATMOSPHERIC CO2 (750) terrestrial primary production SEDIMENTARY ROCKS (KEROGEN) (15,000,000) p we hysic ath al eri ng LAND PLANTS (570) humification SOILS (1,600) uplift marine primary production riv er tra or eo ns po lian rt OCEAN BIOTA (3) POC (20) DOC (680) OC burial burial sediment redistribution MODERN OCEAN SEDIMENTS (100) (units=1015gC) Modified after Hedges (1992) Sizes of boxes are not to scale 24 The Global Organic Carbon Cycle ATMOSPHERIC CO2 (750) terrestrial primary production SEDIMENTARY ROCKS (KEROGEN) (15,000,000) LAND PLANTS (570) p we hysic ath al eri ng humification marine primary production riv er tra or eo ns po lian rt SOILS (1,600) OCEAN BIOTA (3) uplift POC (20) DOC (680) sediment redistribution OC burial MODERN OCEAN SEDIMENTS (100) burial (units=1015gC) Modified after Hedges (1992) Sizes of boxes are not to scale 14C ages of fatty acids & alkanes in Beaufort Sea sediments 0 Stn5 Stn35 Stn144 10000 n-fatty acids = open symbols n-alkanes = closed symbols 15000 14 C age (yr BP) 5000 20000 Fossil OC component 25000 15 20 25 Carbon number 30 Drenzek et al., 2007 25 Return of fossil carbon to the biosphere: 14C-dead living biomass! Evidence for microbial assimilation of kerogen during shale weathering 25 μm PLFA Δ14C Fancient carbon δ13C C16:0 -711 0.744 -25.5 C18:0 -773 0.802 -26.2 C18:1+C18:2 -882 0.901 -26.5 cyc-C17:0+cyc-C19:0 -922 0.937 -26.9 Kerogen -990 -29.5 Petsch et al, 2001, Science, 292, 1127-1128 26 14C age variability in Bermuda Rise surface (0-3 cm) sediment Tracer of DIC 14C in overlying surface waters C16 fatty acid C18 fatty acid Alkenones (1-2cm) Alkenones (0-1cm) TOC (0-1cm) 3000 10000 15000 UCM C29+C31 alkanes C28+C30+C32 alkanes C27 alkane C21+C23+C25 alkanes Bulk OC = advected marine OM? C22+C24+C26 alkanes C28 fatty acid C24 fatty acid 14 5000 C26 fatty acid TOC (1-2cm) G. ruber 2000 Refractory algal Pre-aged biomarkers refractory (large plant advected waxes component) 4000 (advected + eolian component)? -600 -800 component?) 1000 age (yr BP) -400 Labile algal planktonic forams biomarkers total (minor organicadvected carbon alkenones fatty acids hydrocarbons 14C Δ C (permil) -200 G. inflata 0 0 -1000 20000 30000 Petrogenic hydrocarbons (fossil inputs) Ohkouchi et al., submitted Calculation of % terrestrial, marine and fossil OC Dual isotopic mass balance approach: Δ14CTOC = fmarine * Δmarine + fterrestrial * Δterrestrial + ffossil * Δfossil δ13CTOC = fmarine * δmarine + fterrestrial * δterrestrial + ffossil * δfossil fmarine + fterrestrial + ffossil = 1 Variable Δ14CTOC δ13CTOC Δ14Cmarine Δ14Cterrestrial Δ14Cfossil δ13Cmarine δ13Cterrestrial δ13Cfossil Measurement/assumption: measure directly (AMS) measure directly (irMS) measure phytoplankton sterol (PCGC/AMS) measure lignin phenol/plant wax (PCGC/AMS) stipulate as –1000 ‰ measure phytoplankton sterol (irm-GC-MS) - assume offset between biomarker and bulk OC measure lignin phenol/plant wax (irm-GC-MS) - assume offset between biomarker and bulk OC assume value based on regional stratigraphy - (or measure biomarker selected based on Δ14C) 27 Dual Isotope Mass Balance 20 10 Ross Sea (Fairy) Ross Sea (Emperor) Ross Sea (Gentoo) Ross Sea (Chinstra Gulf Of Mexico Bermuda Rise marine vascular plant relict Beaufort Sea 30 Washington Margin St1 40 Washington Margin St2 50 Black Sea Unit II % 60 Black Sea Unit I 70 Santa Monica Basin 80 14 -251 -160 -108 -468 -600 -194 -136 -570 -876 -300 -395 -555 -712 Δ C TOC 13 -20.7 -23.0 -24.2 -25.36 -22.68 -25.29 -25.24 -21.7 -28.26 -24.04 -27.42 -26.35 -25.65 δ C TOC Benguela Upwellin 90 Arabian Sea 100 -109 -21.7 0 Ro Ro Ro Ro B Sa Gu W Ar Bla Be Be W Bla as ab as rm ss ss ss ss lf O eau ck h h ian ngue nta M ck S for ud Se Se Se Se Se fM e la a R ingto ingto tS Se on a( a( a( a( ex Up e n n ica a Un a Un a Fa Em G C i se a ico Ma hin en we Ma it I it I iry B pe too rgi str llin as I ) r g r or) nS in ap in g ) St ) t2 1 28
© Copyright 2026 Paperzz