Poster No 1464 15th ECCMID, Kopenhagen/Danmark, April 2-5, 2005 1 Increase of resistance to nalidixic acid among four clinically important Enterobacteriaceae pathogens in three Central European countries M. Kresken1*, D. Hafner2, on behalf of the Working Group for Antimicrobial Resistance of the Paul-Ehrlich-Society for Chemotherapy Abstract Objectives: Since 1984 when the first fluoroquinolone (FQ) was introduced in Europe the consumption of the FQ has markedly increased. To evaluate the influence of the increasing consumption on the prevalence of resistance to nalidixic acid (NAL) and FQ in clinical isolates of four clinically important members of the family Enterobacteriaceae we reviewed the susceptibility data from two collaborative studies conducted in 1984 (prior to the introduction of the first FQ) and in 2001 by the Working Group for Antimicrobial Resistance of the Paul-Ehrlich-Society for Chemotherapy Methods: Isolates of Enterobacter cloacae (ECL), Escherichia coli (ECO), Klebsiella pneumoniae (KPN), and Proteus mirabilis (PMI) collected in 1984 and 2001 from 23 and 26 laboratories, respectively, located in Austria, Germany, and Switzerland, were included. MICs were determined using the broth microdilution method according to the standard of the German DIN. Results: In 1984 and 2001, a total of 1.640 and 1.348 isolates, respectively, were tested. Resistance to NAL markedly increased in all species between 1984 and 2001, i. e. from 2.0% to 17.5% in ECL, from 1.6% to 19.2% in ECO, from 12.2% to 21.6% in KPN, and from 2.6% to 15.9% in PMI. Of the NAL-resistant ECO isolates collected in the 2001 survey, 26.1% were susceptible and 71.4% resistant to ciprofloxacin (CPFX). Susceptibility rates of CPFX for ECL, KPN, and PMI were 53.4%, 43.9%, and 30.6%, respectively. Furthermore, NAL-resistant isolates of all species collected in the 2001 survey exhibited reduced susceptibility to other therapeutic classes. Notably, susceptibility rates of NAL-resistant ECO isolates for cefotaxime, ceftazidime, piperacillin/tazobactam, gentamicin, and tobramycin (89.8%, 93.3%, 85.7%, 68.9%, 71.4%) were significantly lower than those for NAL-susceptible isolates (99.2%, 99.0%, 94.2%, 91.2%, 95.0%). In contrast, carbapenems and amikacin retained in vitro activity against NAL-resistant ECO isolates. Similar trends were observed for the other three species. Conclusion: Resistance to NAL (and FQ) has markedly increased among Enterobacteriaceae pathogens recovered from patients in hospitals located in Germany, Austria, and Switzerland. We strongly recommend a judicious use of FQ in order to combat the spread of FQ resistance in Enterobacteriaceae. . Introduction and Purpose Since 1984 when the first fluoroquinolone (norfloxacin) was introduced in Europe the consumption of the fluoroquinolones has markedly increased. In Germany, the use of fluoroquinolones rose from 7 to 13 packs in the retail market and 11 to 19 million counting units in the hospital market (IMS data). To evaluate the influence of the increasing consumption on the prevalence of resistance to nalidixic acid and fluoroquinolones in clinical isolates of four clinically important members of the family Enterobacteriaceae we reviewed the susceptibility data from two collaborative studies conducted in 1984 (prior to the introduction of the first fluoroquinolone) and in 2001 by the Working Group for Antimicrobial Resistance of the Paul-Ehrlich-Society for Chemotherapy. Methods Surveillance Network The Antimicrobial Resistance Surveillance Program of the Paul-Ehrlich-Society for Chemotherapy was implemented in 1975. It is a program that monitors the prevalence of antimicrobial susceptibility of frequently encountered bacterial pathogens at regular intervals via a network of microbiology laboratories located in Austria, all regions of Germany, and Switzerland. The majority of laboratories is affiliated to university hospitals or other teaching hospitals. Bacterial strains Isolates of Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis collected in 1984 and 2001 from 23 and 26 laboratories, respectively, were included. Only one isolate per patient was permitted. Isolates were identified by using a commercial identification system (api-20E, bioMerieux, Nürtingen, Germany). MICs were determined using the broth microdilution method according to the standard of the German DIN. Susceptibility testing All laboratories used the same method of susceptibility testing. Minimal inhibition concentrations (MICs) for antibacterial agents were determined by the broth microdilution method according to the standard of the German DIN (Deutsches Institut für Normung) 58940 guidelines (1). Antibacterial agents tested were nalidixic acid, ciprofloxacin (as reference fluoroquinolone), and 10 agents of other drug classes: amikacin, cefepime, cefotaxime, ceftazidime, gentamicin, imipenem, meropenem, piperacillin, piperacillintazobactam, tobramycin. Nalidixic acid breakpoints were ≤ 16 mg/L (susceptible) and ≥ 32 mg/L (resistant). Breakpoints of all other antibacterial agents were those approved by DIN (2). Statistical analysis The results were analysed by using SAS Statistic Software Package. Fisher's exact test for 2x2 contingency tables was performed. Differences were considered significant when the P-value was <0.05. Results In 1984 and 2001, a total of 1.640 and 1.348 isolates, respectively, were tested. Resistance to nalidixic acid markedly increased in all species between 1984 and 2001, i. e. from 2.0% to 17.5% in E. cloacae, from 1.6% to 19.2% in E. coli, from 12.2% to 21.6% in K. pneumoniae, and from 2.6% to 15.9% in P. mirabilis (Table 1). Of the 119 nalidixic acid-resistant E. coli isolates collected in the 2001 survey, 31 (26.1%) were susceptible and 85 (71.4%) resistant to ciprofloxacin (Table 2). Susceptibility rates of ciprofloxacin for E. cloacae, K. pneumoniae, and P. mirabilis were 53.4%, 43.9%, and 30.6%, respectively (Table 2). Furthermore, nalidixic acid-resistant isolates of all species collected in the 2001 survey exhibited reduced susceptibility to other therapeutic classes. Notably, susceptibility rates of nalidixic acid-resistant E. coli isolates for cefotaxime, ceftazidime, piperacillin/tazobactam, gentamicin, and tobramycin (89.8%, 93.3%, 85.7%, 68.9%, 71.4%) were significantly lower than those for NAL-susceptible isolates (99.2, 99.0%, 94.2%, 91.2%, 95.0%). In contrast, carbapenems, and amikacin retained in vitro activity against nalidixic acid-resistant E. coli isolates. Similar trends were observed for the other three species (Table 3). Conclusions 1. Our findings indicate that the prevalence of resistance to nalidixicacid (and fluoroquinolones) in E. coli, E. cloacae, K. pneumoniae, and P. mirabilis recovered from patients in hospitals located in Germany, Austria, and Switzerland increased between 1984 and 2001. 2. Nalidixic acid-resistant isolates were very often co-resistant to non-quinolone antibacterial agents. Carbapenems retained in vitro activity to nalidixic-acid resistant isolates of all four species. 3. The increase of resistance to nalidixic acid (and fluoroquinolones) seems to be mainly due to the increase in the consumption of fluoroquinolones, but the hospital epidemiology may also have contributed markedly to the overall resistance. 4. We strongly recommend a judicious use of fluoroquinolones in order to combat the spread of fluoroquinolone resistance in members of the family Enterobacteriaceae. Antiinfectives Intelligence GmbH, Immenburgstrasse 20, 53121 Bonn, Germany, *Fon: + 49-228-444-7060/Fax: +49-228-444-70616; *E-mail: [email protected] 2 Institute for Pharmacology and Clinical Pharmacology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany Table 1: Development of nalidixic acid resistance in four members of the family Enterobacteriaceae from 1984 to 2001 MIC (mg/L) Species Year <1 2 4 8 16 32 64 1984 n 3 54 127 9 1 0 0 (n=198) cum-% 1.5 28.8 92.9 97.5 98.0 98.0 98.0 Enterobacter cloacae 2001 n 3 60 91 28 11 1 2 (n=234) cum-% 1.3 26.9 65.8 77.8 82.5 82.9 83.8 1984 n 243 447 124 7 0 3 5 (n=834) cum-% 29.1 82.7 97.6 98.4 98.4 98.8 99.4 Escherichia coli 2001 n 64 295 122 9 10 2 12 (n=619) cum-% 10.3 58.0 77.7 79.2 80.8 81.1 83.0 1984 n 2 30 182 16 1 8 7 (n=263) cum-% 0.8 12.2 81.4 87.5 87.8 90.9 93.5 Klebsiella pneumoniae 2001 n 3 101 79 22 5 6 7 (n=268) cum-% 1.1 38.8 68.3 76.5 78.4 80.6 83.2 1984 n 11 88 227 7 3 3 3 (n=345) cum-% 3.2 28.7 94.5 96.5 97.4 98.3 99.1 Proteus mirabilis 2001 n 4 37 114 30 6 1 2 (n=227) cum-% 1.8 18.1 68.3 81.5 84.1 84.6 85.5 % S, % susceptible; % R, % resistant 128 1 98.0 4 85.5 0 99.4 18 85.9 8 96.6 2 84.0 1 99.4 3 86.8 Table 2: In vitro activity of ciprofloxacin against nalidixic acid-resistant isolates of four members of the Enterobacteriaceae collected in 2001 MIC (mg/L) n 0.125 0.25 0.5 1 2 4 8 >16 <0.063 n 1 2 8 5 2 6 7 5 5 Enterobacter cloacae 41 cum-% 2.4 7.3 26.8 39.0 43.9 58.5 75.6 87.8 100.0 n 6 7 13 3 2 3 12 17 56 Escherichia coli 119 cum-% 5.0 10.9 21.8 24.4 26.1 28.6 38.7 52.9 100.0 n 2 1 9 12 7 11 7 4 5 Klebsiella pneumoniae 58 cum-% 3.4 5.2 20.7 41.4 53.4 72.4 84.5 91.4 100.0 n 0 1 1 1 8 15 4 4 2 Proteus mirabilis 36 cum-% 0.0 2.8 5.6 8.3 30.6 72.2 83.3 94.4 100.0 % S, % susceptible; % I, % intermediate; % R, % resistant Species References 1. Deutsches Institut für Normung, Normenausschuss Medizin (NAMed). (1990). Methoden zur Empfindlichkeitsprüfung von bakteriellen Krankheitserregern (außer Mykobakterien) gegen Chemotherapeutika. Mikrodilution. DIN 58940, Teil 8, Juni 1990. 2. Deutsches Institut für Normung, Normenausschuss Medizin (NAMed). (2000). Methoden zur Empfindlichkeitsprüfung von bakteriellen Krankheitserregern (außer Mykobakterien) gegen Chemotherapeutika. Bewertungsstufen der minimalen Hemmkonzentration – MHK-Grenzwerte von antibakteriellen Wirkstoffen. DIN 58940, Teil 4, Januar 2000. Laboratories participating in the 2001 survey Austria: Bundesstaatl. Bakteriolog.- Serolog. Untersuchungsanstalt, Innsbruck (F. Allerberger); Klinische Abt. für Klinische Mikrobiologie, Universität Wien (M. Rotter, S. Prause); Germany: Zentralinstitut für Laboratoriumsdignostik, Städtische Kliniken Offenbach (K. Fabricius); Labor Dr. Gärtner, Weingarten (G. Funke, H. Grimm); Institut für Mikrobiologie und Hygiene, Campus Charité Mitte, Humboldt-Universität, Berlin (E. Halle); Staatl. Medizinal-Untersuchungsamt Niedersachsen, Hannover (K. Schwegmann); Institut für Laboratoriumsmedizin, Städtisches Klinikum Fulda (H. Krüpe); Institut für Med. Mikrobiologie der RWTH, Aachen (R. Lütticken); Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Klinikum der Philipps-Universität, Marburg (R. Mutters); Institut für Medizinische Mikrobiologie, Westfälische Wilhelms-Universität, Münster (G. Peters, R. Gross); Abteilung für Mikrobiologie und Krankenhaushygiene, Städtisches Klinikum, Karlsruhe (A. Becker, E. Kniehl); Institut für Medizinische Mikrobiologie und Infektionsepidemiologie, Universität Leipzig (A. C. Rodloff, B. Pleß); Institut für Medizinische Mikrobiologie, Klinikum der J.W. Goethe-Universität, Frankfurt am Main (V. Brade, V. Schäfer, T. Wichelhaus); Institut für Medizinische Mikrobiologie, Universität Rostock (H. Schmidt, M. Donat); Institut für Medizinische Mikrobiologie, Klinikum der Friedrich-Schiller-Universität, Jena ( (E. Straube, W. Pfister); Institut für Medizinische Mikrobiologie und Virologie, Klinikum der Christian-Albrechts-Universität, Kiel (U. Ullmann, S. Schubert); Institut für Infektionsmedizin, WE15 Abt. für Medizinische Mikrobiologie und Infektionsimmunologie, Universitätsklinikum Benjamin Franklin, FU Berlin (J. Wagner); Thüringer Landesamt für Lebensmittelsicherheit und Verbraucherschutz, Medizinaluntersuchung, Erfurt (U. Warweg); Pharmazeutische Mikrobiologie, Rheinische WilhelmsUniversität, Bonn (B. Wiedemann); Institut für Medizinische Mikrobiologie und Hygiene, JohannesGutenberg-Universität, Mainz (M. Maeurer); Institut für Medizinische Mikrobiologie und Virologie, Heinrich-Heine-Universität, Düsseldorf (F.-J. Schmitz); Institut für Umweltmedizin und Krankenhaushygiene, Klinikum der Albert-Ludwigs-Universität, Freiburg (F. Daschner); Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Klinikum der Universität zu Köln (H. Seifert); Max von Pettenkofer Institut für Hygiene und Med. Mikrobiologie; Klinikum Großhadern, München (B. Grabein); Labor Dr. Limbach & Kollegen, Heidelberg (M. Holfelder, A. Fahr); Switzerland: Bakteriologielabor, Kantonsspital Basel (R. Frei, M. Jutzi); Institut Neuchatelois de Microbiologie, LaChaux-de-Fonds (H. H. Siegrist); Institut für Med. Mikrobiologie, Universität Zürich (B. Berger-Bächi); Mikrobiologisches Institut, Kantonsspital Aarau (I. Heinzer) MIC-50 (mg/L) >256 3 100.0 34 100.0 5 100.0 87 100.0 9 100.0 43 100.0 2 100.0 30 100.0 MIC-90 (mg/L) %S %R 194 98.0 193 82.5 821 98.4 500 80.8 231 87.8 210 78.4 336 97.4 191 84.1 4 2.0 41 17.5 13 1.6 119 19.2 32 12.2 58 21.6 9 2.6 36 15.9 %S %I %R 18 43.9 31 26.1 31 53.4 11 30.6 6 14.6 3 2.5 11 19.0 15 41.7 17 41.5 85 71.4 16 27.6 10 27.8 4 4 4 >256 2 4 2 >256 4 32 4 >256 4 4 4 >256 MIC-50 (mg/L) MIC-90 (mg/L) 2 8 8 >16 1 4 2 8 Table 3: In vitro activity of 10 non-quinolone antibacterial agents against nalidixic acid-susceptible and -resistant isolates of four members of the Enterobacteriaceae collected in 2001 Escherichia coli Klebsiella pneumoniae Proteus mirabilis Enterobacter cloacae (Nal-S, n=193; Nal-R, n=41) (Nal-S, n=500, Nal-R, n=119) (Nal-S, n=210, Nal-R, n=58) (Nal-S, n=191, Nal-R, n=36) Antibacterial Phenotype agent % I+R P-value %S % I+R P-value %S %S % I+R P-value %S % I+R P-value Nal-S 97.9 2.1 93.4 6.6 <0.01 Nal-R 87.8 12.2 91.6 8.4 Nal-S 96.9 3.1 99,8 0,2 Cefepime <0.05 Nal-R 87.8 12.2 96.6 3.4 Nal-S 73.6 26.4 99.2 0.8 Cefotaxime <0.01 Nal-R 26.8 73.2 89.9 10.1 Nal-S 74.6 25.4 99.0 1.0 Ceftazidime <0.01 Nal-R 46.3 53.7 93.3 6.7 Nal-S 98.4 1.6 91.2 8.8 Gentamicin <0.01 Nal-R 78.0 22.0 68.9 31.1 Nal-S 99.0 1.0 99.6 0.4 Imipenem n. s. Nal-R 97.6 2.4 100.0 0.0 Nal-S 100.0 0.0 100.0 0.0 Meropenem n. s. Nal-R 97.6 2.4 100.0 0.0 Nal-S 67.9 32.1 66.0 34.0 Piperacillin <0.01 Nal-R 26.8 73.2 19.3 80.7 PiperacillinNal-S 74.1 25.9 94.2 5.8 <0.01 tazobactam Nal-R 31.7 68.3 85.7 14.3 Nal-S 97.9 2.1 95.0 5.0 Tobramycin <0.01 Nal-R 78.0 22.0 71.4 28.6 % S, % susceptible; % I+R, % intermediate and resistant; n. s., not significant Amikacin n. s. <0.01 <0.01 <0.01 <0.01 n. s. n. s. <0.01 <0.01 <0.01 98.6 77.6 98.6 69.0 98.1 62.1 98.1 60.3 98.1 65.5 100.0 100.0 100.0 100.0 43.3 12.1 92.9 43.1 98.6 56.9 1.4 22.4 1.4 31.0 1.9 37.9 1.9 39.7 1.9 34.5 0.0 0.0 0.0 0.0 56.7 87.9 7.1 56.9 1.4 43.1 <0.01 <0.01 <0.01 <0.01 <0.01 n. s. n. s. <0.01 <0.01 <0.01 86.9 77.8 98.4 86.1 99.5 88.9 99.5 88.9 83.8 66.7 95.3 91.7 100.0 100.0 87.4 50.0 99.0 86.1 89.5 66.7 13.1 22.2 1.6 13.9 0.5 11.1 0.5 11.1 16.2 33.3 4.7 8.3 0.0 0.0 12.6 50.0 1.0 13.9 10.5 33.3 n. s. <0.01 <0.01 <0.01 <0.05 n. s. n. s. <0.01 <0.01 <0.01
© Copyright 2026 Paperzz