Planetesimal Formation and Planet Coagulation Protoplanetary Disks disk mass ~ 0.001-0.1 stellar mass Wilner et al. 00 200 AU van Boekel et al. 03 Disk surfaces at ~10 AU: Growth to a few microns 11.8 μm scattered light McCabe, Duchene, & Ghez 03 Disk interior at ~100 AU: Growth to a few cm Fν TW Hydra max s = 1 cm max s = 1 mm van Boekel et al. 03 Calvet et al. 2002 Climbing the size ladder τs Grain stopping time tstop Size EC & Youdin 10 Annual Reviews mvrel / Fdrag Dimensionless stopping timeτs ΩKepler tstop Gas-particle entrainment 10 6 os = 1 tstop 104 10 2 10 0 10 assumes minimum-mass solar nebula m k 1 a= v < cs v ï2 m m 1 a= ρ(cs − v)2 m µ 1 a= ï6 10ï8 10ï1 λmfp > s m 1 = a 10ï4 10 e.g., Epstein drag 1 10 R [AU] ρ(cs + v)2 ⇒ Fdrag ∼ ρcs v × πs2 102 A. Youdin h Grain growth g Sticking vstick ∼ 1 m/s for s ∼ 1 µm δ a2 ∼ s Hertz + −→ vstick surface tension Terminal vterm a s γ 5/6 ∼ 4 1/3 1/2 5/6 E ρ s ρ Ωs ∼ ρg vterm ∼ 1 m/s for s ∼ 10 cm Sticking up to, but not beyond, cm sizes Chokshi et al. 93, Blum & Wurm 08 Radial drift from headwind Ω2K r −1 ∂P Ω r ρg ∂r GM∗ r2 GM∗ r2 2 ∴ Ω < ΩK Meter-sized boulders drift inward from 1 AU within 100 yr Radial Weidenschilling 77 Nakagawa, Sekiya, & Hayashi 86 Gravitational instability Disk annulus can start to fragment if Toomre Q ~ 1 !ρ" > ρToomre M∗ ∼ 2πr3 Clump can resist tidal shear if Roche unstable ρ > ρRoche 3.5M∗ ∼ r3 > 2 × 10−6 g cm−3 > 10−7 g cm−3 if Σg ∼ 2000 g cm−2 (minimum − mass solar nebula) if Σd /Σg ∼ 10−2 (height − integrated solar metallicity) Σd Σg then ρ ∼ + hg hd ∼ 3 × 10−9 g cm−3 if hd ∼ hg Toomre unstable Roche unstable ρd /ρg ∼ 30 ρd /ρg ∼ 600 3 Toomre mass ∼ ρToomre λunstable ∼ 1019 g (10 km) “Streaming” instability = linear instability between two fluids interacting frictionally in a disk growth rates peak for τs 1 (marginally coupled bodies) τs = 0.1 <ρd /ρg> = 1 Youdin & Goodman 05; Johansen & Youdin 07 Streaming instability: Physical interpretation Jacquet et al. 2011 Relies strongly on marginally coupled bodies Roche density Bai & Stone 2011 Gravitational instability in the τs << 1 (small particle) limit Self-gravity important when ρ > ρToomre > 10 −7 hg M∗ ∼ 2πr3 g cm g = −Ω2 z hd −3 at r = 1 AU if Σg ∼ 2000 g cm−2 (minimum − mass solar nebula) if Σd /Σg ∼ 10−2 (height − integrated solar metallicity) Σd Σg then ρ ∼ + hg hd ∼ 3 × 10−9 g cm−3 if hd ∼ hg ∼ 10−7 g cm−3 if hd ∼ 5 × 10−4 hg Can the settled “sublayer” achieve Toomre density <ρd/ρg> 30? Safronov 1969 Goldreich & Ward 1973 Kelvin-Helmholtz instability may limit dust settling z ϕ Ω2K r −1 ∂P Ω2 r ρg ∂r GM∗ r2 GM∗ r2 ρg ρg + ρd ρg ∴ Ω < ΩK cs ∼ 25 m/s nearly independent of r ∆v ∼ cs vK Weidenschilling 1980 Necessary criterion for K-H instability in Cartesian shear flow: 1 g ∂ ln ρ/∂z Richardson Ri ≡ < Ricrit = 2 (∂v/∂z) 4 = 2 ωBrunt (∂v/∂z)2 1/∆z ∝ (1/∆z)2 z ϕ ρg ∆z ρg + ρd ∝ ∆z ρg Numerical simulations of dense midplanes Initial conditions: Spatially constant Ri Sekiya 98 ρd µ(z) ≡ (z) ρg = ! 1 1/(1 + µ0 )2 + (z/zd )2 where zd = 1/2 Ri "1/2 −1 ∆v Ω Input parameters: (Ri, μ0) (Ri, Σd/Σg) Ri = 0.1 (μ0, Σd/Σg) Ri = 1 Numerical simulations of dense midplanes EC 08; Lee, EC, Asay-Davis, and Barranco 10a Gravitational Instability by Metal Enrichment 30 Unstable Stable μ0 Ri |dvy /dz| ∼ ωBrunt ∼ (3/2)ΩK (3/2)ΩK ! |dvy /dz| (3/2)ΩK ∼ |dvy /dz| Midplane dust-to-gas ratio μ0 Bulk Disk Metallicity Σd/Σg Toomre-like densities possible for < 4x bulk solar metallicity, or < 4x more mass than minimum-mass solar nebula Lee et al. 10a Gravitoturbulence ? or True Fragmentation ? Constant Ri profiles yield infinite density with self-gravity Local enrichments of metallicity Particle Settling Radial pileups d Radial Drift Pileups Photoevaporated Gas Particle Settling Dusty Midplan UV Youdin & EC 04 Modeled metallicities Guillot et al. 06 Toomre density requires: Super-solar bulk metallicities (< 4 x; Σd/Σg = 0.05) and/or Disk masses > minimum-mass nebula (< 4 x) Johnson et al. 10 Elliptical motion = Guiding center + Epicycle Ω = guiding center (azimuthal) frequency κ = epicyclic (radial) frequency “Kepler degeneracy”: κ = Ω le κ c / y u c i ~ p e ze si u/Ω = u = epicyclic velocity = small body random velocity particle Massive disks of small bodies big bodies: (Goldreich, Lithwick & Sari 04, ARAA) R, Σ, v ! u without gravitational focussing: tacc ρR M ∼ ∼ ∼ 1012 yr σΩ Ṁ small bodies: with gravitational focussing: ρR ΣΩ ! u vesc "4 viscous stirring of small by big tacc ∼ ρR ∼ σΩ ! u vesc "2 s, σ, u ∼ 107 yr ρs σΩ collisional damping of small by small Extra Slides Grain growth: Too fast No turbulence Sticks too well Problem persists even if • grains are fractal • monomers are nonspherical Dullemond & Dominik 05 Turbulence Proposed solution: Replenishment of micron-sized grains (near-IR opacity) by fragmentation For small particles well coupled to gas (τs << 1): 1. Is the Richardson criterion a good predictor of stability? • Doesn’t formally apply because flow is 3D and rotational • Brunt vs. vertical shear vs. Coriolis vs. Kepler shear • Coriolis is destabilizing • Kepler shear is stabilizing 2. How does maximum dust density ρd depend on bulk (height-integrated) metallicity Σd/Σg? • Disk metallicity may be supersolar • Host stars of extrasolar planets tend to be metal-rich • Planets themselves are metal-rich Ishitsu & Sekiya 03; Gomez & Ostriker 05; Johnson et al. 10; Guillot et al. 06 Well-coupled gas and dust in a shearing box ! ∂P " ∂vx −1 ∂P ∂x 0 2 + v · ∇vx = + 2Ω0 vy + 2qΩ0 x − ∂t ρ +ρd ∂x ρ + ρd ∂vy −1 ∂P + v · ∇vy = − 2Ω0 vx ∂t ρ +ρd ∂y y ∂vz −1 ∂P + v · ∇vz = − Ω20 z ∂t ρ +ρd ∂z anelastic ∂ρ + ∇ · (ρv) = 0 0 ∂t x ∂ρd + ∇ · (ρd v) = 0 ∂t ∂ε + v · ∇ε = −(P + ε)∇ · v ∂t P = (γ − 1)ε x y Barranco 09 Code limitations (so far): 1. No self-gravity • Use Toomre density as guide for onset of gravitational instability 2. Dust and gas are perfectly coupled • Restricted to studying stability of given initial conditions Grain growth h g mg ∼ Fdrag (v) µs3 Ω2 h ∼ ρg s2 cs v µ −→ Terminal v ∼ Ωs (bigger is faster) ρg d ρd 3 2 Accretion (µs ) ∼ ρd vs −→ ṡ ∼ v dt µ (faster is bigger) −→ Exponential growth s ∼ s0 exp(ρd Ωt/ρg ) (fastest growth in inner disk) Since t ∼ h/v −→ s ∼ s0 exp(Σd /µs) } s0 ∼ 1 µm µ ∼ 1 g cm−3 Σd ∼ 10 g cm−2 s ∼ 1 cm t ∼ 100 yr v ∼ 1 m/s Safronov 1969 Relaxing constant Ri: Settling from arbitrary initial conditions 1D + 3D Lee et al. 10b Finding the marginally stable state Marginally stable states Evidence for constant Ri <Ri>crit ≈ 0.5 <μ> <Ri> <Ri>crit ≈ 0.25 Superlinear relation between midplane density and bulk metallicity <μ0> (Σd/Σg)>1 Grain growth vcrit ∼ 1 m/s for s ∼ 1 µm Repulsion (elastic modulus E) δ Stress σ ∼ E∇ξ ∼ E a mv σ∼ (δ/v) × a2 Repulsive force FR ∼ σa2 ∼ µ3/5 E 2/5 s2 v 6/5 δ 2 a ∼ s Repulsive energy UR ∼ FR δ Adhesion (surface tension γ ) Binding energy UB ∼ γa2 a s UR = UB −→ vcrit γ 5/6 ∼ 4 1/3 1/2 5/6 E µ s Hertz 1882, Chokshi et al. 93 Ri Coriolis 2Ω −1 destabilizing Cabot 84 Gomez & Ostriker 05 Kepler radial shear 3 −1 Ω 2 stabilizing Ishitsu & Sekiya 03 EC 08 Barranco 09 } Rotational Effects Brunt oscillation < Ω −1 stabilizing Vertical shear < Ω −1 destabilizing
© Copyright 2026 Paperzz