511 PART 1: Solutions to Odd-Numbered Exercises and Practice Tests Section 10.7 Graphs of Polar Equations When graphing polar equations: 1. Test for symmetry (a) 0 = ,rr/2: Replace (r, 0) by (r, ,n" - 0) or (-r, -0). (b) Polar axis: Replace (r, 0) by (r, -0) or (-r, ~ - 0). (c) Pole: Replace (r, 0) by (r, !r + 0) or (-r, 0). (d) r = f(sin 0) is symmetric with respect to the line 0 = (e) r = f(cos 0) is symmetric with respect to the polar axis. 2. Find the 0 values for which [r[ is maximum. 3. Find the 0 values for which r = 0. 4. Know the different types of polar graphs. (b) Rose Curves, n >- 2 (a) Lima~ons r=a+bcosO r = a cos nO r = a sin nO r = a + bsin 0 (d) Lenmiscates (c) Circles r~ = a2cos 20 r = a cos 0 r~ = a2 sin 20 r = a sin O r=a You should be able to graph polar equations of the form r = f(O) with your graphing utility. If your utility does not have a polar mode, use x = f(t) cos t y =f(t) sint in parametric mode. Solutions to Odd-Numbered Exercises 3. r = 3 cos 0 is a circle. 1. r = 3 cos 20 is a rose curve. 7. r= 10 + 4cos0 : - = 10+4cos(- - r = 10 + 4 cos 0 Not an equivalent equation r = 10 + 4 cos(’tr - 0) r = 10 + 4(cos ’n’cos 0 + sin ~rsin 0) r = 10 - 4 cos 0 Not an equivalent equation Polar axis: r = 10 + 4 cos(- 0) r = 10 + 4 cos 0 Equivalent equation Pole: - r = 10 + 4 cos 0 Not an equivalent equation r = 10 + 4 cos(~" + 0) r = 10 + 4(coscr cos O - sin ~r sin 0) Not an equivalent equation r = 10 - 4 cos 0 Answer: Symmetric with respect to polar axis. 5. r = 6 sin 20 is a rose curve. 512, PART l: Solutions to Odd-Numbered Exercises and Practice Tests 6 1 + sin 0 11. r = 6sin0 6 0=-~: r= 1 +sin(’n’- 0) 2" -r = 6 sin(-0) r = 6 sin 0 6 1 + sin ,n-cos 0 - cos ~rsin 0 6 1 + sin 0 Equivalent equation Polar axis: r = 6 sin(- 0) r = -6 sin 0 Not an equivalent equation Equivalent equation Polar r axis: - r = 6 sin(~- - 0) 6 1 + sin(- 0) 6 1 - sin 0 Not an equivalent equation -r = 6(sin "rr cos 0 - cos "n" sin 0) - r = 6 sin 0 Not an equivalent equation Pole: 6 1 + sin(~ - 0) 6 1 + sin 0 Not an equivalent equation r = 6 sin(’rr + 0) r = - 6 sin 0 Not an equivalent equation Not an equivalent equation The pole: -r= 6 1 + sin 0 ~r Answer: Symmetric with respect to 0 = ~. Not an equivalent equation 6 1 + sin(~" + 0) 6 1 - sin 0 Not an equivalent equation Answer: Symmetric with respect to 0 = ~r 2" 13. r=4sec0csc0 0 2" -r = 4 sec(- 0) csc(- 0) -r = --4 sec 0csc 0 r = 4 sec 0csc 0 Equivalent equation Polar axis: -r = 4 sec(’rr - O) csc(~r - 0) -r = 4(-see 0) csc 0 r = 4 sec 0 csc 0 Equivalent equation Pole: - r = 6 sin 0 r = 4 sec(’n" + 0) csc(’rr + 0) r = 4(-sec 0)(-csc 0) r = 4 sec 0 csc 0 Equivalent equation Answer: Symmetric with respect to 0 = ~-/2, pole axis, and pole 513 PART l: Solutions to Odd-Numberdd Exercises and Practice Tests 15. ? = 25sin20 (- r)2 = 25 sin(2(- 0)) rz = -25 sin 20 Not an equivalent equation r~ = 25 sin(20r - 0)) r~ = 25 sin(2~ - 20) r~ = 25(sin 2qr cos 20 - cos 27r sin 20) rz = - 25 sin 20 Polar axis: r~ = 25 sin(2(- 0)) ta = - 25 sin 20 Not an equivalent equation Not an equivalent equation (-r)2 = 25 sin(2(~ - 0)) r~ = -25 sin 20 Not an equivalent equation (-r)z = 25 sin(20) Pol~: r~ = 25 sin 20 Equivalent equation Answer: Symmetric with respect to pole. 17. Irl = 110(1 - sin 0)1 19. [cos 301 = 1 = 1011 - sin 01 -< 10(2) = 20 cos 30 = 5:1 qr 2~r 11 - sin 0[ = 2 I -sin0=2 or 1-sin0=-2 sin 0 = -1 3qr 0= 2 = 14cos 301 = 4 [cos 301 -<4 sin 0 = 3 ¯ " 2~ Maximum: Irl = 4when 0 = 0, =,--, ~r 33 Not possible 3~" Maximum: Irl = 20.when 0 = ~-. r = 0 when 1 - sin 0 = 0 r=0 when cos 30=0 ~r ~r 5~r 0=T. sin0= 1 2 21. Circle: r = 5 2 2S. r = 3sin0 6 Symmetric with respect to 0 = ~ 2 Circle with radius of ~2 2 123 514 3(1 - cos 0) Cardioid PART 1: Solutions to Odd-Numbered Exercises and Practice Tests 29. r= 3-4cosO 31. r=6+sinO Convex lima~on Limaqon 2 2 4 33. r = 5cos 30 Rose curve 35. r = 7sin20 Rose curve _~ 39. - 10~" <- 0 < lO~r 0 37. r=2 Symmetric with respect ~r to0=-2 Spiral 4 petals 41. 0 <_ 0_< "rr 43. 0_< 0-<2~r 47.0< O< ~ 2 49. -2~ < 0 < 2~" 4 45. 0-< O<2~r 4 515 PART l." Solutions to Odd-Numbered Exercises and Practice Tests 55. r = 3- 2cos0,0 <_ 0 < 2"tr 53. 0< 0<2~- 51.0<0<~ -12 57. r=2+sin0, 0~0<2~r 3 61. rz = 4sin20, 0_<0<~ 63. r=2-secO x = - 1 is an asymptote. (Use rI = 4s~and r2 = -- 4S~.) 4 ©. -. 2 65. r=0 y = 2 is an asymptote. ll’rr 67. False. If 0 = --6-’-’ r = 4 71. (a) (b) .,( ( " 69. False. It has 5 petals (C) ,a .,(.3 516 PART l: Solutions to Odd-Numbered Exercises and Practice Tests 73. Use the result of Exercise 72. (a) Rotation: ~b 2 Original graph: r = f(sin 0) Rotat~l graph: r=f(sin(O-~))=f(-cosO) (b) Rotation: ~ = ,rr Original graph: r = f(sin 0) Rotated graph: r = f(sin(0 - ~r)) = f(-sin 0) (c) Rotation: ~b = Original graph: r =f(sin 0) Rotated graph: r=f(sin(O-~-))=f(cosO) (b) r = 2 sin[2(0- ~)] = 2 sin (20 - ~) = -2 sin 20 = -4 sin 0cos 0 = 4 sin(0 - ~) cos(0 - ~) = 2 sin(20 - ~) = sin 20 - v/~ cos 20 (d) r = 2 sin[2(O - (c) r=2sin 2 O- = 2 sin(20 - 2~r) = 2 sin 20 = 4 sin t9 cos 0 = 4 sin(0 - ~) cos(0 - ~) = ~eos20 - sin20 77. r = 2 + k cos O k=0 k=l Circle Convex limaqo9 k=2 k=3 Cardioid Limaqon with inner loop 517 PART l: Solutions to Odd-Numbered Exercises and Practice Tests 81. a~ = 150. ak+~ = ak - 18 79. at =2, a8 =23 as=at-j8- l)d a2= 150- 18= 132 23 =2+7d :=~ d= 3 a3= 132- 18= 114 a~ = 2, a2 = 5, a3 = 8, a,~ = 11, a5 = 14 a,~= 114- 18=96 a.,=2-r(n- 1)3 =3n- [ a5=96- 18=78 d = - 18. a,, = 150 + (n - 1)(-18) = 168 - 18n 83. ~ 4n = 420"21" 2 = 840 n=1 85.,,---~-~tn + 5) = 2 + 5(120) 87..~0\~/z~’-__ = 7860 1 -- --1 8 7 Section 10.8 Polar Equations of Conics [] The graph of a polar equation of the form ep ep [ 5:esin0 1 + ecos 0 is a conic, where e > 0 is the eccena:icity and IP[ is the distance between the focus (pole) and the directrix. (a) If e < 1, the graph is an ellipse. (b) If e = 1. the graph is a parabola. (c) If e > 1. the graph is a hyperbola. [] Guidelines for finding polar equations of conics: ep (a) Horizontal direca’ix above the pole: r = l + esin0 ep (b) Horizontal directrix below the pole: r - 1 - e sin 0 ep (c) Vertical directrix to the right of the pole: r = 1 + e Cos 0 (d) Vertical direcldx to the left of the pole: r = l - e cos 0 Solutions to Odd-Numbered Exercises 5. Matches (b). (Parabola e = 1) 7. Matches (d). (Hyperbola e = 2)
© Copyright 2026 Paperzz