Honors Geometry 1. Homework Answers for Section 11.4 Find the area of a kite with diagonals 6 and 20 6 A= = 20 1 2 1 2 (d1)(d2) (20)(6) = 60 u2 2. Find the area of each kite. a. 5 4 9 A= 1 (8)(14) = 56 u2 2 A= 1 (10)(17) = 85 u2 2 4 b. 13 5 13 c. 16 30° A= 1 2 (20)(16) = 160 u2 16 20 Baroody Page 1 of 4 Honors Geometry 3. Homework Answers for Section 11.4 The area of a kite is 20. The longer diagonal is 8. Find the shorter diagonal. A= 20 = 1 2 (d1)(d2) 1 (8)(d2) 2 40 = 8(d2) 5 = d2 . 4. Find the area of the kite shown. 17 10 A= 8 6 15 = 1 (d1)(d2) 2 1 (16)(21) = 168 u2 2 5. Find the area of each rhombus. a. b. 25 25 7 24 20 A= 1 (d1)(d2) 2 A = bh 1 = (14)(48) = 336 u2 2 Baroody = (20)(25) = 500 u2 Page 2 of 4 Honors Geometry 6. Homework Answers for Section 11.4 If ABCD is a kite with ∠BAD a right ∠ and BD = 10, find the area of ABCD. B 13 5 A= 5 A 12 C = 5 1 2 1 2 (d1)(d2) (17)(10) = 85 u2 D 7. Find the area of the kite shown. Using the Altitude-on-Hypotenuse Theorem, x2 = (4)(9) = 36 x 4 x = 6 (why not -6?) 9 Now, x A= = 1 (d1)(d2) 2 1 (12)(13) = 78 u2 2 8. Find the area of a rhombus with a perimeter of 40 and one angle of 60°. 10 Now, 10 A = bh 5 3 = (10)(5 3 ) = 50 3 u2 60° 5 Baroody Page 3 of 4 Honors Geometry 9. Homework Answers for Section 11.4 a. Find the areas of region I, region II, and region III. b. Find the area of OBD AI = 1 2 AII = E (0, 7) D (8, 7) C (12, 7) AIII = B (12, 3) A I II O (0, 0) 1 (7)(8) = 28 u2 2 1 2 OBD III (4)(4) = 8 u2 (12)(3) = 18 u2 = AOECA - (AI + AII + AIII) = (12)(7) - (8 + 28 + 18) A (12, 0) = 84 - 54 = 30 u2 10. Given a rhombus with diagonals 18 and 24, find the height. 15 A= 9 1 1 (d1)(d2) = (18)(24) = 216 u2 2 2 12 A = bh h 216 = (15)(h) h= Baroody 216 72 = u 15 5 Page 4 of 4
© Copyright 2026 Paperzz