[Cr3O(CH3COO)6(H2O)3]NO3⋅HNO3⋅H2O, TRIAQUA-HEXAKIS(µACETATO)-µ3-OXO-TRICHROMIUM(III) NITRATE NITRIC ACID SOLVATE MONOHYDRATE Marco Bettinellia,*, Adolfo Speghinia, Gabriele Bocellib, Olesea Ghercoc, Valeriu Mereacred, Denis Prodiusd, Constantin Turtad a Dipartimento Scientifico e Tecnologico,Università di Verona, and INSTM, UdR Verona, Ca’Vignal, Strada Le Grazie 15, I37134 Verona, Italy b IMEM-CNR, Parco Area delle Scienze 37a, 43100 Parma, Italy c ASM, Institute of Applied Physics, Academiei St. 5, MD-2028 Chisinau, Moldova d ASM, Institute of Chemistry, Academiei St. 3, MD-2028 Chisinau, Moldova *Corresponding author. Tel.: +39-045-8027902; fax: +39-045-8027929; E-mail: [email protected] Abstract: Reaction in methanol solution of the trinuclear ‘basic’ chromium(III) acetate with Pr(NO3)3⋅5H2O and further extraction by chloroform-acetone mixture led to the formation of novel unusual [Cr3O(CH3COO)6(H2O)3]NO3⋅HNO3⋅H2O (1) cluster with one “free” molecule of nitric acid. Complex 1 crystallizes in the monoclinic space group P21/c with, at room temperature, a = 13.624(2), b = 15.032(2), c = 15.180(2) Å, β = 112.98(3) °, Z = 4, and V = 2862.09 Å3. The obtained crystalline compound has been synthesized and characterized by IR and UV/Vis methods. Keywords: Chromium carboxylate, Polynuclear complex, UV-Vis 1. Introduction Oxo-centered triangular complexes of the general type [M3O(OOCR)6L3]n+ are particularly valuable as frameworks for a systematic study of metal-metal interactions in clusters. They have been characterized for a wide variety of first-row and heavier transition metals, with mixed-metal combinations and with mixed-valence combinations [1]. ‘Basic’ chromium carboxylates is a general name for a family of chromium(III) complexes in which only RCOOand oxo/hydroxo/aquo ligands are present. For many years, the only representative of this group was the classical oxocentered trinuclear complex [Cr3O(CH3COO)6(H2O)3]+, whose structure was reported almost four decades ago by Figgis and Robertson [2]. Chromium(III) carboxylates have been used extensively for various applications as polymerization and oxidation catalysts [3], suitable building block of zeotype polyoxometalate-macrocations for shape-selective adsorption of water [4], materials in processing of fir bark extract for air fresheners [5], possible DNA-cleaving agents and nutritional supplements [6] and for many other uses [7-10]. Ever since the discovery of chromium as an essential human nutrient, Cr(III) acetates containing [Cr3O(CH3COO)6(H2O)3]+ cation have been administered to animals in biological intake experiments [11], to produce DNA strand breaks in peripheral lymphocytes [12] and in phosphate ester cleavage reactions [13]. Here, we report the crystal structural determination of a new cationic trinuclear Cr(III) complex, which represents a new type of ‘basic’ chromium carboxylate. 2. Results and discussion It needs to be mentioned that this synthetic route for the title compound can be realized only in the presence of Pr(NO3)3⋅5H2O. Using other lanthanide nitrates (Ln = La, Eu) clusters with other structures have been obtained. The reasons for this behavior and the nature of these different products are being investigated. On the basis of the results of elemental analysis, in the first step of our research it has been assumed that the obtained product is a new ‘Cr(III,III,IV)-acetate’ cluster. But the absence of splitted components A1 and B2 of E´ [1] in the region 700-500 cm-1 of IR spectrum (Fig.1) and typical profile of the electronic absorption spectra (Fig.2) for such trichromium(III) complexes [1] confirm that a member of the investigated class of substances of symmetrical complexes with “CrIII3O”-core has been obtained. Other IR bands are definitely assigned to vibrations of CH3COO-, NO3- and H2O groups, but do not represent essential interest for the discussion in the present communication. 88 Figure 1. The νas(Cr3O) band of complexes [Cr3O(Ac)6(H2O)3]NO3⋅HNO3⋅H2O (1) and [Cr3O(CH3COO)6(H2O)3]⋅CH3COO (BCA) The electronic spectrum of 1 in acetone solution shows the familiar two peaks in the visible (Fig.2, bands I and II), corresponding to the 4A2g→4T2g and 4A2g→4T1g transitions of Cr(III) in octahedral symmetry. No spectral features relative to other oxidation states of chromium are present in the UV-Vis-NIR absorption spectra. Figure 2. Electronic spectra of [Cr3O(Ac)6(H2O)3]NO3⋅HNO3⋅H2O (1) and [Cr3O(CH3COO)6(H2O)3]⋅CH3COO (BCA), in acetone solution. X-ray study of 1 showed that the structure consists of three chromium atoms connected together by an oxygen atom. In addition two acetate groups connect the three chromium atoms to each other. So every chromium atom adopts a tetrahedral conformation with four atoms of four different acetate groups as base and the common oxygen and a water molecule in apex positions (Fig.3). Bond distances and angles do not deviate significantly from the normal range. The atomic coordinates of the heavy atoms are in Table 2 and their anisotropic thermal parameters are in Table 4. Table 3 reports the coordinates of H atoms with isotropic thermal parameters. The geometrical parameters are in Table 5. A projection of the complex with the labeling scheme is in Fig. 3. 89 Table 2. Atomic fractional coordinates (x104) and Ueq (x104 Å2 ) x/a CR1 CR2 CR3 O1W O2W O3W O1 C1A C2A O3A O4A C1B C2B O3B O4B C1C C2C O3C O4C C1D C2D O3D O4D C1E C2E O3E O4E C1F C2F O3F O4F N1G O1G O2G O3G N1H O1H O2H O3H O4W 8440 6347 8661 9099 4776 9515 7817 5610 6305 7269 5847 6208 6679 6084 7641 6802 7017 7778 6414 10205 9568 9407 9224 11108 10149 9725 9841 7110 7256 8112 6516 2252 3120 1455 2220 3592 3885 4182 2419 11146 y/b (1) (1) (1) (3) (2) (3) (2) (5) (3) (2) (2) (4) (3) (2) (2) (5) (3) (2) (2) (4) (3) (2) (2) (5) (3) (2) (2) (5) (3) (2) (2) (3) (4) (3) (5) (6) (7) (6) (8) (5) 914 1475 2401 202 1360 3299 1597 1155 1220 1096 1392 4334 3427 2770 3388 -1346 -386 -202 167 3229 2634 2896 1919 419 895 591 1561 1508 1695 2040 1491 1273 1094 1141 1516 1562 1524 1507 1762 -5 z/c (1) (1) (1) (2) (2) (2) (1) (5) (3) (2) (2) (3) (2) (2) (2) (3) (2) (2) (2) (4) (2) (2) (2) (5) (3) (2) (2) (4) (2) (2) (2) (3) (4) (4) (5) (5) (10) (7) (9) (4) 7170 7614 8825 6412 7367 9866 7869 4624 5670 5916 6221 7510 7792 7477 8336 7642 7558 7340 7709 6982 7342 8065 6910 9825 9133 8310 9445 10634 9725 9790 8958 5554 5549 4918 6284 9199 10241 8841 8569 6885 Ueq (1) (1) (1) (2) (3) (2) (2) (3) (2) (2) (2) (4) (3) (2) (2) (5) (2) (2) (2) (4) (3) (2) (2) (5) (3) (2) (2) (4) (2) (2) (2) (3) (4) (4) (4) (5) (6) (5) (8) (7) 314 306 305 511 483 484 299 708 394 488 508 529 363 471 475 572 371 486 524 558 362 456 429 643 379 460 473 531 364 478 536 693 1362 1483 1682 1263 3135 2292 2838 1076 (2) (2) (2) (13) (12) (13) (8) (23) (14) (11) (10) (20) (14) (11) (11) (22) (13) (12) (12) (19) (13) (11) (10) (21) (13) (11) (10) (19) (15) (11) (11) (19) (27) (29) (36) (38) (91) (56) (76) (35) 90 Table 3 . Atomic fractional coordinates (x104) and Uiso (x104 Å2 ). x/a H1A H2A H3A H1B H2B H3B H1C H2C H3C H1D H2D H3D H1E H2E H3E H1F H2F H3F H1W1 H2W1 H1W2 H2W2 H1W3 H2W3 H1W4 H2W4 H1NH y/b 568 491 568 560 654 635 615 729 676 999 1058 1047 1158 1119 1105 761 709 663 886 982 439 455 934 1011 1111 1133 4491 (6) (7) (5) (6) (6) (5) (5) (4) (6) (7) (6) (6) (5) (6) (5) (6) (5) (6) (4) (5) (5) (4) (4) (5) (8) (4) (5) z/c 63 113 170 437 466 455 -147 -163 -160 350 345 295 58 43 -14 120 202 135 -10 9 121 145 341 333 -37 -21 802 (5) (5) (4) (4) (5) (5) (3) (3) (5) (6) (5) (6) (5) (5) (5) (4) (5) (5) (3) (4) (5) (3) (4) (4) (7) (4) (4) Uiso 425 444 437 735 802 711 762 801 712 646 739 656 984 1050 969 1104 1095 1051 605 663 693 780 1030 994 636 704 9221 (6) (5) (4) (5) (6) (5) (3) (3) (5) (6) (5) (6) (5) (6) (4) (5) (5) (5) (4) (4) (5) (4) (4) (4) (7) (4) (4) 1341 1209 899 1018 1345 1051 663 586 1257 1415 1118 1247 888 1289 1085 960 951 1007 558 778 1021 693 715 690 1638 164 1386 (289) (262) (209) (229) (288) (245) (143) (149) (274) (300) (276) (271) (269) (264) (241) (210) (217) (286) (164) (172) (249) (162) (178) (180) (360) (130) (133) Table 4. Anisotropic thermal parameters (x104 Å2 ). U22 U11 CR1 CR2 CR3 O1W O2W O3W O1 C1A C2A O3A O4A C1B C2B O3B O4B C1C C2C O3C O4C C1D 294 251 271 448 298 395 271 562 398 384 313 479 398 306 382 499 353 547 425 578 ( 3) ( 3) ( 3) (17) (14) (16) (11) (31) (20) (15) (13) (26) (19) (13) (14) (28) (18) (16) (15) (28) 314 337 315 553 658 562 292 1127 415 720 850 402 342 368 316 351 331 312 352 627 U33 ( 3) ( 3) ( 3) (19) (20) (19) (12) (52) (21) (19) (22) (25) (19) (15) (14) (24) (19) (14) (14) (31) 353 326 316 583 479 488 327 337 334 345 322 721 415 687 613 860 393 740 874 514 U23 ( 3) ( 3) ( 3) (18) (17) (17) (11) (22) (18) (13) (13) (33) (19) (17) (16) (37) (18) (18) (21) (27) -33 -34 -36 -225 -80 -168 -37 -23 -17 -85 -96 63 1 -29 -84 47 24 -71 -15 -32 U13 ( 2) ( 2) ( 2) (16) (15) (13) ( 9) (27) (15) (12) (13) (23) (15) (13) (12) (25) (15) (12) (14) (24) 149 108 100 256 137 163 110 70 104 126 79 252 229 136 69 259 107 405 338 263 U12 ( 2) ( 2) ( 2) (15) (14) (14) ( 9) (21) (16) (11) (11) (26) (17) (12) (13) (27) (15) (15) (15) (25) -21 -25 -35 -37 -56 -120 -36 23 -37 -11 1 107 21 14 19 -40 -16 -43 -55 -240 ( 2) ( 2) ( 2) (15) (13) (14) ( 9) (32) (16) (13) (13) (20) (15) (11) (11) (21) (15) (12) (12) (24) 91 C2D O3D O4D C1E C2E O3E O4E C1F C2F O3F O4F N1G O1G O2G O3G N1H O1H O2H O3H O4W 277 503 443 394 273 399 391 485 403 453 354 422 589 523 1198 1254 1759 1294 1668 673 (16) (16) (14) (26) (16) (14) (14) (28) (20) (15) (14) (22) (27) (24) (46) (55) (82) (52) (85) (32) 384 468 411 654 415 502 492 726 365 650 912 895 2204 1932 2471 1720 6318 4826 3735 644 (20) (16) (16) (37) (21) (16) (16) (37) (19) (18) (23) (32) (65) (54) (82) (66) (239) (154) (148) (35) 389 446 490 720 426 449 410 444 362 369 359 639 1182 1467 1271 1077 1226 1151 2688 1995 (18) (14) (14) (36) (20) (14) (14) (25) (18) (13) (14) (25) (38) (43) (46) (46) (59) (44) (111) (69) 69 -78 -28 157 60 -6 -28 25 -9 -123 -35 -205 -188 -1080 -947 -325 -561 -642 1487 -137 (16) (12) (12) (28) (16) (12) (12) (23) (14) (12) (14) (22) (39) (41) (49) (43) (89) (63) (103) (36) 92 237 243 42 109 134 21 248 189 201 158 74 225 -184 367 738 471 905 391 611 (15) (12) (12) (24) (15) (12) (12) (23) (16) (12) (12) (20) (25) (26) (37) (45) (55) (42) (76) (37) -18 -183 -87 75 -1 136 64 -72 24 -198 -137 13 200 313 -59 -512 -1211 -176 -254 142 (14) (12) (12) (25) (15) (12) (12) (26) (15) (14) (14) (21) (33) (29) (46) (47) (108) (67) (90) (24) Table 5. Bond distances (Å) and angles (°). CR1 CR1 CR1 CR1 CR1 CR1 CR2 CR2 CR2 CR2 CR2 CR2 CR3 CR3 CR3 CR3 CR3 CR3 C1A C2A C2A O4D O3C O3C O3A O3A O3A O1 O1 O1 - CR1 CR1 CR1 CR1 CR1 CR1 CR1 CR1 CR1 O1W O1 O3A O3C O4D O3E O2W O1 O4A O3B O4C O4F O3W O1 O4B O3D O4E O3F C2A O3A O4A - 2.021 1.898 1.968 1.969 1.977 1.982 2.030 1.894 1.956 1.975 1.970 1.960 2.058 1.894 1.968 1.958 1.971 1.963 1.502 1.231 1.250 O3E O3E O4D O3E O4D O3C O3E O4D O3C 90.0 88.3 171.2 169.9 89.8 90.3 94.6 95.3 93.5 (4) (3) (2) (3) (3) (2) (3) (2) (3) (3) (3) (3) (3) (2) (3) (3) (3) (3) (5) (5) (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) C1B C2B C2B C1C C2C C2C C1D C2D C2D C1E C2E C2E C1F C2F C2F N1G N1G N1G N1H N1H N1H - C2B O3B O4B C2C O3C O4C C2D O3D O4D C2E O3E O4E C2F O3F O4F O1G O2G O3G O1H O2H O3H O3W O3W O3W CR2 CR1 CR1 C1A C1A O3A - CR3 CR3 CR3 O1 O1 O1 C2A C2A C2A - 1.496 1.249 1.248 1.487 1.237 1.252 1.490 1.262 1.251 1.500 1.242 1.247 1.496 1.244 1.245 1.216 1.155 1.183 1.474 1.135 1.538 (6) (4) (4) (6) (5) (5) (8) (5) (4) (7) (4) (5) (8) (5) (4) (7) (6) (9) (11) (13) (12) O3D O4B O1 CR3 CR3 CR2 O4A O3A O4A 86.3 84.3 177.4 119.7 120.2 120.1 116.6 117.9 125.5 (1) (1) (1) (1) (1) (1) (3) (3) (3) 92 O1 O1W O1W O1W O1W O1W O4C O3B O3B O4A O4A O4A O1 O1 O1 O1 O2W O2W O2W O2W O2W O4E O3D O3D O4B O4B O4B O1 O1 O1 O1 O3W O3W - CR1 CR1 CR1 CR1 CR1 CR1 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR2 CR3 CR3 CR3 CR3 CR3 CR3 CR3 CR3 CR3 CR3 CR3 CR3 - O3A O3E O4D O3C O3A O1 O4F O4F O4C O4F O4C O3B O4F O4C O3B O4A O4F O4C O3B O4A O1 O3F O3F O4E O3F O4E O3D O3F O4E O3D O4B O3F O4E 95.4 86.0 84.0 87.2 84.0 179.1 87.3 92.3 172.8 167.1 90.1 88.7 95.8 93.8 93.4 96.9 83.2 86.8 86.0 84.1 178.8 86.8 168.9 90.6 94.1 170.7 86.8 95.8 95.4 95.2 93.7 82.8 86.7 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) CR1 CR2 C1B C1B O3B CR2 CR3 C1C C1C O3C CR1 CR2 C1D C1D O3D CR3 CR1 C1E C1E O3E CR1 CR3 C1F C1F O3F CR3 CR2 O2G O1G O1G O2H O1H O1H - O3A O4A C2B C2B C2B O3B O4B C2C C2C C2C O3C O4C C2D C2D C2D O3D O4D C2E C2E C2E O3E O4E C2F C2F C2F O3F O4F N1G N1G N1G N1H N1H N1H - C2A C2A O4B O3B O4B C2B C2B O4C O3C O4C C2C C2C O4D O3D O4D C2D C2D O4E O3E O4E C2E C2E O4F O3F O4F C2F C2F O3G O3G O2G O3H O3H O2H 132.9 133.0 117.0 118.0 125.0 132.4 133.6 117.7 117.0 125.3 134.4 131.7 118.4 117.1 124.5 134.4 132.3 116.5 117.7 125.8 133.9 131.7 117.8 117.6 124.7 132.4 134.3 117.9 117.8 123.8 118.3 117.1 124.4 (2) (2) (3) (3) (3) (2) (2) (4) (3) (3) (2) (2) (3) (3) (3) (2) (2) (3) (4) (3) (2) (2) (4) (3) (3) (2) (2) (6) (5) (5) (7) (7) (7) Table 6. Possible H bonds and contcts <2.5 (D= donor, A = acceptor) D-H (Å) O1W-H2W1 O2W-H1W2 O2W-H2W2 O1W-H1W1 O3W-H2W3 0.91(7) 0.70(6) 0.83(7) 0.69(5) 0.76(7) D...A (Å) O1W...O4W O2W...O1G O2W...O2H O1W...O2Gi O3W...O2Gii 2.612(8) 2.828(5) 2.670(9) 2.745(7) 2.746(6) H...A (Å) H2W1...O4W H1W2...O1G H2W2...O2H H1W1...O2Gi H2W3...O2Gii 1.71(7) 2.14(6) 1.85(7) 2.07(5) 2.02(7) D-H...A (°) O1W-H2W1...O4W O2W-H1W2...O1G O2W-H2W2...O2H O1W-H1W1...O2Gi O3W-H2W3...O2Gii 171(5) 167(7) 171(5) 164(6) 158(11) Equivalent positions: i = -x+1,-y,-z+1; ii = x+1,-y+1/2,z+1/2 93 Figure 3. Projection of the complex with arbitrary numbering. The ellipsoids are at 20% probability level. Fig. 4. Packing of the complex 1. The single acetate groups are planar and the dihedral angles formed by the couples which connect Cr1 with Cr2, Cr1 with Cr3 and Cr2 with Cr3 are 88.1(3), 93.5(2) and 103.8(2)°, respectively. In the solid state the molecules are connected by intermolecular and intramolecular H-bonds (Fig.4). 3. Conclusion In summary, new basic chromium acetate has been isolated and characterised by spectroscopic techniques. This novel compound contains the well-known [Cr3O(CH3COO)6(H2O)3]+ triangular cation, but is characterised by the unusual presence of a "free" HNO3 molecule. This could give rise to differences in the interaction of this compound with biological molecules, with respect to other basic chromium carboxylates. Supporting information available: IR data, listing crystallographic parameters in CIF format, atomic coordinates, bond distances and angles, thermal parameters and hydrogen atom positions for the title complex. This material is available free of charge from the authors. 94 4. Experimental General: All chemicals and solvents were used as received. All preparations and manipulations were performed under aerobic conditions. [Cr3O(CH3COO)6(H2O)3]⋅CH3COO was prepared as previously described [14]. The UV-Visible absorption spectra were measured with a conventional double beam UVIKON 941 plus spectrophotometer using a resolution of 1 nm. The solvent (acetone) was used as a reference. The diffuse reflectance spectra in the medium infrared region (4000-400 cm-1) were measured using a Nicolet Magna 740 FTIR spectrometer. The powders of the samples under investigation were dispersed in KBr in a 1:100 mass ratio and the spectra were measured using KBr as a reference. All the spectroscopic measurements were performed at room temperature. Synthesis of [Cr3O(Ac)6(H2O)3]NO3⋅HNO3⋅H2O (1). Solutions of [Cr3O(CH3COO)6(H2O)3]⋅CH3COO (‘basic’ chromium acetate, 0.8176 g, 1.279 mmol) and Pr(NO3)3⋅5H2O (1.6001 g, 3.836 mmol) in methanol (ca. 10 mL) were added with continuous stirring (30-45 min.) to 40 mL of acetonitrile – toluene (1 : 3). After 4-5 days the obtained dark green viscous mass was dissolved in part in a chloroform-acetone mixture (2:1, ca. 25 mL) and filtered off. During the first 3 days the transparent solution of dark green color was separated constantly until the first crystals have appeared. A microcrystalline product was obtained, which was recrystallized from a mixture of acetone and toluene (4:1, ca. 15 mL). After 1 week the resultant dark green crystals were collected by filtration, washed with toluene, and dried in vacuum. Yield: ~30% (270 mg) Calc. for C12H27N2Cr3O23: C, 19.93; H, 3.76; N, 3.87%. Found: C, 19.99; H, 3.42; N, 3.78%. Crystallographic data: The structure was solved by direct methods with SIR97 [15]. The refinement was carried out with SHELX97 [16]. After some full-matrix anisotropic cycles all H atoms were found in a ∆F map and all refined isotropically. The ORTEP drawings were performed with ORTEP-3 program [17]. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication. CCDC reference number 612714. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK fax: +44(0)-1223-336033 or e-mail: [email protected]]. The crystal data and pertinent details of the experimental conditions are summarized in Table 1. Table 1. Experimental and crystallographic information for 1. ____________________________________________________________________ Formula (CH3COO)6·O·NO3·HNO3·(H2O)3·Cr3·(H2O) Formula weight 723.36 Crystal: color dark green shape prismatic dimensions (mm) 0.19x0.23x0.34 Crystal system Monoclinic Space Group P21/c Cell Constants: a (Å) 13.624(2) b (Å) 15.032(2) c (Å) 15.180(2) β (º) 112.98(3) 2862.09 Cell volume (Å3) Formula units 4 Temperature room Diffractometer Bruker AXS Radiation, wavelength (Å) MoKα, 0.71069 Reflections measured 27926 6461, 0.055 Unique reflections, Rint Reflections. observed [I>2σ(I)] 4547 2θ max (º) 56.7 Indices range: h, k, l -18/17, -19/19, -19/19 No. of refined parameters 465 R 0.048 Rw 0.14 Weights w=1/[(σ2Fo+0.099P2+0.22P)] GOF 0.84 -0.57/0.50 ∆ρmin/max(e/ Å3) 5. Acknowledgements The research described in this publication was made possible in part by Award No. BGPIII #MOB-2-3058CS-03 of the Moldovan Research and Development Association (MRDA) - U. S. Civilian Research & Development Foundation (CRDF), and Italian Government Support for Moldavian Young Scientists 95 (http://www.edu.md/?lng=ro&MenuItem=5&SubMenu0=2). V. Mereacre thanks also the AvH foundation. The authors gratefully thank Erica Viviani (Univ. Verona) for expert technical assistance. 6. References [1] Cannon, R. D.; White, R. P. Progr. Inorg. Chem., 1988, 36, 195–298. [2] Figgis, B. N.; Robertson, G. B. Nature, 1965, 205, 694–695. [3] Windholz, M. (10th Ed.), The Merck Index, Merck, Rahray, NJ, 1983. [4] Uchida, S.; Mizuno, N. J. Am. Chem. Soc., 2004, 126, 1602–1603. [5] Lyandres, G. V.; Raldugin, V. A.; Shpakov, A. Ya.; Igumnova, M. A.; Bushueva, N. Ya. Izobreteniya 1998, 3, 243(Rus). [6] Speetjens, J. K.; Parand, A.; Crowder, M. W.; Vincent, J. B.; Woski, S. A. Polyhedron, 1999, 18, 2617–2624. [7] Geiger, D. K. Coord. Chem. Rev., 1998, 172, 157–180. [8] Eshel, M.; Bino, A. Inorg. Chim. Acta, 2001, 320, 127–132. [9] Eshel, M.; Bino, A. Inorg. Chim. Acta, 2002, 329, 45–50. [10] Collison, D.; Oganesyan, V. S.; Piligkos, S.; Thomson, A. J.; Winpenny, R. E. P.; McInnes, E. J. L. J. Am. Chem. Soc., 2003, 125, 1168–1169. [11] Board on Agriculture, The Role of Chromium in Animal Nutrition, National Academy Press, Washington, DC, 1997, 64p. [12] Gao, M.; Binks, S.P.; Chipman, J.K.; Levy, L. S.; Braithwaite, R. A.; Brown, S. S. Hum. Exp. Toxicol., 1992, 11, 77–82. [13] Parand, A.; Royer, A. C.; Cantrell, T. L.; Weitzel, M.; Memon, N.; Vincent, J. B.; Rowder, M. W. Inorg. Chim. Acta, 1998, 268, 211–219. [14] Brauer, G. Handbook of Preparative Inorganic Chemistry, Academic press, London, 1965, 2, 1371-1372. [15] Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. Acta Cryst., 1999, C52, 115–119. [16] Sheldrick, G.M. SHELX97. Program for Crystal Structure refinement, Univ. of Göttingen, Germany, 1997. [17] Farrugia, L. J. ORTEP3 for Windows, Glasgow University, Scotland (U.K), 1997. 96
© Copyright 2026 Paperzz