Supporting information for: QUILD: QUantum-regions Interconnected by Local Descriptions Marcel Swarta,b,c,* and F. Matthias Bickelhaupta,* a) Theoretische Chemie, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands b) Institut de Química Computacional, Universitat de Girona, Campus Montilivi, E-17071 Girona, Spain c) Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain E-mail: [email protected], [email protected] Setup of adapted delocalized coordinates p. S2-S7 Starting coordinates of molecules in Baker test-set (Bohr) p. S8-S10 Starting coordinates of molecules in weakly-bound test set (Å) Table S1. Number of geometry cycles for optimizing molecules of the (at RHF/STO-3G), compared for various geometry optimization schemes. p. S11 Baker test set p. S12 Table S2. Number of geometry cycles for optimizing molecules of the Baker test set (at PW91/TZ2P), compared for various geometry optimization schemes. p. S13 Table S3. Number of geometry cycles for optimizing molecules of the weak-coordinates test set (at PW91/TZ2P), compared for various geometry optimization schemes. p. S14 Table S4. Optimized geometry of H2O2 using numerical gradients with different finite difference steps p. S15 Example QM/MM inputfile p. S16 References p. S17 S1 Setup of adapted delocalized coordinates In this section, we describe how to setup the adapted delocalized coordinates as used in the paper. Choice of coordinate system The performance of geometry optimization techniques depends critically on the choice of coordinates to be used in the optimization scheme. Although the use of 3N (N is the number of atoms) Cartesian coordinates is simple and straightforward, it is not the best choice for the optimization, as the individual components are too strongly coupled. For example, the Hessian, i.e., the matrix containing the second derivatives of the energy with respect to a complete set of coordinates, is dense in the case of Cartesian coordinates. Better performances are obtained by using Z-matrix coordinates.1 They represent a predefined set of bond distances, angles and dihedrals that as a whole uniquely determines the atomic coordinates, and which usually has an almost diagonal Hessian matrix. However, the performance of the Z-matrix depends critically on its definition, and can, when chosen unfavorably, be even worse than that of Cartesian coordinates. Improved results may be obtained by using natural internal coordinates,2-4 which in essence is a combined set of bonds, angles and dihedrals (the primitives), which are chosen based on the actual geometry of the molecule to be studied. However, the choice of which primitives to include, and with which weight factor, is still a matter of “hand work”. It is therefore quite complicated, and can take several thousands of lines of computer code. An important step forward was made by the generation of delocalized coordinates (vide infra), as formulated by Baker and co-workers.5-7 The delocalized coordinates setup works well for systems with strong coordinates but less satisfactory performance is observed for weakly bound systems. This is easily understood as the weak coordinates are taken into account with the same weight as the strong ones.8 Recently,9 we reported an adaptation of the delocalized setup, which facilitates the use on weak coordinates as well (vide infra). Delocalized coordinates setup In the delocalized coordinates setup,5-7 the weight factors follow naturally from the actual geometry. Starting from a set of primitives, containing all bonds, angles and dihedrals of connected atoms, the usual Wilson B matrix,10,11 relating the M primitives (!q) with the corresponding 3N Cartesian displacements (!x), is constructed: "q = w p B"x = B p"x (1) In this formula, wp is a diagonal matrix containing a weight factor for each primitive. In the original delocalized ! coordinates setup wp corresponds to the unit matrix. In the adapted delocalized coordinates each primitive has its own associated weight (see eqs. 7-10 below). Next, the M!M matrix G=BpBpT is formed and diagonalized, which results in two sets of eigenvectors (U and R); the first set (U) of 3N–6 (for linear molecules 3N–5) non-redundant eigenvectors with eigenvalue !>0, and the second set (R) of redundant eigenvectors with eigenvalue zero. The eigenvalue equation of G can thus be written as: # " 0& G(UR) = (UR)% ( $ 0 0' ! (2) S2 Only the first set of non-redundant eigenvectors (the set of active coordinates of the vectors contained in U) is needed for the geometry optimization, and contains the weights for each of the primitives. The B matrix is then transformed from primitive space to the active delocalized space (Bd =UTBp), and the “inverse” B matrix is formed that transforms the Cartesian gradient to the delocalized gradient: T "1 T "1 (B ) = (B B ) g = (B ) g d d d Bd (3) T "1 d cart Although the “inverse” B matrix could also be used to transform the Cartesian Hessian to delocalized space, it is ! more advantageous to start from the Hessian matrix in primitive space (Hp). In this way, one can choose for each primitive coordinate individually a force constant (see eq. 11 below) that is appropriate for that particular coordinate. This matrix Hp is then transformed to our active optimization space according to H=UTHpU. The optimization procedure is then carried out within the active delocalized space, using the coordinates s=UTq within the delocalized space, together with the gradient g and the Hessian H. After a step has been taken in the delocalized space, new Cartesian coordinates have to be formed involving a non-linear back-transformation, which is solved in an iterative fashion:6 T "1 ( ) X( k + 1) = X( k ) + B d (k )[s " s( k )] (4) A more efficient way to solve this7 is by first choosing an intermediate Z-matrix as subset of the primitive ! coordinates q. This intermediate Z-matrix is sufficient to completely determine the Cartesian coordinates and it is used only in the back-transformation. Finally one iterates the primitive coordinates: [ q( k + 1) = q( k ) + U sT " s( k ) T ] (5) From the current estimate of q, new Cartesian coordinates X are obtained through the Z-matrix back- ! transformation, which lead to new values for the primitives q and subsequently to new values for the internal coordinates s(k)=UTq. These are then compared with the known s, and the difference used to obtain an improved estimate for q. In the current implementation, we construct the Z-matrix automatically in such a way as to include all coordinates with the largest weights. Strong versus weak coordinates: adapted delocalized coordinates The delocalized coordinates setup works extremely well for strong coordinates, however, it was not yet designed for weak, e.g. intermolecular, coordinates. In our attempts to remedy this, we obtained good results by assigning a weight to each primitive coordinate to separate them into strong and weak coordinates, as proposed by Lindh and co-workers.8 They used a model function to generate the weight, which they took from an earlier paper12 that dealt with Hessian matrices based on parameterized force constants. As the early paper formulated the force constants S3 only for the first three rows, and contains 15 parameters that were deduced from STO-3G Hartree-Fock calculations, we decided to explore a generalized form that depends also on the actual geometry of the molecule. We use for each atom-pair in the primitive coordinates a screening function "ij, that estimates the strength of the corresponding interaction according to eq 6: ( ) " ij = exp #{( rij /Cij ) #1} (6) Here, rij is the distance between atoms i and j, and Cij the sum of their covalent radii. The screening function is ! around one for atoms that are covalently bonded, and lower for weaker coordinates. All bonds with a screening function of 0.7 or higher are considered to be strong bonds, the other bonds are weak. The weights for the different primitive coordinates are then obtained as: w = " ij 12 w = ( " ij " jk ) ! w = ( " ij " jk " kl ! w = ( " ij " jk " jl ! ! [ f + (1# f ) sin$ ] ) [ f + (1# f ) sin$ ][ f + (1# f ) sin$ ] ) [ f + (1# f ) sin$ ][ f + (1# f ) sin$ ] ijk 13 bond i-j (7) angle i-j-k, #ijk (8) ijk jkl dihedral i-j-k-l (9) ijk ijl improper i-j-k-l (10) 13 The parts involving the sine function have been included to disfavor (near-)linear angles, and include a damping factor f (which has a value of 0.12 in the current implementation). All coordinates with a weight above a certain threshold (currently 0.3) are included in the primitive space, all others do not contribute significantly and can be left out without problems. Transition State Reaction Coordinates (TSRC) and constraint coordinates are given a special weight of 0.5 and 1.0 respectively. Initial Hessian The number of geometry cycles needed for convergence depends largely on the start-up Hessian that is used. Baker6 proposed a simple scheme, using values of 0.5, 0.2 and 0.1 for bonds, angles and dihedrals respectively, which seems to work well for systems containing strong coordinates only. Lindh and co-workers12 proposed reduced values of 0.45, 0.15 and 0.005, which are further scaled with factors depending on the actual geometry. The ADF program uses force constant values by Fischer and Almlöf.13 All of these schemes have been implemented and tested, but finally we decided to adapt the scheme by Lindh and co-workers12 and reuse the screening factors from equation 6, which leads to improved performance with the following adapted force constant values: k bond = 0.40 " # ij k angle = 0.20 " # ij # jk (11) k dihedral = 0.01" # ij # jk # kl kimproper = 0.01" # ij # jk # jl ! S4 The use of the Hessian in primitive space also allows us to generate an appropriate starting Hessian for transition state searches, when starting from a reasonable guess structure and when the coordinates involved in the reaction coordinate (designated “TSRC coordinates”, also known as “transition vector”) are known, which is usually the case. Along the TSRC coordinates, the energy achieves a maximum and the corresponding force constants should thus be negative. Moreover, along the TSRC coordinates, in proximity to the transition state, the Hessian must have one (and only one) negative eigenvalue. This can be achieved by using a damped negative force constant value in the primitive Hessian for the TSRC coordinates. The force constants are damped with a factor 0.10 to result in a small negative Hessian eigenvalue. While in all other cases the primitive Hessian has all off-diagonal elements zero, we assign off-diagonal elements (between the TSRC coordinates only!) in this case in order to couple the TSRC coordinates, which is crucial for describing the reaction coordinate. The values for the off-diagonal elements are chosen such that only one negative eigenvalue results (all others are positive). This can be achieved by using Hp,ij=Hp,ji=–(2Hp,iiHp,jj)1/2 (the minus sign serves to obtain an eigenvector of the negative eigenvalue in which the TSRC coordinates have equal sign). During the optimization, the Hessian is updated using either the BFGS (for minima) or Bofill (for transition states) update schemes (see ref. 11 for details). Optimization steps Optimization techniques rely on a Taylor expansion of the energy E about the atomic coordinates X,1 which is usually cut off at second order (quadratic model): E k +1 = E k + gT X + XT HX + .. (12) Close to a minimum the energy surface will be quadratic, and as a result, the best guess for the step to take is ! given by the Newton-Raphson step !X= -H-1g. The success of the step depends critically on the accuracy of the curvature of the energy surface, i.e. the Hessian matrix, which in terms of number of geometry cycles should best be recalculated at every step. More cost-effective11 however is to use an approximate Hessian Ha, with the corresponding quasi-Newton step !X= -Ha-1g. This will lead to an increase of the number of geometry cycles, but as the Hessian does not have to be calculated, it will also result in a decrease in the actual time used, saving in practice up to 84% of computer time.11 Only close to the minimum is the energy surface in good approximation quadratic, and can the Taylor expansion up to second order be trusted to be valid. This region is called the trust region, with a radius " that has a default value of 0.2 Bohr. However, for the Baker set and weakly-bound test-set results given below, we used a larger initial value of 0.4 Bohr, which is furthermore dynamically updated based on how well the quadratic model represents the energy surface.14 If the quasi-Newton (QN) or Newton-Raphson (NR) step is smaller than ", the QN/NR step is taken, else the restricted second order (RSO,14 also called level-shifted trust-region Newton method)11 model is used. In the RSO model,14 a step is taken on the hypersphere of radius ", using a Lagrange multiplier to ensure that the step length equals ". Although at every point the QN/NR step is the best option, the geometry optimization is enhanced by using GDIIS.15 The original paper proposed using the step as error vector, but later studies showed that it is more S5 effective to use the gradient as error vector.16 When the GDIIS-QN step is larger than the trust radius and needs to be restricted, the change in coordinates through the GDIIS equations is explicitly taken into account in the restriction process. Furthermore, Farkas and Schlegel17 have proposed a set of four rules that the GDIIS vectors have to fulfill. We have implemented the option to use either the step, the gradient or the “energy” vector (i.e. Bij=giTHk-1gj)16 as error vector, and either with or without the Farkas-Schlegel rules. We observed that the best performance is achieved by using the gradient as error vector, with a maximum of four GDIIS vectors, and imposing the Farkas/Schlegel rules. Handling of constraints Baker used an elegant and efficient setup5 for dealing with constraints by introducing a Lagrangian multiplier # for each constraint Ci(x), which facilitates imposing constraints that are not yet satisfied in the initial geometry using the Lagrangian function: Nc L( x, " ) = E ( x ) + # "Ci ( x ) (13) i Each multiplier # is an additional degree of freedom within the optimization scheme, and results in one additional ! negative Hessian eigenvalue. A stationary point of the Lagrangian function is found when grad(L) = 0, i.e. when dL(x,!)/dx = 0 but in particular dL(x,!)/d! = 0, which means that all constraints are satisfied. Note that the gradients of the Lagrangian function are given by: Nc dL( x, " ) /dx j = G j + # "i dCi ( x ) /dx j (14) i dL( x, " ) /d"i = Ci ( x ) and the second derivative matrix by: ! Nc d 2 L( x, " ) /dx j dx k = H jk + # "i d 2Ci ( x ) /dx j dx k i 2 d L( x, " ) /dx j d"i = dCi ( x ) /dx j (15) d 2 L( x, ") /d"i d" j = 0 Transition State Reaction Coordinates ! Transition-state (TS) searches pose a greater challenge than “simple” minimization calculations, as there exists one degree of freedom along which the energy should be maximized (in addition to the extra degrees of freedom, associated with the inclusion of constraints, along which the energy must also be maximized). For all other degrees of freedom the energy should be minimized. The quality of the (initial) Hessian and the Hessian update method is therefore of vital importance for TS searches. The preparation of a model Hessian suited for TS searches (vide supra) enhances the convergence properties of the TS searches. The ingredients for a smooth TS S6 search are the TSRC coordinates, which the user has to define on input. These TSRC coordinates are used to construct the model Hessian as well as to select the appropriate Hessian eigenvalue along which to maximize if during the optimization more (or less) than one negative Hessian eigenvalue is observed. The selection of the appropriate Hessian eigenvalue is done by choosing the one with the largest weight of the TSRC coordinates, in combination with a weight function that depends on the difference with the lowest Hessian eigenvalue: RC w i = e" # i "# 1 0.005 %%c 2 ki $ U jk 2 (16) j=1 k When the NR step is larger than the trust radius, the RSO method is used to restrict the step to the hypersphere ! of the trust region. This amounts to finding a $ value that is in between the lowest and the second-lowest Hessian eigenvalues, and which leads to the desired step with a length of ". However, depending on the Hessian eigensystem this may not be possible at all times. Therefore, the Hessian eigenvalues (and the corresponding gradients) along which to maximize the energy are temporarily multiplied by a factor -1. This leads to the RSO method for minimizations for which it is guaranteed that a solution exists. S7 Starting coordinates of molecules in Baker test-set (Bohr) ACANIL01 O N C C C C C C C C H H H H H H H H H 6.7433416735 2.7512539832 -3.7595891909 -1.1366014546 0.0042737106 -1.5398535344 -4.1629370414 -5.2681107800 4.5738961053 4.1320702048 -4.6230675381 -0.0037780548 -0.7650560637 -5.3404165100 -7.3026657686 3.5808250620 5.9521203249 3.0821474360 3.0821474360 benzaldehyde 0.0000000000 -0.9199668058 -3.6204681333 -3.3872098429 -1.0031836305 1.1538710523 0.9183196876 -1.4672427143 0.8051152233 3.6405491893 -5.4717643625 -5.0876539749 3.0332653362 2.5875823952 -1.6480257355 -2.6647920859 4.6617819125 4.2349112447 4.2349112447 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.7007622024 -1.7007622024 0.0000000000 0.0000000000 1.3203724275 -0.1896215680 1.4959779753 -0.5925941212 -2.1147913804 2.2793324404 2.6808542134 -1.1884267581 -1.6814266653 2.5191205839 2.9918829189 -1.0441055740 -3.9073600209 -2.5692144717 3.9373524883 -0.0953103417 -3.3181015602 -2.0569602569 -1.2077535663 2.4606757746 3.2793490589 -4.8408251783 -2.1214772182 -0.4105139335 -3.3534713265 -2.8584292012 0.1052492525 2.9475903382 2.2195598714 5.3130657990 3.4669575743 1.1403259418 -0.2954284067 -0.2954284067 1.0044065219 1.0044065219 -1.5063099366 -1.5063099366 -1.5063099366 -1.5063099366 0.0000000000 0.0000000000 2.5013817152 -2.5013817152 4.1375406882 -4.1375406882 2.6698480410 2.6698480410 -2.6698480410 -2.6698480410 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.1338359981 -1.1338359981 3.0235626616 -3.0235626616 0.0000000000 2.4941929550 -2.4941929550 -3.5150316644 -3.5150316644 3.5150316644 3.5150316644 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.7677201632 -1.7677201632 0.0000000000 0.8997943198 0.8997943198 -1.7995886391 0.4769024955 -0.1589674985 -0.1589674985 -0.1589674985 O C C C C C C C H H H H H H 0.0000000000 1.7987593946 -4.4058951880 -2.4302163638 -0.2218540433 1.6972673035 3.9768554826 -3.6804337975 -5.1014433292 -3.2498539233 -1.7454741756 0.5535143001 -0.8807169472 5.7352967900 4.0856267999 3.8685676971 C C C C C C H H H H H H 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.6936030390 -1.6936030390 1.6936030390 -1.6936030390 N N C C C C C C C C C C C C H H H H H H H H H H H H acetylene C C H H 0.0000000000 0.0000000000 0.0000000000 0.0000000000 allene C C C H H H H 0.0000000000 0.0000000000 0.0000000000 1.7677201632 -1.7677201632 0.0000000000 0.0000000000 0.0000000000 1.5584894515 -1.5584894515 0.0000000000 0.0000000000 0.0000000000 2.2815677027 -2.2815677027 2.2815677027 -2.2815677027 0.0000000000 0.0000000000 4.0494408785 -4.0494408785 4.0494408785 -4.0494408785 2.6345274540 -2.6345274540 1.3172637275 1.3172637275 -1.3172637275 -1.3172637275 4.6758915630 -4.6758915630 2.3379457815 2.3379457815 -2.3379457815 -2.3379457815 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -2.2038894222 2.2038894222 -2.2038894222 2.2038894222 -2.2070662228 2.2070662228 -2.2070662228 2.2070662228 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -3.9302267260 3.9302267260 -3.9302267260 3.9302267260 -3.9557397915 3.9557397915 -3.9557397915 3.9557397915 1.6783725186 -1.6783725186 1.6783725186 -1.6783725186 0.0000000000 0.0000000000 0.5648822305 -0.5648822305 -0.5648822305 0.5648822305 0.5634923517 -0.5634923517 -0.5634923517 0.5634923517 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.0222725320 -1.0222725320 -1.0222725320 1.0222725320 1.0738495675 -1.0738495675 -1.0738495675 1.0738495675 -0.4303131375 0.4303131375 0.4303131375 -0.4303131375 9.1797303761 -9.1797303761 5.3695570250 5.3695570250 -5.3695570250 -5.3695570250 2.7391294475 2.7391294475 -2.7391294475 -2.7391294475 1.3294862952 -1.3294862952 6.6793197706 -6.6793197706 6.3628346720 6.3628346720 -6.3628346720 -6.3628346720 1.8159664348 1.8159664348 -1.8159664348 -1.8159664348 10.0448317563 10.0448317563 -10.0448317563 -10.0448317563 -4.5596834563 0.0000000000 0.4079086834 4.3470436600 2.2989125280 -2.3286161020 0.0080681896 2.2891344003 3.0317870051 -2.5126891879 -0.0101164705 -4.7164936865 4.7050704451 -1.3879913800 4.0834657258 -4.8291667345 -4.8291667345 -6.4582328756 4.8360989641 4.8360989641 6.4098342016 -0.3802377304 -2.6205142045 -2.6205142045 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.6814572952 -1.6814572952 0.0000000000 1.6833237934 -1.6833237934 0.0000000000 0.0000000000 1.6878277887 -1.6878277887 caffeine O O N N N N C C C C C C C C H H H H H H H H H H ammonia N H H H 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 benzidine acetone O C C C H H H H H H 0.0000000000 -2.2595362151 -1.4347871225 1.1411808224 2.8972276388 2.0785184368 -0.5103443405 -1.4696981757 -3.5243404323 -4.2673340819 -2.7942683921 1.7780840801 4.8949599174 3.4703378645 benzene ACHTAR10 O O N C C C C H H H H H H H H H 6.1169594363 -0.4281183799 -2.9286935224 -3.4656164013 -1.5061149145 0.9961412279 1.5529020669 4.3100239391 4.6927731310 -0.0483891239 -4.4516781974 -5.4051670195 -1.9265366341 2.4915143918 S8 -1.3579649523 6.0035946545 -4.3469953034 -2.0214786850 2.4016649460 2.3896310664 -1.7351410012 -0.3965665155 -4.2862828595 -0.2338059695 3.6663062569 3.9123342656 3.8689942697 -6.5087149738 -6.0414687329 5.1502626147 5.1502626147 2.7518228859 5.1037416005 5.1037416005 2.6587883618 -8.3400356437 -6.4463452502 -6.4463452502 1,3-difluorobenzene F F C C C C C C H H H H 4.4509862937 -4.4509862937 2.2745931466 -2.2745931466 2.2746510932 -2.2746510932 0.0000000000 0.0000000000 4.0423269425 -4.0423269425 0.0000000000 0.0000000000 ethane 2.5307545457 2.5307545457 -1.3528497889 -1.3528497889 1.2738564047 1.2738564047 2.5872794109 -2.6664191923 -2.3725618150 -2.3725618150 4.6280488237 -4.7073077354 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 C C H H H H H H 5.7744280988 -5.7744280988 0.7278545710 -0.7278545710 3.1106217391 -3.1106217391 3.3847993117 -3.3847993117 1.2377685123 -1.2377685123 1.4301426796 -1.4301426796 0.5520400805 -0.5520400805 4.7644595237 -4.7644595237 3.2499984362 -3.2499984362 0.0000000000 0.0000000000 -4.7025451180 4.7025451180 -3.6024924323 3.6024924323 -0.9879928692 0.9879928692 0.5712405534 -0.5712405534 3.2090770124 -3.2090770124 -6.7364640579 6.7364640579 -4.8006902051 4.8006902051 4.1394852226 -4.1394852226 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 O C C H H H H H H 5.2404816245 -5.2404816245 1.1570537551 -1.1570537551 1.5359683428 -1.5359683428 2.6570364766 -2.6570364766 5.6218667017 -5.6218667017 3.5488135300 -3.5488135300 7.5269778778 -7.5269778778 3.3453709195 -3.3453709195 0.0000000000 0.0000000000 -2.5515060844 2.5515060844 2.1516031685 -2.1516031685 -0.2747177008 0.2747177008 2.6220149256 -2.6220149256 4.0775601865 -4.0775601865 3.4123912749 -3.4123912749 6.1265701044 -6.1265701044 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.7998921359 1.1700814891 -0.4427300673 1.0709265512 0.0000000000 0.0000000000 -3.0339645013 2.7602612162 0.0865661776 3.0739195697 2.9984753577 -0.8406363794 1.2556106071 3.0367645867 -1.8973730406 1.2264794354 -0.1596897888 -1.7952491725 1.2812478780 -0.4061103776 -4.2039212942 -2.8220133604 -4.1585370224 -3.1281916081 -1.9274496235 0.5533222244 2.7951166661 5.4407882957 -3.9684871288 0.2440170158 -1.7750955024 -3.7917451573 -4.7732778874 -1.4218602449 1.0697292165 2.5463302073 2.7469591076 5.7186517345 6.9423075183 5.7840833923 -4.7146797589 -5.6007170921 -3.2278505048 1.9662426106 -0.1732023681 -1.3049911128 -0.0657104822 -0.0657104822 -0.8881734552 -2.1956541196 1.3527256647 1.3527256647 -2.1956541196 1.3527256647 1.3527256647 3.0363618918 -3.0363618918 0.0000000000 4.5475683923 3.5847502252 3.5847502252 -4.5475683923 -3.5847502252 -3.5847502252 O C C C C H H H H -1.9030214241 0.6809819138 0.5734775872 -0.5753685961 0.0000000000 2.4013011875 -0.7574044511 -3.1706997287 -2.8981269221 -1.7083553458 1.5712715376 2.5648465740 -2.6448478161 0.1399745691 -0.8288785236 -0.7796921897 2.0556606244 1.6358456863 2.6515931879 4.3123566219 -0.6028216443 -2.7932914871 0.0751986389 O O N N N C C C C C C H H H H H H H H H 0.0000000000 0.0000000000 0.0000000000 0.0000000000 2.1229004882 -2.1229004882 0.0000000000 2.1229004882 -2.1229004882 0.0000000000 0.8907097242 -1.2261270653 1.5045806421 2.0683434872 2.0683434872 -2.4603567438 -2.4603567438 -0.3851367880 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.6930689890 -1.6930689890 1.6719900859 -1.6719900859 0.0000000000 0.0000000000 1.3040964455 -1.3040964455 2.0768090816 -2.0768090816 2.5163904951 -2.5163904951 3.9939987516 -3.9939987516 -2.7115570299 1.3560027694 1.3560027694 -1.1487031091 -1.1487031091 2.9978275455 2.9978275455 -1.8493486908 -1.8493486908 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 3.9368391087 0.0000000000 -1.6271400548 -1.5552588229 -0.0651904381 0.0031311243 0.0439405564 -2.4430608128 1.6171293783 0.2591530667 1.6360598096 1.0906100804 -1.9165346596 -3.7791758444 2.2441717240 3.3993498640 -1.6379863218 -1.0929702054 -1.0991937071 0.9861261544 0.0000000000 0.0000000000 -0.1706316879 2.7569158479 -3.4369907595 -0.9638267251 0.7652697098 2.0425576532 0.5501227953 -0.6807021653 -0.2045617203 -2.6896672067 4.3540732145 3.2172553071 2.4763126542 -0.4680431662 0.1851679859 -4.2425936069 -3.7400107031 0.2493525730 5.0285854490 6.7554857214 -6.3898114507 -2.9885873892 1.7815227957 -4.4920500399 -2.4786015586 -5.3162641251 -0.0710045459 2.2227234000 4.7729517685 -4.5529495876 -1.9539596136 -6.3281771811 0.4447955065 -0.4753714331 2.4019443428 3.2164371594 0.1681049732 8.2542258083 2-hydroxybicyclopentane O C C C C C H H H H H H H H 0.0000000000 0.6127561157 -1.2524060881 -1.8999179628 2.6476459228 -0.1073209932 -2.8560102561 0.1334891998 3.5736810211 3.8069811050 -1.3357920208 -3.9012299267 -0.9340577957 1.5121816791 0.0000000000 1.7178782800 0.7543036674 -1.4918158979 0.0000000000 -0.5314032767 2.0556101735 3.4909403652 -1.3455861528 0.7983337878 -3.3415978304 -1.5404926982 0.2600298298 -0.8262002475 3.9763054942 -0.2567416031 1.7299107443 0.0621831143 -1.3619084898 -1.9909267561 2.0835309928 -1.2610334165 -0.0593319882 -2.9061371142 0.8588889111 -0.5391531045 -3.7457916036 3.4102048192 0.0000000000 0.0000000000 -0.9888963428 0.9888963428 1.6434445385 -0.7841792431 -2.0469823281 1.1877170327 hydroxysulphane S O H H disilyl-ether Si Si O H H H H H H 2.9495126852 0.4286436110 -1.4727499063 4.0579576902 0.0701756209 0.0701756209 -1.3618474095 -1.3618474095 -3.3800205031 histidine dimethylpentane C C C C C C C H H H H H H H H H H H H H H H H 1.4547876282 -1.4547876282 2.1445545504 -2.1445545504 2.1445545504 -2.1445545504 2.1445545504 -2.1445545504 furan difuropyrazine O O N N C C C C C C C C H H H H 0.0000000000 0.0000000000 0.9704360937 -0.9704360937 0.9704360937 -0.9704360937 -1.9408721894 1.9408721894 ethanol 1,5-difluoronaphtalene F F C C C C C C C C C C H H H H H H 0.0000000000 0.0000000000 1.6808445513 1.6808445513 -1.6808445513 -1.6808445513 0.0000000000 0.0000000000 S9 0.0000000000 1.5564378813 0.7087897669 -2.2652276483 menthone O C C C C C C C C C C H H H H H H H H H H H H H H H H H H 0.0000000000 -5.0659721163 -3.6034879641 -1.1377997194 0.6933582752 -0.8187936818 -3.4175581220 0.0832713856 3.1697784862 5.2396793740 2.7482073704 -5.7353404529 -6.8013953459 -3.1541951012 -4.8610977720 -1.7146320815 1.3353028580 -4.4104926442 -3.1022731235 -1.2751506361 0.8397929716 1.6571196240 4.0131457363 4.6990880959 7.0347568939 5.6688764509 4.5227783358 1.9890068391 1.4040260639 neopentane 0.0000000000 -1.2759209097 -1.4911122852 0.1218224964 -0.5332484664 -0.7642018905 -2.0641331109 -0.1824795775 1.1178842527 0.0000000000 3.9164865882 0.6922390336 -2.4428926379 -3.5014033901 -0.9026408224 2.1264781053 -2.4892597645 -1.6489160089 -4.1276730300 0.1934017618 -2.1081053115 1.1553128464 1.1016773541 0.0299064950 1.0585968570 -1.9848698773 5.0167778642 4.1353100814 4.8509633466 4.8350295665 0.4988504927 -2.0199506584 -2.0240250793 0.2469914093 2.7944276610 2.7786874577 -4.6618476891 0.3378091560 2.0585121222 1.0369291406 0.7566080964 0.4304593021 -2.3971538805 -3.5860303977 -1.8254234826 -0.1094906764 4.5693816544 2.7714295791 -6.2062554367 -4.9615771850 -4.9619504893 -1.5747354153 4.0774705629 1.9011131139 1.5689828577 0.9513248658 2.9726456776 -0.2582123254 0.0000000000 -3.8262984260 -1.3275291709 -1.4933539788 0.9402323872 1.5873508800 4.3731533082 -4.0017434683 -4.0017434683 -5.4898017896 -0.5794406045 -0.5794406045 -3.4726445808 2.5961434903 5.3338963865 5.3338963865 4.6073232530 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.6771680976 -1.6771680976 0.0000000000 1.6805369416 -1.6805369416 0.0000000000 0.0000000000 1.6938411125 -1.6938411125 0.0000000000 0.0000000000 -0.0307371822 -1.6302003168 1.9316390571 1.6491159373 -0.9599087477 -0.9599087477 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 1.6969519068 -1.6969519068 C C C C C H H H H H H H H H H H H 4.3049245548 0.0502472120 -1.3508783386 -4.2083887213 -0.1992065783 2.6061876658 3.3153790101 1.2846112117 1.2846112117 -1.2128146457 -5.0469559196 -5.0469559196 -4.8791103342 -1.4266859322 2.5675883965 2.5675883965 5.3898587304 O N N N N N C C C C C C H H H H H 1.5916930881 -1.1078124728 2.6143261592 -1.8166631951 2.5780491273 -1.9297963534 -1.9297963534 1.3150099345 -1.3150099345 1.3150099345 -1.3150099345 2.6509541041 -2.6509541041 2.6509541041 -2.6509541041 1.3595784802 -1.3595784802 2.3271380660 -2.3271380660 2.3271380660 -2.3271380660 4.6944935141 -4.6944935141 4.6944935141 -4.6944935141 5.4006870954 1.6745046894 -3.2977881039 2.4143500339 -2.0786863903 -1.0594193125 1.0450647735 -1.5782549038 -0.1007895891 -2.6656839215 3.1317795772 -0.3374432800 0.4229624123 -4.1154821045 3.7020414107 -2.9660143784 0.4081719917 0.0000000000 -4.0122480903 -2.6629858601 2.9809395408 1.9657781562 6.3338302157 -1.5886952821 -0.8359572675 -5.7640104211 -5.0779459969 0.5243588431 3.6706594226 -7.7366322874 -6.5145288177 4.4304595058 6.6862170583 7.6007612807 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 2.8756270087 -2.8756270087 0.0000000000 0.0000000000 2.8718881844 -2.8718881844 0.0000000000 4.5501206960 -4.5501206960 0.0000000000 2.8892367312 -2.8892367312 5.1495325026 -5.1495325026 2.9111238472 -2.9111238472 0.0000000000 0.0000000000 1.6602440278 1.6602440278 -3.3204880547 3.3161708326 -1.6580854160 -1.6580854160 5.2540268178 -2.6270134094 -2.6270134094 3.3362032089 -1.6681016042 -1.6681016042 2.9730839771 2.9730839771 1.6807381371 1.6807381371 -3.3614762743 -5.9461679533 0.5000983316 0.5000983316 0.5000983316 -0.6564595188 -0.6564595188 -0.6564595188 0.0455078719 0.0455078719 0.0455078719 -2.7167608516 -2.7167608516 -2.7167608516 -0.4683799864 -0.4683799864 3.2959941533 3.2959941533 3.2959941533 -0.4683799864 1,3,5-trifluorobenzene naphtalene C C C C C C C C C C H H H H H H H H 0.0000000000 0.8897000000 -0.8897000000 -0.8897000000 0.8897000000 1.5138000000 1.5138000000 0.2654000000 -1.5138000000 -0.2654000000 -1.5138000000 -1.5138000000 -0.2654000000 -1.5138000000 0.2654000000 1.5138000000 1.5138000000 1,3,5-trisilacyclohexane Si Si Si C C C H H H H H H H H H H H H methylamine N C H H H H H 0.0000000000 0.8897000000 0.8897000000 -0.8897000000 -0.8897000000 1.5138000000 0.2654000000 1.5138000000 0.2654000000 1.5138000000 1.5138000000 -0.2654000000 -1.5138000000 -1.5138000000 -1.5138000000 -1.5138000000 -0.2654000000 pterin mesityl-oxide O C C C C C C H H H H H H H H H H 0.0000000000 -0.8897000000 0.8897000000 -0.8897000000 0.8897000000 -0.2654000000 -1.5138000000 -1.5138000000 1.5138000000 1.5138000000 0.2654000000 -1.5138000000 -1.5138000000 -0.2654000000 1.5138000000 0.2654000000 1.5138000000 4.5662599301 4.5662599301 -4.5662599301 -4.5662599301 2.3012120990 2.3012120990 -2.3012120990 -2.3012120990 0.0000000000 0.0000000000 6.3391558961 6.3391558961 -6.3391558961 -6.3391558961 2.3637514068 2.3637514068 -2.3637514068 -2.3637514068 F F F C C C C C C H H H 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 4.4512477126 -4.4512477126 0.0000000000 2.2750112183 -2.2750112183 0.0000000000 2.2744659308 -2.2744659308 0.0000000000 4.0417664625 -4.0417664625 0.0000000000 2.5699290652 2.5699290652 -5.1398581302 1.3134783392 1.3134783392 -2.6269566786 -1.3131635176 -1.3131635176 2.6263270339 -2.3335149555 -2.3335149555 4.6670299102 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.6980139011 0.3490069505 0.3490069505 0.0000000000 0.0000000000 0.0000000000 water O H H S10 0.0000000000 1.4815001599 -1.4815001599 Starting coordinates of molecules in weakly-bound test set (Å) H2O ··· HCC– Ar ··· H2 Ar H H 0.0000000000 0.3687590000 -0.3687590000 0.0000000000 0.0000000000 0.0000000000 2.7945120000 -1.3972560000 -1.3972560000 0.5960700000 1.5127000000 -2.1087700000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -2.0851820000 2.0851820000 0.0000000000 0.0000000000 0.0000000000 0.8898650000 -0.8898650000 0.0000000000 0.0000000000 0.0000000000 0.8898650000 -0.8898650000 1.9949820000 3.0851460000 1.6310530000 1.6310530000 1.6310530000 -1.9949820000 -3.0851460000 -1.6310530000 -1.6310530000 -1.6310530000 0.0000000000 0.0000000000 -0.8869270000 0.8869270000 0.0000000000 0.0000000000 0.0000000000 0.8144430000 -0.8144430000 1.7948300000 2.8855470000 1.4234140000 1.4234140000 1.4234140000 -1.9472110000 -2.3344690000 -2.3344690000 -2.3344690000 -0.2735483200 -1.9813209100 0.5955431100 0.4141232800 -0.4636475800 3.3845412800 2.8476266800 2.4548279300 2.9968902100 -0.1412416300 -0.9187997300 0.9510259000 -0.9550035600 0.8701983600 -1.3332959500 -0.6102432700 -1.7863965400 -1.5866935800 0.0000000000 0.0000000000 0.0000000000 1.1497050000 -0.0000240000 -1.1496810000 -0.3532200000 0.6096910000 -0.4260590000 -0.1069430000 0.2765300000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -0.3891100000 0.4251780000 0.1383230000 0.1383230000 0.0104870000 -0.3232000000 0.0000000000 0.0000000000 0.7659710000 -0.7659710000 0.0000000000 0.0000000000 0.1281240000 0.1039830000 -0.7234290000 0.0423780000 0.5710690000 0.5573920000 -0.6795160000 -0.1643450000 0.1704030000 0.3902120000 -0.0000030000 -0.5323960000 0.5677240000 -0.4315940000 O 2.1665530000 H 2.2927980000 H 1.1492120000 H -2.9967370000 C -0.6803380000 C -1.9314880000 Charge -1 Ar ··· HF H F Ar Ar2 Ar Ar H2O ··· NH3 O H H N H H H CH4 ··· CH4 C H H H H C H H H H 0.0000000000 0.0000000000 1.0275280000 -0.5137640000 -0.5137640000 0.0000000000 0.0000000000 1.0275280000 -0.5137640000 -0.5137640000 CH4 ··· NH 3 C H H H H N H H H 0.0000000000 0.0000000000 0.5120670000 0.5120670000 -1.0241350000 0.0000000000 0.9404380000 -0.4702190000 -0.4702190000 CHBr3 ··· H2O2 C Br Br H Br O H O H -0.1239074100 0.4852767400 1.2951035000 -0.3220035800 -1.8140311200 0.5791897800 0.9601966600 -0.4625118300 -1.2496694100 H2O ··· NH4+ N -1.1691990000 H -1.5153270000 H -1.5227460000 H -1.5227460000 H -0.1095670000 H 2.1422270000 H 2.1422270000 O 1.5551310000 Charge +1 H2O ··· OH– O -1.1638150000 O 1.1691450000 H -1.5066060000 H -0.0163070000 H 1.5175840000 Charge -1 F H H H O -1.2624680000 1.5375300000 -1.5404820000 -1.5404820000 0.6549290000 2.1509740000 F F H H -0.0099470000 -0.0045370000 0.0117550000 0.0003340000 -0.9418590000 0.4700210000 0.4742330000 -0.0008020000 -0.9664580000 0.4806110000 0.4806110000 0.0033230000 0.0015420000 0.0015420000 -0.0003680000 0.0000000000 0.0000000000 0.8339220000 -0.8339220000 0.0000000000 -0.7746450000 0.7746450000 0.0000000000 -0.3844640000 0.4113030000 0.2626440000 0.0040810000 -0.2935640000 -0.2500550000 -0.2056270000 0.3871320000 -0.2962760000 0.3648260000 -0.2111950000 0.6057980000 -0.5802760000 0.1856730000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 -1.9124520000 -1.0053010000 1.0907640000 1.0907640000 0.7362250000 0.1441680000 -0.1324880000 0.1541210000 0.1541210000 -0.3199230000 0.0000000000 0.0000000000 0.7694420000 -0.7694420000 0.0000000000 1.7428120000 -0.9961040000 -1.6078510000 0.8611430000 -0.1514110000 0.3612010000 -0.3254390000 0.1156500000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.3112110000 -0.4919020000 0.2135730000 0.2135730000 -0.3112110000 0.4919020000 -0.2135730000 -0.2135730000 0.0000000000 0.0000000000 -0.8141350000 0.8141350000 0.0000000000 0.0000000000 -0.8141350000 0.8141350000 NH3 ··· NH3 N H H H N H H H H2O ··· H3O+ O 1.1952950000 O -1.1962250000 H -1.6697680000 H 0.0009870000 H -1.6928460000 H 1.6838960000 H 1.6786610000 Charge + 1 0.4519750000 0.2340610000 -0.4118190000 -0.0733040000 -0.0634340000 -0.8847830000 0.7473040000 HF ··· HF H2O ··· H2O O O H H H H 2.3406100000 -1.4887830000 -1.9727560000 1.1209290000 HF ··· H 2O H2O ··· CN– O 1.5276760000 H 1.6282040000 H 0.5332700000 N -1.2766640000 C -2.4124860000 Charge -1 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 HCl ··· HCl Cl Cl H H F– ··· HF F 0.0000000000 H 0.0000000000 F 0.0000000000 Charge -1 1.9085280000 0.9524560000 2.3439890000 -1.0139360000 -1.3970810000 -1.4087530000 -1.3852030000 -0.3415410000 0.6190220000 -0.3711390000 0.1343970000 -0.0541620000 0.0134240000 S11 -1.5361740000 -0.9097660000 -2.1382650000 -2.1382650000 1.5361740000 0.9097660000 2.1382650000 2.1382650000 Table S1. Number of geometry cycles for optimizing molecules of the Baker test set (at RHF/STO-3G), compared for various geometry optimization schemes. Baker ref. 18 Lindh ref. 12 Eckert ref. 16 Bakken ref. 11 this work water 6 4 4 4 4 ammonia 6 5 6 5 5 ethane 5 4 4 3 3 acetylene 6 5 6 4 5 allene 5 5 4 4 4 hydroxysulphane 8 8 7 7 6 benzene 4 3 3 3 3 methylamine 6 5 5 4 4 ethanol 6 5 5 4 5 acetone 6 5 5 4 5 disilyl-ether 8 11 9 8 7 1,3,5-trisilacyclohexane 8 8 6 9 6 benzaldehyde 6 5 5 4 4 1,3-difluorobenzene 5 5 5 4 4 1,3,5-trifluorobenzene 5 4 4 4 4 neopentane 5 5 4 4 4 furan 8 7 6 5 5 naphtalene 5 6 6 5 5 1,5-difluoronaphtalene 6 6 6 5 5 2-hydroxybicyclopentane 15 10 9 9 7 ACHTAR10 12 8 9 8 6 ACANIL01 8 8 8 7 8 benzidine 9 10 7 9 6 10 9 9 8 7 difuropyrazine 9 7 7 6 6 mesityl-oxide 7 6 6 5 6 histidine 19 20 14 16 12 dimethylpentane 12 10 10 9 6 caffeine 12 7 7 6 6 menthone 13 14 10 12 9 240 215 196 185 167 8 7 7 6 6 molecule pterin sum rounded average S12 Table S2. Number of geometry cycles for optimizing molecules of the Baker test set (at PW91/TZ2P), compared for various geometry optimization schemes. ADFcarta QUILDcart QUILDcart,w=1 QUILDdeloc QUILDdeloc,w=1 water 4 4 4 3 4 ammonia 4 5 5 5 5 ethane 4 4 4 4 4 acetylene 4 4 5 4 5 allene 5 4 5 4 5 molecule hydroxysulphane 10 9 9 6 6 benzene 3 3 3 3 3 methylamine 4 4 5 4 4 ethanol 6 4 5 5 5 acetone 5 5 5 4 5 disilyl-ether 11 6 10 8 10 1,3,5-trisilacyclohexane 10 4 4 5 6 benzaldehyde 7 5 5 5 5 1,3-difluorobenzene 5 4 4 4 4 1,3,5-trifluorobenzene 5 4 4 4 4 neopentane 4 4 4 4 4 furan 6 6 6 5 6 naphtalene 6 5 5 5 5 1,5-difluoronaphtalene 6 5 5 5 5 14 11 11 8 7 ACHTAR10 6 7 7 7 6 ACANIL01 7 6 6 6 6 benzidine 6 6 6 6 6 pterin 8 8 8 7 7 difuropyrazine 7 8 7 6 7 mesityl-oxide 6 6 6 5 5 34 48 47 13 13 dimethylpentane 5 5 4 4 4 caffeine 8 7 7 7 7 12 13 12 8 8 222 214 218 164 171 7 7 7 5 6 2-hydroxybicyclopentane histidine menthone sum rounded average a) using old-style optimizer in ADF S13 Table S3. Number of geometry cycles for optimizing molecules of the weak-coordinates test set (at PW91/TZ2P), compared for various geometry optimization schemes. molecule ADFcarta QUILDcart QUILDcart,w=1 QUILDdeloc QUILDdeloc,w=1 Ar ··· H2 109 9 12 8 13 Ar ··· HF 21 12 14 8 13 Ar ··· Ar 29 5 5 6 3 CH4 ··· CH4 38 7 10 7 10 CH4 ··· NH3 115 8 12 7 12 CHBr3 ··· H2O2 202 31 40 14 30 4 3 4 4 4 20 20 23 10 11 20 14 18 10 14 34 14 16 15 16 29 19 19 12 14 17 9 16 12 15 10 10 10 8 9 18 18 17 15 14 HCl ··· HCl 39 26 26 12 15 HF ··· H2O 12 13 16 10 13 HF ··· HF 18 18 23 11 13 NH3 ··· NH3 13 6 12 6 11 748 242 293 175 230 42 14 16 10 13 F– ··· HF H2O ··· CN – H2O ··· H2O H2O ··· H3O + H2O ··· HCC – H2O ··· NH3 H2O ··· NH4 H2O ··· OH + – sum rounded average a) using old-style optimizer in ADF S14 Table S4. Optimized geometrya of H2O2 using numerical gradients with different finite-difference steps difstep (a.u.) initial geometry O-H (Å) O-O (Å) H-O-O (°) H-O-O-H (°) 0.97 1.46 100.0 50.0 2.0·10 -2 0.9756 1.4693 99.86 110.69 1.0·10 -2 0.9756 1.4692 99.87 110.70 1.0·10 -3 0.9756 1.4692 99.87 110.78 1.0·10 -4 0.9756 1.4692 99.87 110.76 1.0·10-5 0.9756 1.4692 99.87 110.75 a) obtained using PW91/TZ2P with Spin-Orbit ZORA Hamiltonian and numerical gradients S15 Geometry optimization with QM/MM treatment of water dimer $ADFBIN/quild << eor TITLE QM/MM calculation setup by pdb2adf: M. Swart, 2007 GEOMETRY END ATOMS O 0.0000 H -0.5220 H -0.5220 O 0.0000 H 0.0570 H 0.9110 END 0.0000 0.2660 0.2660 -3.2000 -2.2440 -3.4950 0.0000 -0.7570 0.7570 0.0000 0.0000 0.0000 QUILD NR_REGIONS=2 REGION 1 1-3 SUBEND REGION 2 4-6 SUBEND INTERACTIONS TOTAL description 1 REPLACE region 1 description 3 for description 2 SUBEND DESCRIPTION 1 NEWMM QMMM FORCE_FIELD_FILE $ADFRESOURCES/ForceFields/amber95.ff QMMM_INFO 1 OW QM -0.8340 H2O 1 O 2 3 2 HW QM 0.4170 H2O 1 H1 1 3 HW QM 0.4170 H2O 1 H2 1 4 OW MM -0.8340 H2O 2 O 5 6 5 HW MM 0.4170 H2O 2 H1 4 6 HW MM 0.4170 H2O 2 H2 4 SUBEND END SUBEND DESCRIPTION 2 NEWMM QMMM FORCE_FIELD_FILE $ADFRESOURCES/ForceFields/amber95.ff QMMM_INFO 1 OW QM -0.8340 H2O 1 O 2 3 2 HW QM 0.4170 H2O 1 H1 1 3 HW QM 0.4170 H2O 1 H2 1 SUBEND END SUBEND DESCRIPTION 3 XC GGA Becke-Perdew END BASIS type TZP core small END SCF Converge 1.0e-5 1.0e-5 Iterations 99 END INTEGRATION 5.0 5.0 5.0 CHARGE 0.0 SUBEND END ENDINPUT eor S16 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Jensen, F. Introduction to computational chemistry; Wiley & Sons, 1998. Billeter, S. R.; Turner, A. J.; Thiel, W. Phys Chem Chem Phys 2000, 2, 2177-2186. Pulay, P.; Fogarasi, G. J Chem Phys 1992, 96, 2856-2860. von Arnim, M.; Ahlrichs, R. J Chem Phys 1999, 111, 9183-9190. Baker, J. J Comput Chem 1997, 18, 1079-1095. Baker, J.; Kessi, A.; Delley, B. J Chem Phys 1996, 105, 192-212. Baker, J.; Kinghorn, D.; Pulay, P. J Chem Phys 1999, 110, 4986-4991. Lindh, R.; Bernhardsson, A.; Schutz, M. Chem Phys Lett 1999, 303, 567-575. Swart, M.; Bickelhaupt, F. M. Int J Quant Chem 2006, 106, 2536-2544. Wilson Jr., E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations—The Theory of Infrared and Raman Vibrational Spectra; McGraw-Hill, Inc.: New York, 1955. Bakken, V.; Helgaker, T. J Chem Phys 2002, 117, 9160-9174. Lindh, R.; Bernhardsson, A.; Karlstrom, G.; Malmqvist, P. A. Chem Phys Lett 1995, 241, 423-428. Fischer, T. H.; Almlof, J. J Phys Chem 1992, 96, 9768-9774. Yeager, D. L.; Jensen, H. J. A.; Jørgensen, P.; Helgaker, T. U. In Geometrical derivatives of energy surfaces and molecular properties; Jørgensen, P.; Simons, J., Eds.; Reidel Publishing: Dordrecht, 1986, p 229-241. Csaszar, P.; Pulay, P. J Molec Struct 1984, 114, 31-34. Eckert, F.; Pulay, P.; Werner, H. J. J Comput Chem 1997, 18, 1473-1483. Farkas, O.; Schlegel, H. B. Phys Chem Chem Phys 2002, 4, 11-15. Baker, J. J Comput Chem 1993, 14, 1085-1100. S17
© Copyright 2026 Paperzz