10/29/2007 Raman Analysis of Concentrated Salt Solutions using Robust Modeling and Data Fusion Jeremy M. Shaver a, Samuel A. Bryan b, Tatiana G. Levitskaia b, Serguei I. Sinkov b a Eigenvector Research, Inc. Manson/Seattle, WA b Pacific Northwest National Lab Richland, WA [email protected] Hanford Double Shell Tank • Liquid • Salt cake 1 10/29/2007 Nuclear Waste Storage Tanks Composition Monitoring Storage Salt cake Tank Farm Chemical Inventory, Hanford Site Tank Farm Chemical Inventory NO3 Na OH by phase NO2 CO3 Al salts Al NaNO2 PO4 SO4 Na-CO3-F-PO4-SO4 Fe TOC NaNO3 F others others 0 BBI 3/20/03 10000 20000 30000 40000 50000 60000 Metric Tons 2 10/29/2007 Raman Spectra of Ionic Species NO3 CrO4 SO4 H2PO4 400 600 800 CO3 NO2 1000 1200 1400 Raman Shift (cm-1) 1600 1800 2000 Raman Spectrum Density and Conductivity Sensors Concentration (%) Data and Analysis Flowchart 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Ion Concentrations Expected Density Expected Conductivity Measured Density Measured Conductivity Density Discrepancy Particulates in Solution (Volume of Particulates) Conductivity Discrepancy New Species or Interactions (Refinement of Raman Model) 3 10/29/2007 Estimation of Density and Conductivity from Concentrations (1st generation models) 700 Density 1.4 Num. LVs: 3 RMSEC: 17.4132 1.35 RMSECV: 22.9085 Conductivity Predicted Conductivity, mS/cm Predicted Density, g/ml 1.45 1.3 1.25 1.2 1.15 SiO4-3 1.1 1.05 AlO2-1 AlO2-2 600 Num. LVs: 4 RMSEC: 0.019 RMSECV: 0.021 NaOH-1 R 500 NaOH-2 R 400 NaOH-3 R AlO2-3 300 mix-33 mix-15 NaOH-4 R mix-43 mix-5 mix-37 200 mix-30 mix-36 mix-35 mix-27 mix-40 mix-11 mix-14 100 mix-22 SiO4-4 mix-25 mix-29 mix-34 PO4-4 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 0 Measured Density, g/ml SiO4-3 50 100 150 200 SiO4-4 250 300 350 Measured Conductivity, mS/cm (dimmed and/or labeled points were not used in modeling) Raman-to-Concentration Model Design Challenges • Long-Term Model – Months-Years of Service • Unknown Field Interferences – Updates probably necessary 4 10/29/2007 Regression Model Options • ILS – Inverse Least Squares (PLS, PCR, MLR) + Nonlinearities often easily included - Model updating a challenge • CLS – Classical Least Squares + Model updating straightforward - Does not typically allow for nonlinearities Raman Intensity Classical Least Squares Model As concentration increases, there is a corresponding increase in intensity as a linear response (i.e. Beer’s law). si 0 200 400 600 800 1000 The typical CLS model uses a simple response profile (spectrum) to predict concentration of the individual species. Pure component Spectrum projection Frequency ST e.g Time ci 0 20 C 40 60 Species Concentration 80 100 X = CST + E 5 10/29/2007 Standard CLS Model Calibration CS T = X T † Sions = Ccal X cal mixtures Determine pure component spectra (ST) from calibration samples by ordinary least-squares regression. Ccal pure component spectra least least squares squares Standard CLS Model Prediction c1 c2 c3 Standard “linear” CLS Each spectrum maps to one concentration. c4 c5 T C = X ( Sions )† … … ck 6 10/29/2007 Extended Mixture Model Prediction c1 c2 c3 Add additional background or component spectra as needed … … T C = X ( Sions )† ck T T C = X ([ Sions Sinter ])† cinter,1 cinter,2 Martens & Naes Stepwise Regression Prediction c1 X 0 c3 X X 0 Use ONLY those components which improve the spectral residuals by a statistically significant amount 0 … … ck 7 10/29/2007 Raman Intensity Non-Linear CLS Model si,2 si,1 0 200 400 600 800 1000 Individual Species Concentration Frequency The typical CLS model expects only a change in intensity and no change in spectral profile. The non-linear CLS model allows for multiple spectral profiles as concentration changes. ci,1+ci,2 ci,1 ci,2 0 20 40 60 80 As concentration increases, there is an increase in intensity as well as, eventually, a shift of the peak position (due to molecular interactions such as hydrogen bonding) 100 Total Ion Concentration Non-Linear CLS Models Calibration Cc MS T = Ck S T = X T † Sion = C s k ,cal X cal Ck ,cal = Cc ,cal M If M is diagonal, this is CLS Otherwise, M imposes closure between underlying factors to known concentration. e.g. Two factors for first component M= [ 1100 0010 0 0 0 1] Solve for Sions via ALS (a) single factors = hard equality constraint (b) multiple factors = soft closure constraint to species concentration T CM T = C ' = X cal ( Sions )† 8 10/29/2007 Non-Linear CLS Model Prediction c'1,1 c'1,2 c1 c'1,3 c2 c'3 c3 c'4 c4 … … c'2 … “Non-linear” CLS More than one pure component spectrum can map to an underlying species concentration. c'k ck 20 10 0 0 10 20 NaNO3 30 0 10 5 0 10 20 NaNO2 6 4 2 10 Na2CO3 10 5 0 0 15 0 Na4SiO4 pred 5 5 10 Na3PO4 2 4 Na2CrO4 6 20 15 10 5 0 30 0 0 Na3PO4 pred Na2SO4 pred 10 30 NaAl(OH)4pred Na2CO3 pred NaNO2 20 0 Estimated Concentration pred 30 Na2CrO4 pred NaNO3 pred Classical Least Squares (CLS) 0 5 10 15 Na2SO4 20 10 5 0 -5 -10 0 2 4 6 NaAl(OH)4 8 Al(OH)4 in solution 10 with NO3 0 0 10 20 Na4SiO4 Measured Concentration 9 10/29/2007 Example: Multiple NO3 Components Normalized spectra at different NO3 concentrations and w/Al(OH)4 increasing ionic strength 1010 1030 1050 1070 1090 Raman Shift (cm-1) 10 20 NaNO3 30 5 0 5 10 Na2CO3 0 10 20 NaNO2 15 10 4 2 0 2 4 Na2CrO4 6 5 0 30 6 0 15 Na2SO4 pred 10 0 10 0 20 Na2CrO4 pred Na2CO3 pred 0 20 30 NaAl(OH)4pred 10 0 0 5 0 2 10 15 Na2SO4 20 8 6 4 2 0 4 6 NaAl(OH)4 8 Na4SiO4 pred 15 Na3PO4 pred Estimated Concentration pred 20 NaNO2 pred 30 NaNO3 Non-Linear Classical Least Squares (NL-CLS) 10 5 0 0 5 10 Na3PO4 20 10 0 0 10 20 Na4SiO4 Measured Concentration 10 10/29/2007 Example: Multiple NO3 Components Measured Data Recovered Spectra normalized Normalization of OH 2nd Derivative ALS calibration increasing ionic strength 1010 1030 1050 1070 1090 1010 1030 Raman Shift (cm-1) 1050 1070 1090 Raman Shift (cm-1) 10 20 NaNO3 30 5 0 5 10 Na2CO3 0 10 20 NaNO2 15 10 4 2 0 2 4 Na2CrO4 6 5 0 30 6 0 15 Na2SO4 pred 10 0 10 0 20 Na2CrO4 pred Na2CO3 pred 0 20 30 NaAl(OH)4pred 10 0 0 5 0 2 10 15 Na2SO4 20 8 6 4 2 0 4 6 NaAl(OH)4 8 Na4SiO4 pred 15 Na3PO4 pred Estimated Concentration pred 20 NaNO2 pred 30 NaNO3 Non-Linear Classical Least Squares (NL-CLS) 10 5 0 0 5 10 Na3PO4 20 Interference of baseline/background 10 0 0 10 20 Na4SiO4 Measured Concentration 11 10/29/2007 10 20 NaNO3 10 0 30 10 5 0 5 10 Na2CO3 10 5 10 20 NaNO2 15 10 5 0 30 4 2 0 2 4 Na2CrO4 0 5 0 2 10 15 Na2SO4 20 8 6 4 2 0 6 4 6 NaAl(OH)4 8 20 10 0 0 0 0 6 0 15 Na4SiO4 pred Na3PO4 pred 0 Na2SO4 pred 20 Na2CrO4 pred Na2CO3 pred 0 20 30 NaAl(OH)4pred 10 0 Estimated Concentration pred 20 NaNO2 pred 30 NaNO3 Non-Linear Extended Least Squares (NL-ELS) 5 10 Na3PO4 0 10 20 Na4SiO4 Measured Concentration 10 20 NaNO3 30 5 5 10 Na2CO3 10 5 0 0 5 10 Na3PO4 0 10 20 NaNO2 15 10 4 2 0 2 4 Na2CrO4 6 5 0 30 6 0 15 Na2SO4 pred 10 0 10 0 20 Na2CrO4 pred Na2CO3 pred 0 30 NaAl(OH)4pred 10 0 Na3PO4 pred NaNO2 20 0 Estimated Concentration pred 30 Na4SiO4 pred NaNO3 pred Non-Linear Non-Negative Extended Least Squares (NL-NNELS) 0 5 0 2 10 15 Na2SO4 20 6 4 2 0 4 6 NaAl(OH)4 8 20 10 0 0 10 20 Na4SiO4 Measured Concentration 12 10/29/2007 Calibration Results NO3 0.18 0.19 0.18 0.18 NO2 0.19 0.19 0.19 0.18 SO4 0.36 0.36 0.27 0.36 CO3 0.11 0.09 0.13 0.12 CrO4 0.04 0.04 0.04 0.04 Al(OH) 0.43 0.42 0.73 0.61 PO4 0.53 0.48 0.56 0.49 SiO4 0.78 nn 0.74 sr,nn 1.25 1.12 sr (non-negative basis) NO3 NO2 SO4 0.26 0.18 0.35 0.26 0.18 0.35 0.24 0.23 0.34 0.24 0.18 0.39 CO3 0.10 0.09 0.12 0.10 CrO4 0.04 0.04 0.04 0.04 Al(OH) 0.38 0.39 0.43 0.17 PO4 0.48 0.45 0.51 0.44 SiO4 0.99 nn 1.04 sr,nn 0.92 0.99 sr Pure samples only OH Normalization 2nd Derivative ALS calibration for non-linear components Extended and Non-Linear Models Useful? Ordinary Least Squares Standard Error of Calibration (SEC) NO3 NO2 SO4 CO3 : 0.60 0.59 0.36 0.24 B : 0.59 0.61 0.36 0.24 3: 0.57 0.54 0.31 0.21 B3: 0.57 0.54 0.31 0.21 CrO4 0.12 0.12 0.11 0.11 Al(OH) 3.13 3.15 0.61 0.67 PO4 2.24 1.38 1.50 0.67 SiO4 2.77 1.70 2.33 1.68 Standard Error of Prediction (SEP) NO3 NO2 SO4 CO3 : 0.53 0.20 0.06 0.21 B : 0.51 0.21 0.06 0.21 3: 0.48 0.19 0.12 0.17 B3: 0.46 0.18 0.13 0.17 CrO4 0.10 0.10 0.09 0.09 Al(OH) 2.06 2.09 0.55 0.58 PO4 2.26 1.26 1.56 0.26 SiO4 2.67 1.49 2.03 1.55 B: Including 2 Background Factors (from NaOH) 3: Non-linear (3 components) for NO3 13 10/29/2007 Extended and Non-Linear Models Useful? Non-negative Least Squares Standard Error of Calibration : BG : NL: BG,NL: NO3 0.56 0.60 0.56 0.56 NO2 0.66 0.74 0.53 0.52 : BG : NL: BG,NL: NO3 0.41 0.38 0.43 0.40 NO2 0.62 1.11 0.20 0.19 SO4 0.36 0.36 0.35 0.35 CO3 0.49 0.45 0.20 0.20 CrO4 0.13 0.12 0.10 0.11 Al(OH) 2.16 1.95 0.28 0.27 PO4 4.83 1.65 1.49 0.61 SiO4 2.03 2.42 2.10 0.97 PO4 4.73 0.87 1.54 0.31 SiO4 1.27 0.45 1.67 0.38 Standard Error of Prediction SO4 0.06 0.11 0.07 0.12 CO3 0.42 0.39 0.17 0.18 CrO4 0.11 0.10 0.09 0.10 Al(OH) 0.55 0.62 0.31 0.20 BG: Including 2 Background Factors (from NaOH) NL: Non-linear (3 components) for NO3 Stepwise and Non-Negative LS Useful? Background + Non-linear NO3 Standard Error of Calibration : SR : NN: SR,NN: NO3 0.57 0.56 0.56 0.56 NO2 0.54 0.52 0.52 0.51 : SR : NN: SR,NN: NO3 0.46 0.45 0.40 0.40 NO2 0.18 0.17 0.19 0.20 SO4 0.31 0.35 0.35 0.35 CO3 0.21 0.20 0.20 0.19 CrO4 0.11 0.11 0.11 0.11 Al(OH) 0.67 0.80 0.27 0.26 PO4 0.67 0.61 0.61 0.53 SiO4 1.68 1.61 0.97 0.79 PO4 0.26 0.55 0.31 0.62 SiO4 1.55 1.32 0.38 0.45 Standard Error of Prediction SO4 0.13 0.13 0.12 0.12 CO3 0.17 0.17 0.18 0.18 CrO4 0.09 0.09 0.10 0.10 Al(OH) 0.58 0.55 0.20 0.22 SR: Stepwise regression NN: Non-Negative least squares 14 10/29/2007 Best/Worst Results Standard Error of Calibration NO3 0.60 0.56 NO2 0.59 0.51 SO4 0.36 0.35 CO3 0.24 0.19 CrO4 0.12 0.11 Al(OH) 3.13 0.26 PO4 2.24 0.53 SiO4 2.77 0.79 PO4 2.26 0.31 SiO4 2.67 0.38 Standard Error of Prediction NO3 0.53 0.40 NO2 0.20 0.19 SO4 0.06 0.12 CO3 0.21 0.18 CrO4 0.10 0.10 Al(OH) 2.06 0.20 OH Normalization 1st derivative Non-linear CLS model Extended Mixture model Stepwise regression Non-negative Least Squares Conclusions and Future • CLS models can be adapted to handle nonlinear single-component responses • Updating of CLS models straightforward • Evidence for fusion of conductivity and Raman for correction • On-line statistics for evaluation 15
© Copyright 2026 Paperzz