L LL Description and Drawings of a Direct Quantification Portable Salivary Melatonin Biosensor for Determining Circadian Rhythms Ryan J. Love DRDC Toronto Michel A. Paul DRDC Toronto Heinz-Bernhard Kraatz University of Toronto Defence R&D Canada Technical Report DRDC Toronto TR 2013-108 March 2014 Limited D Description and Drawings of a Direct Quantification Portable Salivary Melatonin Biosensor for Determining Circadian Rhythms Ryan J. Love DRDC Toronto Michel A. Paul DRDC Toronto Heinz-Bernhard Kraatz University of Toronto Defence Research and Development Canada – Toronto Technical Report DRDC Toronto TR 2013-108 March 2014 IMPORTANT INFORMATIVE STATEMENTS The work described here has been protected by the following US provisional patent: Love RJ, Kraatz HB, Paul MA. Method and Device for Melatonin Detection. U.S. Provisional Patent Application 61867270, filed August 19, 2013. Funding for this work was provided by WBE 04KD07. © Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2014 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2014 Abstract …….. An individual’s circadian rhythm governs cycles of fatigue and alertness, which permits nighttime sleep and optimal performance of mental and physical tasks during the day. Circadian misalignment, caused by shift work or eastward/westward travel, therefore impairs our ability to sleep and remain mentally alert. This is particularly problematic in military and civilian occupations in which human error may result in death; such is the case for transport vehicle operators and medical professionals. As a result, knowing and understanding an individual’s baseline circadian rhythm may be critical in fatigue-related accident prevention strategies. Currently, accurate identification of a person’s circadian rhythm requires salivary melatonin assessment by a plate-based immunoassay, which takes 24 hours and must be performed in a laboratory. Therefore, the goal of this project is to develop and test a user-friendly device that performs nearly instantaneous salivary melatonin assessment. Direct electrochemical quantification of melatonin was performed in water and saliva on a disposable ceramic screenprinted electrode with a chemically modified surface. The peak current of melatonin oxidation in 2 both mediums (water and saliva) was highly correlated (R > 0.95) to the concentration of melatonin in the samples. In conclusion we have shown proof-of-concept that melatonin can be directly quantified on a gold electrode. Résumé …..... Le rythme circadien d'une personne régit ses cycles de fatigue et de vigilance, ce qui permet le sommeil la nuit et un rendement optimal des tâches mentales et physiques pendant la journée. Le désordre circadien, causé par le travail par postes ou les déplacements vers l’Est ou vers l’Ouest, affecte donc notre capacité à dormir et à rester alerte. Cela est particulièrement problématique dans les occupations militaires et civiles où l'erreur humaine peut entraîner la mort, comme dans le cas des conducteurs de véhicules et des professionnels médicaux. Par conséquent, la connaissance et la compréhension du rythme circadien de base d'un individu peuvent être essentielles dans les stratégies de prévention des accidents liés à la fatigue. Actuellement, l'identification précise du rythme circadien d'une personne nécessite une évaluation de la teneur en mélatonine de la salive qui est effectuée au moyen d’un immunodosage sur plaque, qui prend 24 heures et doit être effectué en laboratoire. Par conséquent, l'objectif de ce projet est de développer et de tester un appareil convivial qui effectuerait une évaluation salivaire presque instantanée de la teneur en mélatonine. La quantification électrochimique directe de la mélatonine a été réalisée dans de l'eau et de la salive sur une électrode en céramique sérigraphiée jetable ayant une surface chimiquement modifiée. Le courant de crête d'oxydation de la mélatonine dans les deux milieux (eau et salive) est étroitement corrélé (R2 > 0,95) avec la concentration de la mélatonine dans les échantillons. En conclusion, nous avons prouvé le principe selon lequel la mélatonine peut être directement quantifiée sur une électrode d'or. DRDC Toronto TR 2013-108 i This page intentionally left blank. ii DRDC Toronto TR 2013-108 Executive summary Description and Drawings of a Direct Quantification Portable Salivary Melatonin Biosensor for Determining Circadian Rhythms Ryan J. Love; Michel A. Paul; Heinz-Bernhard Kraatz; DRDC Toronto TR 2013108; Defence Research and Development Canada – Toronto; March 2014. Introduction or background: The daily cycle of fatigue and alertness that promotes nighttime rest and mental/physical activity during the day is governed by each individual’s circadian rhythm. Shift work and eastward/westward travel causes the individual to work and rest at times that are misaligned with his/her circadian rhythm leading to fatigue during desired work hours and insomnia during desired rest hours. Effective countermeasures are available, but depend on accurate quantification of a hormone, melatonin, which is strongly linked to the circadian rhythm. Melatonin quantification in an easy-to-obtain biological fluid (e.g. saliva) is currently performed by a long, complicated laboratory procedure known as an immunoassay. Several military and civilian occupations would benefit from having the capability to measure salivary melatonin concentration quickly in the field with a disposable detection device since such a device would permit accurate, user-initiated entrainment of his/her circadian rhythm. Results: Direct electrochemical quantification of melatonin was performed in water and saliva on a disposable ceramic screen-printed electrode (SPE) with a chemically modified surface. Chemical modification of the gold working-electrode surface was performed by a self-assembled monolayer (SAM) assembly of lipoate N-hydroxysuccinimide ester, followed by anti-melatonin immunoglobulin (Ig) G conjugation to lipoate, followed by aqueous ethanolamine treatment. Any residual bare gold was filled with pooled human saliva that was collected mid-day. X-ray photoelectron spectroscopy of the gold surface following attachment of the self-assembled monolayer showed elevated carbon and nitrogen peaks indicative of SAM attachment. Melatonin quantification on the chemically modified gold electrode was performed by square-wave voltammetry (SWV). The SWV peak current of melatonin oxidation in both mediums (water and 2 saliva) was found to be highly correlated (R > 0.95) to the concentration of melatonin in the samples with a detection limit of 15.6 pg/ml. Significance: Herein we show clear proof-of-concept that melatonin can be detected directly on an electrode surface that has been chemically modified with a highly specific anti-melatonin antibody. Such electrode can be utilized by the Canadian Forces to identify melatonin production onset and circadian rhythm timing by personnel in the field, which permits optimization of psychological alertness during critical missions or tasks. Future plans: Further device development is required to produce a biosensor that is inexpensive, reliable, and user friendly. Concurrently, we will be developing a second-generation electrode that has a lower detection limit. DRDC Toronto TR 2013-108 iii Sommaire ..... Description and Drawings of a Direct Quantification Portable Salivary Melatonin Biosensor for Determining Circadian Rhythms Ryan J. Love; Michel A. Paul; Heinz-Bernhard Kraatz Heinz-Bernhard Kraatz; DRDC Toronto TR 2013-108; Recherche et développement pour la défense Canada – Toronto; mars 2014. Introduction ou contexte : Le cycle quotidien de fatigue et de vigilance qui favorise le repos nocturne et les activités mentales et physiques pendant la journée est régi par le rythme circadien de chaque individu. Le travail par postes et les déplacements vers l’Est et vers l’Ouest ont pour effet que l'individu sera en capacité de travail et de repos à des moments qui ne correspondent pas à son rythme circadien, ce qui amène la fatigue pendant les heures où l’on souhaite travailler et l'insomnie durant les périodes souhaitées pour le repos. Des contre-mesures efficaces sont disponibles, mais elles exigent une quantification précise d'une hormone, la mélatonine, qui est étroitement liée au rythme circadien. La quantification de la teneur en mélatonine d’un fluide biologique facile à obtenir (par exemple la salive) est effectuée au moyen d’une procédure de laboratoire compliquée longtemps connue comme dosage immunologique. Plusieurs occupations militaires et civiles auraient avantage à faire appel à une capacité de mesurer rapidement la concentration de mélatonine salivaire sur le terrain avec un dispositif de détection jetable car un tel dispositif permettrait à l’utilisateur d’entraîner précisément et rapidement son rythme circadien. Résultats : La quantification électrochimique directe de la mélatonine a été réalisée dans de l'eau et de la salive sur une électrode en céramique sérigraphiée jetable (SPE) ayant une surface chimiquement modifiée. La modification chimique de la surface active d’or de l'électrode a été réalisée par une monocouche autoassemblée (SAM) de lipoate ester de nhydroxysulfosuccinimide, suivie d'une conjugaison lipoate et immunoglobuline anti-mélatonine G (Ig), suivie d'un traitement à l'éthanolamine aqueuse. Toutes les surfaces d'or nu résiduel ont été couvertes avec de la salive humaine ordinaire qui a été recueillie au milieu de la journée. La spectroscopie de photoélectrons XPS de la surface de l'or après la fixation de la monocouche autoassemblée présente des pics de carbone et d'azote élevés indicatifs de la fixation de la SAM. La quantification de la mélatonine sur l'électrode d'or modifiée chimiquement a été réalisée par voltampérométrie à onde carrée (SWV). Le courant de pic de l’oxydation de la mélatonine dans les deux milieux (eau et la salive), mesuré en SWV, s'est révélé être étroitement corrélé (R2 > 0,95) avec la concentration de la mélatonine dans les échantillons, avec une limite de détection de 15,6 pg/ml. Portée : Nous avons donc éprouvé avec succès le principe selon lequel la mélatonine peut être détectée directement sur une surface d'électrode qui a été modifiée chimiquement avec un anticorps anti-mélatonine très spécifique. Cette électrode peut être utilisée par les Forces canadiennes pour identifier le début de la production de mélatonine et l’horaire du rythme circadien par le personnel sur le terrain, ce qui permet d'optimiser la vigilance psychologique lors des missions ou des tâches critiques. iv DRDC Toronto TR 2013-108 Recherches futures : La poursuite de l'élaboration de l'appareil est nécessaire pour produire un biocapteur peu coûteux, fiable et facile à utiliser. Parallèlement, nous allons développer une électrode de deuxième génération qui a une plus basse limite inférieure de détection. DRDC Toronto TR 2013-108 v This page intentionally left blank. vi DRDC Toronto TR 2013-108 Table of contents Abstract …….. ................................................................................................................................. i Résumé …..... ................................................................................................................................... i Executive summary ........................................................................................................................ iii Sommaire ....................................................................................................................................... iv Table of contents ........................................................................................................................... vii List of figures ............................................................................................................................... viii 1 Background ............................................................................................................................... 1 2 Limitations of the Current Techniques for Analyzing Salivary Melatonin .............................. 2 3 Concept of a New Rapid Melatonin Sensor.............................................................................. 3 3.1 Background ................................................................................................................... 3 4 Materials and Methods.............................................................................................................. 4 4.1 Materials and Reagents.................................................................................................. 4 4.2 Preparation of the Antibody-Modified Electrode .......................................................... 4 4.3 Electrochemical Measurements ..................................................................................... 4 5 Results and Discussion ............................................................................................................. 6 5.1 X-Ray Photoelectron Spectroscopy (XPS) Characterization of Electrode Surface ....... 6 5.2 Electrochemical Characterization of Electrode Surface ................................................ 6 5.3 Aqueous Melatonin Detection and Measurement ......................................................... 7 5.4 Salivary Melatonin Detection and Measurement .......................................................... 8 6 Summary and Discussion........................................................................................................ 10 References ..... ............................................................................................................................... 11 List of symbols/abbreviations/acronyms/initialisms ..................................................................... 13 DRDC Toronto TR 2013-108 vii List of figures Figure 1 Cyclic voltammogram (4 cycles) of a 62.5ȝg/ml Melatonin solution illustrates the terminal nature of melatonin oxidation. The inset depicts the chemical reaction that occurs following melatonin oxidation and the three stable metabolites that form. .............................................................................................................................. 3 Figure 2 An illustration of the self-assembled monolayer (SAM) that is formed on the gold electrode surface to permit selective detection of melatonin. ....................................... 4 Figure 3 X-ray photoelectron spectroscopy characterization of the gold working electrode after crticial SAM assembly steps. (A) XPS scan of the lipoic acid SAM attached to the gold working electrode. (B) XPS scan of the antibody SAM attached to lipoic acid on the gold working electrode. .................................................................... 6 Figure 4 Investigation of the electrochemical characteristics of the bare and surface-modified electrodes by cyclc voltammetry (CV). (A) Formation of the SAM of lipoic acid reduced the Faradaic redox currents that can be seen from the oxidation/reduction of Fe[CN]63-/4- on bare gold. (B) The anti-melatonin antibody was anchored on the surface by reacting selectively with the N-Hydroxysuccinimide on lipoic acid, which caused a further decrease in the redox current. To block the non-specific adsorption of proteins and other species to the surface of the electrode, the surface was treated with pooled human saliva (melatonin-free), which reduced redox currents even further by blocking direct access of the conducting ions to the electrode surface............................................................................................................ 7 Figure 5 A Potential vs. Current Density graph after square-wave voltammetry (SWV) experiments using aqueous melatonin solutions of known concentration. The plot of melatonin concentration vs. peak current clearly shows a linear relationship between melatonin and current produced by the SWV experiments ............................ 8 Figure 6 A Potential vs. Current graph from SWV experiments performed in redox probed after the electrodes were incubated for 1 hr in saliva with a known concentration of melatonin. The plot of melatonin concentration vs. peak current clearly shows a linear relationship with a correlation coefficient of 0.9936. ......................................... 9 viii DRDC Toronto TR 2013-108 1 Background Jet lag and shift lag are major concerns in many critical military and civilian occupations, especially in transport vehicle operation and medical professions, due to the concomitant fatigue and associated cognitive performance decrements. Countermeasures for reducing jet lag and shift lag exist but their application depends on knowledge of the individual’s baseline circadian rhythm, which currently requires extensive laboratory work [1-4]. Therefore, the goal of this project was to develop a sensor that can be used to identify endogenous melatonin, the major biomarker of circadian rhythms. This manuscript describes the initial studies on the direct detection of melatonin on the surface of a gold electrode following modification with an anti-melatonin antibody to form a self-assembled monolayer (SAM). For these studies, aqueous melatonin solutions of decreasing concentration were utilized. Experimental work with saliva spiked with known concentrations of melatonin was also performed to show that saliva components have no effect on the electrochemical quantification of melatonin A biosensor for salivary melatonin has been desired by the chronobiology research community for over the past two decades; however the necessary specifications of such a sensor are such that many challenges had to be overcome. First, the sensor must be able to detect dim light melatonin onset (DLMO), which means that the minimum detection sensitivity of the sensor should be approximately 1.0 pg/ml. Second, with regards to the specificity, the sensor must be able to detect melatonin without interference from tryptophan, or tryptophan-derived endocrines such as serotonin. Therefore, melatonin binding at the surface must be achieved with a melatonin receptor or antibody with a binding pocket that is specific for melatonin. For this research we chose to work with an anti-melatonin antibody that has been shown by the manufacturer to bind only melatonin and not related tryptophanlike molecules. The chemistry developed for this sensor can be easily applied towards the development of sensors for other small-molecule endocrines. For example, cortisol, androgens and estrogens can be detected in saliva and other biological fluids using electrodes with similar chemistry. As a result, we expect to use the technology platform described here for the invention of endocrine sensors capable of quantifying physical/psychological stress, androgenic potential and overtraining, and detection of a range of endocrine-related pathologies (e.g. adrenal insufficiency). DRDC Toronto TR 2013-108 1 2 Limitations of the Current Techniques for Analyzing Salivary Melatonin Quantification of hormone concentration in a biological fluid, including salivary melatonin, is currently performed by a plate-based immunoassay that has been developed specifically for the hormone of interest. An immunoassay requires well-trained personnel to perform the test, and generally requires 24 hours (± 1h) to complete. A hormone conjugate probe may be labeled with either a radiological isotope, for increased sensitivity, or biotin, which is subsequently reacted with a streptavidin-peroxidase for a colorimic change of 3,3ƍ,5,5ƍ-tetramethylbenzidine. When a radiological isotope is used, the immunoassay is referred to as a RadioImmunoAssay (RIA), and the quantification of the analyte is performed indirectly by a gamma counter. Immunoassays that quantify the analyte by a colorimic change in the test well are known as Enzyme-Linked ImmunoSorbent Assays (ELISA), and require a spectrophotometer to quantify the analyte concentration. The primary limitations of the current technology for salivary melatonin quantification are 1) the time required to perform the assay, § 24 hrs; and 2) the bulky and expensive equipment that is required. Furthermore, radiologically active probes are required for increased sensitivity of the immunoassay, which poses a health risk to the technician that is performing the procedure. The financial expense of the current technology is also a limitation as a kit for the analysis of 40 samples costs approximately $600. Ultimately, the current technology does not permit self-assessment of endogenous melatonin concentration, which is required for circadian rhythm and fatigue analysis in the field. The technology presented below permits self-assessment of endogenous melatonin concentration rapidly, and in any environment. The financial expense associated with individual sample analysis of this portable biosensor is also expected to be much lower than the current technology. 2 DRDC Toronto TR 2013-108 3 Conce ept of a New N Rapid Mela atonin S Sensor 3.1 Backg ground Well known as a powerful an ntioxidant, melatonin is kknown to be oxidized at approximatelly 700m mV, which peermits electro ochemical deetection of thhe molecule at an electrrode interface. Howeever, unlike other o antioxid dants, melaton nin does not undergo redoox cycling; uupon oxidationn, melatonin becomees highly reacctive and freequently bindds to a seconnd melatonin molecule (seee figuree 1). The disaadvantage of this t is that a melatonin m sollution is imm mediately com mpromised afteer one ro ound of oxid dation and eleectrochemicall detection m must be achievved on the fi first round off a potential sweep of o the electro ode surface. However, H if sufficient m melatonin is ppresent on thhe electrode surface, the electric current c that reesults from m melatonin oxiidation correllates extremelly well with w the conceentration of th he original so olution as we show in our rresults. Fiigure 1 Cyclicc voltammogrram (4 cycles)) of a 62.5ȝg//ml Melatoninn solution illuustrates the terrminal naturee of melatonin n oxidation. The T inset depiicts the chemiical reaction that occurs follow wing melatonin n oxidation and the three sstable metaboolites that form m. DRDC C Toronto TR 2013-108 2 3 4 Materiials and Method ds 4.1 Materiials and Reagents R s The electrodes, e pu urchased from m Dropsens (Oviedo, ( Spaain), are screeen-printed onn ceramic annd contaiined a gold working w electrrode with a 4.0 4 mm diameeter, a platinuum counter ellectrode, and a silver reference electrode. e Po olyclonal antti-melatonin antibody waas purchasedd from Piercce Biotecchnology In nc. (Rockforrd, IL). Meelatonin stanndard was ppurchased fr from Biotrennd Chem mikalien Gmb bH (Destin, FL). F Lipoic acid, N-Hyddroxysuccinim mide (NHS), Poly(ethylenne glycol) methyl eth her thiol (Mn n=2000), Eth hanolamine, aand Tris(hydrroxymethyl) aminomethanne (TRIS S) was purchaased from Sig gma-Aldrich (Canada). ( Alll other reagennts were of annalytical gradde. Deion nized water fiiltered with a Millipore Milli-Q M system m was used foor aqueous soolutions and aall electrode washing steps. 4.2 Preparation of the Antib body-Mod dified Ele ectrode Beforre modificatio on, all electro odes were wasshed thoroughhly with deioonized water and dried witth N2. Th he electrode was w then bath hed in 2mM dihydrolipoic d acid NHS esster dissolvedd in basic wateer for 72 2 hours at 4°°C. Subsequeently, the surfface was rinssed and then incubated w with 1mM anttimelatonin pAb in phosphate-bu uffered salinee (PBS) for 244 h at 4°C. A Any active essters remaininng were then quencheed with a 1% % ethanolamiine solution ((pH 8) for 1 h and emptyy spots on thhe electrode surface were w filled by y incubating th he modified eelectrode withh pooled hum man saliva for 1 h at room r temperaature. Figure 2 illustrates the t sensor suurface modificcation that iss performed oon the go old electrode surface to maake it specificc and selectivee for melatonnin. Figure F 2 An illlustration of the t self-assem mbled monolayyer (SAM) thaat is formed oon the gold electrode surrface to perm mit selective deetection of meelatonin. 4.3 Electrochemica al Measu urements All ellectrochemicaal studies weere performan ned at room temperaturee in a groundded, enclodseed Farad day cage with a potentiostaat/galvanostat (CompactStaat, Ivium Techhnologies US SA, Fernandinna Beach h, FL) conneccted to a personal computeer. The screenn-printed elecctrode was coonnected to thhe potentiotstat with a three-electtrode contact edge connecctor (Dropsenns, Oviedo, Spain). Cyclic voltam mmetry (CV) and square wave w voltamm metry (SWV)) were commeenced from reest potential iin 4 DRDC Toronnto TR 2013-1008 a 10mM Tris buffer (pH 7). The CV experiments were performed with a scan rate of 100mVs-1 in the potential range from -100 to 350 mV with a step potential of 5 mV, amplitude of 25 mV, and a frequency of 10 Hz. Electrochemical impedance spectroscopy (EIS) was performed in a 10mM Tris buffer (pH 7) containing 5mM sodium perchlorate and 1.0 mM ferro-/ferricyanide [Fe(CN)6]3-/4- as a redox probe. The EIS measurements were conducted in the frequency range of 100 hHz to 0.1 Hz, at a formal potential of 100 mV and AC amplitude of 5 mV. The aforementioned electrochemical measurements were all repeated at least three times with separate electrodes to ensure reproducibility. DRDC Toronto TR 2013-108 5 5 5.1 Resultts and Discussi D on X-Ray y Photoele ectron Sp pectrosco opy (XPS S) Charac cterization n of Elec ctrode Su urface The XPS X scans off the gold wo orking electro ode after lipoic acid (Figuure 3A) and pprotein (Figurre 3B) attachment. In ncreased inten nsity of adven ntitious carbonn (C1s) electr trons after attaachment of thhe anti-m melatonin antiibody indicatees that the SA AM contains a highly dense layer of prootein. Figu ure 3 X-ray ph hotoelectron spectroscopy s characterizaation of the goold working electrode afterr crticcial SAM asseembly steps. (A) ( XPS scan of the lipoic aacid SAM atttached to the ggold workingg electrode. e (B) XPS scan off the antibody SAM attacheed to lipoic accid on the golld working electrode. e 5.2 Electrochemica al Charac cterizatio on of Elec ctrode Su urface To eleectrochemicaally characteriize the gold electrode e surfface modificattion, we perfo formed CV annd 3-/4-EIS in i the presen nce of the reedox probe, (Fe[CN] ( . The CV sccans of the bare electrodde 6) displaayed large red dox currents corresponding c g to oxidationn and reductioon of potentiaal Fe[CN]6)3-/44-. The laarge redox cu urrents shown n in the voltam mmogram off the bare elecctrode surfacee indicates thhat the ex xpected redox x reactions occcurred easily y and quasi-rreversibly on the bare gold (Figure 4A A). After each electrod de modification step, the CV C scan dispplayed charginng current buut did not show Farad daic signal (F Figure 4A,B). Furthermoree, the charginng current was reduced aafter each stepp. The Nyquist N plots of the EIS corroborate th he CV data (F Figure 4). Imppedance is prresented as thhe sum of o the real an nd imaginary y Z componeents, Zre- andd Zim-, which mainly origiinate from thhe resistaance and cap pacitance of th he cell respecctively. An eequivalent cirrcuit was seleected to reflect the electrochemicaal process in order o to fit acccurate values. 6 DRDC Toronnto TR 2013-1008 Fig gure 4 Investig gation of the electrochemic e cal characterristics of the bbare and surfa face-modified eleectrodes by cyyclc voltamm metry (CV). (A)) Formation oof the SAM off lipoic acid rreduced the Farradaic redox currents c that can be seen from f the oxidaation/reductioon of Fe[CN]]63-/4- on bare gold d. (B) The antti-melatonin antibody a was anchored on the surface bby reacting seelectively withh the N-Hydroxysuc N ccinimide on lipoic acid, which w caused a further deccrease in the rredox currentt. To bllock the non-sspecific adsorrption of proteins and otheer species to tthe surface off the electrodee, the su urface was treeated with pooled human saliva s (melatoonin-free), whhich reduced rredox currents even further by blocking direct d access of the conduccting ions to tthe electrode surface. 5.3 Aqueo ous Melattonin Dettection an nd Measu urement A sto ock solution of melatonin n standard (6 62.5 g/ml) was prepareed in Tris buuffer (pH 7.00) contaiining 100mM M NaCl. The T stock so olution was then seriallly diluted for melatoniin measu urements. Fo or melatonin detection an nd measurem ment experim ments, an 80uul drop of thhe melatonin solution n was depositeed on the elecctrode for meeasurement suuch that the m meniscus of thhe drop covered thee entire surrface of each electrodee (working, reference, and counterr). Electrrochemical measurements m s were perfo ormed immeddiately. Squaare-wave volttammetry waas perforrmed on sep parate electro odes for each h experimentt (Figure 5).. The resultiing curve waas baseliine corrected d using Ivium mSoft (Ivium Technologiees, Eindhoveen, Netherlannds). The peaak curren nt between th he potential raange of 0.6 V to 0.7 V wass then obtaineed from the ttable of currennt vs. po otential. The correlation coefficient c (R R2) of melatoonin concentrration vs. peaak current waas 0.9676. DRDC C Toronto TR 2013-108 2 7 Figure 5 A Potential P vs. Current C Densiity graph afteer square-wavve voltammetrry (SWV) expeeriments usin ng aqueous meelatonin soluttions of know wn concentratiion. The plot of melatonin conceentration vs. peak p current clearly c showss a linear relaationship betw ween melatonnin and currennt produced by the SWV expperiments 5.4 Saliva ary Melato onin Dete ection and Measurement A stock solution of solution of melatonin staandard (1 ng//ml) was preppared in Millii-Q water. Thhe stock solution wass then serially y diluted for with w pooled hhuman saliva to obtain meelatonin-spikeed salivaa. For melato onin detectio on and meassurement expperiments, an 80ul dropp of a know wn conceentration of melatonin-spi m iked saliva solution s wass deposited oon the gold electrode annd incubated for 1 hour in the dark k at room tem mperature. Aft fter incubationn, the electrodde surface waas rinsed d in Milli-Q water and dried. d Squaree-wave voltam mmetry meassurements w were performeed immeediately with Tris buffer containing the t redox proobe. The ressulting curvee was baselinne correccted using Iv viumSoft (Iv vium Technollogies, Eindhhoven, Netheerlands). Thee peak currennt betweeen the poten ntial range off 0.5 V to 0.6 6 V was thenn obtained froom the table of current vvs. 2 potential. The correlation coeffiicient (R ) of melatonin cooncentration vvs. peak curreent was 0.99366. 8 DRDC Toronnto TR 2013-1008 Figu ure 6 A Potential vs. Curreent graph from m SWV experiiments perforrmed in redoxx probed afterr the electrodes weere incubated d for 1 hr in sa aliva with a kknown concenntration of meelatonin. The pllot of melaton nin concentration vs. peak current clearrly shows a linnear relationsship with a correlation coefficient c off 0.9936. DRDC C Toronto TR 2013-108 2 9 6 Summary and Discussion Herein we show that salivary melatonin can be quantified directly on an electrode by first entrapping the analyte on the electrode by chemically modifying the electrode surface with a SAM containing a unit that specifically binds melatonin, and then varying the potential of the electrode with requisite current input. A series of such experiments were performed to detect melatonin on a screen-printed electrode surface. Overall, the results show that the developed biosensors are capable of melatonin quantification with a limit of detection of 15pg/ml. Conceptually several other analytes, such as hormones, pathogens or chemicals, could be directly detected in a similar fashion if the oxidation or reduction potential of the analyte does not overlap with other species on the electrode. The quantity of analyte on the surface of the electrode must also be great enough such that oxidation/reduction of the analyte results in an appreciable change of current input through the potential scan. In summary, the first stage of developing an electrode that permits portable, rapid, and highly sensitive quantification of endogenous salivary melatonin has been completed. Improvements to the electrode as well as testing a range of parameters of the square wave step sequence that are used to vary the electric potential is necessary to achieve greater sensitivity. Other electrochemical assay designs will also be tested to achieve a maximal signal to noise ratio at the lowest detection limit. Finally, engineering and design of an inexpensive handheld unit that will house the electrode set is required for production of a prototype that can be manufactured and utilized by the Canadian Forces. 10 DRDC Toronto TR 2013-108 References ..... [1] Paul, M.A., et al., Phase advance with separate and combined melatonin and light treatment. Psychopharmacology (Berl), 2011. 214(2): p. 515-523. [2] Paul, M.A., et al., Melatonin treatment for eastward and westward travel preparation. Psychopharmacology (Berl), 2010. 208(3): p. 377-387. [3] Paul, M.A., et al., Timing Light Treatment for Eastward and Westward Travel Preparation. Chronobiology International, 2009. 26(5): p. 867-890. [4] Paul, M.A., et al., Phototherapy for Circadian Phase Delay: a comparison of 4 phototherapeutic devices. Aviat. Space Environ. Med, 2007. 78: p. 645-652. DRDC Toronto TR 2013-108 11 This page intentionally left blank. 12 DRDC Toronto TR 2013-108 List of symbols/abbreviations/acronyms/initialisms DLMO Dim Light Melatonin Onset DND Department of National Defence CV Cyclic Voltammetry DND Department of National Defence DRDC Defence Research and Development Canada DSTKIM Director Science and Technology Knowledge and Information Management R&D Research & Development SAM Self-assembled monolayer SWV Square-wave voltammetry DRDC Toronto TR 2013-108 13 This page intentionally left blank. 14 DRDC Toronto TR 2013-108 DOCUMENT CONTROL DATA (Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated) 1. ORIGINATOR (The name and address of the organization preparing the document. Organizations for whom the document was prepared, e.g. Centre sponsoring a contractor's report, or tasking agency, are entered in section 8.) Defence Research and Development Canada – Toronto 1133 Sheppard Avenue West P.O. Box 2000 Toronto, Ontario M3M 3B9 2a. SECURITY MARKING (Overall security marking of the document including special supplemental markings if applicable.) UNCLASSIFIED 2b. CONTROLLED GOODS (NON-CONTROLLED GOODS) DMC A REVIEW: GCEC APRIL 2011 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U) in parentheses after the title.) Description and Drawings of a Direct Quantification Portable Salivary Melatonin Biosensor for Determining Circadian Rhythms 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used) Ryan J. Love; Michel A. Paul 5. DATE OF PUBLICATION (Month and year of publication of document.) 6a. NO. OF PAGES 6b. NO. OF REFS (Total containing information, (Total cited in document.) including Annexes, Appendices, etc.) March 2014 7. 26 5 DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.) Technical Report 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.) Defence Research and Development Canada – Toronto 1133 Sheppard Avenue West P.O. Box 2000 Toronto, Ontario M3M 3B9 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research and development project or grant number under which the document was written. Please specify whether project or grant.) 9b. CONTRACT NO. (If appropriate, the applicable number under which the document was written.) ST1404kd0700 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document number by which the document is identified by the originating activity. This number must be unique to this document.) 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be assigned this document either by the originator or by the sponsor.) DRDC Toronto TR 2013-108 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.) Unlimited 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement audience may be selected.)) Unlimited 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is bilingual.) An individual’s circadian rhythm governs cycles of fatigue and alertness, which permits nighttime sleep and optimal performance of mental and physical tasks during the day. Circadian misalignment, caused by shift work or eastward/westward travel, therefore impairs our ability to sleep and remain mentally alert. This is particularly problematic in military and civilian occupations in which human error may result in death; such is the case for transport vehicle operators and medical professionals. As a result, knowing and understanding an individual’s baseline circadian rhythm may be critical in fatigue-related accident prevention strategies. Currently, accurate identification of a person’s circadian rhythm requires salivary melatonin assessment by a plate-based immunoassay, which takes 24 hours and must be performed in a laboratory. Therefore, the goal of this project is to develop and test a user-friendly device that performs nearly instantaneous salivary melatonin assessment. Direct electrochemical quantification of melatonin was performed in water and saliva on a disposable ceramic screenprinted electrode with a chemically modified surface. The peak current of melatonin oxidation 2 in both mediums (water and saliva) was highly correlated (R > 0.95) to the concentration of melatonin in the samples. In conclusion we have shown proof-of-concept that melatonin can be directly quantified on a gold electrode. --------------------------------------------------------------------------------------------------------------Le rythme circadien d'une personne régit ses cycles de fatigue et de vigilance, ce qui permet le sommeil la nuit et un rendement optimal des tâches mentales et physiques pendant la journée. Le désordre circadien, causé par le travail par postes ou les déplacements vers l’Est ou vers l’Ouest, affecte donc notre capacité à dormir et à rester alerte. Cela est particulièrement problématique dans les occupations militaires et civiles où l'erreur humaine peut entraîner la mort, comme dans le cas des conducteurs de véhicules et des professionnels médicaux. Par conséquent, la connaissance et la compréhension du rythme circadien de base d'un individu peuvent être essentielles dans les stratégies de prévention des accidents liés à la fatigue. Actuellement, l'identification précise du rythme circadien d'une personne nécessite une évaluation de la teneur en mélatonine de la salive qui est effectuée au moyen d’un immunodosage sur plaque, qui prend 24 heures et doit être effectué en laboratoire. Par conséquent, l'objectif de ce projet est de développer et de tester un appareil convivial qui effectuerait une évaluation salivaire presque instantanée de la teneur en mélatonine. La quantification électrochimique directe de la mélatonine a été réalisée dans de l'eau et de la salive sur une électrode en céramique sérigraphiée jetable ayant une surface chimiquement modifiée. Le courant de crête d'oxydation de la mélatonine dans les deux milieux (eau et salive) est étroitement corrélé (R2 > 0,95) avec la concentration de la mélatonine dans les échantillons. En conclusion, nous avons prouvé le principe selon lequel la mélatonine peut être directement quantifiée sur une électrode d'or 14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.) Rapid; Portable; Salivary Melatonin Bioassay Device
© Copyright 2026 Paperzz