Carbon dioxide removal processes by alkanolamines in aqueous

University of Groningen
Carbon dioxide removal processes by alkanolamines in aqueous organic solvents
Hamborg, Espen Steinseth
IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to
cite from it. Please check the document version below.
Document Version
Publisher's PDF, also known as Version of record
Publication date:
2011
Link to publication in University of Groningen/UMCG research database
Citation for published version (APA):
Hamborg, E. S. (2011). Carbon dioxide removal processes by alkanolamines in aqueous organic solvents
s.n.
Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).
Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.
Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.
Download date: 19-06-2017
Bibliography
[1] A. L. Kohl and R. B. Nielsen. Gas Purification. Gulf Publishing Company, Houston, 5th
edition, 1997.
[2] G. T. Rochelle. Amine Scrubbing for CO2 Capture. Science, 325:1652–1654, 2009.
[3] R. R. Bottoms. Process for Separating Acidic Gases. Girdler Corp., 1930. US Patent
1783901.
[4] IPCC Fourth Assessment Report: Climate Change 2007 (AR4). Technical report, The
Intergovernmental Panel on Climate Change (IPCC), 2007.
[5] G. S. Booras and S. C. Smelser. An engineering and economic evaluation of CO2 removal
from fossil-fuel-fired power plants. Energy, 16:1295–1305, 1991.
[6] T. Holt and E. Lindeberg. Thermal power - without greenhouse gases and with improved
oil recovery. Energy Conversion and Management, 33:595–602, 1992.
[7] J. N. Butler and R. N. Roy. Experimental Methods: Potentiometric, pages 155–208. CRC
Press, Boca Raton, Ann Arbor, Boston, London, 2nd edition, 1997. Editor: K. S. Pitzer.
[8] Á. P-S. Kamps and G. Maurer. Dissociation Constant of N-Methyldiethanolamine in
Aqueous Solution at Temperatures from 278 K to 368 K. Journal of Chemical &
Engineering Data, 41:1505–1513, 1996.
[9] H. F. Holmes, R. H. Busey, J. M. Simonson, R. E. Mesmer, D. G. Archer, and R. H. Wood.
The enthalpy of dilution of HCl(aq) to 648 K and 40 MPa, Thermodynamic properties.
The Journal of Chemical Thermodynamics, 19:863–890, 1987.
[10] R. T. Pabalan and K. S. Pitzer.
Apparent Molar Heat Capacity and Other
Thermodynamic Properties of Aqueous KCl Solutions to High Temperatures and
Pressures. Journal of Chemical & Engineering Data, 33:354–362, 1988.
[11] J. R. Fisher and H. L. Barnes. The ion-product constant of water to 350◦ . Journal of
Physical Chemistry, 76:90–99, 1972.
[12] D. H. Everett and W. F. K. Wynne-Jones. The thermodynamics of acid-base equilibriad.
Transactions of the Faraday Society, 35:1380–1400, 1939.
[13] E. S. Hamborg, J. P. M. Niederer, and G. F. Versteeg. Dissociation Constants and
Thermodynamic Properties of Amino Acids Used in CO2 Absorption from (293 to 353)
K. Journal of Chemical & Engineering Data, 52:2491–2502, 2007.
123
124
Bibliography
[14] E. S. Hamborg and G. F. Versteeg. Dissociation Constants and Thermodynamic
Properties of Amines and Alkanolamines from (293 to 353) K. Journal of Chemical
& Engineering Data, 54:1318–1328, 2009.
[15] J. L. Oscarson, G. Wu, P. W. Faux, R. M. Izatt, and J. J. Christensen. Thermodynamics
of protonation of alkanolamines in aqueous solution to 325◦ C. Thermochimica Acta,
154:119–127, 1989.
[16] J-H. Kim, C. Dobrogowska, and L. G. Hepler. Thermodynamics of ionization of aqueous
alkanolamines. Canadian Journal of Chemistry, 65:1726–1728, 1987.
[17] R. J. Littel, M. Bos, and G. J. Knoop. Dissociation Constants of Some Alkanolamines at
293, 303, 318, and 333 K. Journal of Chemical & Engineering Data, 35:276–277, 1990.
[18] K. Schwabe, W. Graichen, and D. Spiethoff.
Physicochemical investigations on
alkanolamines. Zeitschrift fr Physikalische Chemie (Munich), 20:68–82, 1959. in German.
[19] P. M. Blauwhoff and M. Bos.
Dissociation Constants of Diethanolamine and
Diisopropanolamine in an Aqueous 1.00 M Potassium Chloride Solution. Journal of
Chemical & Engineering Data, 26:7–8, 1981.
[20] M. M. Sharma. Kinetics of Reactions of Cabonyl Sulphide and Carbon Dioxide with
Amines and Catalysis by Brönsted Bases of the Hydrolysis of COS. Transactions of the
Faraday Society, 61:681–688, 1965.
[21] R. G. Bates and G. D. Pinching.
Acidic Dissociation Constant and Related
Thermodynamic Quantities for Monoethanolammonium Ion in Water From 0◦ to 50◦ C.
Journal of Research of the National Bureau of Standards, 46:349–352, 1951.
[22] J. M. Antelo, F. Arce, J. Casado, M. Sastre, and A. Varela. Protonation Constants of
Mono-, Di-, and Triethanolamine. Influence of the Ionic Composition of the Medium.
Journal of Chemical & Engineering Data, 29:10–11, 1984.
[23] R. G. Bates and G. F. Allen. Acidic Dissociation Constant and Related Thermodynamic
Quantities for Triethanolammonium Ion in Water From 0◦ to 50◦ C. Journal of Research
of the National Bureau of Standards, 64A:343–346, 1960.
[24] R. G. Bates and G. Schwarzenbach. Triäthanolamin als Puffersubstanz. Helvetica Chimica
Acta, 37:1437–1439, 1954.
[25] M. C. Cox, D. H. Everett, D. A. Landsman, and R. J. Munn. The Thermodynamics of
the Acid Dissociation of Some Alkylammonium Ions in Water. Journal of the Chemical
Society (B), pages 1373–1379, 1968.
[26] A. N. Campbell and S.-Y. Lam. The Dissociation Constants and Conductivities of Mono-,
Di- and Triethylamine in Aqueous Solutions. Canadian Journal of Chemistry, 51:551–555,
1973.
[27] J. E. Ablard, D. S. McKinney, and J. C. Warner. The Conductance, Dissociation Constant
and Heat of Dissociation of Triethylamine in Water. Journal of the American Chemical
Society, 82:2181–2183, 1940.
[28] W. S. Fyfe. Complex-ion Formation. Part III. The Entropies of Reaction of the Silver
and Hydrogen Ions with Some Aliphatic Amines. Journal of the Chemical Society (B),
pages 1347–1350, 1955.
125
[29] S. Bergström and G. Olofsson. Thermodynamic Quantities for the Solution and
Protonation of Four C6 -Amines in Water over a Wide Temperature Range. Journal
of Solution Chemistry, 4:535–555, 1975.
[30] H. B. Hetzer, R. A. Robinson, and R. G. Bates. Dissociation Constants of Piperazinium
Ion and Related Thermodynamic Quantities from 0 to 50◦ . The Journal of Physical
Chemistry, 72:2081–2086, 1968.
[31] J. M. Pagano, D. E. Goldberg, and W. C. Fernelius. A thermodynamic study of
homopiperazine, piperazine and N-(2aminoethyl)-piperazine and their complexes with
copper(II) ion. The Journal of Physical Chemistry, 65:1062–1064, 1961.
[32] O. Enea, K. Houngbossa, and G Berthon. Chaleurs de protonation de la piperazine et de
quelques-uns de ses derives. Electrochimica Acta, 17:1585–1594, 1972. in French.
[33] M. May and W. A. Felsing. The Ionization Constants of β-Alanine in Water and Isopropyl
Alcohol-Water Mixtures. Journal of the American Chemical Society, 73:406–409, 1951.
[34] S. E. Gillespie, J. L. Oscarson, R. M. Izatt, P. Wang, J. A. R. Renuncio, and C. Pando.
Thermodynamic Quantities for the Protonation of Amino Acid Amino Groups from 323.15
to 398.15 K. Journal of Solution Chemistry, 24:1219–1247, 1995.
[35] B. P. Dey, S. Dutta, and S. C. Lahiri. Dissociation Constans of Amino Acids in Isopropanol
+ Water Mixtures. Indian Journal of Chemistry, 21A:886–890, 1982.
[36] K. Majumdar and S. C Lahiri. Studies on the Dissociation Constants of Amino Acids in
Dioxane + Water Mixtures at 298 K. Indian Journal of Chemistry, 74:382–386, 1997.
[37] S. Boyd, J. R. Brannan, H. S. Dunsmore, and G. H. Nancollas. Thermodynamics of Ion
Association, Transition-Metal β-Alanine and Glycine Complexes. Journal of Chemical &
Engineering Data, 12:601–605, 1967.
[38] J. J. Christensen, R. M. Izatt, D. P. Wrathall, and L. D. Hansen. Thermodynamics
of proton ionization in dilute aqueous solution. Part XI. pK, ΔH◦ , and ΔS◦ Values for
proton ionization from protonated amines at 25◦ . Journal of the Chemical Society (A),
pages 1212–1223, 1969.
[39] E. J. King. The Ionization Constants of Taurine and its Activity Coefficient in
Hydrochloric Acid Solutions from Electromotive Force Measurements. Journal of the
American Chemical Society, 75:2204–2209, 1953.
[40] S. P. Datta and A. K. Grzybowski. The second acid dissociations of glycine, sarcosine
and N-dimethylglycine, part 1. Thermodynamic dissociation constants. Transactions of
the Faraday Society, 54:1179–1187, 1958.
[41] S. P. Datta and A. K. Grzybowski. The second acid dissociations of glycine, sarcosine
and N-methylglycine, part 2. Thermodynamic quantities. Transactions of the Faraday
Society, 54:1188–1194, 1958.
[42] E. R. B. Smith and P. K. Smith. Thermodynamic properties of solutions of amino acids
and related substances, VIII. The ionization of glycylglycine, -aminocaproic acid, and
aspartic acid in aqueous solution from one to fifty degrees. Journal of Biological Chemistry,
146:187–195, 1942.
[43] I. Brandariz, S. Fiol, R. Herrero, T. Vilari
no, and M. S. de Vicente. Protonation Constants
of β-Alanine, γ-Aminobutyric Acid, and -Aminocaproic Acid. Journal of Chemical &
Engineering Data, 38:531–533, 1993.
126
Bibliography
[44] S. Pelletier. No 21. Contribution a létude des complexes métalliques des amino-acides III.
Détermination des constants de formation des complexes Ni++ -méthionine et Ni++ -sérine
à différentes temperatures. Journal de chimie physique et de physico-chimie biologique,
57:301–305, 1960. in French.
[45] E. J. King. The Ionization Constants of Glycine and the Effect of Sodium Chloride upon
its Second Ionization. Journal of the American Chemical Society, 73:155–159, 1951.
[46] B. B. Owen. The Dissociation Constants of Glycine at Various Temperatures. Journal of
the American Chemical Society, 56:24–27, 1934.
[47] R. G. F. Clarke, C. M. Collins, J. C. Roberts, L. N. Trevani, R. J Bartholomew, and
P. R. Tremaine. Ionization constans of aqueous amino acids at temperatures up to 250◦ C
using hydrothermal pH indicators and UV-visible spectroscopy: Glycine, α-alanine, and
proline. Geochimica et Cosmochimica Acta, 69:3029–3043, 2005.
[48] R. M. Izatt, J. L. Oscarson, S. E. Gillespie, H. Grimsrud, J. A. R. Renuncio, and C. Pando.
Effect of temperature and pressure on the protonation of glycine. Biophysical Journal,
61:1394–1401, 1992.
[49] R. M. Izatt, J. W. Wrathall, and K. P. Anderson. Studies of the copper(II)-alanine and
phenylalanine systems in aqueous solution. Dissociation and formation constants as a
function of temperature. Journal of Physical Chemistry, 65:1914–1915, 1961.
[50] P. K. Smith, A. T. Gorham, and E. R. B. Smith. Thermodynamic properties of solutions
of amino acids and related substances. VII. The ionization of some hydroxyamino acids
and proline in aqueous solution from one to fifty degrees. Journal of Biological Chemistry,
144:737–745, 1942.
[51] H. A. Azab, A. M. El-Nady, S. A. El-Shatoury, and A. Hassan. Potentiometric
determination of the dissociation constants of L-histidine, proline and tryptophane in
various hydroorganic media. Talanta, 41:1255–1259, 1994.
[52] A. Albert. Quantitative Studies of the Avidity of Naturally Occuring Substances for Trace
Metals. 2. Amino-acids having three ionizing groups. Biochemical Journal, 50:690–698,
1952.
[53] H. Wilson and R. K. Cannan. The glutamic acid-pyrrolidonecarboxylic acid system.
Journal of Biological Chemistry, 119:309–331, 1937.
[54] A. C. Batchelder and C. L. Schmidt. The effects of certain salts on the dissociation of
aspartic acid, arginine, and ornithine. Journal of Physical Chemistry, 44:893–909, 1940.
[55] A. Saul and W. Wagner. International equations for the saturation properties of ordinary
water substances. Journal of Physical and Chemical Reference Data, 16:893–901, 1987.
[56] K. S. Pitzer. Ion interaction approach: Theory and data correlation, pages 75–153. CRC
Press, Boca Raton, Ann Arbor, Boston, London, 2nd edition, 1997. Editor: K. S. Pitzer.
[57] E. A. Castro, J. G. Santos, J. Téllez, and M. I. Umaña. Structure-Reactivity
Correlations in the Aminolysis and Pyridinolysis of Bis(phenyl) and Bis(4-nitrophenyl)
Thionocarbonates. The Journal of Organic Chemistry, 62:6568–6574, 1997.
[58] C. W. Davies. Ion Association. Butterworths, London, 1962.
[59] G. F. Versteeg and W. P. M. Van Swaaij. On the kinetics between CO2 and alkanolamines
both in aqueous and non-aqueous solutions - I. Primary and secondary amines. Chemical
Engineering Science, 43:573–585, 1988.
127
[60] G. F. Versteeg and W. P. M. Van Swaaij. On the kinetics between CO2 and alkanolamines
both in aqueous and non-aqueous solutions - II. Tertiary amines. Chemical Engineering
Science, 43:587–591, 1988.
[61] V. E. Bower, R. A. Robinson, and R. G. Bates. Acidic Dissociation Constant and
Related Thermodynamic Quantities for Diethanolammonium Ion in Water From 0◦ to
50◦ C. Journal of Research of the National Bureau of Standards, 66A:71–75, 1962.
[62] R. G. Bates. Solute-solvent interactions and acid-base dissociation in mixed solvent
systems. Journal of Electroanalytical Chemistry, 29:1–19, 1971.
[63] G. Fonrodona, C. Ràfols, E. Bosch, and M. Rosés. Autoprotolysis in aqueous organic
solvent mixtures. Water/alcohol binary systems. Analytica Chimica Acta, 335:291–302,
1996.
[64] S. Rondinini, P. Longhi, P. R. Mussini, and T. Mussini. Autoprotolysis constants in
nonaqueous solvents and aqueous organic solvent mixtures. Pure and Applied Chemistry,
59:1693–1702, 1987.
[65] R. G. Bates, M. Paabo, and R. A. Robinson. Interpretation of pH measurements in
alcohol-water solvents. The Journal of Physical Chemistry, 67:1833–1838, 1963.
[66] E. S. Hamborg, C. van Aken, and G. F. Versteeg. The effect of aqueous organic solvents on
the dissociation constants and thermodynamic properties of alkanolamines. Fluid Phase
Equilibria, 291:32–39, 2010.
[67] E. E. Sager, R. A. Robinson, and R. G. Bates. Medium Effect on the Dissociation of
Weak Acids in Methanol-Water Solvents. Journal of Research of the National Bureau of
Standards - A. Physics and Chemistry, 68A:305–312, 1964.
[68] H. Zerres and J. M. Prausnitz. Thermodynamics of Phase Equilibria in Aqueous-Organic
Systems with Salts. AIChE Journal, 40:676–691, 1994.
[69] M. Born. Volumen und Hydratationswärme der Ionen. Zeitschrift für Physik A Hadrons
and Nuclei, 1:45–48, 1920.
[70] Y. Zhang and Z. Xu. Atomic radii of noble gas elements in condensed phases. American
Mineralogist, 80:670–675, 1995.
[71] L. Chunxi and W. Fürst. Representation of CO2 and H2 S solubility in aqueous MDEA
solutions using an electrolyte equation of state. Chemical Engineering Science, 55:2975–
2988, 2000.
[72] D. J. Bradley and K. S. Pitzer. Thermodynamics of Electrolytes. 12. Dielectric properties
of water and Debye-Hückel parameters to 350 ◦ C and 1 kbar. The Journal of Physical
Chemistry, 83:1599–1603, 1979.
[73] P. S. Albright and L. J. Gosting. Dielectric Constants of the Methanol-Water System
from 5 to 55◦ . Journal of the American Chemical Society, 68:1061–1063, 1946.
[74] G. Åkerlöf. Dielectric constants of some organic solvent-water mixtures at various
temperatures. Journal of the American Chemical Society, 54:4125–4139, 1932.
[75] National Institute of Standards and Technology. NIST Standard Reference Database
Number 69.
128
Bibliography
[76] A. S. Teja and D. J. Rosenthal. The critical pressures and temperatures of ten substances
using a low residence time flow apparatus. In Experimental Results for Phase Equilibria
and Pure Component Properties. DIPPR DATA Series No. 1, 1991.
[77] D. M. VonNiederhausern, G. M. Wilson, and N. F. Giles. Critical Point and Vapor
Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method.
Journal of Chemical & Engineering Data, 51:1986–1989, 2006.
[78] F. Rived, I. Canals, E. Bosch, and M Rosés. Acidity in methanol-water. Analytica Chimica
Acta, 439:315–333, 2001.
[79] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. John Wiley &
Sons, Inc., New York / Chichester / Weinheim / Brisbane / Singapore / Toronto, 2nd
edition, 2002.
[80] J. R. Welty, C. E. Wicks, R. E. Wilson, and G. Rorrer. Fundamentals of Momentum,
Heat, and Mass Transfer. John Wiley & Sons, Inc., New York / Chichester / Weinheim
/ Brisbane / Singapore / Toronto, 4th edition, 2001.
[81] P. V. Danckwerts. Gas Liquid Reactions. McGraw-Hill, New York, 1st edition, 1970.
[82] A. H. G. Cents, F. T. de Bruijn, D. W. F. Brilman, and G. F. Versteeg. Validation of
the Danckwerts-plot technique by simultaneous chemical absorption of CO2 and physical
desorption of O2 . Chemical Engineering Science, 60:5809–5818, 2005.
[83] R. Cadours, C. Bouallou, A. Gaunand, and D. Richon. Kinetics of CO2 Desorption from
Highly Concentrated and CO2 -Loaded Methyldiethanolamine Aqueous Solutions in the
Range 312-383 K. Industrial & Engineering Chemistry Research, 36:5384–5391, 1997.
[84] C. N. S. McLachland and P. V. Danckwerts. Desorption of carbon dioxide from aqueous
potash solutions with and without the addition of arsenite as a catalyst. Transactions of
the Institution of Chemical Engineers, 50:300–309, 1972.
[85] H. Bosch, G. F. Versteeg, and W. P. M. Van Swaaij. Desorption of acid gases (CO2 and
H2 S) from loaded alkanolamine solutions. Process Technology Proceedings. Vol. 8. Gas
Separation Technology, pages 505–512, 1989.
[86] A. Jamal, A. Meisen, and C. J. Lim. Kinetics of carbon dioxide absorption and desorption
in aqueous alkanolamine solutions using a novel hemispherical contactor - I. Experimental
apparatus and mathematical modeling. Chemical Engineering Science, 61:6571–6589,
2006.
[87] F. A. Tobiesen, O. Juliussen, and H. F. Svendsen. Experimental validation of a
rigorous desorber model for CO2 post-combustion capture. Chemical Engineering Science,
63:2641–2656, 2008.
[88] E. R. Gilliland and T. K. Sherwood. Diffusion of Vapors into Air Streams. Industrial and
Engineering Chemistry, 26:516–523, 1934.
[89] G. F. Versteeg, P. M. M. Blauwhoff, and W. P. M. van Swaaij. The effect of diffusivity
on gas-liquid mass transfer in stirred vessels. Experiments at atmospheric and elevated
pressures. Chemical Engineering Science, 42:1103–1119, 1987.
[90] G. F. Versteeg and W. P. M. van Swaaij. Solubility and Diffusivity of Acid Gases (CO2 ,
N2 O) in Aqueous Alkanolamine Solutions. Journal of Chemical & Engineering Data,
33:29–34, 1988.
129
[91] B. R. W Pinsent, L. Pearson, and F. J. W. Roughton. The kinetics of combination of
carbon dioxide with hydroxide. Transactions of the Faraday Society, 52:1512–1520, 1956.
[92] E. D. Snijder, M. J. M te Riele, G. F. Versteeg, and W. P. M. van Swaaij. Diffusion
coefficients of several aqueous alkanolamine solutions. Journal of Chemical & Engineering
Data, 38:475–480, 1993.
[93] D. R. Lide. Handbook of chemistry and physics. CRC Press, 75th edition, 1994.
[94] P. Han and D. M. Bartels. Temperature Dependence of Oxygen Diffusion in H2 O and
D2 O. Journal of Physical Chemistry, 100:5597–5602, 1996.
[95] H. A. Al-Ghawas, D. P. Hagewiesche, G. Ruiz-Ibanez, and O. C. Sandall. Physicochemical
Properties Important for Carbon Dioxide Absorption in Aqueous Methyldiethanolamine.
Journal of Chemical & Engineering Data, 34:385–391, 1989.
[96] J.-J. Ko, T.-C. Tsai, C.-Y. Lin, H.-M. Wang, and M.-H. Li. Diffusivity of Nitrous Oxide in
Aqueous Alkanolamine Solutions. Journal of Chemical & Engineering Data, 46:160–165,
2001.
[97] J. A. Hogendoorn, R. D. Vas Bhat, J. A. M. Kuipers, W. P. M. Van Swaaij, and G. F.
Versteeg. Approximation for the enhancement factor applicable to reversible reactions of
finite rate in chemically loaded solutions. Chemical Engineering Science, 52:4547–4559,
1997.
[98] R. M. Secor and J. A. Beutler. Penetration Theory for Diffusion Accompanied by a
Reversible Chemical Reaction with Generalized Kinetics. AIChE Journal, 13:365–373,
1967.
[99] W. J. DeCoursey. Absorption with chemical reaction: Development of a new relation for
the Danckwerts model. Chemical Engineering Science, 29:1867–1872, 1974.
◦
[100] H. S. Harned and S. R. Scholes Jr. The Ionization Constant of HCO−
3 from 0 to 50 .
Journal of the American Chemical Society, 63:1706–1709, 1941.
[101] G. F. Versteeg, L. A. J. Van Dijck, and W. P. M. Van Swaaij. On the kinetics between CO2
and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chemical
Engineering Communications, 144:113–158, 1996.
[102] B. Lemoine, Y.-G. Li, R. Cadours, C. Bouallou, and D. Richon. Partial vapor pressure
of CO2 and H2 S over aqueous methyldiethanolamine solutions. Fluid Phase Equilibria,
172:261–277, 2000.
[103] W. J. Rogers, J. A. Bullin, and R. R. Davison. FTIR Measurements of Acid-GasMethyldiethanolamine Systems. AIChE Journal, 44:2423–2430, 1998.
[104] F.-Y. Jou, A. E. Mather, and F. D. Otto. Solubility of H2 S and CO2 in Aqueous
Methyldiethanolamine Solutions. Industrial & Engineering Chemistry - Process Design
and Development, 21:539–544, 1982.
[105] D. M. Austgen, G. T. Rochelle, and C.-C. Chen. Model of Vapor-Liquid Equilibria for
Aqueous Acid Gas-Alkanolamine Systems. 2. Representation of H2 S and CO2 Solubility
in Aqueous MDEA and CO2 Solubility in Aqueous Mixtures of MDEA with MEA or
DEA. Industrial & Engineering Chemistry Research, 30:543–555, 1991.
130
Bibliography
[106] G. Kuranov, B. Rumpf, N. A. Smirnova, and G. Maurer. Solubility of Single Gas Carbon
Dioxide and Hydrogen Sulfide in Aqueous Solutions of N-Methyldiethanolamine in the
Temperature Range 313 - 413 K at Pressures up to 5 MPa. Industrial & Engineering
Chemistry Research, 35:1959–1966, 1996.
[107] V. Ermatchkov, Á. Pérez-Salado Kamps, and G. Maurer. Solubility of Carbon Dioxide in
Aqueous Solutions of N-Methyldiethanolamine in the Low Gas Loading Region. Industrial
& Engineering Chemistry Research, 45:6081–6091, 2006.
[108] Á. Pérez-Salado Kamps, A. Balaban, M. Jödecke, G. Kuranov, N. A. Smirnova, and
G. Maurer. Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous
Solutions of N-Methyldiethanolamine at Temperatures from 313 to 393 K and Pressures
up to 7.6 MPa: New Experimental Data and Model Extension. Industrial & Engineering
Chemistry Research, 40:696–706, 2001.
[109] A. Jamal. Absorption and desorption of CO2 and CO in alkanolamine systems. PhD
thesis, University of British Columbia, 2002.
[110] N. Haimour and O. C. Sandall.
Absorption of carbon dioxide into aqueous
methyldiethanolamine. Chemical Engineering Science, 39:1791–1796, 1984.
[111] H. A. Al-Ghawas, G. Ruiz-Ibanez, and O. C. Sandall. Absorption of carbonyl sulfide in
aqueous methyldiethanolamine. Chemical Engineering Science, 44:631–639, 1989.
[112] G. F. Versteeg, J. A. M. Kuipers, F. P. H. van Beckum, and W. P. M. van Swaaij. Mass
transfer with complex reversible chemical reactions - I. Single reversible chemical reaction.
Chemical Engineering Science, 44:2295–2310, 1989.
[113] E. B. Rinker, S. S. Ashour, and O. C. Sandall. Kinetics and modelling of carbon dioxide
absorption into aqueous solutions of N-methyldiethanolamine. Chemical Engineering
Science, 50:755–768, 1995.
[114] J.-J. Ko and M.-H. Li. Kinetics of absorption of carbon dioxide into solutions of N methyldiethanolamine + water. Chemical Engineering Science, 55:4139–4147, 2000.
[115] A. Jamal, A. Meisen, and C. J. Lim. Kinetics of carbon dioxide absorption and desorption
in aqueous alkanolamine solutions using a novel hemispherical contactor - II. Experimental
results and parameter estimation. Chemical Engineering Science, 61:6590–6603, 2006.
[116] A. Benamor and M. K. Aroua. An experimental investigation on the rate of CO2
absorption into aqueous methyldiethanolamine solutions. Korean Journal of Chemical
Engineering, 24:16–23, 2007.
[117] Y. Shi and Z. Zhong. A Rigorous Model for Absorption of Carbon Dioxide into Aqueous NMethyldiethanolamine Solution. Chemical Engineering Communications, 192:1180–1193,
2005.
[118] N. Ramachandran, A. Aboudheir, R. Idem, and P. Tontiwachwuthikul. Kinetics of
the Absorption of CO2 into Mixed Aqueous Loaded Solutions of Monoethanolamine
and Methyldiethanolamine. Industrial & Engineering Chemistry Research, 45:2608–2616,
2006.
[119] G.-W. Xu, C.-F. Zhang, S.-J. Qin, and B.-C. Zhu. Desorption of CO2 from MDEA and
Activated MDEA Solutions. Industrial & Engineering Chemistry Research, 34:874–880,
1995.
131
[120] D. A. Glasscock, J. E. Critchfield, and G. T. Rochelle. CO2 absorption/desorption in
mixtures of methyldiethanolamine with monoethanolamine or diethanolamine. Chemical
Engineering Science, 46:2829–2845, 1991.
[121] M. M. Mshewa and G. T. Rochelle. Carbon dioxide absorption/desorption kinetics in
blended amines. Presented at Laurance Reid Gas Conditioning Conference, Norman,
Oklahoma, 1994.
[122] E. S. Hamborg, S. R. A. Kersten, and G. F. Versteeg. Absorption and Desorption Mass
Transfer Rates in Non-Reactive Systems. Chemical Engineering Journal, 161:191–195,
2010.
[123] M. A. Pacheco. Mass Transfer, Kinetics and Rate-based Modeling of Reactive Absorption.
PhD thesis, The University of Texas at Austin, 1998.
[124] R. H. Weiland, J. C. Dingman, D. B. Cronin, and G. J. Browning. Density and Viscosity
of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends. Journal
of Chemical & Engineering Data, 43:378–382, 1998.
[125] A. Tamimi, E. B. Rinker, and O. C. Sandall. Diffusivity of Nitrous Oxide in Aqueous
Solutions of N -Methyldiethanolamine and Diethanolamine from 293 to 368 K. Journal of
Chemical & Engineering Data, 39:396–398, 1994.
[126] A. Tamimi, E. B. Rinker, and O. C. Sandall. Diffusion Coefficients for Hydrogen Sulfide,
Carbon Dioxide, and Nitrous Oxide in Water over the Temperature Range 293-368 K.
Journal of Chemical & Engineering Data, 39:330–332, 1994.
[127] S. Hatta. Absorption velocity of gases by liquids. II. Theoretical considerations of gas
absorption due to chemical reactions. Technical report, Tohoku Imperial University, 1932.
[128] K. R. Westerterp, W. P. M. van Swaaij, and A. A. C. M. Beenackers. Chemical Reactor
Design and Operation. John Wiley & Sons, Chichester, New York, Brisbane, Toronto,
Singapore, 2nd edition, 1987.
[129] R. Higbie. The rate of absorption of a pure gas into a still liquid during short periods of
exposure. Transactions of the American Institute of Chemical Engineers, 35:36–60, 1935.
[130] E. P. van Elk. Gas-liquid reactions. Influence of liquid bulk and mass transfer on process
performance. PhD thesis, University of Twente, 2001.
[131] A. J. Read. The First Ionization Constant of Carbonic Acid from 25 to 250◦ C and to
2000 bar. Journal of Solution Chemistry, 4:53–70, 1975.
[132] R. J. Littel, W. P. M. van Swaaij, and G. F. Versteeg. Kinetics of Carbon Dioxide with
Tertiary Amines in Aqueous Solutions. AIChE Journal, 36:1633–1640, 1990.
[133] D. W. van Krevelen and P. J. Hoftijzer. Kinetics of gas-liquid reactions. Part I. General
Theory. Recueil, 67:563–586, 1948.
[134] K. Onda, E. Sada, T. Kobayashi, and M. Fujine. Gas absorption accompanied by complex
chemical reactions - I Reversible chemical reactions. Chemical Engineering Science,
25:753–760, 1970.
[135] W. J. DeCoursey. Enhancement factors for gas absorption with reversible reaction.
Chemical Engineering Science, 37:1483–1489, 1982.
132
Bibliography
[136] W. J. DeCoursey and R. W. Thring. Effects of unequal diffusivities on enhancement
factors for reversible and irreversible reaction. Chemical Engineering Science, 44:1715–
1721, 1989.
[137] R. Cornelisse, A. A. C. M. Beenackers, F. P. H. van Beckum, and W. P. M. van Swaaij.
Numerical calculation of simultaneous mass transfer of two gases accompanied by complex
reversible reactions. Chemical Engineering Science, 35:1245–1260, 1980.
[138] M. L. Posey. Thermodynamic Model for Acid Gas Loaded Aqueous Alkanolamine
Solutions. PhD thesis, The University of Texas at Austin, 1996.
[139] P. M. M. Blauwhoff, G. F. Versteeg, and W. P. M. Van Swaaij. A study on the reaction
between CO2 and alkanolamines in aqueous solutions. Chemical Engineering Science,
39:207–225, 1984.
[140] J. Haubrock, J. A. Hogendoorn, and G. F. Versteeg. The applicability of activities in
kinetic expressions: A more fundamental approach to represent the kinetics of the system
CO2 -OH− -salt in terms of activities. Chemical Engineering Science, 62:5753–5769, 2007.
[141] S. D. Klein, Z. Pawlak, R. Fernández-Prini, and R. G. Bates. Conductance of HCl in
Water-Sulfolane Solvents at 25, 30, and 40 ◦ C; A Comparison of Conductance Equations.
Journal of Solution Chemistry, 10:333–342, 1981.
[142] Y. Uosaki, K. Kawamura, and T. Moriyoshi. Static Relative Permittivities of Water
+ 1-Methyl-2-pyrrolidinone and Water + 1,3-Dimethyl-2-imidazolidinone Mixtures under
Pressures up to 300 MPa at 298.15 K. Journal of Chemical & Engineering Data, 41:1525–
1528, 1996.
[143] S. Aparicio, R. Alcalde, B. García, and J. M. Leal. Microwave dielectric spectroscopy of
2-pyrrolidone + water mixtures. Chemical Physics Letters, 444:252–257, 2007.
[144] C. Alvarez-Fuster, N. Midoux, A. Laurent, and J. C. Charpentier. Chemical kinetics of
the reaction of CO2 with amines in pseudo m-th order conditions in polar and viscous
organic solutions. Chemical Engineering Science, 36:1513–1518, 1981.
[145] S.-W. Park, J.-W. Lee, B.-S. Choi, and J.-W. Lee. Kinetics of Absorption of Carbon
Dioxide in Monoethanolamine Solutions of Polar Organic Solvents. Journal of Industrial
and Engineering Chemistry, 11:202–209, 2005.
[146] S.-W. Park, J.-W. Lee, B.-S. Choi, and J.-W. Lee. Reaction Kinetics of Carbon Dioxide
with Diethanolamine in Polar Organic Solvents. Separation Science and Technology,
40:1885–1898, 2005.
[147] S.-W. Park, B.-S. Choi, and J.-W. Lee. Chemical absorption of carbon dioxide with
triethanolamine in non-aqueous solutions. Korean Journal of Chemical Engineering,
23:138–143, 2006.
[148] P. Usubharatana and P. Tontiwachwuthikul. Enhancement factor and kinetics of
CO2 capture by MEA-methanol hybrid solvents. In 9th International Conference on
Greenhouse Gas Control Technologies (GHGT-9), 2008.
[149] E. Sada, H. Kumazawa, and Z. Q. Han. Kinetics of Reaction Between Carbon Dioxide and
Ethylenediamine in Non-aqueous Solvents. The Chemical Engineering Journal, 31:109–
115, 1985.
133
[150] E. Sada, H. Kumazawa, Y. Osawa, M. Matsuura, and Z. Q. Han. Reaction Kinetics
of Carbon Dioxide with Amines in Non-aqueous Solvents. The Chemical Engineering
Journal, 33:87–95, 1986.
[151] E. Sada, H. Kumazawa, Y. Ikehara, and Z. Q. Han. Chemical Kinetics of the Reaction
of Carbon Dioxide with Triethanolamine in Non-aqueous Solvents. The Chemical
Engineering Journal, 40:7–12, 1989.
[152] K. Takeshita and A. Kitamoto. Chemical Equilibria of absorption of CO2 into nonaqueous
solution of amine. Journal of Chemical Engineering of Japan, 21:411–417, 1988.
[153] A. Henni and A. E. Mather. Solubility of Carbon Dioxide in Methyldiethanolamine +
Methanol + Water. Journal of Chemical & Engineering Data, 40:493–495, 1995.
[154] A. Archane, L. Gicquel, E. Provost, and W. Fürst. Effect of methanol addition on waterCO2 -diethanolamine system: Influence on CO2 solubility and on liquid phase speciation.
Chemical Engineering Research and Design, 86:592–599, 2008.
[155] P. W. J. Derks and G. F. Versteeg. The effect of methanol and ethanol on the CO2
absorption rate in an aqueous MDEA solvent. In Presented at The 5th Trondheim
Conference on CO2 Capture, Transport and Storage, 2009.
[156] Improvement in power generation with post-combustion capture of CO2 . Report
Number PH4/33. Technical report, International Energy Agency Greenhouse Gas R&D
Programme (IEA GHG), 2004.
[157] K. Kolmetz, A. W. Sloley, T. M. Zygula, P. W. Faessler, W. K. Ng, K. Senthil, and T. Y.
Lim. Designing Distillation Columns for Vacuum Service. In 11th India Oil and Gas
Symposium and International Exhibition, 2004.
[158] D. Bruinsma and S. Spoelstra. Heat pumps in distillation. In Distillation & Absorption
2010, 2010.
[159] M. Nakaiwa, K. Huang, A. Endo, T. Ohmori, T. Akiya, and T. Takamatsu. Internally
heat-integrated distillation columns: A review. Chemical Engineering Research and
Design, 81:162–177, 2003.
[160] Z. Olujic, F. Fakhri, A. de Rijke, J. de Graauw, and P. J. Jansens. Internal heat integration
- the key to an energy-conserving distillation column. Journal of Chemical Technology
and Biotechnology, 78:241–248, 2003.
[161] U. Sander and P. Soukup. Design and operation of a pervaporation plant for ethanol
dehydration. Journal of Membrane Science, 36:463–475, 1988.
[162] F. Lipnizki, R. W. Field, and P.-K. Ten. Pervaporation-based hybrid process: a review of
process design, applications and economics. Journal of Membrane Science, 153:183–210,
1999.
[163] P. Shao and R. Y. M. Huang. Polymeric membrane pervaporation. Journal of Membrane
Science, 287:162–179, 2007.
[164] E. Drioli and M. Romano. Progress and New Perspectives on Integrated Membrane
Operations for Sustainable Industrial Growth. Industrial & Engineering Chemistry
Research, 40:1277–1300, 2001.
[165] A. Jonquières, R. Clément, P. Lochon, J. Nèel, M. Dresch, and B. Chrétien. Industrial
state-of-the-art of pervaporation and vapour permeation in the western countries. Journal
of Membrane Science, 206:87–117, 2002.
134
Bibliography
[166] A. E. Hill and W. M. Malisoff. The mutual solubility of liquids. III. The mutual solubility
of phenol and water. IV. The mutual solubility of normal butyl alcohol and water. Journal
of the American Chemical Society, 48:918–927, 1926.
[167] H. Ochel, H. Becker, K. Maag, and G. M. Schneider. Influence of a third component on
(liquid + liquid) phase equilibria in (butan-2-ol + water) and in (butan-1-ol + water) at
pressures up to 160 MPa. Journal of Chemical Thermodynamics, 25:667–677, 1993.
[168] K. S. Pitzer. Thermodynamics of Electrolytes. 1. Theoretical Basis and General
Equations. The Journal of Physical Chemistry, 77:268–277, 1973.
[169] A. J. Easteal and L. A. Woolf. (p,Vm , T, x) measurements for (1-x)H2 O + xCH3 OH
in the range 278 to 323 K and 0.1 to 280 MPa I. Experimental results, isothermal
compressibilities, thermal expansivities, and partial molar volumes. Journal of Chemical
Thermodynamics, 17:49–62, 1985.
[170] S. Westmeier. Exzeßenthalpie, Freie Exzeßenthalpie, Exzeßvolumen und Viskosität von
ausgewählten binären flüssigen Mischungen. Chemische Technik, 28:350–353, 1976.
[171] P. K. Kipkemboi and A. J. Easteal. Densities and viscosities of binary aqueous mixtures of
nonelectrolytes: tert-Butyl alcohol and tert-butylamine. Canadian Journal of Chemistry,
72:1937–1945, 1994.
[172] Á. P-S. Kamps. Model for the Gibbs Excess Energy of Mixed-Solvent (Chemical-Reacting
and Gas-Containing) Electrolyte Systems. Industrial & Engineering Chemistry Research,
44:201–225, 2005.
[173] P. W. J. Derks, T. Kleingeld, C. van Aken, J. A. Hogendoorn, and G. F. Versteeg. Kinetics
of absorption of carbon dioxide in aqueous piperazine solutions. Chemical Engineering
Science, 61:6837–6854, 2006.
[174] S. Bishnoi and G. T. Rochelle.
Absorption of Carbon Dioxide in Aqueous
Piperazine/Methyldiethanolamine. AIChE Journal, 48:2788–2799, 2002.
[175] G.-W. Xu, C.-F. Zhang, A.-J. Qin, and Y.-W. Wang. Kinetics Study on Absorption
of Carbon Dioxide into Solutions of Activated Methyldiethanolamine. Industrial &
Engineering Chemistry Research, 31:921–927, 1992.
[176] X. Zhang, C.-F. Zhang, S.-J. Qin, and Z.-S. Zheng. A Kinetics Study on the Absorption of
Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine.
Industrial & Engineering Chemistry Research, 40:3785–3791, 2001.
[177] P. W. J. Derks.
Carbon Dioxide Absorption in Piperazine Activated NMethyldiethanolamine. PhD thesis, University of Twente, 2006.
[178] M. J. W. Frank, J. A. M Kuipers, and W. P. M. van Swaaij. Diffusion Coefficients and
Viscosities of CO2 + H2 O, CO2 + CH3 OH, NH3 + H2 O, and NH3 + CH3 OH Liquid
Mixtures. Journal of Chemical & Engineering Data, 41:297–302, 1996.
[179] E. D. Snijder, M. J. M. te Riele, G. F. Versteeg, and W. P. M. van Swaaij. Diffusion
Coefficients of CO, CO2 , N2 O, and N2 in Ethanol and Toluene. Journal of Chemical &
Engineering Data, 40:37–39, 1995.
[180] G. Taylor. Dispersion of soluble matter in solvent flowing slowly through a tube.
Proceedings of the Royal Society of London A, 219:186–203, 1953.
135
[181] G. Taylor. Conditions under which dispersion of a solute in a stream of solvent can
be used to measure molecular diffusion. Proceedings of the Royal Society of London A,
225:473–477, 1954.
[182] R. Aris. On the dispersion of a solute in a fluid flowing through a tube. Proceedings of
the Royal Society of London A, 235:67–77, 1956.
[183] A. J. Easteal and L. A. Woolf. Pressure and Temperature Dependence of Tracer Diffusion
Coefficients of Methanol, Ethanol, Acetonitrile, and Formamide in Water. Journal of
Physical Chemistry, 89:1066–1069, 1985.
[184] M. A. Matthews and A. J. Akgerman. High-Temperature Diffusion of Hydrogen, Carbon
Monoxide, and Carbon Dioxide in Liquid n-Heptane, n-Dodecane, and n-Hexadecane.
Journal of Chemical & Engineering Data, 32:319–322, 1987.
[185] P. W. J. Derks, J. A. Hogendoorn, and G. F. Versteeg. Solubility of N2 O in and Density,
Viscosity, and Surface Tension of Aqueous Piperazine Solutions. Journal of Chemical &
Engineering Data, 50:1947–1950, 2005.
[186] A. Alizadeh, C. A. Nieto de Castro, and W. A. Wakeham. The Theory of the Taylor
Dispersion Technique for Liquid Diffusivity Measurements. International Journal of
Thermophysics, 1:243–283, 1980.
[187] J. F. Davidson and E. J. Cullen. The determination of diffusion coefficients of sparingly
soluble gases in liquids. Transactions of the Institution of Chemical Engineers, 35:51–60,
1957.
[188] J. L. Duda and J. S. Vrentas. Laminar liquid jet diffusion studies. AIChE Journal,
14:286–294, 1968.
[189] E. Sada, H. Kumazawa, and M. A. Butt. Solubilities of and Diffusivity of Gases in Aqueous
Solutions of Amine. Journal of Chemical & Engineering Data, 23:161–163, 1978.
[190] G. E. H Joosten and P. V. Danckwerts. Solubility and Diffusivity of Nitrous Oxide in
Equimolar Potassium Carbonate-Potassium Bicarbonate Solutions at 25◦ C and 1 Atm.
Journal of Chemical & Engineering Data, 17:452–454, 1972.
[191] W. J. Thomas and M. J. Adams. Measurement of diffusion coefficients of carbon dioxide
and nitrous oxide in water and aqueous solutions of glycerol. Transactions of the Faraday
Society, 61:668–673, 1965.
[192] A. Samanta, S. Roy, and S. S. Bandyopadhyay. Physical Solubility and Diffusivity
of N2 O and CO2 in Aqueous Solutions of Piperazine and (N -Methyldiethanolamine +
Piperazine). Journal of Chemical & Engineering Data, 52:1381–1385, 2007.
[193] W-C. Sun, C-B. Yong, and M-H. Li. Kinetics of the absorption of carbon dioxide
into mixed aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine. Chemical
Engineering Science, 60:503–516, 2005.
[194] R. J. Hook. An Investigation of Some Sterically Hindered Amines as Potential Carbon
Dioxide Scrubbing Compounds. Industrial & Engineering Chemistry Research, 36:1779–
1790, 1997.
[195] D. E. Penny and T. J. Ritter. Kinetic study of the reaction between carbon dioxide and
primary amines. Journal of the Chemical Society, Faraday Transactions, 79:2103–2109,
1983.
136
Bibliography
[196] P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, and G. F. Versteeg. Kinetics of the
Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine. AIChE Journal,
49:203–213, 2003.
[197] J. van Holst, G. F. Versteeg, D. W. F. Brilman, and J. A. Hogendoorn. Kinetic study
of CO2 with various amino acid salts in aqueous solution. Chemical Engineering Science,
64:59–68, 2009.
[198] B. E. Poling, J. M. Prausnitz, and J. P. O’Connell. The Properties of Gases and Liquids.
The McGraw-Hill Companies, Inc., 5th edition, 2001.
[199] N. G. D’yachkova, L. A. Zagorodnykh, and O. V. Bobreshova. Conductivity of Systems
Comprising Anion-Exchange Membranes MA-41 and Alkaline Glycine Solutions. Russian
Journal of Electrochemistry, 42:276–279, 2006.
[200] S. Miyamoto and C. L. A. Schmidt. Transference and conductivity studies on solutions
of certain proteins and amino acids with special reference to the formation of complex
ions between the alkaline earth elements and certain proteins. The Journal of Biological
Chemistry, 99:335–358, 1933.
[201] J. W. Mehl and C. L. A. Schmidt. The conductivities of aqueous solutions of glycine,
d,l-valine, and l-aspargine. The Journal of General Physiology, 18:467–479, 1935.
[202] R. A. Robinson and R. H. Stokes. Electrolyte Solutions. Butterworths, London, 2nd
edition, 1959.
[203] G. A. Ratcliff and J. G. Holdcroft. Diffusivities of gases in aqueous electrolyte solutions.
Transactions of the Institution of Chemical Engineers, 41:315–319, 1963.
[204] K. E. Gubbins, K. K. Bhatia, and R. D. Walker. Diffusion of Gases in Electrolytic
Solutions. AIChE Journal, 12:548–552, 1966.
[205] G. W. Hung and R. H. Dinius. Diffusivity of Oxygen in Electrolyte Solutions. Journal of
Chemical & Engineering Data, 17:449–451, 1972.
[206] D. W. F. Brilman, W. P. M. van Swaaij, and G. F. Versteeg. Diffusion Coefficient and
Solubility of Isobutene and trans-2-Butene in Aqueous Sulfuric Acid Solutions. Journal
of Chemical & Engineering Data, 46:1130–1135, 2001.
[207] P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, and G. F. Versteeg. Density, Viscosity,
Solubility, and Diffusivity of N2 O in Aqueous Amino Acid Salt Solutions. Journal of
Chemical & Engineering Data, 46:1357–1361, 2001.
[208] J. van Holst, S. R. A. Kersten, and K. J. A. Hogendoorn. Physiochemical Properties of
Several Aqueous Potassium Amino Acid Salts. Journal of Chemical & Engineering Data,
53:1286–1291, 2008.
[209] A. F. Portugal, P. W. J. Derks, G. F. Versteeg, F. D. Magalhães, and A. Mendes.
Characterization of potassium glycinate for carbon dioxide absorption purposes. Chemical
Engineering Science, 62:6534–6547, 2007.