University of Groningen Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hamborg, E. S. (2011). Carbon dioxide removal processes by alkanolamines in aqueous organic solvents s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 19-06-2017 Bibliography [1] A. L. Kohl and R. B. Nielsen. Gas Purification. Gulf Publishing Company, Houston, 5th edition, 1997. [2] G. T. Rochelle. Amine Scrubbing for CO2 Capture. Science, 325:1652–1654, 2009. [3] R. R. Bottoms. Process for Separating Acidic Gases. Girdler Corp., 1930. US Patent 1783901. [4] IPCC Fourth Assessment Report: Climate Change 2007 (AR4). Technical report, The Intergovernmental Panel on Climate Change (IPCC), 2007. [5] G. S. Booras and S. C. Smelser. An engineering and economic evaluation of CO2 removal from fossil-fuel-fired power plants. Energy, 16:1295–1305, 1991. [6] T. Holt and E. Lindeberg. Thermal power - without greenhouse gases and with improved oil recovery. Energy Conversion and Management, 33:595–602, 1992. [7] J. N. Butler and R. N. Roy. Experimental Methods: Potentiometric, pages 155–208. CRC Press, Boca Raton, Ann Arbor, Boston, London, 2nd edition, 1997. Editor: K. S. Pitzer. [8] Á. P-S. Kamps and G. Maurer. Dissociation Constant of N-Methyldiethanolamine in Aqueous Solution at Temperatures from 278 K to 368 K. Journal of Chemical & Engineering Data, 41:1505–1513, 1996. [9] H. F. Holmes, R. H. Busey, J. M. Simonson, R. E. Mesmer, D. G. Archer, and R. H. Wood. The enthalpy of dilution of HCl(aq) to 648 K and 40 MPa, Thermodynamic properties. The Journal of Chemical Thermodynamics, 19:863–890, 1987. [10] R. T. Pabalan and K. S. Pitzer. Apparent Molar Heat Capacity and Other Thermodynamic Properties of Aqueous KCl Solutions to High Temperatures and Pressures. Journal of Chemical & Engineering Data, 33:354–362, 1988. [11] J. R. Fisher and H. L. Barnes. The ion-product constant of water to 350◦ . Journal of Physical Chemistry, 76:90–99, 1972. [12] D. H. Everett and W. F. K. Wynne-Jones. The thermodynamics of acid-base equilibriad. Transactions of the Faraday Society, 35:1380–1400, 1939. [13] E. S. Hamborg, J. P. M. Niederer, and G. F. Versteeg. Dissociation Constants and Thermodynamic Properties of Amino Acids Used in CO2 Absorption from (293 to 353) K. Journal of Chemical & Engineering Data, 52:2491–2502, 2007. 123 124 Bibliography [14] E. S. Hamborg and G. F. Versteeg. Dissociation Constants and Thermodynamic Properties of Amines and Alkanolamines from (293 to 353) K. Journal of Chemical & Engineering Data, 54:1318–1328, 2009. [15] J. L. Oscarson, G. Wu, P. W. Faux, R. M. Izatt, and J. J. Christensen. Thermodynamics of protonation of alkanolamines in aqueous solution to 325◦ C. Thermochimica Acta, 154:119–127, 1989. [16] J-H. Kim, C. Dobrogowska, and L. G. Hepler. Thermodynamics of ionization of aqueous alkanolamines. Canadian Journal of Chemistry, 65:1726–1728, 1987. [17] R. J. Littel, M. Bos, and G. J. Knoop. Dissociation Constants of Some Alkanolamines at 293, 303, 318, and 333 K. Journal of Chemical & Engineering Data, 35:276–277, 1990. [18] K. Schwabe, W. Graichen, and D. Spiethoff. Physicochemical investigations on alkanolamines. Zeitschrift fr Physikalische Chemie (Munich), 20:68–82, 1959. in German. [19] P. M. Blauwhoff and M. Bos. Dissociation Constants of Diethanolamine and Diisopropanolamine in an Aqueous 1.00 M Potassium Chloride Solution. Journal of Chemical & Engineering Data, 26:7–8, 1981. [20] M. M. Sharma. Kinetics of Reactions of Cabonyl Sulphide and Carbon Dioxide with Amines and Catalysis by Brönsted Bases of the Hydrolysis of COS. Transactions of the Faraday Society, 61:681–688, 1965. [21] R. G. Bates and G. D. Pinching. Acidic Dissociation Constant and Related Thermodynamic Quantities for Monoethanolammonium Ion in Water From 0◦ to 50◦ C. Journal of Research of the National Bureau of Standards, 46:349–352, 1951. [22] J. M. Antelo, F. Arce, J. Casado, M. Sastre, and A. Varela. Protonation Constants of Mono-, Di-, and Triethanolamine. Influence of the Ionic Composition of the Medium. Journal of Chemical & Engineering Data, 29:10–11, 1984. [23] R. G. Bates and G. F. Allen. Acidic Dissociation Constant and Related Thermodynamic Quantities for Triethanolammonium Ion in Water From 0◦ to 50◦ C. Journal of Research of the National Bureau of Standards, 64A:343–346, 1960. [24] R. G. Bates and G. Schwarzenbach. Triäthanolamin als Puffersubstanz. Helvetica Chimica Acta, 37:1437–1439, 1954. [25] M. C. Cox, D. H. Everett, D. A. Landsman, and R. J. Munn. The Thermodynamics of the Acid Dissociation of Some Alkylammonium Ions in Water. Journal of the Chemical Society (B), pages 1373–1379, 1968. [26] A. N. Campbell and S.-Y. Lam. The Dissociation Constants and Conductivities of Mono-, Di- and Triethylamine in Aqueous Solutions. Canadian Journal of Chemistry, 51:551–555, 1973. [27] J. E. Ablard, D. S. McKinney, and J. C. Warner. The Conductance, Dissociation Constant and Heat of Dissociation of Triethylamine in Water. Journal of the American Chemical Society, 82:2181–2183, 1940. [28] W. S. Fyfe. Complex-ion Formation. Part III. The Entropies of Reaction of the Silver and Hydrogen Ions with Some Aliphatic Amines. Journal of the Chemical Society (B), pages 1347–1350, 1955. 125 [29] S. Bergström and G. Olofsson. Thermodynamic Quantities for the Solution and Protonation of Four C6 -Amines in Water over a Wide Temperature Range. Journal of Solution Chemistry, 4:535–555, 1975. [30] H. B. Hetzer, R. A. Robinson, and R. G. Bates. Dissociation Constants of Piperazinium Ion and Related Thermodynamic Quantities from 0 to 50◦ . The Journal of Physical Chemistry, 72:2081–2086, 1968. [31] J. M. Pagano, D. E. Goldberg, and W. C. Fernelius. A thermodynamic study of homopiperazine, piperazine and N-(2aminoethyl)-piperazine and their complexes with copper(II) ion. The Journal of Physical Chemistry, 65:1062–1064, 1961. [32] O. Enea, K. Houngbossa, and G Berthon. Chaleurs de protonation de la piperazine et de quelques-uns de ses derives. Electrochimica Acta, 17:1585–1594, 1972. in French. [33] M. May and W. A. Felsing. The Ionization Constants of β-Alanine in Water and Isopropyl Alcohol-Water Mixtures. Journal of the American Chemical Society, 73:406–409, 1951. [34] S. E. Gillespie, J. L. Oscarson, R. M. Izatt, P. Wang, J. A. R. Renuncio, and C. Pando. Thermodynamic Quantities for the Protonation of Amino Acid Amino Groups from 323.15 to 398.15 K. Journal of Solution Chemistry, 24:1219–1247, 1995. [35] B. P. Dey, S. Dutta, and S. C. Lahiri. Dissociation Constans of Amino Acids in Isopropanol + Water Mixtures. Indian Journal of Chemistry, 21A:886–890, 1982. [36] K. Majumdar and S. C Lahiri. Studies on the Dissociation Constants of Amino Acids in Dioxane + Water Mixtures at 298 K. Indian Journal of Chemistry, 74:382–386, 1997. [37] S. Boyd, J. R. Brannan, H. S. Dunsmore, and G. H. Nancollas. Thermodynamics of Ion Association, Transition-Metal β-Alanine and Glycine Complexes. Journal of Chemical & Engineering Data, 12:601–605, 1967. [38] J. J. Christensen, R. M. Izatt, D. P. Wrathall, and L. D. Hansen. Thermodynamics of proton ionization in dilute aqueous solution. Part XI. pK, ΔH◦ , and ΔS◦ Values for proton ionization from protonated amines at 25◦ . Journal of the Chemical Society (A), pages 1212–1223, 1969. [39] E. J. King. The Ionization Constants of Taurine and its Activity Coefficient in Hydrochloric Acid Solutions from Electromotive Force Measurements. Journal of the American Chemical Society, 75:2204–2209, 1953. [40] S. P. Datta and A. K. Grzybowski. The second acid dissociations of glycine, sarcosine and N-dimethylglycine, part 1. Thermodynamic dissociation constants. Transactions of the Faraday Society, 54:1179–1187, 1958. [41] S. P. Datta and A. K. Grzybowski. The second acid dissociations of glycine, sarcosine and N-methylglycine, part 2. Thermodynamic quantities. Transactions of the Faraday Society, 54:1188–1194, 1958. [42] E. R. B. Smith and P. K. Smith. Thermodynamic properties of solutions of amino acids and related substances, VIII. The ionization of glycylglycine, -aminocaproic acid, and aspartic acid in aqueous solution from one to fifty degrees. Journal of Biological Chemistry, 146:187–195, 1942. [43] I. Brandariz, S. Fiol, R. Herrero, T. Vilari no, and M. S. de Vicente. Protonation Constants of β-Alanine, γ-Aminobutyric Acid, and -Aminocaproic Acid. Journal of Chemical & Engineering Data, 38:531–533, 1993. 126 Bibliography [44] S. Pelletier. No 21. Contribution a létude des complexes métalliques des amino-acides III. Détermination des constants de formation des complexes Ni++ -méthionine et Ni++ -sérine à différentes temperatures. Journal de chimie physique et de physico-chimie biologique, 57:301–305, 1960. in French. [45] E. J. King. The Ionization Constants of Glycine and the Effect of Sodium Chloride upon its Second Ionization. Journal of the American Chemical Society, 73:155–159, 1951. [46] B. B. Owen. The Dissociation Constants of Glycine at Various Temperatures. Journal of the American Chemical Society, 56:24–27, 1934. [47] R. G. F. Clarke, C. M. Collins, J. C. Roberts, L. N. Trevani, R. J Bartholomew, and P. R. Tremaine. Ionization constans of aqueous amino acids at temperatures up to 250◦ C using hydrothermal pH indicators and UV-visible spectroscopy: Glycine, α-alanine, and proline. Geochimica et Cosmochimica Acta, 69:3029–3043, 2005. [48] R. M. Izatt, J. L. Oscarson, S. E. Gillespie, H. Grimsrud, J. A. R. Renuncio, and C. Pando. Effect of temperature and pressure on the protonation of glycine. Biophysical Journal, 61:1394–1401, 1992. [49] R. M. Izatt, J. W. Wrathall, and K. P. Anderson. Studies of the copper(II)-alanine and phenylalanine systems in aqueous solution. Dissociation and formation constants as a function of temperature. Journal of Physical Chemistry, 65:1914–1915, 1961. [50] P. K. Smith, A. T. Gorham, and E. R. B. Smith. Thermodynamic properties of solutions of amino acids and related substances. VII. The ionization of some hydroxyamino acids and proline in aqueous solution from one to fifty degrees. Journal of Biological Chemistry, 144:737–745, 1942. [51] H. A. Azab, A. M. El-Nady, S. A. El-Shatoury, and A. Hassan. Potentiometric determination of the dissociation constants of L-histidine, proline and tryptophane in various hydroorganic media. Talanta, 41:1255–1259, 1994. [52] A. Albert. Quantitative Studies of the Avidity of Naturally Occuring Substances for Trace Metals. 2. Amino-acids having three ionizing groups. Biochemical Journal, 50:690–698, 1952. [53] H. Wilson and R. K. Cannan. The glutamic acid-pyrrolidonecarboxylic acid system. Journal of Biological Chemistry, 119:309–331, 1937. [54] A. C. Batchelder and C. L. Schmidt. The effects of certain salts on the dissociation of aspartic acid, arginine, and ornithine. Journal of Physical Chemistry, 44:893–909, 1940. [55] A. Saul and W. Wagner. International equations for the saturation properties of ordinary water substances. Journal of Physical and Chemical Reference Data, 16:893–901, 1987. [56] K. S. Pitzer. Ion interaction approach: Theory and data correlation, pages 75–153. CRC Press, Boca Raton, Ann Arbor, Boston, London, 2nd edition, 1997. Editor: K. S. Pitzer. [57] E. A. Castro, J. G. Santos, J. Téllez, and M. I. Umaña. Structure-Reactivity Correlations in the Aminolysis and Pyridinolysis of Bis(phenyl) and Bis(4-nitrophenyl) Thionocarbonates. The Journal of Organic Chemistry, 62:6568–6574, 1997. [58] C. W. Davies. Ion Association. Butterworths, London, 1962. [59] G. F. Versteeg and W. P. M. Van Swaaij. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions - I. Primary and secondary amines. Chemical Engineering Science, 43:573–585, 1988. 127 [60] G. F. Versteeg and W. P. M. Van Swaaij. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions - II. Tertiary amines. Chemical Engineering Science, 43:587–591, 1988. [61] V. E. Bower, R. A. Robinson, and R. G. Bates. Acidic Dissociation Constant and Related Thermodynamic Quantities for Diethanolammonium Ion in Water From 0◦ to 50◦ C. Journal of Research of the National Bureau of Standards, 66A:71–75, 1962. [62] R. G. Bates. Solute-solvent interactions and acid-base dissociation in mixed solvent systems. Journal of Electroanalytical Chemistry, 29:1–19, 1971. [63] G. Fonrodona, C. Ràfols, E. Bosch, and M. Rosés. Autoprotolysis in aqueous organic solvent mixtures. Water/alcohol binary systems. Analytica Chimica Acta, 335:291–302, 1996. [64] S. Rondinini, P. Longhi, P. R. Mussini, and T. Mussini. Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure and Applied Chemistry, 59:1693–1702, 1987. [65] R. G. Bates, M. Paabo, and R. A. Robinson. Interpretation of pH measurements in alcohol-water solvents. The Journal of Physical Chemistry, 67:1833–1838, 1963. [66] E. S. Hamborg, C. van Aken, and G. F. Versteeg. The effect of aqueous organic solvents on the dissociation constants and thermodynamic properties of alkanolamines. Fluid Phase Equilibria, 291:32–39, 2010. [67] E. E. Sager, R. A. Robinson, and R. G. Bates. Medium Effect on the Dissociation of Weak Acids in Methanol-Water Solvents. Journal of Research of the National Bureau of Standards - A. Physics and Chemistry, 68A:305–312, 1964. [68] H. Zerres and J. M. Prausnitz. Thermodynamics of Phase Equilibria in Aqueous-Organic Systems with Salts. AIChE Journal, 40:676–691, 1994. [69] M. Born. Volumen und Hydratationswärme der Ionen. Zeitschrift für Physik A Hadrons and Nuclei, 1:45–48, 1920. [70] Y. Zhang and Z. Xu. Atomic radii of noble gas elements in condensed phases. American Mineralogist, 80:670–675, 1995. [71] L. Chunxi and W. Fürst. Representation of CO2 and H2 S solubility in aqueous MDEA solutions using an electrolyte equation of state. Chemical Engineering Science, 55:2975– 2988, 2000. [72] D. J. Bradley and K. S. Pitzer. Thermodynamics of Electrolytes. 12. Dielectric properties of water and Debye-Hückel parameters to 350 ◦ C and 1 kbar. The Journal of Physical Chemistry, 83:1599–1603, 1979. [73] P. S. Albright and L. J. Gosting. Dielectric Constants of the Methanol-Water System from 5 to 55◦ . Journal of the American Chemical Society, 68:1061–1063, 1946. [74] G. Åkerlöf. Dielectric constants of some organic solvent-water mixtures at various temperatures. Journal of the American Chemical Society, 54:4125–4139, 1932. [75] National Institute of Standards and Technology. NIST Standard Reference Database Number 69. 128 Bibliography [76] A. S. Teja and D. J. Rosenthal. The critical pressures and temperatures of ten substances using a low residence time flow apparatus. In Experimental Results for Phase Equilibria and Pure Component Properties. DIPPR DATA Series No. 1, 1991. [77] D. M. VonNiederhausern, G. M. Wilson, and N. F. Giles. Critical Point and Vapor Pressure Measurements for 17 Compounds by a Low Residence Time Flow Method. Journal of Chemical & Engineering Data, 51:1986–1989, 2006. [78] F. Rived, I. Canals, E. Bosch, and M Rosés. Acidity in methanol-water. Analytica Chimica Acta, 439:315–333, 2001. [79] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. John Wiley & Sons, Inc., New York / Chichester / Weinheim / Brisbane / Singapore / Toronto, 2nd edition, 2002. [80] J. R. Welty, C. E. Wicks, R. E. Wilson, and G. Rorrer. Fundamentals of Momentum, Heat, and Mass Transfer. John Wiley & Sons, Inc., New York / Chichester / Weinheim / Brisbane / Singapore / Toronto, 4th edition, 2001. [81] P. V. Danckwerts. Gas Liquid Reactions. McGraw-Hill, New York, 1st edition, 1970. [82] A. H. G. Cents, F. T. de Bruijn, D. W. F. Brilman, and G. F. Versteeg. Validation of the Danckwerts-plot technique by simultaneous chemical absorption of CO2 and physical desorption of O2 . Chemical Engineering Science, 60:5809–5818, 2005. [83] R. Cadours, C. Bouallou, A. Gaunand, and D. Richon. Kinetics of CO2 Desorption from Highly Concentrated and CO2 -Loaded Methyldiethanolamine Aqueous Solutions in the Range 312-383 K. Industrial & Engineering Chemistry Research, 36:5384–5391, 1997. [84] C. N. S. McLachland and P. V. Danckwerts. Desorption of carbon dioxide from aqueous potash solutions with and without the addition of arsenite as a catalyst. Transactions of the Institution of Chemical Engineers, 50:300–309, 1972. [85] H. Bosch, G. F. Versteeg, and W. P. M. Van Swaaij. Desorption of acid gases (CO2 and H2 S) from loaded alkanolamine solutions. Process Technology Proceedings. Vol. 8. Gas Separation Technology, pages 505–512, 1989. [86] A. Jamal, A. Meisen, and C. J. Lim. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor - I. Experimental apparatus and mathematical modeling. Chemical Engineering Science, 61:6571–6589, 2006. [87] F. A. Tobiesen, O. Juliussen, and H. F. Svendsen. Experimental validation of a rigorous desorber model for CO2 post-combustion capture. Chemical Engineering Science, 63:2641–2656, 2008. [88] E. R. Gilliland and T. K. Sherwood. Diffusion of Vapors into Air Streams. Industrial and Engineering Chemistry, 26:516–523, 1934. [89] G. F. Versteeg, P. M. M. Blauwhoff, and W. P. M. van Swaaij. The effect of diffusivity on gas-liquid mass transfer in stirred vessels. Experiments at atmospheric and elevated pressures. Chemical Engineering Science, 42:1103–1119, 1987. [90] G. F. Versteeg and W. P. M. van Swaaij. Solubility and Diffusivity of Acid Gases (CO2 , N2 O) in Aqueous Alkanolamine Solutions. Journal of Chemical & Engineering Data, 33:29–34, 1988. 129 [91] B. R. W Pinsent, L. Pearson, and F. J. W. Roughton. The kinetics of combination of carbon dioxide with hydroxide. Transactions of the Faraday Society, 52:1512–1520, 1956. [92] E. D. Snijder, M. J. M te Riele, G. F. Versteeg, and W. P. M. van Swaaij. Diffusion coefficients of several aqueous alkanolamine solutions. Journal of Chemical & Engineering Data, 38:475–480, 1993. [93] D. R. Lide. Handbook of chemistry and physics. CRC Press, 75th edition, 1994. [94] P. Han and D. M. Bartels. Temperature Dependence of Oxygen Diffusion in H2 O and D2 O. Journal of Physical Chemistry, 100:5597–5602, 1996. [95] H. A. Al-Ghawas, D. P. Hagewiesche, G. Ruiz-Ibanez, and O. C. Sandall. Physicochemical Properties Important for Carbon Dioxide Absorption in Aqueous Methyldiethanolamine. Journal of Chemical & Engineering Data, 34:385–391, 1989. [96] J.-J. Ko, T.-C. Tsai, C.-Y. Lin, H.-M. Wang, and M.-H. Li. Diffusivity of Nitrous Oxide in Aqueous Alkanolamine Solutions. Journal of Chemical & Engineering Data, 46:160–165, 2001. [97] J. A. Hogendoorn, R. D. Vas Bhat, J. A. M. Kuipers, W. P. M. Van Swaaij, and G. F. Versteeg. Approximation for the enhancement factor applicable to reversible reactions of finite rate in chemically loaded solutions. Chemical Engineering Science, 52:4547–4559, 1997. [98] R. M. Secor and J. A. Beutler. Penetration Theory for Diffusion Accompanied by a Reversible Chemical Reaction with Generalized Kinetics. AIChE Journal, 13:365–373, 1967. [99] W. J. DeCoursey. Absorption with chemical reaction: Development of a new relation for the Danckwerts model. Chemical Engineering Science, 29:1867–1872, 1974. ◦ [100] H. S. Harned and S. R. Scholes Jr. The Ionization Constant of HCO− 3 from 0 to 50 . Journal of the American Chemical Society, 63:1706–1709, 1941. [101] G. F. Versteeg, L. A. J. Van Dijck, and W. P. M. Van Swaaij. On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chemical Engineering Communications, 144:113–158, 1996. [102] B. Lemoine, Y.-G. Li, R. Cadours, C. Bouallou, and D. Richon. Partial vapor pressure of CO2 and H2 S over aqueous methyldiethanolamine solutions. Fluid Phase Equilibria, 172:261–277, 2000. [103] W. J. Rogers, J. A. Bullin, and R. R. Davison. FTIR Measurements of Acid-GasMethyldiethanolamine Systems. AIChE Journal, 44:2423–2430, 1998. [104] F.-Y. Jou, A. E. Mather, and F. D. Otto. Solubility of H2 S and CO2 in Aqueous Methyldiethanolamine Solutions. Industrial & Engineering Chemistry - Process Design and Development, 21:539–544, 1982. [105] D. M. Austgen, G. T. Rochelle, and C.-C. Chen. Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems. 2. Representation of H2 S and CO2 Solubility in Aqueous MDEA and CO2 Solubility in Aqueous Mixtures of MDEA with MEA or DEA. Industrial & Engineering Chemistry Research, 30:543–555, 1991. 130 Bibliography [106] G. Kuranov, B. Rumpf, N. A. Smirnova, and G. Maurer. Solubility of Single Gas Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N-Methyldiethanolamine in the Temperature Range 313 - 413 K at Pressures up to 5 MPa. Industrial & Engineering Chemistry Research, 35:1959–1966, 1996. [107] V. Ermatchkov, Á. Pérez-Salado Kamps, and G. Maurer. Solubility of Carbon Dioxide in Aqueous Solutions of N-Methyldiethanolamine in the Low Gas Loading Region. Industrial & Engineering Chemistry Research, 45:6081–6091, 2006. [108] Á. Pérez-Salado Kamps, A. Balaban, M. Jödecke, G. Kuranov, N. A. Smirnova, and G. Maurer. Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N-Methyldiethanolamine at Temperatures from 313 to 393 K and Pressures up to 7.6 MPa: New Experimental Data and Model Extension. Industrial & Engineering Chemistry Research, 40:696–706, 2001. [109] A. Jamal. Absorption and desorption of CO2 and CO in alkanolamine systems. PhD thesis, University of British Columbia, 2002. [110] N. Haimour and O. C. Sandall. Absorption of carbon dioxide into aqueous methyldiethanolamine. Chemical Engineering Science, 39:1791–1796, 1984. [111] H. A. Al-Ghawas, G. Ruiz-Ibanez, and O. C. Sandall. Absorption of carbonyl sulfide in aqueous methyldiethanolamine. Chemical Engineering Science, 44:631–639, 1989. [112] G. F. Versteeg, J. A. M. Kuipers, F. P. H. van Beckum, and W. P. M. van Swaaij. Mass transfer with complex reversible chemical reactions - I. Single reversible chemical reaction. Chemical Engineering Science, 44:2295–2310, 1989. [113] E. B. Rinker, S. S. Ashour, and O. C. Sandall. Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine. Chemical Engineering Science, 50:755–768, 1995. [114] J.-J. Ko and M.-H. Li. Kinetics of absorption of carbon dioxide into solutions of N methyldiethanolamine + water. Chemical Engineering Science, 55:4139–4147, 2000. [115] A. Jamal, A. Meisen, and C. J. Lim. Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor - II. Experimental results and parameter estimation. Chemical Engineering Science, 61:6590–6603, 2006. [116] A. Benamor and M. K. Aroua. An experimental investigation on the rate of CO2 absorption into aqueous methyldiethanolamine solutions. Korean Journal of Chemical Engineering, 24:16–23, 2007. [117] Y. Shi and Z. Zhong. A Rigorous Model for Absorption of Carbon Dioxide into Aqueous NMethyldiethanolamine Solution. Chemical Engineering Communications, 192:1180–1193, 2005. [118] N. Ramachandran, A. Aboudheir, R. Idem, and P. Tontiwachwuthikul. Kinetics of the Absorption of CO2 into Mixed Aqueous Loaded Solutions of Monoethanolamine and Methyldiethanolamine. Industrial & Engineering Chemistry Research, 45:2608–2616, 2006. [119] G.-W. Xu, C.-F. Zhang, S.-J. Qin, and B.-C. Zhu. Desorption of CO2 from MDEA and Activated MDEA Solutions. Industrial & Engineering Chemistry Research, 34:874–880, 1995. 131 [120] D. A. Glasscock, J. E. Critchfield, and G. T. Rochelle. CO2 absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine. Chemical Engineering Science, 46:2829–2845, 1991. [121] M. M. Mshewa and G. T. Rochelle. Carbon dioxide absorption/desorption kinetics in blended amines. Presented at Laurance Reid Gas Conditioning Conference, Norman, Oklahoma, 1994. [122] E. S. Hamborg, S. R. A. Kersten, and G. F. Versteeg. Absorption and Desorption Mass Transfer Rates in Non-Reactive Systems. Chemical Engineering Journal, 161:191–195, 2010. [123] M. A. Pacheco. Mass Transfer, Kinetics and Rate-based Modeling of Reactive Absorption. PhD thesis, The University of Texas at Austin, 1998. [124] R. H. Weiland, J. C. Dingman, D. B. Cronin, and G. J. Browning. Density and Viscosity of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends. Journal of Chemical & Engineering Data, 43:378–382, 1998. [125] A. Tamimi, E. B. Rinker, and O. C. Sandall. Diffusivity of Nitrous Oxide in Aqueous Solutions of N -Methyldiethanolamine and Diethanolamine from 293 to 368 K. Journal of Chemical & Engineering Data, 39:396–398, 1994. [126] A. Tamimi, E. B. Rinker, and O. C. Sandall. Diffusion Coefficients for Hydrogen Sulfide, Carbon Dioxide, and Nitrous Oxide in Water over the Temperature Range 293-368 K. Journal of Chemical & Engineering Data, 39:330–332, 1994. [127] S. Hatta. Absorption velocity of gases by liquids. II. Theoretical considerations of gas absorption due to chemical reactions. Technical report, Tohoku Imperial University, 1932. [128] K. R. Westerterp, W. P. M. van Swaaij, and A. A. C. M. Beenackers. Chemical Reactor Design and Operation. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore, 2nd edition, 1987. [129] R. Higbie. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Transactions of the American Institute of Chemical Engineers, 35:36–60, 1935. [130] E. P. van Elk. Gas-liquid reactions. Influence of liquid bulk and mass transfer on process performance. PhD thesis, University of Twente, 2001. [131] A. J. Read. The First Ionization Constant of Carbonic Acid from 25 to 250◦ C and to 2000 bar. Journal of Solution Chemistry, 4:53–70, 1975. [132] R. J. Littel, W. P. M. van Swaaij, and G. F. Versteeg. Kinetics of Carbon Dioxide with Tertiary Amines in Aqueous Solutions. AIChE Journal, 36:1633–1640, 1990. [133] D. W. van Krevelen and P. J. Hoftijzer. Kinetics of gas-liquid reactions. Part I. General Theory. Recueil, 67:563–586, 1948. [134] K. Onda, E. Sada, T. Kobayashi, and M. Fujine. Gas absorption accompanied by complex chemical reactions - I Reversible chemical reactions. Chemical Engineering Science, 25:753–760, 1970. [135] W. J. DeCoursey. Enhancement factors for gas absorption with reversible reaction. Chemical Engineering Science, 37:1483–1489, 1982. 132 Bibliography [136] W. J. DeCoursey and R. W. Thring. Effects of unequal diffusivities on enhancement factors for reversible and irreversible reaction. Chemical Engineering Science, 44:1715– 1721, 1989. [137] R. Cornelisse, A. A. C. M. Beenackers, F. P. H. van Beckum, and W. P. M. van Swaaij. Numerical calculation of simultaneous mass transfer of two gases accompanied by complex reversible reactions. Chemical Engineering Science, 35:1245–1260, 1980. [138] M. L. Posey. Thermodynamic Model for Acid Gas Loaded Aqueous Alkanolamine Solutions. PhD thesis, The University of Texas at Austin, 1996. [139] P. M. M. Blauwhoff, G. F. Versteeg, and W. P. M. Van Swaaij. A study on the reaction between CO2 and alkanolamines in aqueous solutions. Chemical Engineering Science, 39:207–225, 1984. [140] J. Haubrock, J. A. Hogendoorn, and G. F. Versteeg. The applicability of activities in kinetic expressions: A more fundamental approach to represent the kinetics of the system CO2 -OH− -salt in terms of activities. Chemical Engineering Science, 62:5753–5769, 2007. [141] S. D. Klein, Z. Pawlak, R. Fernández-Prini, and R. G. Bates. Conductance of HCl in Water-Sulfolane Solvents at 25, 30, and 40 ◦ C; A Comparison of Conductance Equations. Journal of Solution Chemistry, 10:333–342, 1981. [142] Y. Uosaki, K. Kawamura, and T. Moriyoshi. Static Relative Permittivities of Water + 1-Methyl-2-pyrrolidinone and Water + 1,3-Dimethyl-2-imidazolidinone Mixtures under Pressures up to 300 MPa at 298.15 K. Journal of Chemical & Engineering Data, 41:1525– 1528, 1996. [143] S. Aparicio, R. Alcalde, B. García, and J. M. Leal. Microwave dielectric spectroscopy of 2-pyrrolidone + water mixtures. Chemical Physics Letters, 444:252–257, 2007. [144] C. Alvarez-Fuster, N. Midoux, A. Laurent, and J. C. Charpentier. Chemical kinetics of the reaction of CO2 with amines in pseudo m-th order conditions in polar and viscous organic solutions. Chemical Engineering Science, 36:1513–1518, 1981. [145] S.-W. Park, J.-W. Lee, B.-S. Choi, and J.-W. Lee. Kinetics of Absorption of Carbon Dioxide in Monoethanolamine Solutions of Polar Organic Solvents. Journal of Industrial and Engineering Chemistry, 11:202–209, 2005. [146] S.-W. Park, J.-W. Lee, B.-S. Choi, and J.-W. Lee. Reaction Kinetics of Carbon Dioxide with Diethanolamine in Polar Organic Solvents. Separation Science and Technology, 40:1885–1898, 2005. [147] S.-W. Park, B.-S. Choi, and J.-W. Lee. Chemical absorption of carbon dioxide with triethanolamine in non-aqueous solutions. Korean Journal of Chemical Engineering, 23:138–143, 2006. [148] P. Usubharatana and P. Tontiwachwuthikul. Enhancement factor and kinetics of CO2 capture by MEA-methanol hybrid solvents. In 9th International Conference on Greenhouse Gas Control Technologies (GHGT-9), 2008. [149] E. Sada, H. Kumazawa, and Z. Q. Han. Kinetics of Reaction Between Carbon Dioxide and Ethylenediamine in Non-aqueous Solvents. The Chemical Engineering Journal, 31:109– 115, 1985. 133 [150] E. Sada, H. Kumazawa, Y. Osawa, M. Matsuura, and Z. Q. Han. Reaction Kinetics of Carbon Dioxide with Amines in Non-aqueous Solvents. The Chemical Engineering Journal, 33:87–95, 1986. [151] E. Sada, H. Kumazawa, Y. Ikehara, and Z. Q. Han. Chemical Kinetics of the Reaction of Carbon Dioxide with Triethanolamine in Non-aqueous Solvents. The Chemical Engineering Journal, 40:7–12, 1989. [152] K. Takeshita and A. Kitamoto. Chemical Equilibria of absorption of CO2 into nonaqueous solution of amine. Journal of Chemical Engineering of Japan, 21:411–417, 1988. [153] A. Henni and A. E. Mather. Solubility of Carbon Dioxide in Methyldiethanolamine + Methanol + Water. Journal of Chemical & Engineering Data, 40:493–495, 1995. [154] A. Archane, L. Gicquel, E. Provost, and W. Fürst. Effect of methanol addition on waterCO2 -diethanolamine system: Influence on CO2 solubility and on liquid phase speciation. Chemical Engineering Research and Design, 86:592–599, 2008. [155] P. W. J. Derks and G. F. Versteeg. The effect of methanol and ethanol on the CO2 absorption rate in an aqueous MDEA solvent. In Presented at The 5th Trondheim Conference on CO2 Capture, Transport and Storage, 2009. [156] Improvement in power generation with post-combustion capture of CO2 . Report Number PH4/33. Technical report, International Energy Agency Greenhouse Gas R&D Programme (IEA GHG), 2004. [157] K. Kolmetz, A. W. Sloley, T. M. Zygula, P. W. Faessler, W. K. Ng, K. Senthil, and T. Y. Lim. Designing Distillation Columns for Vacuum Service. In 11th India Oil and Gas Symposium and International Exhibition, 2004. [158] D. Bruinsma and S. Spoelstra. Heat pumps in distillation. In Distillation & Absorption 2010, 2010. [159] M. Nakaiwa, K. Huang, A. Endo, T. Ohmori, T. Akiya, and T. Takamatsu. Internally heat-integrated distillation columns: A review. Chemical Engineering Research and Design, 81:162–177, 2003. [160] Z. Olujic, F. Fakhri, A. de Rijke, J. de Graauw, and P. J. Jansens. Internal heat integration - the key to an energy-conserving distillation column. Journal of Chemical Technology and Biotechnology, 78:241–248, 2003. [161] U. Sander and P. Soukup. Design and operation of a pervaporation plant for ethanol dehydration. Journal of Membrane Science, 36:463–475, 1988. [162] F. Lipnizki, R. W. Field, and P.-K. Ten. Pervaporation-based hybrid process: a review of process design, applications and economics. Journal of Membrane Science, 153:183–210, 1999. [163] P. Shao and R. Y. M. Huang. Polymeric membrane pervaporation. Journal of Membrane Science, 287:162–179, 2007. [164] E. Drioli and M. Romano. Progress and New Perspectives on Integrated Membrane Operations for Sustainable Industrial Growth. Industrial & Engineering Chemistry Research, 40:1277–1300, 2001. [165] A. Jonquières, R. Clément, P. Lochon, J. Nèel, M. Dresch, and B. Chrétien. Industrial state-of-the-art of pervaporation and vapour permeation in the western countries. Journal of Membrane Science, 206:87–117, 2002. 134 Bibliography [166] A. E. Hill and W. M. Malisoff. The mutual solubility of liquids. III. The mutual solubility of phenol and water. IV. The mutual solubility of normal butyl alcohol and water. Journal of the American Chemical Society, 48:918–927, 1926. [167] H. Ochel, H. Becker, K. Maag, and G. M. Schneider. Influence of a third component on (liquid + liquid) phase equilibria in (butan-2-ol + water) and in (butan-1-ol + water) at pressures up to 160 MPa. Journal of Chemical Thermodynamics, 25:667–677, 1993. [168] K. S. Pitzer. Thermodynamics of Electrolytes. 1. Theoretical Basis and General Equations. The Journal of Physical Chemistry, 77:268–277, 1973. [169] A. J. Easteal and L. A. Woolf. (p,Vm , T, x) measurements for (1-x)H2 O + xCH3 OH in the range 278 to 323 K and 0.1 to 280 MPa I. Experimental results, isothermal compressibilities, thermal expansivities, and partial molar volumes. Journal of Chemical Thermodynamics, 17:49–62, 1985. [170] S. Westmeier. Exzeßenthalpie, Freie Exzeßenthalpie, Exzeßvolumen und Viskosität von ausgewählten binären flüssigen Mischungen. Chemische Technik, 28:350–353, 1976. [171] P. K. Kipkemboi and A. J. Easteal. Densities and viscosities of binary aqueous mixtures of nonelectrolytes: tert-Butyl alcohol and tert-butylamine. Canadian Journal of Chemistry, 72:1937–1945, 1994. [172] Á. P-S. Kamps. Model for the Gibbs Excess Energy of Mixed-Solvent (Chemical-Reacting and Gas-Containing) Electrolyte Systems. Industrial & Engineering Chemistry Research, 44:201–225, 2005. [173] P. W. J. Derks, T. Kleingeld, C. van Aken, J. A. Hogendoorn, and G. F. Versteeg. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. Chemical Engineering Science, 61:6837–6854, 2006. [174] S. Bishnoi and G. T. Rochelle. Absorption of Carbon Dioxide in Aqueous Piperazine/Methyldiethanolamine. AIChE Journal, 48:2788–2799, 2002. [175] G.-W. Xu, C.-F. Zhang, A.-J. Qin, and Y.-W. Wang. Kinetics Study on Absorption of Carbon Dioxide into Solutions of Activated Methyldiethanolamine. Industrial & Engineering Chemistry Research, 31:921–927, 1992. [176] X. Zhang, C.-F. Zhang, S.-J. Qin, and Z.-S. Zheng. A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine. Industrial & Engineering Chemistry Research, 40:3785–3791, 2001. [177] P. W. J. Derks. Carbon Dioxide Absorption in Piperazine Activated NMethyldiethanolamine. PhD thesis, University of Twente, 2006. [178] M. J. W. Frank, J. A. M Kuipers, and W. P. M. van Swaaij. Diffusion Coefficients and Viscosities of CO2 + H2 O, CO2 + CH3 OH, NH3 + H2 O, and NH3 + CH3 OH Liquid Mixtures. Journal of Chemical & Engineering Data, 41:297–302, 1996. [179] E. D. Snijder, M. J. M. te Riele, G. F. Versteeg, and W. P. M. van Swaaij. Diffusion Coefficients of CO, CO2 , N2 O, and N2 in Ethanol and Toluene. Journal of Chemical & Engineering Data, 40:37–39, 1995. [180] G. Taylor. Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London A, 219:186–203, 1953. 135 [181] G. Taylor. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proceedings of the Royal Society of London A, 225:473–477, 1954. [182] R. Aris. On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society of London A, 235:67–77, 1956. [183] A. J. Easteal and L. A. Woolf. Pressure and Temperature Dependence of Tracer Diffusion Coefficients of Methanol, Ethanol, Acetonitrile, and Formamide in Water. Journal of Physical Chemistry, 89:1066–1069, 1985. [184] M. A. Matthews and A. J. Akgerman. High-Temperature Diffusion of Hydrogen, Carbon Monoxide, and Carbon Dioxide in Liquid n-Heptane, n-Dodecane, and n-Hexadecane. Journal of Chemical & Engineering Data, 32:319–322, 1987. [185] P. W. J. Derks, J. A. Hogendoorn, and G. F. Versteeg. Solubility of N2 O in and Density, Viscosity, and Surface Tension of Aqueous Piperazine Solutions. Journal of Chemical & Engineering Data, 50:1947–1950, 2005. [186] A. Alizadeh, C. A. Nieto de Castro, and W. A. Wakeham. The Theory of the Taylor Dispersion Technique for Liquid Diffusivity Measurements. International Journal of Thermophysics, 1:243–283, 1980. [187] J. F. Davidson and E. J. Cullen. The determination of diffusion coefficients of sparingly soluble gases in liquids. Transactions of the Institution of Chemical Engineers, 35:51–60, 1957. [188] J. L. Duda and J. S. Vrentas. Laminar liquid jet diffusion studies. AIChE Journal, 14:286–294, 1968. [189] E. Sada, H. Kumazawa, and M. A. Butt. Solubilities of and Diffusivity of Gases in Aqueous Solutions of Amine. Journal of Chemical & Engineering Data, 23:161–163, 1978. [190] G. E. H Joosten and P. V. Danckwerts. Solubility and Diffusivity of Nitrous Oxide in Equimolar Potassium Carbonate-Potassium Bicarbonate Solutions at 25◦ C and 1 Atm. Journal of Chemical & Engineering Data, 17:452–454, 1972. [191] W. J. Thomas and M. J. Adams. Measurement of diffusion coefficients of carbon dioxide and nitrous oxide in water and aqueous solutions of glycerol. Transactions of the Faraday Society, 61:668–673, 1965. [192] A. Samanta, S. Roy, and S. S. Bandyopadhyay. Physical Solubility and Diffusivity of N2 O and CO2 in Aqueous Solutions of Piperazine and (N -Methyldiethanolamine + Piperazine). Journal of Chemical & Engineering Data, 52:1381–1385, 2007. [193] W-C. Sun, C-B. Yong, and M-H. Li. Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine. Chemical Engineering Science, 60:503–516, 2005. [194] R. J. Hook. An Investigation of Some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds. Industrial & Engineering Chemistry Research, 36:1779– 1790, 1997. [195] D. E. Penny and T. J. Ritter. Kinetic study of the reaction between carbon dioxide and primary amines. Journal of the Chemical Society, Faraday Transactions, 79:2103–2109, 1983. 136 Bibliography [196] P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, and G. F. Versteeg. Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine. AIChE Journal, 49:203–213, 2003. [197] J. van Holst, G. F. Versteeg, D. W. F. Brilman, and J. A. Hogendoorn. Kinetic study of CO2 with various amino acid salts in aqueous solution. Chemical Engineering Science, 64:59–68, 2009. [198] B. E. Poling, J. M. Prausnitz, and J. P. O’Connell. The Properties of Gases and Liquids. The McGraw-Hill Companies, Inc., 5th edition, 2001. [199] N. G. D’yachkova, L. A. Zagorodnykh, and O. V. Bobreshova. Conductivity of Systems Comprising Anion-Exchange Membranes MA-41 and Alkaline Glycine Solutions. Russian Journal of Electrochemistry, 42:276–279, 2006. [200] S. Miyamoto and C. L. A. Schmidt. Transference and conductivity studies on solutions of certain proteins and amino acids with special reference to the formation of complex ions between the alkaline earth elements and certain proteins. The Journal of Biological Chemistry, 99:335–358, 1933. [201] J. W. Mehl and C. L. A. Schmidt. The conductivities of aqueous solutions of glycine, d,l-valine, and l-aspargine. The Journal of General Physiology, 18:467–479, 1935. [202] R. A. Robinson and R. H. Stokes. Electrolyte Solutions. Butterworths, London, 2nd edition, 1959. [203] G. A. Ratcliff and J. G. Holdcroft. Diffusivities of gases in aqueous electrolyte solutions. Transactions of the Institution of Chemical Engineers, 41:315–319, 1963. [204] K. E. Gubbins, K. K. Bhatia, and R. D. Walker. Diffusion of Gases in Electrolytic Solutions. AIChE Journal, 12:548–552, 1966. [205] G. W. Hung and R. H. Dinius. Diffusivity of Oxygen in Electrolyte Solutions. Journal of Chemical & Engineering Data, 17:449–451, 1972. [206] D. W. F. Brilman, W. P. M. van Swaaij, and G. F. Versteeg. Diffusion Coefficient and Solubility of Isobutene and trans-2-Butene in Aqueous Sulfuric Acid Solutions. Journal of Chemical & Engineering Data, 46:1130–1135, 2001. [207] P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, and G. F. Versteeg. Density, Viscosity, Solubility, and Diffusivity of N2 O in Aqueous Amino Acid Salt Solutions. Journal of Chemical & Engineering Data, 46:1357–1361, 2001. [208] J. van Holst, S. R. A. Kersten, and K. J. A. Hogendoorn. Physiochemical Properties of Several Aqueous Potassium Amino Acid Salts. Journal of Chemical & Engineering Data, 53:1286–1291, 2008. [209] A. F. Portugal, P. W. J. Derks, G. F. Versteeg, F. D. Magalhães, and A. Mendes. Characterization of potassium glycinate for carbon dioxide absorption purposes. Chemical Engineering Science, 62:6534–6547, 2007.
© Copyright 2026 Paperzz