Cold Atoms and Stable Lasers: The Clocks of the Future Today Leo Hollberg National Institute of Standards and Technology (NIST) , Boulder CO Optical Frequency Reference Ca Oven I(f) 0 fr µ-wave out f fn = nfr Optical Synthesizer optical out Optical Frequency Measurements Group Time and Frequency Division, NIST, Boulder Cold Ca & Yb Optical Clocks Chris Oates Chad Hoyt Zeb Barber (CU) Guido Wilpers (→ PTB) Anne Curtis (CU → London) Fs Frequency Combs Scott Diddams Chip Scale Atomic Devices John Kitching Albrecht Bartels → Konstance Kyoungsik Kim (CU) Tara Fortier (LANL) Eugene Ivanov (UWA) L-S Ma, Z. Bi, (ECNU-BIPM) L.Robertson (BIPM) Tanya Ramond → Ball Aero. Svenja Knappe Peter Schwindt Hugh Robinson Vishal Shah (CU) Ying-Ju Wang (CU) Vlady Gerginov (Notre Dame) Diode laser and length metrology Richard Fox Mercury Standard Jim Bergquist, Windell Oskay, S Bize → SYRTE, W Itano, D Wineland, and others Cs fountain and NIST time scale Steve Jefferts, Liz Donley, Tom Heavner, Tom Parker •$$ NIST, DARPA-MTO, ONR-CU-MURI, NASA-microgravity physics, LANL Types of Clocks Ruler Clock • require predictable vs. time and measurable L ∆ t = 2L / c Resonator Decay A=a0e -(t/τ) e+ α U e- t Stable Oscillator quartz t Atomic Energy Levels E2 ∆E ≡ h ν E1 ∆t=n/ν Generic Atomic Clock Feedback System Locks LO to atomic resonance Detector ∆ν Atoms υ Ca Local Oscillator High-Q resonator Microwave Synthesizer Quartz Fabry Perot cavity Laser Counter 456 986 240 494 158 Atomic Beam Clock Ramsey Method Cs dB/dx dB/dx Local Oscillator Signal l # of Atoms L ∆ν ≈ v / l ∆ν ≈ v / 2L NIST F1, Cs atomic fountain clock Primary frequency Standard of U.S. S. Jefferts, L. Donley, T. Heavner CSAC Design: All optical excitation of atomic microwave clock transition (Coherent Population Trapping) Photodiode Cell 3.2 mm Optics 1.5 mm 1.5 mm Laser Volume: 7.2 mm3 Cell interior volume: 0.6 mm3 John Kitching, Svenja Knappe … 1 mm Current Microwave-Based Standards and Distribution NIST-F1 Rb and/or Cs GPS Hydrogen Masers and Cesium Clocks NIST Measurement System ∆f/f ~ 1x10-15 for standards and distribution Communications satellites Radio broadcasts Approaching the limit for standards and distribution systems. Attributes of Clocks / Frequency Standards Accuracy: Same average frequency fclock = fatom Reproducibility: Different clocks give same frequency. Stability: Frequency does not change with time. ∆f rms (τ ) fo Quartz Freq. Hydrogen maser 1 Cs fatom Hydrogen maser 2 Time Highest Accuracy Atomic Clocks optical optical Advantages of Optical Clocks Frequency uncertainty ~ fo ∆f 1 1 ⋅ ⋅ f0 τ N f 0 optical 1015 ≈ 10 ≈ 10 5 f 0 microwave 10 Laser-cooled Trapped Ions • Narrow linewidth • Long observation times • Possibility of entanglement Hg+, Al+, B+, Yb+ , Sr+ , In+ … ∆f Atomic Resonance τ = observation time N = number of atoms Laser-cooled Neutral atoms • Large number of atoms 106 or more • High signal/noise • Possibility of lattices Ca, Sr, Yb, Mg, H … One atomic clock is always “perfect” Two similar clocks -- hard to detect systematic errors Different types of clocks can determine most accurate and stable Oscillator Stability Quantum Limited Instability Allan Deviation -- Instability σ(τ) σ (τ ) ~ 10 -13 10 -14 10 -15 10 1 fo N τ H-maser Ca Cs GPS Hg+ -16 Ca 10 ∆f 1 day -17 10 -2 10 0 2 10 10 Averaging Time (s) 4 1 month 10 6 Alkaline-earth atoms make good optical atomic clocks, Ca example (1) Singlet-triplet structure leads to narrow transitions in the optical domain (2) Strong 1S0 → 1P1 transitions good for laser cooling 1P (4s4p) 1 m=0 657 nm clock ∆ν = 400 Hz 1S (4s2) 0 m=0 3P (4s4p) 1 Ca magneto-optic trap features KNbO3 846 nm ECDL + MOPA 40 mW AOM AOM Probe Beams ∆ = - 10 MHz Vacuum System Trapping Beams ∆ = - 35 MHz Ca Oven 13 cm dB/dz = 60 G/cm ~107 atoms T = 2 mK AOM Slowing Beam ∆ = - 260 MHz 1P 1 The Ca Optical Standard 3P 1 423 nm cooling 657 nm clock 1S 0 Diode Laser 400 Hz wide Ramsey fringes Isolator AOM Servo EOM synthesizer Atom error signal C. Oates G. Wilpers C. Oates, et al. Opt. Lett. 25, 1603 (2000) Residual Doppler effect R2 R1 θ Freely expanding atoms α g Atomic velocity G G G G r⊥ (t i ) 2 1 G 2 Φ ( r (t i )) = k ⋅ ( r0 + v 0 ⋅ t i + g ⋅ t i ) + k 2R 2 Wavefront curvature Gravitation Beam direction Trebst et al: IEEE Trans. IM-50 (2001) 535 Neutral Atom Lattice Clock Example 3P 0 1S 0 Optical Clock Transition Lattice field 3P 1 87Sr, 171Yb, 43Ca 423 nm cooling 1S 0 Candidates: 657 nm clock Advantages: No motion → Lamb Dicke limit, Long observation time, Collisions minimized Generic Atomic Clock Feedback System Locks LO to atomic resonance Detector ∆ν Atoms υ Ca Local Oscillator High-Q resonator Microwave Synthesizer Quartz Fabry Perot cavity Laser Counter 456 986 240 494 158 Vastly Simplified and Improved Synthesis Chain ν10He-Ne 2 1.15 µm ν10 = 520.206 837 ν10 X2 XTAL (127I2) NBS Laser Frequency Femtosecond-Laser-Based Synthesis Chain Synthesizers/Dividers ν10 = 2ν9 + ν10Β CHARTREUSE ν9 = 260.103 264 Ne (20Ne) ν9 = ν8 + ν’CO 2+ ν’’CO + ν9Β 2 SA 13C16O XTAL Pump nm ν7 = ν6 + ν’CO 532 + ν’’CO + ν7Β 2 2 9 µm R(20) (1979) C O 9 µm R(22) Albrecht ν8 = 196.780 372 Bartels, Scott Diddams, Tanya Ramond 16 He-Ne (1.52 µm) ν8 = ν7 + νCO + ν8Β 2 XTAL 2 ν = 48.862 075 SA CO (6.1 µm) ν7 = 147.915 857 Xe (2.03 µm) CO2 9 µm P(36) CO 10 µm P(8) Ti:Sapphire Gain He-Ne CH P(7) (3.39 µm) SA 2 ν6 = 88.376 181 627 4 ν6 = 3 ν5 − 0.049 + ν6Β K SA ν5 = 29.442 483 315 CO2 ν R(30) (10.2 µm) ν5 = ν4 − 3 ν2 − 0.020 + ν5Β K SA ν4 = 32.134 266 891 ν R(10) (9.3 µm) ν3 =3 ν3 − 0.020 + ν4Β K SA ν3 = 10.718 068 6 H2O (28 µm) ν3 =12 ν2 + 0.029 + ν3Β K SA ν2 = 0.890 760 550 HCN (337 µm) ν2 =12 ν1 + ν2Β K SA SA ν1 = 0.074 232 545 83 SPECTRUM ANALYZER DIODE KLYSTRON ν1 =7 ν0 + ν1Β KLYSTRON SA ν0 = 0.010 600 363 69 COUNTER KLYSTRON all frequencies in THz K. M. Evenson D. A. Jennings J. S. Wells C. R. Pollock F. R. Petersen R. E. Drullinger E. C. Beaty J. L. Hall H. P. Layer B. L. Danielson G. W. Day R. L. Barger Cs FREQ STANDARD Required many labs filled with lasers, microwave synthesizers, and electronics. Relationship Between Pulse Duration and Spectral Bandwidth 10 fs time Ultrashort optical pulse, plus nonlinear fiber → Broad Spectum Repetitive pulse train → Frequency Comb → “ruler for frequency/time” Power Wavelength •Initial efforts/ideas: J. Eckstein, A. Ferguson & T. Hänsch (1978), V. P. Chebotayev (1988) ** 0 The frequency of a mode is simply Where N is and integer ~ 10 6 FN = N * frep – f0 f0 0 Frequency fr=1/ τr.t. frep ~ 1000 MHz Self-Referenced Optical Frequency Sythesizer fo I(f) 0 frep f fn = n frep + fo x2 f2n = 2nfrep + fo fo • fo is generated from a heterodyne beat between the second harmonic of the nth mode and the 2nth mode. • Once frep and fo are referenced to a Cs clock, all the frequency modes of the fs comb are known absolutely Jones, et al. Science 288, 635 (2000) RF to Optical Clockwork with a Femtosecond Laser Comb Femtosecond Laser Comb 50,000:1 Reduction Gear (not to scale!) Cs ~9 GHz Hg+, Ca ~500 THz Electric Field from a Femtosecond Mode-locked Laser Time domain ∆φ E(t) 2∆φ t Carrier-envelope phase slip from pulse to pulse because: vg ≠ vp τr.t = 1/fr Frequency domain I(f) fo Modes are offset from harmonics of fr by: fr fo = fr ∆φ/2π 0 fn = nfr + fo = fr (n + ∆φ/2π) Original ideas: Hänsch, Wineland, Udem f Enthusiasm for Optical atomic clocks Testing the Femtosecond Synthesizer A. Bartels, T. Ramond, L.-S. Ma, L. Robertsson, M. Zucco, S. Diddams S. Diddams, et al. Opt. Lett 27, 58 (2002) fr1 fo1 fs Comb #1 Diode Laser 456 THz PMT fs Comb #2 fr2 fo2 X-Correlation (tests optical envelope) Jitter: 400 as (1-100 Hz) Stability: <2×10-15 τ-1 Reproducibility : < 1 × 10-18 RF Mixing (tests microwave output) Stability: ~2×10-15 τ-1 Reproducibility: <1 × 10-16 Optical Heterodyne (tests comb teeth) Stability: <2 × 10-16 τ-1 Reproducibility: <1 × 10-19 Optical output is very stable, but photodetection electronics adds Noise! Ultra-low phase noise microwaves Divided down 500 THz optical frequency reference to 10 GHz sapphire resonator -80 Microwave synthesizer L(f) [dBc/Hz] -100 Femtosecond-laser-based synthesizer -120 -140 -160 Hg+ optical cavity -180 Ca standard optical (projected) -200 10 0 10 1 10 2 3 10 10 Frequency (Hz) 4 10 5 10 6 Broadband Femtosecond Laser with <10 Hz Linewidth at optical frequency, ~500 THz Measurement limited linwidth of 10 Hz 10 Hz RBW, 20 averages 82% of power in central peak -80 Power (dBm) -70 -80 -90 -100 fs Comb #1 Diode Laser 456 THz fs Comb #2 Power (dBm) -110 -90 -200 0 Frequency Offs et (Hz) 200 -100 -110 -120 -10,000 Optical Heterodyne -5,000 0 5,000 Frequency Offset (Hz) 10,000 Applications of Optical Frequency Standards ? •Advanced communication systems (security, autonomous synchronization) •Advanced Navigation (position determination and control) •Precise timing (moving into the fs range) •Tests of fundamental physics (special and general relativity, time variation of fundamental constants) •Sensors (strain, gravity, length metrology ……) •Ultrahigh speed data, multi-channel parallel broadcast, or receivers, coherent communications A Cosmological Test of the Stability of α ∆α α = 1×10 10 ∆t −5 10 yr ≈ 10 −15 yr -1 An accessible level for atomic clocks! Ca and Hg+ optical frequencies compared to Cs (difference from respective mean values vs. date) 150 Frequency Offset (Hz) 100 50 0 -50 -100 -150 1/1/1996 1/1/1998 1/1/2000 Measurement Date 1/1/2002 1/1/2004 Frequency references, precise timing and Clocks of 21st Century are OPTICAL • • • • • 2000 begins Optical/Laser era in atomic clocks and precision timing Already providing lowest phase-noise and timing jitter – (fs jitter will soon be common place) Very Cold (cm/s) atoms/ions provide the best stability and will provide the best accuracy – Requires super quality cw lasers and optical cavities – Fs laser based optical frequency combs enabling and nearly pefect Not clear which atoms will give best performance and depends on use Some applications are beginning to appear: – New tool for science, precise timing, length metrology, communications, navigation, optical radar, chemistry, biology, fundamental physics …
© Copyright 2026 Paperzz