Sensor Local System S. Margetis, KSU Definitions STAR Global Coordinates Wafer Local Coordinates y (up) n,β d,α x (South) • • • t,γ w (normal/away from ladder) n,β z (West) d,α v (along ladder +z) t, γ u (r-phi direction for RHS) Local v (along ladder) is fixed and along global +z Local w (normal to u-v [wafer] plane). Points away from exposed surface Local u (r-phi on wafer plane) varies so it forms a RHS with v-w (u,w,v) 1 Wafer Local Coordinates Examples w (normal/away from ladder) n,β d,α v (along ladder +z) t, γ u (r-phi direction for RHS) • We use the above RHS notation (u,w,v) 2 Local PXL system definitions (offline) sensor w (away) v (West) • PXL Sector origin is the same as STAR global • use same convention as in SSD/IST (as a whole) and IDS to simplify software ladder EAST u w v WEST 3 Survey Info in Db Survey info stores position information of sensor,ladder etc center in STAR Global Local-to-Global positioning is done in terms of TGeoHMatrix d,n,t are unit vectors and α, β,γ the corresponding rotation angles in x,y,z [u,w,v] directions [RHS] . dx is the unit vector d projection on the x-axis etc • • • TGeoHMatrix definition ! x $ ' # G & ) # yG & ) # &=) z G # & ) # 1 & ) " % )( d̂ x n̂x tˆx dx d̂ y n̂y tˆy dy d̂z n̂z tˆz dz 0 0 0 1 *! ,# ,# ,# ,# ,# ,+" xL $ & yL & & zL & 1 &% Local to Global transformation definition xGi = R ⋅ xLi + T i ( y (up) ) d,α 8.5cm n,β d,α x (South) xG = d̂ x ⋅ x L + n̂x ⋅ yL + tˆx ⋅ zL + d x n,β " ˆ $ d̂ x = cos20 n̂x = −sin 20 t x = 0 d x = −sin 20 *8.5cm = −2.91cm $ d̂ = sin 20 n̂ = cos20 tˆ = 0 d = cos20 *8.5cm = 7.99cm y y y $ y $ ˆ d̂z = 0 n̂z = 0 tz = 1 dz = sensor − zC $ $# 0 0 0 1 200 " ˆ $ d̂ x = −cos20 n̂x = sin 20 t x = 0 d x = −sin 20 * 2.5cm = −0.85cm $ d̂ = −sin 20 n̂ = −cos20 tˆ = 0 d = cos20 * 2.5cm = 2.35cm y y y $ y $ d̂z = 0 n̂z = 0 tˆz =1 dz = sensor − zC $ $# 0 0 0 1 % ' ' ' ' ' '& 4 % ' ' ' ' ' '&
© Copyright 2026 Paperzz