n*l,E-`,

t<
Name
Date
Enrichment and Extension
Logarithms and Logarithmic Functions
Rewriting a logarithmic function in exponential form allows you to findx.
Example: Find the value ofx in each equation.
b' | = los"
a. x = log+64
c.
{:
los,+
Solution:
Form
Exponential Form
An"rwer
a. x = log+64
4'=64
x=3
b' {:
logex
9{2=x
x=3
c. l. = 1og,4
*!'=4
x:
Logarithmic
64
ln Exercises 1-24,find the value of x.
1-.x
=logr32
@
3. x=lo96r*,@
ll[= Zt\s. ir : Losrr zSOf-- " 1x*l
lzSx =
5
7. x=logz1
t6/aP.5r 9. x=1o9,6 O@
logrrx=1GD
tlt=X
6a= x
13.6=logrr@
x= g')z
15,
11.
logsr=@
12.
14.
16-
4-a=x
-2
6'=*
X7-LT
17. logsx
19.
=
-
3 = 1o9,27
z'12
21- Log,243 --
v'3 \
n*l,E-',
iog,| = I
X5 --
Copyright
@
Big ldeas Leaming, LLC
All rights reserved
Z =/
X-= tt;^ '
x\u1
Algebra 2
Remurces by Chg>ter
Decerahn
b
tLol Q
Date
Name
Enrich ment and Extension
Logarithms and Logarithmic Functions
Rewriting a logarithmic firnction in exponential form allows you to findx.
Example: Find the value of x in each equation.
a. x :
c.
b' | = logex
log+64
]
= los,+
Solution:
Exponential Form
An"rwer
a. x = log*64
4'=64
x=3
b' 1 = loe"
9{7-x
x=3
c' {' = log' 4
,{'=4
x:
Logarithmic Form
64
ln Exercises 1-24, find the value of x.
1.
.x = logr32
3. x :
logal296
2.
1og1e
4.
logs8 = x
1000
=x
5. x = 1ogrz289
6. 1=
7. x = 1og71
8. x - log3f
9. x = logro0.01
11. log11x =
1ogr2r5
10. 3 = logrx
12. -3 =
1
x
loge
13. 6 = log:x
14. log13r =
15, logs, = i
16. -4 =
17. logrx = -2
18.
19. 3 = log,27
20. 2 :
1o9,16
22.
1=
iog,g
24.
* = log,qg
?.1. log,243 =
5
23. log,f = *3
Cqpyright@ Big ldeas Leaming, LLC
Alt nghts resefved
-l
=
0
log+
x
logs
x
Algebra 2
llesources by Cagpter