Purdue University Purdue e-Pubs Computer Science Technical Reports Department of Computer Science 1971 An Axiom System For the Weak Monadic Second Order Theory of Two Successors Dirk Siefkes Report Number: 71-056 Siefkes, Dirk, "An Axiom System For the Weak Monadic Second Order Theory of Two Successors" (1971). Computer Science Technical Reports. Paper 478. http://docs.lib.purdue.edu/cstech/478 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. AN AXIOM SYSTEM FOR THE WEAK MONADIC SECOND ORDER THEORY OF TWO SUCCESSORS D i rk S i efkes July , CSD 1971 TR-56 ABSTRACT A comp l e t e ax i om sys t em for the weak monad i c second order t heory of two successor func t i ons , W 2 S , is presen t ed . The ax i om sys t em cons i s t s , rough l y , of the genera l i zed Peano ax i oms and of an induct i le def i n i t i on of the f i n i t e se t s . For the proof , me t hods of J . R . Buch i and J . Doner are used to ob t a i n a new dec i s i on procedure for W 2 S , whose proofs are eas i l y forma l i zed . D i fferen t f i n i t eness ax i oms are d i scussed . -1- 0. In t roduc t i on . Le t W2S be the weaK monad i c second order t heory of two successor func t i ons , i . e . the t heory of the fu l l b i nary tree wh i ch a l l ows quan t i f i ca t i on over bo t h e l emen t s and f i n i t e subse t s of the t ree . Doner 13] , and Independen t l y t hough somewha t l a t er Tha t cher-Wr i gh t [7] , have shown t ha t W2S Is dec i dab l e . W 2 S is t hus t r i v i a l l y ax i oma t i zab l e by i ts true sen t ences . It is no t just for aes t he t i ca l reasons , however , t ha t this paper presen t s a "neat" ax i om sys t em for W2S . When work i ng w i t h monad i c second order t heor i es one ac t ua l l y worKs w i t h fragmen t s of se t t heory . Thus there is no abso l u t e frame of monad i c second order l og i c , and i t is ques t i onab l e whe t her there is such a frame even for on l y the dec i dab l e monad i c second order t heor i es . Therefore when prov i ng the dec i dab i l i t y of a monad i c second order t heory , one shou l d spec i fy -what par t of se t t heory one needs for the proof . The s i t ua t i on is l ess uncer t a i n in case of a weak monad i c second order t heory . S t i l l there are d i fferen t def i n i t i ons of i nf i n i t y , some of wh i ch are equ i va l en t on l y by the ax i om of cho i ce . So one shou l d find ou t wh i ch def i n i t i on(s) one is us i ng . In case of a dec i dab l e t heory , to revea l the very con t en t of the t heory one has to forma l i ze the dec i s i on procedure , and under the way to co l l ec t al l pr i nc i p l es one needs for dec i d i ng . The resu l t for W2S is a comp l e t e ax i om sys t em . wh i ch cons i s t s of t hree par t s : ( i ) Ax i oms for the e l emen t ary l og i c of this l anguage , (i i) Ax i oms for the two successor func t i ons , wh i ch are genera l i za t i ons of the Peano ax i oms for one successor . (i i i) Ax i oms charac t er i z i ng the -de- f i n i t e sets as an Induc t i ve s t ruc t ure genera t ed from the emp t y se t by the opera t i on of ad j o i n i ng an e l emen t . In o t her w o r d s , one ge t s exac t l y the f i n i t e sets by repea t ed l y add i ng s i ng l e e l emen t s , s t ar t i ng from the emp t y se t . Th i s def i n i t i on , however , is i nduc t i ve and no t exp l i c i t , since "repea t ed l y" means "f i n i t e l y of t en" . As usua l w i t h monad i c second order theories. , Doner ' s dec i s i on procedure for W2S i nvo l ves f i n i t e au t oma t a- - t ree au t oma t a in this case . It is h i s d i scovery t ha t one has to have t ree au t oma t a worK i ng backwards , from the branches to the roo t , in order to make de t erm i n i s t i c au t oma t a usefu l . The au t oma t a no t i ons are eas i l y forma l i zed for our comp l e t eness proof . Doner ' s ma i n proof t oo l , however , tree i nduc t i on , canno t be expressed in the l anguage of W2S ; so we canno t forma l i ze h i s proof . Instead we g i ve a new dec i s i on procedure , wh i ch uses Doner ' s backward au t oma t a , bu t resemb l es in s t ruc t ure the dec i s i on procedures for the weaK and the s t rong monad i c second order t heory of one successor of Buch i [l] and [2] , as presen t ed in [6 j . I w i sh to express m y t hanKs to J . R . Buch i who grea t l y i nf l uenced this worK and i ts presen t a t i on ; some of h i s ideas can be. found in this i n t roduc t i on . I a l so w i sh to t hanK J . Doner for many he l pfu l d i scuss i ons on the sub j ec t . And I thank G . H . Mu l l er who or i g i na t ed and s t i mu l a t ed my i n t eres t in monad i c second order t heor i es . -131. The b i nary t ree and the sys t em W 2 S . se t of al l f i n i t e sequences of O's Le t and T2 l ' s. be the T2 can bes t be p i c t ured as the fu l l b i nary t ree , where the roo t represen t s the emp t y sequence two successors , xO and t, u, . . . ,z, equa l i t y sign = , two Xz , Tg cons i s t s of i nd i v i dua l se t var i ab l es unary and an i nd i v i dua l cons t an t form and each e l emen t x has xl . The l anguage to descr i be var i ab l es e, x = y , and X = Y . U,V, . . . ,Z, the func t i on symbo l s s^ and e. s^ , Pr i me formu l ae are of the Arb i t rary formu l a are bu i l t up from pr i me formu l ae us i ng sen t en t i a l connec t i ves and quan t i f i ers for bo t h types of var i ab l es . The i n t erpre t a t i on of the formu l ae is sugges t ed by the no t a t i on : i nd i v i dua l var i ab l es range over the e l emen t s of T 2 , se t var i ab l es range over f i n i t e subse t s of T g , so Xz means "z is an e l emen t of e X " , the cons t an t denotes the roo t of the t ree , and the two func t i on symbo l s are used for the two successor func t i ons . iff i t is true in T^ We s t i pu l a t e t ha t a sen t ence is true under this i n t erpre t a t i on , and ca l l the resu l t i ng sys t em ( = i n t erpre t ed t heory) W 2 S , Weak monad i c second order t heory of 2 Successors . c Th i s name is adap t ed from Rab i n ' s S2S for t he correspond i ng s t rong monad i c second order t heory of [ 4 J . — F o r the res t of the paper "set" w i l l norma l l y mean "fini te subse t of T 2 " . In formu l ae of W 2 S we w i l l use the fo l l ow i ng no t a t i on : We w i l l wr i t e xO and x l instead of s-j^x) respec t i ve l y , espec i a l l y and s ^ e ) . 0 and A l so we w i l l of t en wr i t e 1 SQ( ) and for z 6 X sQ(e) instead of X z , and we w i l l use free l y the usua l se t - t heore t i ca l no t a t i on e.g. z £ X U {yj s t ands for [Xz v z=y j . S i m i l ar l y , sets and func t i ons of e l emen t s or subse t s of T2 w i l l be def i ned by comprehens i on ; i t should be kep t in m i nd t ha t thus defined terms are used on l y as abbrev i a t i ons for express i ons of the forma l l anguage . --We w i l l use Greek cap i t a l l e t t ers to deno t e formu l ae of W 2 S . The symbo l w i l l deno t e l i t era l equa l i t y of formu l ae in def i n i ng abbrev i a t i ons . = 2. The ax i om sys t em . The purpose of this paper is to show t ha t the fo l l ow i ng three sets of ax i oms t oge t her cons t i t u t e a comp l e t e ax i om system (for der i vab i l i t y) for W 2 S , i.e. exac t l y the t rue sen t ences of W 2 S are der i vab l e from this ax i om sys t em . Par t A : An arb i t rary ax i om sys t em for the e l emen t ary l og i c of W2S , regarded for the momen t as a t wo-sor t ed e l emen t ary t heory . Here we add fur t her two equa l i t y ax i oms : (LEIBNIZ EQUALITY) (VZ)[Zx (EXTENSIONALITY) - Zy] (V z )[Xz - Yz] * x = y « X = Y Par t B : Genera l i zed Peano ax i oms for the two successor func t i ons : (OEl) xO ^ e (0E2) > xl £ e J (SE1) xO = yO (SE2) xl = yl (SE3) xO £ y l (IE) $(e) A (V 2 )[ § (z) (the roo t has no predecessors) x = y - x = y > (branches do no t merge) j - $(z0) A $(z l )] - (Vz)S(z) ( i nduc t i on schema for e l emen t s of the t ree) Par t C : Ax i oms for f i n i t e subse t s of the t ree : (OS) (3X) X = 0 (SS) (*X)(Vy)(SZ) (existence of the emp t y se t ) Z = X U [y} (the un i on of a se t w i t h a s i ng l e t on is a se t ) (IS) 4(0) A (VZ)(Vx)[*( $ - i(Z U- t x})] - (VZ)s(Z) ( i nduc t i on schema for subse t s of the t ree) Remarks : The ax i om sys t em of par t A cons i s t s of ax i oms for a t wo-sor t ed f i rs t order pred i ca t e ca l cu l us res t r i c t ed to our l anguage . An examp l e of such an ax i om sys t em may be found on p . 4 / 5 of t he au t hor ' s [6 j , if one (i) changes the subs t i t u t i on ru l e (SP) for pred i ca t e var i ab l es into a rule for chang i ng free se t var i ab l es , and (i i) adds the usua l equa l i t y ax i oms wh i ch make = a congruence re l a t i on . (SP) mus t be de l e t ed , s i nce i t is equ i va l en t to t he fu l l comprehens i on pr i nc i p l e , and t hus is fa l se in W 2 S . We w i l l i ns t ead der i ve the comprehens i on pr i nc i p l e res t r i c t ed to f i n i t e se t s . There seems to be no f i n i t eness def i n i t i on in W2S wh i ch wou l d a l l ow us to rep l ace par t C by this res t r i c t ed comprehens i on pr i nc i p l e and the ax i om t ha t a l l sets are fini te. (See the d i scuss i on fo l l ow i ng propos i t i on 3 . 6 , P . 16) If we had no t i nc l uded equa l i t y as a pr i m i t i ve no t i on , we could def i ne i t as usua l : x = y (VZ)[Zx Zy] X = Y ) (Vz)[Xz Yz] These two equ i va l ences are der i vab l e from par t A , and have to be used to ge t the forma l coun t erpar t s for the ax i oms of par t C . Ma i n t heorem : Exac t l y the true sen t ences of W2S are der i vab l e from the above ax i oms . It is easy to see that a l l the ax i oms are true in W 2 S . I t rema i ns to show t ha t the ax i oms are comp l e t e , i . e . that a l l true sen t ences are der i vab l e . To prove this we w i l l -7(i) descr i be a dec i s i on procedure by wh i ch any sen t ence of W2S is t ransformed into an equ i va l en t t ru t h va l ue , and (i i) show a t the same t i me t ha t the equ i va l ences in t he s i ng l e steps of the procedure are der i vab l e . comp l e t e in an effec t i ve sense : The ax i oms are thus For any true sen t ence of W 2 S , we can f i nd effec t i ve l y a der i va t i on . 3. Bas i c proper t i es o f t he t ree . We w i l l t ry to ge t some i ns i gh t i n t o t he bas i c s t ruc t ure of T2, va l uab l e l a t er in t he dec i s i on p r o c e d u r e . wh i ch w i l l prove For t he res t of the p a p e r , in a l l l e m m a t a , propos i t i ons and t heorems , the reader shou l d add t he phrase "The fo l l ow i ng i s der i vab l e from the ax i oms" . N o r m a l l y , h o w e v e r , t he proofs w i l l be g i ven in a ha l f-forma l w a y , on l y i nd i ca t i ng how a der i va t i on cou l d be bu i l t u p . We s t ar t by der i v i ng t wo vers i ons o f t he comprehens i on pr i nc i p l e for f i n i t e s e t s , s t a t i ng t ha t def i nab l e par t s of se t s are se t s . Propos i t i on 3. .1: (COMPfin) (3W)(Vx)[4(x) - Wx] (COMP*in) )(Vx)[Ux i Wx - (3U)(Vx)LUx $(x)J $(x) J Proof : I t is easy to der i ve t he equ i va l ence of t he t wo forms . We w i l l der i ve ( C O M P * i n ) : We w i l l show (VW) } (W) schema (IS) . i|i(0) means ac t ua l l y Le t w i t h t he he l p of the se t i nduc t i on (VY)C(Vx) I Yx - ¥(Y)L Now by pred i ca t e l og i c we have (Vx) "1 Y x A (Vx)- i Ux (V x )[Ux t —> Yx A 4(x)] , - and thus (Vx)iYx A )(Vx)->Ux - (3U)(Vx)[Ux f - j Yx A $(x)]- Ax i om (OS) y i e l ds (Vx) "lYx - i.e. *(#) . U [z}) is correc t l y expressed as (VY){ (Vu) t Yu u = z v Wz] - *(Y) j -9Then xjf(W) - wh i ch y i e l ds U {z}) (VW) t (W) is derived by s i m i l ar s t eps , by (IS) . • I t is mos t i mpor t an t for our purpose t ha t the naturalpar t i a l order of be def i nab l e in W 2 S . Def i n i t i ons : 1) Trans(U) U s (V z )[Uzo v Uz l x ^ y = d f (VU) [.Trans (U) a U y 3) x < y = 4) x ~ y =df> x ^ y ^ Propos i t i on 3 . 2 i T UzJ is t rans i t i ve , i . e . c l osed under predecessor . 2) of - 2 Y A X - UxJ ^ y v x and y are comparab l e . - and < are the na t ura l par t i a l order i ngs i nduced by the successor (a) A (b) Z x ^ z (c) A (e) y (f) y A y ^ x (g) - y = y e (h) (i) (J) y xc " » * y v xl s y xl z - y y z. The proof cons i s t s of a l ong cha i n of l emma t a , wh i ch we w i l l no t g i ve here . The i n t eres t ed reader should no t e t ha t (e) is bes t der i ved before (d) and ( f ) . — I t should be remarked that Propos i t i on 3 . 2 is a consequence of the ax i oms of par t s A and B a l one , t oge t her w i t h (COMPfin) . The fo l l ow i ng def i n i t i ons concern subse t s of Tg . The -10- t erm i no l ogy is par t i a l l y t aken from Doner [3] and Rab i n C4J . S i nce in W2S we dea l on l y w i t h f i n i t e se t s , however , the def i n i t i ons of "fron t i er" and "fron t i ered tree" are d i fferen t from Rab i n ' s defini t ion for S2S , a l t hough the no t i ons are the same ; the no t i on of "path" is weaker t han in S2S . Doner , on the o t her h a n d , ca l l s "fron t i er" wha t we ca l l "border" ; so no t every fron t i er in Doner ' s sense is a fron t i er in our sense . Def i n i t i ons : ' 1 Tx =df Cy ; x ^ y l : the t ree w i t h roo t x . Px =df ty; y - x i : the pa t h up to x . 3 C1(U) = d f {x ; (3y £ x)UyJ : 4 Br(tJ) = d f tx € 5 B r ( U ) = d f tx % C1(U); (Vy < x ) y ^ C l (U)) : xo % U; the t rans i t i ve c l osure of v C1(U) xl % C1(U)J: + border of + U 7 U" - = d f C1(U) U B r ( U ) : f U - Br(U) : Fr(U) the border of U. the ou t er U. + 6 U. the ou t er c l osure of the i n t er i or of U. U. = d f (*z)(*y e U ) y ~ z A (Vy , z € U)Lz ~ y - z = y ] U is a fron t i er . 9 FrTr(U) F i n(U) Pa t h(U) U = d f Trans(U) s Fr(Br(U)) : (^W)CFr(W) =df U ^ 0 u ^ C1(W)J : Trans(U) U is a fron t i ered U is f i n i t e . (V z )[Uzo - nUz l J : is a pa t h . I t shou l d be remarked once more t ha t def i n i t i ons 1 - 1 1 are mere abbrev i a t i ons , e . g . x ^ y ; bu t Tx y £ T A„ means forma l l y just is no t a se t of our m o d e l . — W e w i l l use no t a t i on l i ke U € Trans instead of Trans(U) . t ree . -10(a)- An examp l e m i gh t I l l us t ra t e t hese def i n i t i ons . e Here the fo l l ow i ng sets occur : • U = [10 , 11} o,» C1(U) = {e , l , 10 , l l j • Br(U) = {e , 10 , l l } • B r ( U ) - [0 , 100 , 101 , 110 , 111} + The reader w i l l more eas i l y unders t and the proofs of this paper if he draws s i m i l ar p i c t ures . -11Up to now we Know on l y t ha t the emp t y se t ex i s t s ; we w i l l show now t ha t there are a l o t more se t s . Propos i t i on 3 . 3 : Ex i s t ence of se t s : P • X = Br(W) U = v n W U = V U W = C1(W) + = Br (W) (S) Proof : We ge t (a) by comb i n i ng (OS) and (SS) . Us i ng the formu l a *(x) s d f U = tx]j we prove (b) by (IS) , using (a) and (SS) . (i) are i ns t ances of ( C O M P f i n ) . (c) , (d) , and Se t i nduc t i on (IS) on the formu l a *(w) = j f (VV)(^U) gives (e) w i t h the he l p of (SS) . U = V u w (f) fo l l ows from (b) and (e) by (IS) , if w e no t e t ha t C1(U U txJ) = C1(U) U P x . We canno t ye t prove (g); a proof fo l l ows from Propasi t ion 3 . 4(a) t oge t her w i t h (a) , (e) , and ( C O M P f i n ) . d i rec t consequence of (h) f i na l l y is a (f) , (g) , and (e) . • The nsxt proposi t ion prov i des two o t her i nduc t i on schema t a for se t s : -12- We w i l l show (VU) t (U) t rans i t i ve U, by se t i nduc t i on (IS) . S i nce for U = C 1 ( U ) , we ge t t he wan t ed conc l us i on (<U e T r ans ) * ( U ) . C1(0) = 0,therefore •((*) h o l d s . «(U) . We w i l l show (Vx)f(U U [x i ) S t ar t w i t h Case 1 . U be g i ven such t ha t by i nduc t i on (IE) . x = e: U = 0. fo l l ows from Case 2 . Le t Then U U lei = t e} = C l ({ e} ) , thus U te 4( t e}) . U ^ 0. Then e £ C 1 ( U ) , t herefore C1(U U {e}) = CI wh i ch t oge t her w i t h ^r(U) i mp l i es *(U U [e i ) . Now l e t V(U U (x j ) be proven j we have to show ¥(U U t xo3) ^(u U {.xl}) . S i nce Trans (CI (U U t x})) A x e C1(U U t x}) A 4(C1(U u { x j ) ) , we ge t from t he hypo t hes i s of the propos i t i on Bu t C1(U U £ X J ) U t xo) wh i ch i mp l i es ^(U U t xo} ) . = C1(U u {xo J) , Ana l ogous l y we ge t Y(U U t x l i ) . -13- (a (b L y t p A y ^ x - y o e p v y i e ^ j (c (d (e (f (g (h (i (* (1 (m (n Proof : (a) , (b) , and (c) fo l l ow eas i l y from Propos i t i on 3 . 2 . j (d) fo l l ows d i rec t l y from t he def i n i t i ons . (e) 3 (g) , and (h) are j easy.To prove W = d f , U fl (T Then (f) l e t x £ U be g i v e n . B r ( W ) ^ Br(U) n (T Le t - [x j ) . | - UJ). Case 1 : W = P. Then Case 2 : W £ i>. I t i s easy to prove I x t Br(U) . V ^ <t> - by B r ( V ) ji 0 . se t i nduc t i on t ha t -14So l e t y Br(W) . Then B r ( U ) , and x < y . R r (i): x £ C1(U) i mp l i es t ha t + + txo fc C1(U) v xo € B r ( U ) J A [x l t C1(U) V x l € B r ( U ) J and thus On the o t her hand , x 6 Br(U ) xo % U + + V xl % U . + Therefore , x € B r ( U ) i mp l i es + x e u , + thus x £ B r ( U ) . + Then x £ U . i mp l i es by (e) and by def i n i t i on x % C1(U) , and t r i v i a l l y , + Converse l y , l e t x £ Br (U) . It rema i ns to show xo % U + + v xl % U . + Assume xo t U : Case 1 : xo 6 C1(U) . + Then x £ C1(U) , thus x £ B r ( U ) , con t rad i c t i on . Case 2 : Thus + xo £ B r ( U ) . Then x € C1(U) , aga i n con t rad i c t i on . + xo % U . Tb prove (J) , use t rans i t i ve se t s : Propos i t i on 3 . 4(a) , i nduc t i on for + + B r ( p ) = EeJ , B r ( t e J ) = t o , l } ; t hus the i nduc t i on beg i nn i ng is easy . let x t U , suppose Now l e t + Fr(Br (U)) U be t rans i t i ve , as i nduc t i on hypo t hes i s . We have to show + + F r ( B r ( U U t xOJ)) A F r ( B r ( U U t x l j )) Case 1 : xo € U . Then U U t xo} = U . Case 2 : xo £ U . Then x € Br(U) A xo € B r ( U ) . + + Thus + B r ( U U t xo}) = ( B r ( U ) - t xo}) U {xoo , xo l } . Le t If + y , z e B r ( U u Ixoi), y ^ z : + y , z 6 B r ( U ) , t hen y •/ z To show y ^ z . by i nduc t i on hypo t hes i s . y = xoo , z = x o l , or converse l y , then y ^ z . If , s a y , If -15+ y £ B r ( U ) - Cxo3 , = x o o , then y / x o , thus Th i s proves the second c l ause in the def i n i t i on of a fron t i er . To ge t the f i rs t c l ause , l e t t ha t + z € Br (U) A y ~ y be g i ven , l e t z be such (by i nduc t i on hypo t hes i s) . z We have to show + (3z € B r ( U U t xo})) If z = x o , t hen y ~ z. xoo ~ y v xo l ~ y . + z £ B r ( U U t xo)) . If z ^ x o , t hen Thus we have shown + F r ( B r ( U U {xo})) . The proof for x l is ana l ogous . Thus we have proved (j) for t rans i t i ve se t s wh i ch by (d) is enough . from (e) , ( i ) , and ( j ) . + (U ) ' = U + (k) fo l l ows To prove (1): + - Br(U ) = U by (i) and def i n i t i on , + + - B r ( U ) = C1(U) (m) is a d i rec t consequence of (1) , s i nce Trans(U) ^ For (n) l e t F r T r ( U ) . from (f) . So l e t U = C1(U) . The t rans i t i v i t y of IT fo l l ows eas i l y + x e B r ( U ~ ) , thus x % U" Since Fr(Br(U)) , t here is (Vy < x ) y £ U~ . z € Br(U) such that x ~ z. If z < x were t rue , t hen z € U ~ , wh i ch con t rad i c t s z € Br(U) . Thus x ^ z , and t herefore by the t rans i t i v i t y of - S i nce x £ U , we have x 6 Br(U) . U, x E U. Thus + B r ( U ~ ) c Br(U) . The converse i nc l us i on is proved s i m i l ar l y . converse l y Trans(U") the t rans i t i v i t y of from ( j ) . + Br(U) = B r ( U ~ ) . U , whereas Now l e t Th i s i mp l i es eas i l y Fr(Br(U)) fo l l ows d i rec t l y -16- For (o) aga i n l e t F r T r ( U ) : (lQ by (n) . + + = C1(U") U B r ( U " ) = U" U B r ( U ) = U The converse d i rec t i on fo l l ows from (k) . Propos i t i on g » 6 : • F i n i t eness pr i nc i p l es (two o t hers are to be found in Propos i t i on 3 . 5 ( j )and(k) . (a) (VU € Pa t h)(3x) U = Px : every p a t h has a m a x i m u m . (b) (vu) F i n (U) : every se t Is f i n i t e . (c) (VU € F r ) [ U = [e} v (ax)LUxo U x l ] ] : every fron t i er has a m a x i m u m . Proof : (a) and (b) are eas i l y proven by Propos i t i on 3 . 4 ( a ) , i nduc t i on for t rans i t i ve s e t s , on t he formu l ae Pa t h(U) - (3x) U = Px and F i n(U) , respec t i ve l y . (c) i s t r i v i a l w i t h he l p of i nduc t i on for fron t i ered t r e e s , Propos i t i on 3 . 4 ( b ) . u I t is easy to see t ha t a l l f i ve f i n i t eness pr i nc i p l es of Propos i t i on 3 . 6 wou l d be fa l se in the s t rong monad i c second order t heory of two successors , Rab i n ' s S 2 S , i . e . t hey don ' t ho l d in t he t ree w i t h arb i t rary subse t s . Bu t some of t hem are t rue in i n t ermed i a t e s t ruc t ures , wh i ch have some i nf i n i t e s e t . I ndeed , ca l l a pa t h U i nf i n i t e i ff ( V x t U) t Uxo v u x l ] , ca l l a Be t (Vu Al l W t h i n i ff (U) - (ay 6 U ) W n T y = 0 ] so .g. comb , -17i . e . the se t n {O l ; n < . N o w , in the s t ruc t ure wh i ch adm i t s a l l t h i n sets bu t no o t her o n e s , Propos i t i on 3«5( j ) and (k) and Propos i t i on 3 . 6 (a) and (b) are t rue , bu t Propos i t i on 3 . 6(c) is fa l se . This shows t ha t the fo l l ow i ng se l f-sugges t i ng ax i om sys t em is no t comp l e t e : Ax i oms par t s A and B , t oge t her w i t h ( and the f i n i t eness ax i om Propos i t i on 3 . 6(b) . C 0 M P fin) (In the case of one successor func t i on , the ana l ogous ax i om sys t em is comp l e t e , s i nce there the f i n i t e se t s are un i que l y def i ned as the bound se t s . See L6 j , p p . 117 ff•) The thin se t s are no t n i ce anyway , s i nce the c l osure of a thin se t need no t be t h i n , and t hus Propos i t i on 3 . 3(f) and (h) are fa l se . Bu t if we en l arge the s t ruc t ure under cons i dera t i on by t ak i ng the c l osure of se t s . Propos i t i on 3 . 6(a) becomes fa l se , t oo , whereas t he t hree o t her pr i nc i p l es rema i n true . — I t m i gh t be t ha t the above ax i om sys t em becomes comp l e t e if we add (a) and (c) as ax i oms (or j us t (c)?) . We did n o t , however , i nves t i ga t e t h i s ques t i on . The s t ronger t heory S2S is more powerfu l here . In S2S , a pa t h is wha t we ca l l ed above an inf ini te pa t h (see Rab i n t 4 i ) . And a fron t i er is then def i ned as a se t wh i ch mee t s every pa t h in exac t l y one po i n t . W i t h this concep t of a fron t i er , the def i n i t i on of a f i n i t e se t as a se t bounded by a fron t i er works proper l y . Bu t in W 2 S , where i nf i n i t e pa t hs are no t ava i l ab l e , "fini te" does no t mean "bounded" , bu t "bu i l t up po i n t by po i n t " . As an app l i ca t i on of the f i n i t eness pr i nc i p l es we -18prove now two l emma t a wh i ch we w i l l need l a t er in the dec i s i on procedure : Lemma 3. .7: (3x)$(x) «—f (ttW)LWe A ( V x 6 W)L-iWxo A -Jtfxl Proof : - : Le t 0(x) be t rue . - 4(x)J] I t is easy to see t ha t W = P x sa t i sf i es the l e m m a . - : Le t W have the s t a t ed proper t i es , + impl ies t ha t e 9- B r ( W ) . e € W Therefore , by Propos i t i on 3 . 5( j ) and Propos i t i on 3 . 6(c) , t here is an + x such t ha t + xo £ B r ( W ) A x l £ B r ( W ) . Thus fc(x) ho l ds . • D i fferen t forms of the i nduc t i on pr i nc i p l e for e l emen t s are easy consequences of Propos i t i on 3 - 2 , e . g . the m i n i mum pr i nc i p l e , s t a t i ng t ha t every se t has a m i n i ma l e l emen t (i t can have more t han o n e , of course) , or t he max i mum pr i nc i p l e for subse t s of a pa t h . The fo l l ow i ng i nduc t i on pr i nc i p l e is d i fferen t , and w i l l be usefu l for the hand l i ng of tree au t oma t a . I t Is ano t her form of the max i mum pr i nc i p l e of Propos i t i on 3 . 6(c) : Lemma 3.-8: Downward i nduc t i on : + Trans(U) A ( v x £ B r ( U ) ) * ( x ) A ( V x € U)[4(xo) a $ ( x i ) Proof : Le t U, 4 - + (Vx € U ) i ( x ) sa t i sfy the hypo t hes i s of the l emma . By ( C O M P f l n ) , t here is a se t W such t ha t (Vx)[Wxf—> Ux A "I4(x)j . Assume W ^ 0 . t ha t By Propos i t i on 3 . 6(c) t here ex i s t s , , xo € Br (W) A x l 6 Br (W) , x such -19and thus x 6 W , xo £ W , x l fL W . Since tf 5 U , and U is t rans i t i ve , by Propos i t i on 3 . 5(h) we have + + B r ( W ) £ B r ( U ) U U, . t herefore + xo , xl € Br (U) U U If + xo € B r ( U ) , t hen by hypo t hes i s *(xo) ho l ds . If xo j? Br (U) , t hen xo € U , and t herefore again 4(xo) ho l ds (by def i n i t i on of W, since xo % W ) . Ana l ogous l y one ge t s «(x l ) , and t herefore by hypo t hes i s 4(x) . i mp l i es t ha t x £ W , con t rad i c t i on . • Bu t this -20Tree au t oma t a , recurs i on and norma l forms . — — . • • — — — . the set of a l l n- t up l es of t ru t h va l ues T,F. Le t £ n be Our def i n i t i on of tree au t oma t a is abou t the same as Doner ' s [3J , bu t we can use bo t h , the se t of s t a t es and the i npu t a l phabe t , chosen among the Rab i n Our t erm i no l ogy is par t i a l l y that of U L Def i n i t i ons ; 1) A ^ n - t r e e is a func t i on from a f i n i t e t rans i t i ve subse t of 2) T2 Ij . In t o A de t erm i n i s t i c t ree au t oma t on over the a l phabe t is a quadrup l e = se t of s t a t es , — . ' j: and x ^ K ^ 2J: U -* is the EC is the t rans i t i on func t i on , Z^- t ree + 1) is the i n i t i a l s t a t e , — - X:U The run of as i npu t is the def i ned by + A (VZ fc B r ( U ) ) Zt = s Q We wr i t e Z «= rn(j*,X). 3) where is the se t of f i na l s t a t es . sd over the tree > ® £ 2* s o x ^ K Is (Vt € U ) Z t = J ( X t , Z t o , Z t l ) . 4 accep t s X Iff Ze £ K . S i m i l ar l y , a nonde t erm i n i s t i c _tree au t oma t on over <si ~ < 1, L, K> , where i n i t i a l s t a t es , and L £ re l a t i on . & any A run of Z^.-tree Z: U I 5 is the se t of i s x over the 2-/n-tree - is t h e t r a n s i t i o n X: U 2-/n is sa t i sfy i ng + (Vt € B r ( U ) ) Z t € I A (Vt € U)(X t , Z t , Z t o , Z t l ) € L . We wr i t e run 4 )1 Z Z t Rn(jrf,X). of A se t of & over accep t s such that X iff there ex i s t s a Ze fc K . Ltn - t rees is au t oma t on def i nab l e iff there is a tree au t oma t on over the se t . X & wh i ch accep t s exac t l y the trees of -21Thus , tree au t oma t a are genera l i zed in the na t ura l way from the case of one successor . one s t r i k i ng d i fference : There i s , however , Tree au t oma t a run down the t ree , i . e . t hey s t ar t read i ng the i npu t tree at i ts border and end up a t the roo t . (For this reason t hey have to be O-sh i f t au t oma t a , i . e . the s t a t e at "t ime" t depends on the i npu t at the same " t i me" , whereas in the 1 - s h i f t au t oma t a of the l i near case the s t a t e a t t ime the prev i ous t i me . ) t depends on the i npu t a t The reason Is t ha t upward de t erm i n i s t i c tree au t oma t a are ra t her w e a k , s i nce a t any po i n t they carry the same i nforma t i on to both successors . It was for t h i s reason t ha t Doner i nven t ed downward au t oma t a in [33 . (As a ma t t er of fac t , nonde t erm i n i s t i c t ree au t oma t a do no t prefer a d i rec t i on ; we t h i nk of them as runn i ng downwards j us t for ana l ogy . ) Tree au t oma t a share w i t h ord i nary au t oma t a the fo l l ow i ng fac t s , wh i ch we sha l l use : To any nonde t erm i n i s t i c au t oma t on there is an equ i va l en t de t erm i n i s t i c one ; the au t oma t on def i nab l e sets form a Boo l ean a l gebra ; the emp t i ness prob l em is so l vab l e . For more i nforma t i on abou t tree au t oma t a see Doner [3-1, Tha t cher-Wr i gh t L?] , and Rab i n [4J . As remarked in the i n t roduc t i on , the dec i s i on procedure for W2S presen t ed here w i l l fo l l ow c l ose l y the dec i s i on procedure for the Sequen t i a l Ca l cu l us SC of Buch i [2] , as d i scussed by the au t hor in [6 j . The presen t a t i on here w i l l be se l f-con t a i ned , bu t we w i l l refer to C6J for proofs and for exp l ana t i on of t he me t hods used . -22We i den t i fy of I^- t rees w i t h n- t up l es of f i n i t e subsets T 2 (monad i c pred i ca t es res t r i c t ed to a common f i n i t e t rans i t i ve se t ) , i n a manner ana l ogous to Buch i L l J . Thus , we can represen t in the l anguage of W2S the cond i t i ons spec i fy i ng a t ree au t oma t on by propos i t i ona l formu l ae i nvo l v i ng se t var i ab l es . We use X , Y , 2 , some t i mes w i t h the upper i ndex n , for n- t up l es of se t var i ab l es , i . e . for iL^-trees. The l e t t ers U , V , W w i l l be used as before for se t var i ab l es , F or F n s , s^ w i l l deno t e t up l es of t ru t h va l ues , the t up l e cons i s t i ng of F ' s o n l y . — I n this way we use formu l ae of the fo l l ow i ng t hree norma l forms as tree au t oma t a in W2S (for de t a i l s see Def i n i t i on ; 6 , p p . 25 f f . and ff . ) : Au t oma t a norma l forms are the fo l l ow i ng : + (az).(Vt € B r ( U ) ) Z t = s Q A (Vt € U ) Z t = J[X t , Z t o , Z t l ] A K t Ze] 2P: U) 2Jn : + (3Z) . (V t € B r ( U ) ) iLzt] A A (Vt E U ) L[Xt , Zt , Zto . , Zt l j A K l ze j ( ^ Y ) (az) . KCZe] A (V t ) L l X t , Y t , Z t , Z t o , Z t l J H e r e , I , K , L are propos i t i ona l formu l ae i nvo l v i ng at mos t the i nd i ca t ed pr i me formu l ae ; formu l ae . J is a t up l e of propos i t i ona l (AY) is a s t r i ng of n-1 a l t erna t i ng blocks of se t quan t i f i ers where the l as t one is un i versa l . o o Obv i ous l y , a ^ - f o r m u l a or a £ -formu l a is true for some X and some t rans i t i ve U if and on l y if the correspond i ng de t erm i n i s t i c , respec t i ve l y nonde t erm i n i s t i c , t ree au t oma t on accep t s the tree xfu (the func t i on X res t r i c t ed to U ) . U) A la' - formu l a corresponds to a nonde t erm i n i s t i c au t oma t on -23- o Ij Z « rn(4 , xfu) p o xfu) uu U) Tj <u A ( V T ) L J ^ L J Z ^ . Z -24- (3W) ([We K^(e) A LgtFjFjFsF]] A A I ^ L F J F , V [-IWE A K 2 ( e ) A v ( t 6 U) { [ W t W t o j A [wt <—, WtlQ A { [Wt A ^ ( t ) ] V [iwt A L 2 ( t ) j j j . Put t ing these two equivalences together and using the defini t ion of Trans , one sees that the disjunct ion of two UJ ^ - f o r m u l a e can be wr i t t en in Theorem 4 . 2 : UJ 1^-form . • Any formu l a no t contain ing free individual UJ var i ab l es is equ i va l en t to a ^ - f o r m u l a for a su i t ab l e n . The proof is the same as for the correspond i ng theorem I . l . d . l of [63 , pp . 20-23 . We have to use Lemma 3 . 7 to e l i m i na t e con j unc t i ons of ex i s t en t i a l individual quant if i ca t i ons , and the above l emma to reduce the number of d i s j unc t i ons In the d i s j unc t i ve norma l form . To be able to swi tch back and forth between determinist ic and nondetermi n i st i c au t oma t a , we have to prove o that for a run . I^-formu l a to any Input there exists a unique This is i mp l i c i t In the no t a t i on , so in reading the nex t propos i t i on the reader should recal l that we prove der i vab i l i t y , no t t ru t h . Proposi t i on 4 . 3 * (a) Trans(U) a ^ - (Vx € U j L z ^ (b) Trans(U) - o Downward recursi on : = rn(xfu) A For any I^-formu l a = rn(4 , x[u) $ - z2x j (az) Z = rn{i } xfu) The proof is ana l ogous to the proof of Lemma t a I . l . b . l + 2 , p p . 10-11 of [63; i t uses downward i nduc t i on , l emma 3 . 8 , and set i nduc t i on . Propos i t i on 4 . 3 can be eas i l y general ized to more general forms of recurs i ons ; we w i l l , however , need on l y -25this form . A l so we do no t s t a t e the correspond i ng propos i t i on upward recurs i on . o n I t is by downward recurs i on , t oge t her w i t h downward i nduc t i on and i nduc t i on on fron t i ered t rees , Propos i t i on 3 . 4 , t ha t we avo i d Doner ' s t ree Induc t i on and t ree recurs i on p . 409) . ([3] , Doner ' s pr i nc i p l es are no t express i b l e in t he l anguage of W 2 S . sub t ree of I n d e e d , even t he no t i on beg i nn i ng a t i"fw, " t he w" (Doner , I . e . ) , wou l d make W2S undec i dab l e , s i nce i t a l l ows one to def i ne conca t ena t i on . Theorem 4 . 4 : o formu l a . To any D -formu l a t here is an equ i va l en t The proof is essen t i a l l y the same as in the l i near c a s e , c f . t heorem I . 2 . C . 2 on p . o of the of 16 j . S i nce t he run Z^-formu l a is cons t ruc t ed by downward recurs i on , Propos i t i on 4 . 3 , the equ i va l ence has to be proved by downward i nduc t i on , l emma 3 . 8 . JD Coro l l ary 4 . ^ : Proof : Z^ is c l osed under Boo l ean opera t i ons . As in t he l i near c a s e , us i ng t heorem 4 . 4 for nega t i on . See e . g . uu £ p. To der i ve from Coro l l ary 4 . 5 our ma i n t heorem , t ha t w is c l osed under n e g a t i o n , we have to use the fac t t ha t Is dec i dab l e . Th i s fo l l ows d i rec t l y from the fo l l ow i ng cons t ruc t i on , wh i ch is due to RabU) i n L53 P « 3 0 : L e t $ be a sen t ence i n con t a i n i ng K se t quan t i f i ers , i B df ( Def i ne se t s R , c X a Z * ) KlZel A ( V t as fo l l ows : ) L£z t , Z t o , Z t l ] -26- 1 RQ R = D F = R i+1 df S i nce i U ^ h: ' R1 5 R . +1 = Rm Proof : ex 6 * S o' € 1 R i s , t i £ m. Le t R =df ^ Wr i t e 2 holdsj such t ha t R1< *L(x) shor t for the r i gh t side of t he l emma . We w i l l show by (me t ama t hema t i ca l ) i nduc t i on on - for i , l e t s £ • E i t her i nduc t i on hypo t hes i s . t ha t hypo t hes i s t 5O_ s £ R ^ , t hen we can use the Le t be g i ven . By t he i nduc t i on (xo) and i|r (x l ) bi1 are t rue . Le t we def i ne a run Us i ng Propos i t i on 3-3 for Z by (C0MP s = T( t rue) , the formu l a def i n i ng & C1(Zq) For s Q , s^ € R ^ such x be the respec t i ve runs . and So l e t i t be proven Or e l se t here are L l s , s0 , s^] ho l ds . i: (Vx) * g ( x ) Th i s is t r i v i a l for i=0 by ax i om (OS) . U C1(Z1) A [[xo S t A ZQt] V ). F L N Z Z O and Z , ^ (e) and (d) , For k = 1 wou l d be [xl S t A ^ t j v s = F(fa l se) , t he c l ause t = x wou l d be dropped . arb i t rary k one has to use componen t s of ~ k p, s € R <—y (az) lZx « s A (Vt ' € T )L[Z t , Z t o , Z t l ]] s 6 R± t o Rq ' LCs , sojSlJ for a l l 1 , t here k e n m ^ m for a l l Lemma 4 . 6: 2 iff L C F J J , ^ ] ho l ds ; o t herw i se LFK) U on *(x) U 0 1 k A t (az sfcEK and We w i l l prove by downward U)(Zx = s - t ha t (Vx £ U )ty(x) . x € U i mp l i es t ha t there is a (Vt 6 T ) L[Z t , Z t o , Z t l J . be t rans i t i ve . + formu l ae to def i ne the ^s(x) such t ha t (3Z c U) . Zx = s So l e t For Z. By Propos i t i on 3-3 (e) , t rans i t i ve se t k t=x} S (vt i nduc t i on T )L l Z t , Z t o , z t i ] € r] The l emma w i l l fo l l ow . - -27+ For x £ Br (U) , x £ U, $(x) s € let is eas i l y seen to be t rue . Z Le t be such that Z c u a Zx = s A (Vt € T x ) L[Z t , Z t o , Z t l ] Le t S q = Zxo , s 1 = Zx l . Z f U A zx j *= Sj Thus , s o , s-^ G R L[s , S Q S-J^j, , A Then for j = 0 , 1 , (Vt 6 T x J ) L l Z t , Z t o , Z t l ] . by the induct ion hypo t hes i s . we have s G R. Since ui Since the set R is compu t ab l e , we ge t : UJ Theorem 4 . 7 : is dec i dab l e . In fac t , for any sentence UJ ? In e i t her we can effec t i ve l y cons t ruc t a der i va t i on of 4 or ^ 4. No t e that l emma 4 . 6 impl ies that a l l sub t rees Tx are " isomorphic re l a t i ve to input free au t oma t a" , i . e . (1) (SZ)tZx = s A (Vt £ T ) L[Zt , Zto , Zt l jJ < y ? (az)tzy = s A (Vt G T ) L[Z t , Z t o , Z t l J} . v By re l a t i v i z i ng the comp l e t eness proof for W2S , the " i somorph i sm re l a t i ve to W2S-sen t ences" is also der i vab l e , i . e . (2) 4(x) for any formu l a (Tx) 4(x) i(y) (Ty ^ con t a i n i ng x as the only free var i ab l e (T ) and no t con t a i n i ng the cons t an t e. re l a t i v i za t i on of a l l quan t i f i ers in (Here $ to x ' is the Tx . ) No t e that (2) canno t be extended to formu l ae con t a i n i ng o t her free var i ab l es , since w i t h i n W2S we canno t map e l emen t s or subsets of T into the correspond i ng•e l emen t s or subse t s of T . -28The usua l proof for t he dec i dab i l i t y of ^ fac t t ha t , if an au t oma t on adm i t s a run a t a l l adm i t s a "shor t" one (see e . g . Doner uses the t hen i t p . 413) . To forma l i ze t h i s proof one needs (1) to cu t down a g i ven run wh i ch is too l ong . A l so one needs a s t ronger vers i on of l emma 4 . 6 , wh i ch is more cumbersome to der i ve . The recurs i ve charac t er of t he cons t ruc t i on of Rab i n is be t t er sui ted for our i nduc t i ve proofs . We need a fur t her l emma : Lemma 4 . 8 : Fr(U) - VX 6 U)(3Z)[K[Zx] (az)(Vx € U) KtZx] A (Vt fi (vt E T ) L t Z t , Z t o , Z t l j } u") L[Z t , Z t o , Z t l J : If one can s t ar t a g i ven au t oma t on on every po i n t of a fron t i er , then t here is a s i ng l e run from wh i ch one can ge t a l l the separa t e runs by res t r i c t i ons . Proof : I t i s easy to prove by se t i nduc t i on and Propos i t i on 3 . 3(e (Vx , y €U)Lx ~ y A (Vt E T X ) - x = y ] A ( V x € U)(3Z)[KCZx] a L[Z t , Z t o , Z t l J j - (3Z)(Vx € U)[K[ZX] A A (Vt 6 T ) L[Z t , Z t o , Z t l ]} . Th i s d i rec t l y i mp l i es t he l e m m a . " • u> Theorem 4 . 9 : is c l osed under Boo l ean opera t i ons . U) Proof : Con j unc t i on is easy . (az) . KLze] So l e t $(X) € be t he formu l a (Vt) L[X t , Z t , Z t o , Z t l ] . By res t r i c t i ng t he cons i dera t i on to of l emma 4 . 1 , we see t ha t $(x) C1(X) as in the proof is equ i va l en t to -29(1) (VU € Trans ){, (Vt £ U)TX t - (3Z) t K[Ze] A A (Vt 6 U ) L[X t , Z t , Z t o , Z t l ] A (Vt % U ) L[p , Z t , Z t o , Z t l ]}} Us i ng the formu l a R LlF,Zt ,Zto,Zt l] we def i ne the se t as in l emma 4 . 6 , and cons t ruc t a propos i t i ona l formu l a s.t. I t s] ? s € R. (2) (VU e Trans)((V t £ U) i X t A (vt e - (3Z){KlZeJ a Llxt ,zt ,zto,zti] A (vt e Br Indeed , (1) -* For (1) (2) Then (1) is equ i va l en t to (2) is i mmed i a t e from l emma 4 . 6 . use l emma t a 4 . 6 and 4 . 8 t oge t her w i t h Propos i t i on 3 . 3(e) . 2-P-formula ^(X , U) . t-P-formula i | i2(X,U) Therefore T $(X) iLzt]}}. The second ha l f of (2) is a Thus by coro l l ary 4 . 5 there is a equ i va l en t to "^(XjU) . Is equ i va l en t to (3U € Trans)( (Vt 9- U ) "T X t A . * 2 ( X , U ) } , ui wh i ch is eas i l y t ransformed into • I -30- REFERENCES J . R . BuchI : au t oma t a . J . R . Buch i : Weak second order ar i t hme t i c and f i n i t e Z . Ma t h . L o g . Grund l . Ma t h 6 On a dec i s i on me t hod in res t r i c t ed second order ar i t hme t i c . In "Logic M e t h . Ph i l . Sc . , Proc . I960 S t anford In t . Congr . " . J . Doner : 66-92 . S t anford 1-11 . Tree accep t ors and some of t he i r app l i ca t i ons . J . Comp . Sys t . Sc . 4 (1970) , 406-451 . M . O . Rab i n : Dec i dab i l i t y of second-order t heor i es and au t oma t a on i nf i n i t e t rees . M . O . Rab i n : au t oma t a . D . S i efkes : Transac t i ons AMS 141 1 Weak l y def i nab l e re l a t i ons and spec i a l Techn i ca l repor t N o . 3 2 , Jerusa l em , June , 1969 . 1 Dec i dab l e t heor i es I ; -Buch i s monad i c second order successor ar i t hme t i c . L e c t . No t es M a t h . V o l . 1 2 0 , Ber l i n-He i de l berg-New York 1970 . J . W . Tha t cher , J . B . Wr i gh t . Genera l i zed f i n i t e au t oma t a t heory w i t h an app l i ca t i on to a dec i s i on prob l em of second-order l og i c . Ma t h . Sys t . Theory 2 57-81 .
© Copyright 2026 Paperzz