Minorities Vietnam Draft The 1969 lottery drawing for the Vietnam War was demonstrated not to be random. A barrel with 366 plastic capsules was used, where each capsule had a birth date on it (month and day); one capsule was for those who were born on leap day. One at a time, the capsules were drawn by hand. The first to be drawn was ranked first. The second to be drawn ranked second. Thus, if September 21 was drawn first, then all men aged 18–26 with a birthday on September 21 would be the first group called to service. The procedure that was followed to order the men with the shared birthday depended on each man’s initials. A separate lottery was held in which the 26 letters of the alphabet were ranked. This followed the same process as the birthdays, in that 26 letters were placed in a barrel and one by one were drawn. Using the resulting ranking, each man within a shared birthday was ranked according to the permutation of the first letter of his last name, the first letter of his middle name, and the first letter of his first name. Overall, this should have been a fair method for selection, as it was based on randomized birthdays and letter permutations. Why It Was Not Random The above-mentioned method would be random if implemented properly. However, it turned out that men with birthdays later in the year (for example, December birthdays) were much more likely to be drafted than those with birthdays in the beginning of the year. What happened is quite simple. The capsules were placed in the barrel month-by-month beginning with January, and the barrel was not well mixed. The December capsules were on top and they had a higher probability of being pulled out first, resulting in lower draft numbers for those men. Further Reading Friedman, Lauri S. Military Draft (Writing the Critical Essay: An Opposing Viewpoints Guide). Farmington Hills, MI: Greenhaven Press, 2007. Hay, Jack. Military Draft (History of Issues). Farmington Hills, MI: Greenhaven Press, 2007. Carmen M. Latterell See Also: Lotteries; Probability; Randomness; Vietnam War. 667 Minorities Category: Mathematics Culture and Identity. Fields of Study: Communication; Connections. Summary: Minorities are historically underrepresented in American mathematics and efforts have been made to rectify this. Mathematics is a vital tool in modern life and mastery of mathematical subjects is a requirement to enter many professions, including medicine, engineering, and the sciences. For this reason, observed trends in mathematical achievement in school and representation in mathematics-oriented professions, both dominated by whites and Asians with other minorities lagging behind, give cause for concern. At the end of the twentieth century and into the twenty-first century, the media publicized information about the performance and underrepresentation of minorities in mathematics, many authors published works about minority individuals in mathematics, and mathematicians and mathematics educators designed and implemented successful educational initiatives and programs. The United States is a racially and ethnically diverse country with a history of reporting extensive statistics about school and professional accomplishment by race and ethnicity. Few in the twenty-first century would argue that observed differences are because of inherited differences in ability; instead, several other explanations have been offered. One is that minority students have fewer opportunities to master mathematics because they may be more likely to attend low-achieving schools, which may have more inexperienced and uncertified teachers and fewer teachers with graduate degrees. A second explanation is the lack of role models, since many mathematics faculty and prize winners are white or Asian, so students of color (or their teachers) may incorrectly believe that mathematics ability is somehow linked to race or ethnicity. In addition, students may not feel comfortable taking advanced mathematics classes in which they are the only person of color. A third factor is that some minority students report being actively discouraged from pursuing careers in mathematics and science. Racial and ethnic categories used for collecting data are not consistent across all organizations and some have changed over time, somewhat complicating comparisons. The terms “minority” and “person of color” 668 Minorities Eighteenth-Century Minority Mathematicians I n the eighteenth century, Benjamin Banneker created astronomical almanacs, solved mathematical puzzles, and wrote to Thomas Jefferson to plead against slavery. Other eighteenth-century individuals include ex-slave Thomas Fuller, who was known for his calculating abilities, and Muhammad ibn Muhammad al-Fullani al-Kishnawi, a mathematician, astronomer, astrologer, and mystic who constructed magic squares. Mathematicians and historians have also written ethnomathematics works on African mathematics, Native American mathematics, and Incan and Mayan mathematics. are themselves controversial; for instance in the United States, persons of Asian descent would qualify on both scores and yet are not usually classified as such. A better formulation in this case might be “members of ethnic groups with traditionally lower representation in mathematics,” but the terms “minority” and “person of color” will be retained, since those terms are commonly used and understood. Minority Mathematicians in History In part because of research that suggested the importance of role models, the known benefits of humanizing mathematics, and a desire to provide counterexamples to noted racist comments, historians and mathematicians have detailed the lives and work of many outstanding mathematically talented minority individuals. Minority mathematicians in the nineteenth and twentieth centuries faced many barriers, including restricted educational, employment, and publishing opportunities; derogatory comments and intimidation; and Jim Crow treatment that barred minorities from attending conferences. Despite these conditions, many minority mathematicians succeeded in making great contributions to the mathematics community. Elbert Cox was the first minority American to obtain a Ph.D. in mathematics. He attended a segregated primary school with what has been noted as inadequate educational resources. In high school he became a talented violinist, and he also enjoyed and excelled in mathematics and physics. He graduated from Indiana University with a degree in mathematics and his transcript listed “COLORED” across it. His 1925 Cornell University Ph.D. thesis was “Polynomial Solutions of Difference Equations.” He was recognized as an outstanding teacher and effective master’s thesis adviser during his career at Howard University, a historically black institution. Other early minority Ph.D.s in mathematics include dozens of mathematicians whose contributions to mathematics and mathematics education have been broad and varied. One name that often appears on lists of prominent minority mathematicians is that of David Blackwell, a noted statistician and game theorist who earned his Ph.D. in 1941. He stated, “[Racial discrimination] never bothered me. I’ll put it that way. It surely shaped my expectations from the very beginning. It never occurred to me to think about teaching in a major university since it wasn’t in my horizon at all.” Joaquin Diaz is noted as the first Hispanic to obtain his Ph.D. in mathematics from an American institution. His 1945 thesis at Brown University was titled “On a Class of Partial Differential Equations of Even Order.” He worked at a number of different institutions, including as a research associate at the Institute for Fluid Dynamics and Applied Mathematics at the University of Maryland and as a professor at Rensselaer Polytechnic Institute. Until the twenty-first century, it was thought that Evelyn Boyd Granville, who received her Ph.D. in 1949 from Yale University in functional analysis, and Marjorie Lee Browne, who received her Ph.D. in 1950 from the University of Michigan in topological and matrix groups, were the first minority women Ph.D.s in mathematics. They both remained active in the mathematical community. Earlier in the 1940s Martha Euphemia Lofton Haynes obtained her Ph.D. from Minorities Catholic University of America by writing a thesis on the “Determination of Sets of Independent Conditions Characterizing Certain Special Cases of Symmetric Correspondences.” While she had a very distinguished teaching career in the Washington, D.C. public school system, her divergence from the research community may explain why mathematicians were not aware that she was the first woman minority Ph.D. in mathematics. In addition, histories and statistics on minority mathematicians were not common until later in the twentieth century, so it is difficult to identify some of the early mathematicians. In 1964, when Thomas Storer graduated from the University of Southern California with a thesis on “A Family of Generalized Difference Sets,” he may have been the first Native American to obtain a Ph.D. in mathematics, although some historians refer to the possibility of an earlier Ph.D. in mathematics education. Storer’s research was primarily in combinatorics, although he was also known for his teaching, advising of honors students, and as a leading authority on string tricks and figures. Another notable minority mathematician who obtained his Ph.D. before 1970 is Hispanic mathematician Richard Tapia, who graduated from the University of California, Los Angeles, in 1967. He has received many honors and awards and his research in computational mathematics and educational outreach programs are known nationwide. He explained: Some of my job duties include teaching mathematics and science to college students, writing books, doing research, and working with the community. When I made my career choice, I knew I wanted to reach out to underrepresented groups, especially Hispanics. I wanted to show minority students that if they really want to do something, they can. I believe I can improve minorities’ participation in science and mathematics. However, in order to do this, I have to serve as a role model by first being an excellent scientist. Recent Developments Despite the climbing cumulative numbers of minority mathematicians and improving conditions and opportunities for minority students, during the latter part of the twentieth century authors noted that the traditional stereotypes of mathematicians conflicted with the cul- 669 tural identities of minority groups. In 1997, mathematician Scott Williams created the Mathematicians of the African Diaspora Web site, “to suggest modern mathematicians and scientists as images of success to present to the African American community.” The site grew to thousands of Web pages filled with history, statistics, articles, and reference lists. The Society for Advancement of Chicanos and Native Americans in Science and the Mathematical Association of America program on Strengthening Underrepresented Minority Mathematics Achievement also host biography Web pages. In addition, there are a number of published articles and books on minorities in mathematics. Many researchers have conducted studies exploring factors relating to the continued underrepresentation of minorities in mathematics. For example, some researchers noted that differences in mathematics achievement may begin at the elementary school level. The Early Childhood Longitudinal Survey (ECLS), which followed a cohort of children from kindergarten in fall 1998 to grade 5 in spring 2004, found that in kindergarten there were already noticeable gaps in achievement by race and ethnicity. At the high school level, the National Assessment of Educational Progress reported that 12th graders in all racial and ethnic groups showed similar improvement in mathematics achievement scores from 1990 to 2000, but that minority groups still had lower achievement. Scores on the Scholastic Aptitude Test (SAT), a nationally administered exam often taken by college-bound students, over the period 1990–2008 show a similar pattern with most racial and ethnic groups showing improvement but Asian and white students consistently having the highest scores. Recently the numbers of African-American and Hispanic students taking Advanced Placement (AP) exams, specialized subject exams offered in some high schools and which may gain students college credit, has increased. According to the National Center for Education Statistics, mathematics teaching staff tended to be primarily white in U.S. public schools. Data from the National Center for Education Statistics also gives credence to the argument that some of the achievement gap may be because of minority students being more likely to have been taught by teachers with inferior qualifications. In 2007–2008, 12% of high school mathematics teachers had neither a college major nor standard certification in mathematics, but in schools 670 Minorities with at least 50% African-American enrollment this was true of 25% of people teaching mathematics. Schools with a majority of African-American students were also likely to have less experienced teachers. The millennial mathematics major consists of diverse students pursuing diverse careers and yet there are concerns about the percentages of minorities, including Asians/Pacific Islanders, African Americans, Hispanics, and American Indians/Alaskan Natives. For instance, in the late twentieth century and early twenty-first century, the percentage of undergraduate degrees in mathematics and statistics awarded to such minorities was approximately 20%, which was below the percentages of the resident college population. Historically, in the United States, Asian and white students have comprised the bulk of enrollment in graduate programs in mathematics and have received a disproportionate share of advanced mathematics degrees. Minorities are also underrepresented among scientists and engineers in the United States. For instance African Americans, Hispanics, and American Indians as a group constituted about 24% of the U.S. population in 1999 but only 7% of the science and engineering workforce, while Asians constituted about 4% of the population but 11% of the science and engineering workforce. Some evidence suggested that choice of career fields also differed by race. Salaries in science and engineering fields also differed by race. Researchers continue to study factors related to the underrepresentation of minorities in mathematics. There have been many successful programs that increased the participation of minorities in mathematics, including the Meyerhoff Scholars Program, the Tensor-SUMMA Grants, and the Enhancing Diversity in Graduate Education Program. Organizations, and conferences, such as the National Association of Mathematicians, the Society for the Advancement of Chicanos and Native Americans in Science, the Conference for African American Researchers in the Mathematical Sciences, and the Mathematical Association of America through its Strengthening Underrepresented Minority Mathematics Achievement (SUMMA) program, have been dedicated to supporting and promoting minorities in the mathematical sciences. The International Study Group on Ethnomathematics has focused on the cultural diversity in math- ematics and its applications to mathematics education. The Benjamin Banneker Association has been dedicated to the mathematics education of minority children. These professional associations have sponsored mathematics talks, sessions, and awards, published newsletters, and provided opportunities for social interaction and support. Further Reading Burke, Ronald, and Mary Mattis. Women and Minorities in Science, Technology, Engineering and Mathematics: Upping the Numbers. Northampton, MA: Edward Elgar, 2007. D’mbrosio, Ubiratan. Ethnomathematics: Link between Traditions and Modernity. Rotterdam, Netherlands: Sense Publishers, 2006. Donaldson, James, and Richard Fleming. “Elbert F. Cox: An Early Pioneer.” American Mathematical Monthly 107, no. 2 (2000). Hawkins, William. Constructing a Secure Mathematics Pipeline for Minority Students. Storrs, CT: The National Research Center on the Gifted and Talented, 1995. ———. “Mathematical Association of America Strengthening Underrepresented Minority Mathematics Achievement.” http://www.maa.org/ summa/archive/summa_wl.htm. Kenschaft, Patricia. Change Is Possible: Stories of Women and Minorities in Mathematics. Providence, RI: American Mathematical Society, 2005. Lorch, Lee. “The Painful Path Toward Inclusiveness.” In A Century of Mathematical Meetings. Edited by Bettye Anne Case. Providence, RI: American Mathematical Society, 1996. Moses, Robert P., and Charles E. Cobb, Jr. Radical Equations: Civil Rights from Mississippi to the Algebra Project. Boston: Beacon Press, 2001. National Science Foundation. “Women, Minorities and Persons with Disabilities in Science and Engineering.” http://www.nsf.gov/statistics/wmpd/start.htm. Sarah Boslaugh See Also: African Mathematics; Castillo-Chávez, Carlos; Hunt, Fern; Incan and Mayan Mathematics; Jackson, Shirley Ann; Mathematics Literacy and Civil Rights; Native American Mathematics; Ross, Mary G.; Succeeding In Mathematics.
© Copyright 2026 Paperzz