Supporting Information for Pd- and Cu-catalyzed approaches in the syntheses of new cholane aminoanthraquinone pincer-like ligands Nikolay V. Lukashev*, Gennadii A. Grabovyi, Dmitry A. Erzunov, Alexey V. Kazantsev, Gennadij V. Latyshev, Alexei D. Averin and Irina P Beletskaya. Address: Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russia Email: Nikolay V. Lukashev* - [email protected] *Corresponding author Experimental procedures, characterization data, copies of the 1H, 13C NMR spectra, UV–vis data General information ..................................................................................................................................S2 Experimental procedures and characterization data ..................................................................................S2 General procedure for preparation of amines 3a-c [2] ......................................................................... S3 General procedure of Cu-catalyzed amination ..................................................................................... S5 General procedure of Pd-catalyzed amination ..................................................................................... S6 Copies of the 1H and, 13C NMR spectra ..................................................................................................S10 UV–vis titration .......................................................................................................................................S26 References: ..............................................................................................................................................S33 S1 General information 1 H and 13 C-NMR spectra were recorded at 400 and 100.6 MHz respectively with a Bruker Avance 400 and Agilent MR 400 spectrometers. Chemical shifts were measured relative to HMDS and solvent signal in 1H and 13 C NMR spectra respectively. Only characteristic signals in 1H-NMR of steroids are given. Column chromatography was carried out on Macherey-Nagel slilicagel 60 (0.040– 0.063 mm). All procedures associated with oxygen- and water-sensitive compounds were conducted under dry argon atmosphere. Cs2CO3 was dried in vacuo at 120–150 °C for several hours, stored in a Schlenk tube, and weighed in an argon-flushed vessel. UV–vis absorption spectra of a 50 µM solution of the ligands 5c and 5d in acetonitrile (3 ml placed into quartz cuvette with 1 cm optical path length) were recorded as a function of added Cu(ClO4)2, Al(ClO4)3 or Cr(ClO4)3 (0.01 M in acetonitrile) at a uniform data point interval of 1 nm with a Cary 60 (Agilent) spectrophotometer. All necessary aliquots of perchlorates (3.0 µl or 7.5 µl) were added manually with LLG-microliter pipette (0.5 to 10 µl). The calculation of stability constants was performed by nonlinear least-squares analysis with the Specfit program [1]. Experimental procedures and characterization data General procedure for preparation of amides 2a–c [2] To the suspension of bile acid (1.0 mmol) and Et3N (1.5 equiv) in THF (2.5 ml) isobutyl chloroformate (1.1 equiv) was added at 10 °C and reaction was stirred at this temperature for 15 min. Conc. aqueous NH3 (1.5 equiv) was added dropwise and stirring was continued for 30 min at 10 °C and 3 h at rt. Solvents were evaporated and the crude product was washed with H2O followed by washing with Et2O. The target product was dried in vacuo at 50–60 °C to constant mass and used without further purification. S2 (3α,5β)-3-Hydroxycholan-24-amide (2a) Obtained from 1.50 g (4.0 mmol) of 1a. White powder (84%, 1.26 g). M. p. 224-226 °C (lit. 214216 °C [3], 208-210 °C [2]). 1H NMR (400 MHz, DMSO-d6): 0.60 (3H, s, 18-CH3), 0.86 (6H, 19-CH3, 21-CH3), 2.01 (2H, m, 23-CH2), 3.35 (1H, m, 3β-H), 4.43 (1H, d, J 4.5 Hz, 3-OH), 6.63 (1H, s, C(O)NH2), 7.20 (1H, s, C(O)NH2). (3α,5β,12α)-3,12-Dihydroxycholan-24-amide (2b) Obtained from 5.0 g (12.7 mmol) of 1b. White powder (80%, 4.0 g). M. p. 213-215 °C (lit. 213215 °C [2]). 1H NMR (400 MHz, DMSO-d6): 0.58 (3H, s, 18-CH3), 0.83 (3H, s, 19-CH3), 0.90 (3H, d, J 6.4 Hz, 21-CH3), 1.98 (2H, m, 23-CH2), 3.36 (1H, m, 3β-H), 3.59 (1H, m, 12β-H), 4.17 (1H, s, 12-OH), 4.45 (1H, s, 3-OH), 6.61 (1H, s, C(O)NH2), 7.19 (1H, s, C(O)NH2). (3α,5β,7α,12α)-3,7,12-Trihydroxycholan-24-amide (2c) Obtained from 5.0 g (12.2 mmol) of 1c. White powder (85%, 4.3 g). M. p. 138-140°C (lit. 135137°C [2]). 1H NMR (400 MHz, DMSO-d6): 0.57 (3H, s, 18-CH3), 0.80 (3H, s, 19-CH3), 0.91 (3H, d, J 5.4 Hz, 21-CH3), 2.15 (2H, m, 23-CH2), 3.17 (1H, m, 3β-H), 3.60 (1H, br.s, 12β-H), 3.77 (1H, br. s, 7βH), 4.01 (1H, s, 7-OH), 4.10 (1H, s, 12-OH), 4.32 (1H, s, 3-OH), 6.63 (1H, s, C(O)NH2), 7.21 (1H, s, C(O)NH2). General procedure for preparation of amines 3a–c [2] To the cooled (with an ice bath) suspension of amide 2 (1.0 mmol) in THF (10 ml) LiAlH4 (3 equiv) was added in small portions (CAUTION: exothermic reaction with hydrogen evolution) under argon atmosphere. When evolution of hydrogen ceased the mixture was refluxed for 15 h, cooled to rt, and excess of LiAlH4 was quenched by dropwise addition of H2O (3 ml). The suspension was half S3 concentrated and then filtered. The white solid was washed with hot THF until disappearance of the amine 3 in the filtrate (TLC control). The filtrate was evaporated and the product was purified by column chromatography. (3α,5β)-3-Hydroxycholan-24-amine (3a) Obtained from 1.26 g (3.4 mmol) of 2a. Eluent CH2Cl2:CH3OH:Et3N 100:10:5, Rf 0.5. White powder (67%, 0.83 g). M. p. 158-160 °C (lit. 148-150 °C [2]). 1H NMR (400 MHz, DMSO-d6): 0.63 (3H, s, 18-CH3), 0.90 (6H, s, 19-CH3, 21-CH3), 1.95 (2H, m, 24-CH2), 2.64 (2H, m, NH2), 3.58 (1H, m, 3β-H). (3α,5β,12α)-3,12-Dihydroxycholan-24-amine (3b) Obtained from 4.0 g (10.2 mmol) of 2b. Eluent CH2Cl2:CH3OH:Et3N 100:10:5, Rf 0.3. White powder (68%, 2.6 g). M. p. 108-110°C. 1H NMR (400 MHz, DMSO-d6): 0.58 (3H, s, 18-CH3), 0.83 (3H, s, 19-CH3), 0.91 (3H, d, J 6.5 Hz, 21-CH3), 2.45 (2H, m, NH2), 3.35 (1H, m, 3β-H), 3.78 (1H, s, 12β-H). 13 С NMR (100.6 MHz, DMSO-d6): 11.8, 12.5, 17.4, 23.1, 23.5, 26.1, 27.0, 27.4, 28.7, 30.1, 30.2, 32.9, 34.4, 34.9, 35.3, 36.3, 41.6, 42.3, 45.7, 45,9, 46.3, 47.5, 69.9, 71.0. (3α,5β,7α,12α)-3,7,12-Trihydroxycholan-24-amine (3c) Obtained from 4.3 g (10.4 mmol) of 2c. Eluent CH2Cl2:CH3OH:Et3N 100:10:5, Rf 0.2. White powder (68%, 2.8 g, 7.1 mmol). M. p. 110-112°C. 1H NMR (400 MHz, DMSO-d6): 0.58 (3H, s, 18CH3), 0.80 (3H, s, 19-CH3), 0.91 (3H, d, J 7.0 Hz, 21-CH3), 3.17 (1H, m, 3β-H), 3.60 (1H, s, 12β-H), 3.78 (1H, s, 7β-H), 4.00 (1H, s, 7-OH), 4.09 (1H, s, 12-OH), 4.30 (1H, br. s, 3-OH). 13 C NMR (100.6 MHz, DMSO-d6): 11.8, 12.4, 17.4, 23.1, 23.5, 26.1, 27.0, 27.3, 28.6, 30.1, 30.2, 32.9, 33.8, 35.1, 35.3, 35.4, 41.3, 41.5, 42.3, 45.7, 46.2, 66.2, 70.3, 71.0. S4 General procedure of Cu-catalyzed amination A mixture of amine 3 (0.3 mmol), aryl halide (0.1 mmol), CuI (0.02 mmol), L-proline (0.04 mmol) and K2CO3 (0.4 mmol) in DMSO (1 ml) was stirred at 110 °C in a glass vial with a screw cap under argon atmosphere for 24 h. The reaction mixture was cooled to rt, diluted with CH2Cl2 (15 ml) and washed with H2O (3 × 10 ml). The organic layer was dried over Na2SO4, evaporated, and the product was purified by column chromatography. 4-[(3α,5β,12α)-3,12-Dihydroxycholan-24-ylamino]toluene (4) Obtained from 56.7 mg (0.15 mmol) of 3b, 21.8 mg (0.1 mmol) of 4-iodotoluene, 3.8 mg (0.02 mmol) of CuI, 4.6 mg (0.04 mmol) of L-proline, 27.6 mg (0.2 mmol) of K2CO3 in DMSO (1 ml). Palebrown powder (95%, 44.4 mg). 1H NMR (400 MHz, DMSO-d6): 0.59 (3H, s, 18-CH3), 0.83 (3H, s, 19CH3), 0.93 (3H, d, J 6.5 Hz, 21-CH3), 2.12 (3H, s, CH3), 3.78 (1H, s, 12β-H), 4.19 (1H, d, J 3.8 Hz, 12OH), 4.47 (1H, d, J 3.8 Hz , 3-OH), 5.22 (1H, t, J 5.6 Hz., NH), 6.43 (2H, d, J 8.2 Hz), 6.85 (2H, d, J 8.2 Hz). 13C NMR (100.6 MHz, CDCl3): 12.7, 17.6, 20.3, 23.1, 23.6, 26.1, 26.3, 27.1, 27.6, 28.5, 30.4, 33.2, 33.6, 34.1, 35.2, 35.4, 36.0, 36.4, 42.0, 44.9, 46.4, 47.5, 48.2, 71.7, 73.14, 112.9, 126.3, 129.6, 146.2 1,3-Bis[(3α,5β)-3-hydroxycholan-24-ylamino]benzene (5a) Pale-brown powder (40%, 31.9 mg). M.p. 123-125 oC. 1H NMR (400 MHz, CDCl3): 0.63 (6H, s, 18-CH3), 0.91 (6H, s, 19-CH3), 0.92 (6H, d, J 6.4 Hz, 21-CH3), 3.03 (4H, m, 24-CH2), 3.61 (2H, m, 3βH), 5.85 (1H, t, J 1.9 Hz, 2-HAr), 5.98 (2H, dd, J 8.0 Hz, 1.9 Hz, 4-HAr and 6-HAr), 6.95 (1H, t, J 8.0 Hz, 5-HAr). 13 C NMR (100.6 MHz, CDCl3): 12.0, 18.6, 20.8, 23.3, 24.2, 26.2, 26.4, 27.2, 28.3, 30.5, 33.3, 34.5, 35.3, 35.6, 35.8, 36.4, 40.1, 40.4, 42.0, 42.7, 44.6, 56.1, 56.4, 71.8, 76.7, 77.0, 77.3, 96.9, 102.7, 129.8, 149.7. Calculated (C54H88N2O2): C 81.35%, H 11.13%, N 3.51%.Found: C 81.47%, H 11.12%, N 3.55%. S5 4,4’-Bis[(3α,5β)-3-hydroxycholan-24-ylamino]biphenyl (5b) White powder (41%, 35.8 mg). M.p. 133-135 °C. 1H NMR (400 MHz, CDCl3): 0.64 (6H, s, 18CH3), 0.91 (6H, s, 19-CH3), 0.92 (6H, d, J 6.5 Hz, 21-CH3), 3.08 (4H, m., 24-CH2), 3.61 (2H, m, 3β-H), 6.64 (4H, d, J 7.6 Hz, m-HAr), 7.35 (4H, d, J 7.6 Hz, o-HAr). 13C NMR (100.6 MHz, CDCl3): 12.0, 18.7, 20.8, 23.3, 24.2, 26.2, 26.4, 27.2, 28.3, 30.5, 33.3, 34.6, 35.3, 35.6, 35.8, 36.5, 40.2, 40.4, 42.1, 42.7, 44.8, 56.2, 56.5, 71.9, 113.1, 127.1, 130.6, 146.9. Calculated (C60H92N2O2·CH2Cl2): C 76.45%, H 9.89%, N 2.92%. Found: C 76.22%, H 9.60%, N 3.11 %. General procedure of Pd-catalyzed amination A mixture of amine 3 (0.3 mmol), aryl halide (0.1 mmol), Pd(dba)2 (0.012 mmol), BINAP (0.015 mmol) and Cs2CO3 (0.4 mmol) in dioxane (2 ml) was stirred at 100 °C in a glass vial with a screw cap under argon atmosphere for 24 h. The reaction mixture was cooled to rt, diluted with CH2Cl2 (15 ml) and washed with H2O (3 × 10 ml). The organic layer was dried over Na2SO4, evaporated, and the product was purified by column chromatography. 1,3-bis[(3α,5β)-3-hydroxycholan-24-ylamino]benzene (5a) Obtained from 65.1 mg (0.18 mmol) of 3a, 7.1 μl (0.06 mmol) of 1,3-dibromobenzene, 4.1 mg (0.0072 mmol) of Pd(dba)2, 5.6 mg (0.009 mmol) of BINAP, 34.6 mg (0.36 mmol) of t-BuONa in dioxane (1 ml). Pale-brown powder (61%, 29.2 mg). S6 1,8-Bis[(3α,5β)-3-hydroxycholan-24-ylamino]-9,10-anthraquinone (5c) Obtained from 108.5 mg (0.3 mmol) of 3a and 27.7 mg (0.1 mmol) of 1,8-dichloro-9,10anthraquinone. Dark-violet powder (88%, 81,6 mg). M.p. 156-158 oC. 1H NMR (400 MHz, CDCl3): 0.62 (6H, s, 18-CH3), 0.90 (6H, s, 19-CH3), 0.94 (6H, d, J 6.5 Hz, 21-CH3), 3.25 (4H, m, 24-CH2), 3.61 (2H, m, 3β-H), 6.99 (2H, d, J 8.4 Hz, o-HAr), 7.45 (2H, t, J 8.4 Hz, m-HAr), 7.52 (2H, d, J 7.3 Hz, p-HAr), 9.66 (2H, t, J 4.9 Hz, NH). 13C NMR (100.6 MHz, CDCl3): 12.1, 18.7, 20.8, 23.4, 24.3, 25.8, 26.5, 27.2, 28.3, 30.6, 33.5, 34.6, 35.4, 35.7, 35.9, 36.5, 40.2, 40.4, 42.1, 42.7, 43.6, 56.1, 56.5, 71.8, 114.3, 114.8, 117.7, 134.1, 134.4, 151.2, 184.8, 188.9. Calculated (C62H90N2O4): C 80.30%, H 9.78%, N 3.02%. Found: C 80.63%, H 9.60%, N 2.91 %. 1,8-bis[(3α,5β,12α)-3,12-dihydroxycholan-24-ylamino]-9,10-anthraquinone (5d) Obtained from 108.5 mg (0.3 mmol) of 3b, 27.7 mg (0.1 mmol) of 6a, 2.3 mg (0.004 mmol) of Pd(dba)2, 3.1 mg (0.005 mmol) of BINAP, 130.3 mg (0.4 mmol) of Cs2CO3 and 0.4 ml of dioxane. Dark-violet powder (74%, 71 mg). M.p. 180-182 oC. 1H NMR (400 MHz, CDCl3): 0.67 (6H, s, 18-CH3), 0.89 (6H, s, 19-CH3), 1.03 (6H, d, J 6.4 Hz, 21-CH3), 3.24 (4H, m, 24-CH2), 3.59 (2H, m, 3β-H), 3.99 (2H, br. s., 12β-H), 6.98 (2H, d, J 8.4 Hz, o-HAr), 7.44 (2H, t, J 8.3 Hz, m-HAr) 7.50 (2H, d, J 7.3 Hz, pHAr), 9.61 (2H, br. s., NH). 13C NMR (100.6 MHz, CDCl3): 12.7, 17.8, 23.1, 23.7, 25.7, 26.1, 27.1, 27.6, 28.6, 30.5, 33.5, 33.6, 34.1, 35.2, 35.4, 36.0, 36.4, 42.0, 43.6, 46.5, 47.4, 48.3, 71.7, 73.2, 114.3, 114.7, 117.7, 134.0, 134.3, 151.2, 184.7, 188.9. Calculated (C62H90N2O6·3CH2Cl2): C 65.30%, H 7.97%, N 2.31%. Found: C 65.68%, H 7.88%, N 2.27%. S7 1,8-bis[(3α,5β,12α)-3,7,12-Trihydroxycholan-24-ylamino]-9,10-anthraquinone (5e) Obtained from 118.1 mg (0.3 mmol) of 3c, 27.7 mg (0.1 mmol) of 6a, 2.3 mg (0.004 mmol) of Pd(dba)2, 3.1 mg (0.005 mmol) of BINAP, 130.3 mg (0.4 mmol) of Cs2CO3 and 0.4 ml of dioxane. Violet powder (34%, 33.7 mg). M.p. 171-173 oC. 1H NMR (400 MHz, CDCl3): 0.63 (6H, s, 18-CH3), 0.82 (6H, s, 19-CH3), 1.02 (6H, d, J 6.4 Hz, 21-CH3), 3.25 (2H, m, 3β-H), 3.35 (4H, m, 24-CH2), 3.8 (2H, br. s., 7β-H), 3.96 (2H, br. s., 12β-H), 7.01 (2H, d, J 8.4 Hz, o-HAr), 7.44 (2H, t, J 8.3 Hz, m-HAr) 7.50 (2H, d, J 7.3 Hz, p-HAr), 9.70 (2 H, br. s., NH). 13 C NMR (100.6 MHz, CDCl3): 12.3, 17.8, 22.4, 23.3, 25.1, 26.3, 28.0, 28.1, 30.5, 33.6, 34.7, 34.9, 35.3, 35.6, 39.3, 41.5, 41.70, 43.2, 46.4, 47.2, 68.5, 72.1, 73.3, 114.5, 114.9, 117.8, 134.1, 134.4, 151.1, 184.6, 188.8. Calculated (C62H90N2O8·3CH3OH): C 71.79%, H 9.45%, N 2.58%. Found: C 71.93%, H 9.41%, N 2.45%. 1,5-bis[(3α,5β)-3-Hydroxycholan-24-ylamino]-9,10-anthraquinone (5f) Obtained from 108.5 mg (0.3 mmol) of 3a and 27.7 mg (0.1 mmol) 6b. Dark-violet powder (76%, 70,5 mg). M.p. 152-154 oC. 1H NMR (400 MHz, CDCl3): 0.64 (6H, s, 18-CH3), 0.91 (6H, s, 19CH3), 0.95 (6H, d, J 6.4 Hz, 21-CH3), 3.26 (4H, m, 24-CH2), 3.61 (2H, m, 3β-H), 6.94 (2H, d, J 8.1 Hz, o-HAr), 7.51 (4H, m, m-HAr and p-HAr), 9.69 (2H, t, J 4.9 Hz, NH). 13 C NMR (100.6 MHz, CDCl3): 12.0, 18.6, 20.8, 23.4, 24.2, 25.8, 26.4, 27.2, 28.3, 30.5, 33.4, 34.5, 35.3, 35.6, 35.8, 36.4, 40.1, 40.4, 42.1, 42.7, 43.5, 56.0, 56.5, 71.8, 112.8, 114.6, 116.3, 135.1, 136.3, 151.4, 185.4. Calculated (C62H90N2O4): C 80.30%, H 9.78%, N 3.02%. Found: C 79.97%, H 9.57%, N 2.78 %. 1,8-Bis[(3α,5β)-3-methoxycholan-24-ylamino]-9,10-anthraquinone (S1) A mixture of 5c (46 mg, 0.05 mmol) and trimethyloxonium tetrafluoroborate (17.7 mg, 0.12 mmol) in dry CH2Cl2 (5 ml) was stirred at ambient temperature under argon atmosphere for 24 h. The S8 reaction mixture was diluted with CH2Cl2 (15 ml) and washed with H2O (10 ml). The organic layer was dried over Na2SO4, evaporated, and the product was purified by column chromatography. Dark-violet powder (29%, 14 mg). 1H NMR (400 MHz, CDCl3): 0.66 (6H, s, 18-CH3), 0.92 (6H, s, 19-CH3), 0.98 (6H, d, J 6.5 Hz, 21-CH3), 3.16 (2H, m, 3β-H), 3.26 (4H, m, 24-CH2), 3.35 (6H, s, 3-OCH3), 7.00 (2H, d, J 8.1 Hz, o-HAr), 7.46 (2H, t, J 8.1 Hz, m-HAr) 7.52 (2H, d, J 7.3 Hz, p-HAr), 9.63 (2H, t, J 4.9 Hz., NH). 13 C NMR (100.6 MHz, CDCl3): 12.1, 18.7, 20.8, 23.4, 24.3, 25.8, 26.4, 27.3, 28.3, 29.7, 32.7, 33.4, 34.9, 35.3, 35.6, 35.9, 40.2, 40.3, 42.0, 42.7, 43.5, 55.5, 56.1, 56.5, 80.4, 114.3, 114.7, 117.6, 134.0, 134.3, 151.2, 184.8, 188.9. S9 Copies of the 1H and, 13C NMR spectra 0.59 0.93 0.92 0.83 2.12 2.89 2.88 2.86 3.78 4.19 4.18 4.47 4.46 5.24 5.22 5.21 6.44 6.42 H NMR spectrum of 4-[(3α,5β,12α)-3,12-dihydroxycholan-24-ylamino]toluene (4) (DMSO-d6, 400 MHz, 300 K) 6.86 6.84 1 DMSO-d6 20.20 7.5 7.0 19.41 6.5 8.19 6.0 5.5 11.36 5.0 4.5 11.84 11.38 21.19 4.0 3.5 Chemical Shift (ppm) S10 3.0 32.38 2.5 2.0 39.03 35.68 1.5 1.0 0.5 0 13 146.21 176 168 160 152 144 12.70 20.34 126.26 46.41 77.31 77.00 76.69 73.14 71.68 48.19 Chloroform-d 17.62 44.86 42.03 36.37 35.40 33.57 33.20 28.53 27.60 27.10 26.28 26.10 23.10 129.64 112.90 C NMR spectrum of 4-[(3α,5β,12α)-3,12-dihydroxycholan-24-ylamino]toluene (4) (CDCl3, 100.6 MHz, 300 K) 136 128 120 112 104 96 88 Chemical Shift (ppm) S11 80 72 64 56 48 40 32 24 16 8 0 H NMR spectrum of 1,3-bis[(3α,5β)-3-hydroxycholan-24-ylamino]benzene (5a) (CDCl3, 400 MHz, 300 K) 7.5 7.0 6.5 6.0 20.00 5.5 5.0 4.5 42.85 4.0 3.5 Chemical Shift (ppm) 3.0 S12 0.63 20.02 0.92 0.91 10.77 3.65 3.64 3.62 3.61 3.60 3.58 3.57 3.09 3.07 3.06 3.04 3.04 3.02 3.00 2.99 5.99 5.97 5.97 5.85 Chloroform-d 6.97 6.95 6.93 1 118.67 68.78 2.5 2.0 1.5 1.0 0.5 0 13 96.94 129.81 192 184 176 168 160 152 144 136 128 120 112 12.01 20.78 18.61 35.79 35.58 77.32 77.00 76.68 149.65 34.51 102.66 44.56 71.77 Chloroform-d 42.04 40.13 36.36 35.30 30.46 28.29 27.16 24.18 26.39 56.44 56.13 40.38 23.34 C NMR spectrum of 1,3-bis[(3α,5β)-3-hydroxycholan-24-ylamino]benzene (5a) (CDCl3, 100.6 MHz, 300 K) 104 96 Chemical Shift (ppm) S13 88 80 72 64 56 48 40 32 24 16 8 H NMR spectrum of 4,4’-bis[(3α,5β)-3-hydroxycholan-24-ylamino]biphenyl (5b) (CDCl3, 400 MHz, 300 K) 40.87 8.0 7.5 40.00 7.0 6.5 24.64 6.0 5.5 5.0 4.5 4.0 3.5 Chemical Shift (ppm) S14 40.35 3.0 0.64 0.93 0.91 3.08 3.65 3.64 3.62 3.61 3.60 3.59 6.65 6.63 Chloroform-d 7.36 7.34 1 137.54 68.16 2.5 2.0 1.5 1.0 0.5 0 13 C NMR spectrum of 4,4’-bis[(3α,5β)-3-hydroxycholan-24-ylamino]biphenyl (5b) (CDCl3, 100.6 MHz, 300 K) 160 152 144 136 128 120 112 104 96 88 80 Chemical Shift (ppm) S15 72 64 56 44.8 42.7 42.1 40.4 40.2 36.4 35.8 35.6 35.3 34.6 33.3 30.5 28.3 27.2 26.4 26.2 24.2 23.3 20.8 18.6 12.0 56.5 56.2 71.9 113.1 127.1 130.6 146.9 Chloroform-d 48 40 32 24 16 8 0 H NMR spectrum of 1,8-bis[(3α,5β)-3-hydroxycholan-24-ylamino]-9,10-anthraquinone (5c) (CDCl3, 400 MHz, 300 K) 19.81 9.5 9.0 8.5 8.0 40.81 20.00 7.5 7.0 21.20 6.5 6.0 5.5 5.0 4.5 Chemical Shift (ppm) S16 4.0 3.5 39.97 0.62 0.94 0.93 0.90 3.63 3.62 3.61 3.59 3.58 3.57 3.28 3.26 3.25 3.23 3.21 7.00 6.98 7.52 7.51 7.47 7.45 7.43 Chloroform-d 9.67 9.66 9.65 1 64.23 62.25 3.0 2.5 2.0 1.5 1.0 0.5 0 13 C NMR spectrum of 1,8-bis[(3α,5β)-3-hydroxycholan-24-ylamino]-9,10-anthraquinone (5c) (CDCl3, 100.6 MHz, 300 K) 192 184 176 168 160 152 144 136 128 120 112 104 96 88 Chemical Shift (ppm) S17 80 72 64 56 43.6 42.6 42.1 40.4 40.1 36.4 35.8 35.3 33.5 30.5 28.3 27.2 26.4 25.8 24.2 23.3 20.8 18.7 12.0 56.5 56.1 71.8 117.7 114.8 114.3 134.3 134.0 151.2 184.8 188.9 Chloroform-d 48 40 32 24 16 8 H NMR spectrum of 1,8-bis[(3α,5β,12α)-3,12-dihydroxycholan-24-ylamino]-9,10-anthraquinone (5d) (CDCl3, 400 MHz, 300 K) 19.85 9.5 9.0 8.5 8.0 41.60 19.43 7.5 7.0 20.49 6.5 6.0 5.5 5.0 4.5 Chemical Shift (ppm) S18 4.0 21.84 3.5 40.68 0.67 1.04 1.03 0.89 3.99 3.61 3.60 3.59 3.58 3.56 3.25 3.24 6.99 6.97 7.51 7.50 7.46 7.44 7.42 Chloroform-d 9.61 1 65.42 3.0 2.5 2.0 1.5 1.0 0.5 0 13 C NMR spectrum of 1,8-bis[(3α,5β,12α)-3,12-dihydroxycholan-24-ylamino]-9,10-anthraquinone (5d) (CDCl3, 100.6 MHz, 300 K) 208 200 192 184 176 168 160 152 144 136 128 120 112 104 Chemical Shift (ppm) S19 96 88 80 72 64 56 43.6 42.0 36.4 36.0 35.2 33.6 33.5 30.5 28.6 27.6 27.1 26.1 25.7 23.7 23.1 17.8 12.7 48.3 47.4 73.2 71.7 117.7 114.7 114.3 134.3 134.0 151.2 184.7 Chloroform-d 48 40 32 24 16 8 H NMR spectrum of 1,8-bis[(3α,5β,12α)-3,7,12-trihydroxycholan-24-ylamino]-9,10-anthraquinone (5e) (CDCl3, 400 MHz, 300 K) 18.76 10.0 9.5 40.87 9.0 8.5 8.0 7.5 20.16 7.0 18.83 6.5 6.0 5.5 5.0 4.5 Chemical Shift (ppm) S20 4.0 0.63 0.82 1.03 1.01 3.35 3.25 3.96 3.80 7.52 7.50 7.49 7.46 7.44 7.42 7.02 7.00 Chloroform-d 9.70 1 67.00 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 13 C NMR spectrum of 1,8-bis[(3α,5β,12α)-3,7,12-trihydroxycholan-24-ylamino]-9,10-anthraquinone (5e) (CDCl3, 100.6 MHz, 300 K) 184 176 168 160 152 144 136 128 120 112 104 96 Chemical Shift (ppm) S21 88 80 72 64 56 48 40 32 24 16 12.3 47.2 46.4 43.2 41.7 41.5 39.3 35.6 35.3 34.9 34.7 33.5 30.5 28.1 28.0 26.3 25.1 23.3 22.4 17.8 68.5 73.3 72.0 114.9 114.4 117.8 134.4 134.0 151.1 184.6 188.8 Chloroform-d H NMR spectrum of 1,5-bis[(3α,5β)-3-hydroxycholan-24-ylamino]-9,10-anthraquinone (5f) (CDCl3, 400 MHz, 300 K) 18.05 10.0 9.5 40.13 9.0 8.5 8.0 7.5 18.93 7.0 19.93 6.5 6.0 5.5 5.0 4.5 Chemical Shift (ppm) S22 4.0 3.5 39.29 0.64 0.96 0.94 0.91 3.64 3.62 3.61 3.60 3.59 3.29 3.28 3.26 3.24 3.23 6.96 6.93 7.54 7.53 7.50 7.48 Chloroform-d 9.70 9.69 9.68 1 128.45 3.0 2.5 2.0 1.5 1.0 0.5 0 13 C NMR spectrum of 1,5-bis[(3α,5β)-3-hydroxycholan-24-ylamino]-9,10-anthraquinone (5f) (CDCl3, 100.6 MHz, 300 K) 192 184 176 168 160 152 144 136 128 120 112 104 96 Chemical Shift (ppm) S23 88 80 72 64 56 48 40 33.4 30.5 28.3 27.2 26.4 25.8 24.2 23.4 20.8 18.6 12.0 43.5 42.1 40.4 40.1 36.4 35.8 35.6 35.3 56.5 56.0 71.8 116.3 114.6 112.8 136.3 135.1 151.4 185.4 Chloroform-d 32 24 16 8 H NMR spectrum of 1,8-bis[(3α,5β)-3-methoxycholan-24-ylamino]-9,10-anthraquinone (S1) (CDCl3, 400 MHz, 300 K) 0.66 0.99 0.97 0.92 3.35 3.29 3.27 3.26 3.25 3.24 3.19 3.16 3.15 7.01 6.99 7.53 7.51 7.48 7.46 7.44 Chloroform-d 9.63 1 TMS 18.24 10.0 9.5 9.0 8.5 8.0 44.47 19.80 7.5 7.0 70.24 6.5 6.0 5.5 5.0 4.5 Chemical Shift (ppm) S24 4.0 3.5 107.95 3.0 2.5 2.0 1.5 1.0 0.5 0 13 C NMR spectrum of 1,8-bis[(3α,5β)-3-methoxycholan-24-ylamino]-9,10-anthraquinone (S1) (CDCl3, 100.6 MHz, 300 K) 192 184 176 168 160 152 144 136 128 120 112 104 96 Chemical Shift (ppm) S25 88 80 72 64 56 42.01 40.17 35.83 35.59 35.27 34.87 33.39 32.72 28.30 27.31 26.76 26.40 25.78 24.26 23.40 20.78 18.71 12.05 43.51 56.45 56.12 55.52 80.39 114.67 114.25 117.64 134.33 134.02 151.19 184.78 188.94 Chloroform-d 48 40 32 24 16 8 UV–vis titration Figure S1: UV–vis spectra of the ligand 5c (50 μM solution in MeCN) before and after addition of 5 equiv of metal perchlorates 0,75 Ligand 0,65 Cu(II) Ni(II) 0,55 Pb(II) Zn(II) Absorbance 0,45 Ag(I) Hg(II) Cr(III) 0,35 Mn(II) Fe(II) 0,25 Co(II) Al(III) 0,15 Ga(III) Y(III) In(III) 0,05 -0,05 250 300 350 400 450 500 Wavelength (nm) S26 550 600 650 700 Figure S2: Evolution of UV–vis spectrum of 5c (50 µM solution in MeCN) upon addition of Cu(ClO4)2 (0–5.0 equiv) 0.45 0.0 eq 0.4 0.2 eq 0.4 eq 0.35 0.6 eq 0.8 eq 0.3 Absorbance 1.0 eq 1.2 eq 0.25 1.4 eq 0.2 1.6 eq 1.8 eq 0.15 2.0 eq 2.5 eq 0.1 3.0 eq 3.5 eq 0.05 4.0 eq 4.5 eq 0 250 300 350 400 450 500 550 600 650 700 5.0 eq Wavelenght, nm Figure S3: Changes of absorbance at 550 nm plotted against [Cu(ClO4)2]/[5c]total 0,45 0,4 Absorbance 0,35 0,3 0,25 0,2 0,15 0 0,5 1 1,5 2 2,5 3 [Cu(II)]total/[5c]total S27 3,5 4 4,5 5 Figure S4: Evolution of UV–vis spectrum of 5c (50 µM solution in MeCN) upon addition of Al(ClO4)3 (0–5.0 equiv) 0,5 0.0 eq 0,45 0.2 eq 0,4 0.4 eq 0.6 eq 0,35 0.8 eq 1.0 eq Absorbance 0,3 1.2 eq 1.4 eq 0,25 1.6 eq 0,2 1.8 eq 2.0 eq 0,15 2.5 eq 3.0 eq 0,1 3.5 eq 4.0 eq 0,05 4.5 eq 0 250 350 450 550 650 5.0 750 Wavelength (nm) Figure S5: Changes of absorbance at 550 nm plotted against [Al(ClO4)3]/[5c]total 0,5 Absorbance 0,45 0,4 0,35 0,3 0,25 0 1 2 3 [Al(III)]total/[5c]total S28 4 5 Figure S6: Evolution of UV–vis spectrum of 5c (50 µM solution in MeCN) upon addition of Cr(ClO4)3 (0–5.0 equiv) 0,5 0.0 eq 0,45 0.2 eq 0,4 0.4 eq 0.6 eq 0,35 0.8 eq 1.0 eq Absorbance 0,3 1.2 eq 1.4 eq 0,25 1.6 eq 0,2 1.8 eq 2.0 eq 0,15 2.5 eq 3.0 eq 0,1 3.5 eq 4.0 eq 0,05 4.5 eq 0 250 300 350 400 450 500 550 600 650 700 Wavelength (nm) Figure S7: Changes of absorbance at 550 nm plotted against [Cr(ClO4)3]/[5c]total 0,5 Absorbance 0,45 0,4 0,35 0,3 0,25 0 1 2 3 [Cr(III)]total/[5c]total S29 4 5 5.0 eq Figure S8: Evolution of UV–vis spectrum of 5d (50 µM solution in MeCN) upon addition of Cu(ClO4)2 (0–5.0 equiv) 0,7 0.0 eq 0,6 0.2 eq 0.4 eq 0.6 eq 0,5 0.8 eq Absorbance 1.0 eq 0,4 1.2 eq 1.4 eq 1.6 eq 0,3 1.8 eq 2.0 eq 0,2 2.5 eq 3.0 eq 3.5 eq 0,1 4.0 eq 4.5 eq 0 250 300 350 400 450 500 550 600 650 700 5.0 eq 750 Wavelength (nm) Figure S9: Changes of absorbance at 550 nm plotted against [Cu(ClO4)2]/[5d]total 0,65 0,6 Absorbance 0,55 0,5 0,45 0,4 0,35 0,3 0,25 0 0,5 1 1,5 2 2,5 [Cu(II)]tot/[5d]tot S30 3 3,5 4 4,5 5 Figure S10: Evolution of UV–vis spectrum of 5d (50 µM solution in MeCN) upon addition of Al(ClO4)3 (0–5.0 equiv) 0,65 0.0 eq 0.2 eq 0.4 eq 0,55 0.6 eq 0.8 eq Absorbance 0,45 1.0 eq 1.2 eq 0,35 1.4 eq 1.6 eq 1.8 eq 0,25 2.0 eq 2.5 eq 0,15 3.0 eq 3.5 eq 4.0 eq 0,05 4.5 eq -0,05 250 350 450 550 650 750 5.0 eq Wavelength (nm) Figure S11: Changes of absorbance at 550 nm plotted against [Al(ClO4)3]/[5d]total 0,65 0,6 Absorbance 0,55 0,5 0,45 0,4 0,35 0,3 0 0,5 1 1,5 2 2,5 [Al(III)]tot/[5d]tot S31 3 3,5 4 4,5 5 Figure S12: Evolution of UV–vis spectrum of 5d (50 µM solution in MeCN) upon addition of Cr(ClO4)3 (0–5.0 equiv) 0,65 0.0 eq 0.2 eq 0.4 eq 0,55 0.6 eq 0.8 eq Absorbance 0,45 1.0 eq 1.2 eq 0,35 1.4 eq 1.6 eq 1.8 eq 0,25 2.0 eq 2.5 eq 0,15 3.0 eq 3.5 eq 4.0 eq 0,05 4.5 eq -0,05 250 350 450 550 650 750 5.0 eq Wavelength (nm) Figure S13: Changes of absorbance at 550 nm plotted against [Cr(ClO4)3]/[5d]total 0,65 0,6 Absorbance 0,55 0,5 0,45 0,4 0,35 0 0,5 1 1,5 2 2,5 [Cr(III)]tot/[5d]tot S32 3 3,5 4 4,5 5 References: 1. Binstead, R.A.; Jung, B.; Zuverbuhler, A.D. SPECFIT/32, Global Analysis System, ver 3.0; Spectrum Software Associates: Marlborough, USA, 2000. 2. Fini, A.; Fazio, G.; Roda, A.; Bellini, A.M.; Mencini, E.; Guarneri, M. J. Pharm Sci. 1992, 81, 726-730. 3. Joachimiak, R.; Piasecka, M.; Paryzek, Z. J. Chem. Res., 2008, 260-265. S33
© Copyright 2026 Paperzz