ARITHMETIC OF PENTAGONAL NUMBERS RODNEY T. HANSEN Montana State University, Bozeman, Montana The pentagonal numbers are the integers Pn = f On - 1), n = 1,2,— . Each number p can also be derived by summing the first n terms of the arithmetic progression 1, 4, 7, 10, 13, • •• , 3m - 2 . Geometrically, considering regular pentagons nomothetic with respect to one of the vertices and containing 2, 3, 4, • • • , n points at equal distances along each side, the sum of all points for a given n yields p . Pictorially we have the following: [1, p. 10] In this paper we shall give several algebraic identities involving pentagonal numbers of different orders. The principal result is that an infinite number of pentagonal numbers exist which a r e , at the same time, the sum and difference of distinct pentagonal numbers. A similar result for triangular numbers has been found by W. Sierpinski [ 2 , pp9 31-32]. 83 84 ARITHMETIC O F PENTAGONAL NUMBERS [Feb. A table of p f s will f i r s t be c o n s t r u c t e d . Pn 0 1 2 3 4 5 6 7 8 9 0 2 1 3 4 _ j -5" ~TF" 22" 35~ 330 176 287 145 210 247 925 852 590 651 715 782 1,335 1,426 1,717 1,820 1,520 1,617 2,380 2,501 2,625 2,752 2,882 3,015 3,725 3,876 4,030 4,187 4,347 4,510 5,370 5,551 5,735 5,922 6,112 6,305 7,315 7,526 7,740 7,957 8,177 8,400 9,560 9,801 10,045 10,292 10,542 10,795 12,105 12,376 12,650 12,927 1 3 , 2 0 7 . 13,490 7 6 5 — 9 8 70" ~ 92" ITT 532 376 425 477 1,001 1,080 1,162 1,247 1,926 2,035 3,147 2,262 3,115 3,290 3,432 3,577 4,676 4,845 5,017 5,192 6,501 6,700 6,902 7,107 8,626 8,855 9,087 9,322 11,051 11,310 11,572 11,837 13,776 14,065 14,357 14,652 ~wr We note from the above-given a r i t h m e t i c p r o g r e s s i o n that p - p - = 3n - 2 , *n *n-l for n = 2, 3 , • • • , ' ' and from the above table that P8 = P4 + P7» P24 == P? + P23> P49 = PiO + P48> and P83 = Pl3 + P82 • Noting that the f i r s t t e r m on the r i g h t of e a c h of the above equalities i s of the form 3n + 1, we find that ?3nHhl = • ^ 2 L 1 L [3(n + 1) - 1 ] = I ( 2 7 n 2 + 15n Setting p - pF ^m m - 11 = 3 m - 2 = ~ (27n2 + 15n + 2) 2N we have m = ~ (9n2 + 5n + 2 ) , an i n t e g e r . The f i r s t t h e o r e m follows. + 2 ) 1970] ARITHMETIC O F PENTAGONAL NUMBERS T h e o r e m 1. 85 F o r any i n t e g e r n > 1, P i(9n 2 +5n-f-2) ~ P <3n+1) P #(9n+5) A s u b s e t of the above defined pentagonal n u m b e r s yields o u r m a i n r e s u l t . T h e o r e m 2. F o r any positive i n t e g e r n , 1 [9(3n) 2 +5(3n)+2] [3(3n)+l] 3n j - 9 ( 3 n ) + 5 ] Pi ~P i-(6561n 4 +2430n 3 +4B5n 2 +5Gn+8) ~(6561n 3 +2430n 2 +495n+50) Proof. F i r s t it i s n e c e s s a r y to e x p r e s s Pi •i(81n 2 +15n+2) in t e r m s of n. i ( 8 1 n 2 + 15n + 2) ( r i -, = i 3 A(81n 2 + 15n + 2) Pl J i(81n 2 +15n+2) * M~ ( 1 9 , 6 8 3 n 4 + 7290n 3 + 1485n 2 + 150n + 8) Equating p g - pQ_± . to P-s ^(81n 2 +15n+2) yields s = i (6561n 4 + 2430n 3 + 495n 2 + 50n + 8) o By m a t h e m a t i c a l induction on n we have that s i s an integer; completing the proof. 86 ARITHMETIC O F PENTAGONAL NUMBERS [Feb. F o r n = 1 and 2 we h a v e s for e x a m p l e , = P49 PiO + P48 = Pii93 " P1192 or 3577 = 145 + 3432 = 2,134,277 - 2,130,700 and Pi78 - Pi9 + Pl77 ~ Pi5,813 " Pi5,812 or 47,437 = 532 + 46,905 = 375,068,547 - 375,021,110 . A r a t h e r c u r i o u s r e l a t i o n s h i p e x i s t s between n and p ; n a m e l y , that each positive i n t e g e r c a n b e e x p r e s s e d in an infinite n u m b e r of ways a s a quadr a t i c e x p r e s s i o n involving a pentagonal n u m b e r . T h e o r e m 3. Any positive i n t e g e r n can be e x p r e s s e d a s 1 + -J 1 + 24p * ^s-n 6-s for any positive i n t e g e r Proof. s. F r o m the definition of a pentagonal n u m b e r we have p *sn = » (3 • sn - 1) = 2 3(sn)2 9 2 ~ sn 0 = 3s 2 n 2 - sn - 2p ^sn +s ± ^ ( - s ) 2 - T ( 3 s 2 ) ( - 2 p s n ) 1 ± ^ 1 + 24p" sn _ * *sn 6s 2 • 3s 2 1970] ARITHMETIC O F PENTAGONAL NUMBERS 87 Taking the positive r o o t , the d e s i r e d r e s u l t i s obtained. The pentagonal n u m b e r s a r e not closed with r e s p e c t to the o p e r a t i o n of multiplication. However* the following t h r e e c a s e s a r e quickly verified. 9 P8T = P2 P39» Pi8T = and P4 P40* P392 = P? P47 • It i s not known if an infinite n u m b e r of such p a i r s exist. REFERENCES 1. J . V. Uspensky and M. A. H e a s l e t , E l e m e n t a r y N u m b e r T h e o r y , M c G r a w Hill, New York, 1939. 2. W. S i e r p i n s k i , "Un t h e o r e m e s u r l e s n o m b r e s t r i a n g u l a i r e s , f f Elemente P e r M a t h e m a t i k , Bank 2 3 , N r 2 ( M a r z , 1968), pp. 31-32. • • * • * CORRECTIONS P l e a s e m a k e the following changes in " A s s o c i a t e d Additive D e c i m a l Digital B r a c e l e t s , " a p p e a r i n g in the Fibonacci Q u a r t e r l y in O c t o b e r , 1969: On page 288, line 2 5 , change " t e r m s " to "forms* " On page 289, line 2 , change " 8 " to r e a d " B . " On page 290, line 1 1 , change " 7 8 4 2 " to "6842. " On page 290, line 1 3 , change "and" to r e a d "And, " On page 294, line 2 0 , change "19672" to r e a d "1967). " On page 294, line 2 6 , change "1969" to r e a d "1959. " P l e a s e change the f o r m u l a s given in "Diagonal Sums of G e n e r a l i z e d P a s c a l T r i a n g l e s , " page 3 5 3 , Volume 7, No. 5 , D e c e m b e r , 1969, l i n e s 11 and 1 2 , to r e a d
© Copyright 2026 Paperzz