Finals Math 2414 Litong Name __________________________________________________ Test No, ____________ Solve the problem. Use the substitution formula to evaluate the integral. 8) It takes a force of 12,000 lb to compress a π/2 1) cot x csc5 x dx spring from its free height of 15 in. to its fully compressed height of 10 in. How much work π/6 does it take to compress the spring the first inch? Find the area enclosed by the given curves. ∫ 2) x = 2y2 - 3 and x = y2 + 6 9) A fisherman is about to reel in a 16-lb fish located 14 ft directly below him. If the fishing line weighs 1 oz per foot, how much work will it take to reel in the fish? Round your answer to the nearest tenth, if necessary. Answer each question appropriately. 3) Which of the following integrals, if any, calculates the area of the shaded region? 5 (-2, 4) y Find the center of mass of a thin plate of constant density covering the given region. 10) The region enclosed by the parabolas y = - x2 (2, 4) 4 3 2 + 72 and y = x2 1 -5 -4 -3 -2 -1 1 2 3 4 5 x Find the fluid force exerted against the vertically submerged flat surface depicted in the diagram. Assume arbitrary units, and call the weight-density of the fluid w. 11) -1 -2 -3 -4 -5 A) ∫ 2 -2 0 C) ∫ -2 4x dx -4x dx B) ∫ -2 4 D) ∫ 9 0 4x dx 9 9 -4x dx -4 Find the formula for df-1 /dx. 12) f(x) = 27x3 Find the volume of the solid generated by revolving the region about the given line. 4) The region in the first quadrant bounded above by the line y = 3, below by the curve y = 3x, and on the left by the y-axis, about the line y = 3 Solve the problem. 13) If f(x) is one-to-one, is g(x) = f(-x) also one-to-one? Explain. Use the shell method to find the volume of the solid generated by revolving the region bounded by the given curves and lines about the x-axis. 5) y = 4 x , y = 4 Find the derivative of y with respect to x, t, or θ, as appropriate. ln x 14) y = x7 Find the length of the curve. 6) x = 6 sin t + 6t, y = 6cos t, 0 ≤ t ≤ π 15) y = ln ln 5x Evaluate the integral. 2 dx 16) 1 + 3x Find the area of the surface generated by revolving the curves about the indicated axis. 7) x = sin t, y = 4 + cos t, 0 ≤ t ≤ 2π; x-axis ∫ 1 17) ∫ dx x 2 + 9 ln x Solve the initial value problem. dy -6 29) = , y(1) = -5 dx 1 - x2 Use logarithmic differentiation to find the derivative of y. x 18) y = x + 5 ^ Use lʹHopitalʹs rule to find the limit. sin x 30) lim 4 x→0 + x Find the derivative of y with respect to x, t, or θ, as appropriate. 19) y = ln (7θe-θ) Find the derivative of y. 31) y = sinh2 9x 20) y = sin e-θ6 Find the derivative of y with respect to the appropriate variable. 32) y = 10 tanh-1 (cos x) Evaluate the integral. 9e(9 sin 5x) dx 21) sec 5x ∫ 22) ∫ Evaluate the integral. e1/x dx 2x2 Find the derivative of y with respect to the independent variable. 23) y = (ln 5θ)π Use logarithmic differentiation to find the derivative of y with respect to the independent variable. 24) y = (cos x)x Find the derivative of y with respect to x. 2x 25) y = tan-1 5 28) ∫ 7 + 10x 4 + 49x2 34) ∫ e2x cos 6x dx 35) ∫ x4 ln 8x dx 36) ∫ csc3 4t dt 37) ∫ π/2 cos 8t cos 7t dt Integrate the function. dx 38) (x2 + 4)3/2 ∫ ∫ ∫ ∫ 2 sinh (4x- ln 3) dx 0 Evaluate the integral. 7 - 5x 26) dx 64 - 49x2 27) 33) 39) ∫ 40) ∫ dx dx -x2 - 6x - 8 2 dx , x > 4 x2 x2 - 16 1 t2 9 - t2 dt Express the integrand as a sum of partial fractions and evaluate the integral. 7 3x dx 41) (x - 1)3 3 Graph the parabola or ellipse. Include the directrix that corresponds to the focus at the origin. 12 50) r = 4 + 4 cos θ ∫ 6 Evaluate the integral by first performing long division on the integrand and then writing the proper fraction as a sum of partial fractions. 7x3 + 7x2 + 8 dx 42) x2 + x 4 ∫ 2 -6 Evaluate the improper integral or state that it is divergent. ∞ 2dx 43) 36 + x2 0 -4 -2 2 -2 ∫ -4 -6 Evaluate the improper integral. 7 dx 44) 49 - x2 0 ∫ Find the limit of the sequence if it converges; otherwise indicate divergence. 6 + (-1)n 45) a n = 6 Determine if the series converges or diverges; if the series converges, find its sum. ∞ 4 46) ∑ (-1)n-1 7n n=1 Determine whether the series converges. ∞ 1 47) ∑ ln 6 n n=1 Find the slope of the polar curve at the indicated point. π 48) r = 1 - sin θ, θ = 3 Find the area of the specified region. 49) Inside one leaf of the four-leaved rose r = 9 sin 2θ 3 4 6 Answer Key Testname: MA2414FINALS 1) 31 5 2) 36 3) C 9 4) π 2 5) 64 π 3 6) 24 7) 16π2 8) 1200 in · lb 9) 230.1 ft · lb 10) x = 0, y = 36 11) 486w 1 12) 9x2/3 13) g(x) is a reflection of f(x) across the y-axis. It will be one-to-one. 1 - 7ln x 14) x8 15) 1 x ln 5x 16) 2 ln 1 + 3x + C 3 17) 1 ln 2 + 9 ln x + C 9 18) 19) 1 2 1 x 1 - x + 5 x x + 5 1 - 1 θ 20) (-6θ5 e-θ6 ) cos e-θ6 1 21) e(9 sin 5x) + C 5 22) - 23) e1/x + C 2 π (ln 5θ)π-1 θ 24) (cos x)x (ln cos x - x tan x) 10 25) 2 4x + 25 26) sin-1 27) 7 5 x + 64 - 49x2 + C 8 49 7 5 1 tan-1 x + ln 4 + 49x2 + C 2 49 2 28) sin-1 (x + 3) + C 4 Answer Key Testname: MA2414FINALS 29) y = 6 cos-1 x - 5 30) -∞ 31) 18 sinh 9x cosh 9x -10 32) sin x 33) 1 cosh (4x - ln 3) + C 2 34) e2x [6 sin 6x + 2 cos 6x] + C 40 35) 1 1 5 x ln 8x - x5 + C 25 5 36) - 37) 38) 39) csc 4t cot 4t 1 - ln csc 4t + cot 4t + C 8 8 14 15 x 4 4 + x2 1 16 40) - + C x2 - 16 + C x 9 - t2 + C 9t 41) 4 3 42) 7 2 x - 8 ln x + 1 + 8 ln x + C 2 43) π 6 44) π 2 45) Diverges 46) Converges; 1 2 47) converges 48) 1 81π 49) 8 5 Answer Key Testname: MA2414FINALS 50) 6 4 2 -6 -4 -2 2 4 6 -2 -4 -6 6
© Copyright 2026 Paperzz