Supporting Information: Isobaric Heat Capacity Measurements of Liquid Methane + Propane, Methane + Butane and a Mixed Refrigerant by Differential Scanning Calorimetry at High Pressures and Low Temperatures Tauqir H. Syed, Thomas J. Hughes, Kenneth N. Marsh, and Eric F. May* Centre for Energy, School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley WA 6009, Australia. Supporting Information S.1 – AspenTech Hysys Peng-Robinison equation of state Tables S1 to S3 contain parameters used within the Peng-Robinson equation of state as implemented in AspenTech Hysys. Table S1 Default critical temperatures, critical pressures and acentric factors from AspenTech Hysys Methane Ethane Propane Butane Nitrogen Tc/K 190.699 305.428 369.898 425.199 126.194 Pc/kPa 4640.68 4883.85 4256.66 3796.62 3394.37 ω 1.15E-02 9.86E-02 0.1524 0.201 4.00E-02 Table S2 Default ideal gas heat capacity polynomial coefficients* from AspenTech Hysys Methane Ethane Propane Butane Nitrogen a 2.36459 1.1429 0.395 0.008541 0.982747 b -4.26E-03 -6.47E-04 4.23E-03 6.55E-03 1.94E-04 c 1.70E-05 1.27E-05 1.19E-06 -3.33E-06 -1.25E-09 d -1.49E-08 -1.36E-08 -2.67E-09 7.07E-10 -1.46E-11 e 4.30E-12 4.41E-12 8.40E-13 -3.20E-14 2.03E-15 Tmin/K 3.15 3.15 3.15 3.15 3.15 Tmax/K 5273.15 -1 5273.15 5273.15 5273.15 5273.15 -1 * The cp in kJ·kg ·K is calculated from the polynomial expression: cp = a + bT + cT2 + dT3 + eT4 Table S3. Default binary interaction (kij) parameters from AspenTech Hysys for the PengRobinson equation of state Methane Ethane Propane Butane Nitrogen Methane 2.24E-03 6.83E-03 1.23E-02 3.60E-02 Ethane 2.24E-03 1.26E-03 4.10E-03 5.00E-02 Propane 6.83E-03 1.26E-03 8.19E-04 8.00E-02 Butane 1.23E-02 4.10E-03 8.19E-04 9.00E-02 Nitrogen 3.60E-02 5.00E-02 8.00E-02 9.00E-02 1 The default Peng-Robinson equation of state in AspenTech Hysys is represented by the following equations: p= RT aα − v − b v (v + b ) + b (v − b ) 2 T 2 with α = 1 + n 1 − and n = 0.37464 + 1.54226ω − 0.26992ω TC Mixing rules: N N i j amix = ∑∑ xi x j (1 − kij ) ai a j N bmix = ∑ xi bi i S.2 – REFPROP Peng-Robinson equation of state The alpha function and the binary interaction parameters that REFPROP uses with its default Peng-Robinson equation of state are inaccessible to the user. The sources of isobaric ideal gas heat capacities and critical properties used in REFPROP for the components we studied are listed in table S4. Table S4 Sources of isobaric ideal gas heat capacity and critical properties used in REFPROP’s default Peng-Robinson equation of state Methane Setzmann, U.; Wagner, W. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 1991, 20, 1061-1151 Ethane Bücker, D.; Wagner, W. A Reference Equation of State for the Thermodynamic Properties of Ethane for Temperatures from the Melting Line to 675 K and Pressures up to 900 MPa. J. Phys. Chem. Ref. Data 2006, 35, 205-266 Propane Lemmon, E. W.; McLinden, M. O.; Wagner, W. Thermodynamic Properties of Propane. III. A Reference Equation of State for Temperatures from the Melting Line to 650 K and Pressures up to 1000 MPa. J. Chem. Eng. Data 2009, 54, 3141-3180. Butane Bücker, D.; Wagner, W. Reference Equations of State for the Thermodynamic Properties of Fluid Phase n-Butane and Isobutane. J. Phys. Chem. Ref. Data 2006, 35, 929-1019. Nitrogen Span, R.; Lemmon, E.W.; Jacobsen, R.T; Wagner, W.; Yokozeki, A. A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures from 63.151 to 1000 K and Pressures to 2200 MPa. J. Phys. Chem. Ref. Data 2000, 29, 1361-1433. 2
© Copyright 2026 Paperzz