Carbon 12 Impacting on Oxygen 16 Wood - Saxon Potential (data from (Hamada Nuclear Physics A 859 (2011) 29-38) From Hamada, the data for a carbon 12 nucleus hitting an oxygen 16 nucleus is given as: v0 = 93.89 MeV rr = 1.18*10-15 1 1 Rr = rr (At 3 + Ap 3 ) numbers ar=0.454*10-15 where is the diffuseness of the potential The principle calculation is the integration Θ = ExpB 2 Μ V0 h -1 ( 1+ExpB r-R a > +Vc - Λ)] where Λ= e V0 and Vc = z1 z2 e2 4 Π Ε0 r V0 Vc = z1 z2 e2 8 Π Ε0 R V0 r>R ( 3 - I R M ) r<R r 2 At, Ap are target and projectile atomic mass 2 Carbon 12 Impacting on Oxygen 16- Hamada data extended g.nb If we write Η= r R then if Η0 = Ra Θ = ExpB Νc = Νc = 2 Μ V0 a h á -1 1+ExpB Η-1 Η0 > - Λ + Νc z1 z2 e2 4 Π Ε0 R V0 Η z1 z2 e2 8 Π Ε0 R V0 ( 3 - Η2 ) where âΗ Η < 1 Η > 1 Clear@ΛD; v0 = H93.89 * 10 ^ 6 L * H1.602 * 10 ^ H- 19LL; h = 1.054571726 H47L ´ 10 ^ H- 34L; rr = 1.18 * 10 ^ H- 15L; At = 15.9994; Ap = 12.011; Rr = rr * HAp ^ H1 3L + At ^ H1 3LL; ar = .454 * 10 ^ H- 15L; vs = - v0 H1 + Exp@Hr - RrL arDL; Μ = At Ap * 1.6005 * 10 ^ H- 27L HAt + ApL; Coulomb potential from Hamada k = 8.99 * 10 ^ 9; zt = 8; zp = 6; q = 1.602 * 10 ^ H- 19L; rc = 1.25 * H10 ^ H- 15LL; Η0 = ar Rr; vc11 = k * zt * zp * q ^ 2 Hv0 Η RrL; vc22 = Hk * zt * zp * q ^ 2L * H3 - Η ^ 2L H2 * v0 * RrL; vcc = Piecewise@88vc11, Η >= 1<, 8vc22, Η < 1<<D; Carbon 12 Impacting on Oxygen 16- Hamada data extended g.nb -1 f3 = 1 + ExpB Η-1 Η0 F - Λ + vcc ; Plot3D@f3, 8Η, 0, 5<, 8Λ, 0, .1<, PlotRange ® 80, .1<, AxesLabel ® 8"Η", "Λ", "V-E"<, ColorFunction ® "RustTones", PlotStyle ® Directive@Yellow, Specularity@White, 20D, [email protected], ExclusionsStyle ® 8None, Red<, Mesh ® None, AxesLabel ® Automatic, BaseStyle ® 8FontWeight ® "Bold", FontSize ® 16<, PlotLabel ® "Region of Positive Potential", LabelStyle ® HFontFamily ® "Arial"LD Region of Positive Potential 0.10 V-E 0.05 0.10 0.00 4 0.05 Λ 2 0.00 Η 0 The above figure shows the region for which the term V - E is positive, defining the lower limit on Η for a real value for V - E in the calculation of Θ. The integral then requires the value of Η for a given Λ for which the value of V - E is zero, as a lower limit on Η. Clear@ΛD; 2 Μ v0 ar factor = ; h The integration limits are found -1 1+ExpB Η-1 Η0 F - Λ + vcc=0 by solving 3 4 Carbon 12 Impacting on Oxygen 16- Hamada data extended g.nb Λ = .025; f11 = factor * f3 . Λ ® %; NSolve@f11 0, Η, RealsD; Part@%, 1D; Part@%%, 2D; Θ = Exp@NIntegrate@Sqrt@f11D, 8Η, Η . %%, Η . %<DD; T = Re@4 H2 Θ + 1 H2 ΘLL ^ 2D; 8%%%%%%%, %< data = 880.0005`, 0.02176012479519214`<, 80.001`, 0.07213624355101142`<, 80.002`, 0.16307940033942034`<, 80.003`, 0.2300024746731435`<, 80.004`, 0.2801129596788937`<, 80.005`, 0.3190894141225901`<, 80.006`, 0.350404674923039`<, 80.007`, 0.3762235620795487`<, 80.008`, 0.39795520763321846`<, 80.009`, 0.41655571840976424`<, 80.01`, 0.43269759657240314`<, 80.015`, 0.4899448288544386`<, 80.02`, 0.5255241995191092`<, 80.025`, 0.550156209639818`<, 80.03`, 0.5683651022991135`<, 80.04`, 0.5936299660802987`<, 80.05`, 0.6103213636258508`<, 80.06`, 0.6220478262258062`<, 80.07`, 0.6305710799764025`<, 80.08`, 0.6368984488821532`<, 80.081`, 0.6374385952626274`<, 80.082`, 0.6379643874555523`<, 80.083`, 0.6384763913628796`<, 80.084`, 0.6389751561873208`<, 80.085`, 0.6394612142178806`<, 80.086`, 0.6399350806112528`<, 80.0861`, 0.6399818160279523`<<; ListLinePlot@data, AxesLabel ® 8"Λ", "T"<, PlotLabel -> "Transmission Coefficient", LabelStyle ® HFontFamily ® "Arial"L, BaseStyle ® 8FontWeight ® "Bold", FontSize ® 16<D 80.025, 0.550156< Transmission Coefficient T 0.6 0.5 0.4 0.3 0.2 0.1 0.02 0.04 0.06 0.08 Λ The thermal energy of the carbon nucleus in a 6000 degree plasma has a Λ of Carbon 12 Impacting on Oxygen 16- Hamada data extended g.nb 5 The thermal energy of the carbon nucleus in a 6000 degree plasma has a Λ of ethermal = 1.3806503 * 10 ^ H- 23L * 6000 v0 5.50748 ´ 10-9 The transmission coefficient in traditional theory is essentially zero for this input energy.
© Copyright 2026 Paperzz