Cellulose Nanocrystals as building blocks for innovative materials Isabelle Capron, Céline Moreau, Hervé Bizot and Bernard Cathala UR1268 Biopolymères Interactions Assemblages,, [email protected] [email protected] Nantes - France. 200 nm Context Biomimetic or model assemblies Biological materials Biobased materials Physical/ chemical interactions Envirt & Eng & Eco constraints Adapted from Aizenberg and Fratzl, Adv Mat. 2009 Why « Nanoscale » ? Nanoscale (1 to several hundreds of nm) allows the control or the elaboration of properties (functionalities) intrinsically linked to the nano scale. Plant cell walls and nanocellulose Cellulose: most abondant biopolymer, biodegradable, sustainable, low density Single microfibril Nanocelluloses The nanodimensions result in a high surface area and hence the powerful interaction of these celluloses with surrounding species, such as water, organic and polymeric compounds, nanoparticles and living cells. According to the process of preparation three main types of nanocellulose can be defined : Nanofibrillated cellulose Cellulose nanocrystal (CN) Bacterial nanocellulose Klemm et al. Angew Chem 2011, 50, 5438 Nano celluloses (1): Nanofibrillated cellulose 1- High pressure homogenizers 2- Pretreated fibers by various chemical and enzymatic methods Chemical method: TEMPO-Mediated Oxidation (2,2,6,6-Tetramethylpiperidine-1-oxyl) OH CH2 NaOCl/NaBr TEMPO Na+ O=C NaOCl/NaBr TEMPO Nano celluloses (2): Bacterial cellulose Cellulose nanofibers Synthesis by bacterial cell from low molecular weight compounds Films/mats Spheres Tubes Nano celluloses (3): Cellulose nanocrystals Acid Hydrolysis of cellulose from cotton: cellulose H2SO4 nanocrystals H2SO4 hydrolyses of amorphous regions. OH are substituted by negatively charged sulfate groups Colloïdal stability Roland et Roberts 1972 Nano celluloses (3): Cellulose nanocrystals Cotton Bacterial Cellulose Cladophora After extraction by acid hydrolysis 200nm x 6 nm 900nm x 7nm 3µm x 10nm Morphology and functionnality can be tuned according to biological origin, hydrolysis process, post treatment, etc… Cellulose nanocrystals A versatile building block for biobased nanomaterials OH • Electrostatic interactions • Hydrogen bonds • van der Waals • Stiff nanorods with contrasted surfaces SO3- 010 1-10 110 100 CH Cellulose nanocrystals Multilayer thin films Hydrogen bonds van der Waals OH SO3- 010 1-10 CH2 110 100 Non-electrostatic interactions with xyloglucan Enzymatic activity assay Multilayered thin film CN/xyloglucan OH HO OH O CH2 O O OH OH HO O H2C OH HO OH Fuc OH HO H2C O O O O H2C OH HO O O O O OH HO H2C O O O HO O HO Ara OH HO OH HO X L X G Xyloglucan interacts strongly with cellulose surface through van der Waals and Hydrogen bonds Rose and Bennett, Trends in Plant Science, 4 (1999) 176-183 Fleer, Polymers at Interface (1993) Spin assisted elaboration of multilayered thin films OH HO OH O CH2 O O OH OH HO O OH Fuc H2C OH HO O OH HO H2C O O O O H2C OH HO O O O OH HO H2C O O O HO O HO Ara OH HO OH HO X X G Xyloglucan XG Cotton CN Si wafer L CN XG Cerclier,C. Cousin F., Bizot H., Moreau C. and Cathala B., Langmuir, 26(22), 17248–1725 2010 Multilayered thin CN/xyloglucan film : growth patterns 5 g/L Xyloglucan viscosity curves 10 g/L 1 g/L C** 0.5 g/L C* Semi-diluted regime C<C** 120 XG 0.5 and 1g/L Thickness (nm) Thickness (nm) 120 100 80 60 40 20 0 Entangled regime C>C** 0 2 4 6 8 (CN/XG) deposit n Linear growth = 16 nm/bilayer XG 10g/L 100 80 60 XG 5g/L 40 20 0 0 2 4 6 (CN/XG) deposit n No growth 8 Multilayered thin CN/xyloglucan film : growth pattern Semi diluted regime C<C** 120 XG 0.5 and 1g/L Thickness (nm) Thickness (nm) 120 100 80 60 40 20 0 Entangled regime C>C** 0 2 4 6 8 (CN/XG) deposit n XG 10g/L 100 80 60 XG 5g/L 40 20 0 0 2 4 6 8 (CN/XG) deposit n XG Cellulose Adhesive Under shearing (spinning) Under shearing (spinning) Anti-adhesive Multilayered thin CN/xyloglucan film : growth pattern Xyloglucan = 1g/L; CN = 5 g/L n=3 Thickness (nm) 150 n=7 n=5 n=3 100 n=8 n=1 50 Slope growth : 16 nm/bilayer n=6 n=4 n=2 0 0 2 4 6 Si 8 (CN/XG) deposit n C. Cerclier et al. Langmuir, 26(22), 17248–1725 2010 Influence of the dipping parameters Structural colors with increasing thickness Air Thin film (n1) Reflective support (ns) Constructive interference Destructive interference Multilayers with biopolymers Enzyme ? Detection of cellulase activity 1) 2) Rinsing and drying 0.600 nkat/mL 0.240 nkat/mL 0.120 nkat/mL 0.060 nkat/mL 0.024 nkat/mL 0.006 nkat/mL time 0 min 3min 5 min 10 min 15 min The method is 200 times more sensitive than a standard detection method (Nelson) B. Cathala & C. Cerclier. Patent N° FR 1055529 (2010) C. Cerclier et al. Advanced Materials (2011). 23: 3791–3795 Multilayered thin films as model heterogeneous catalaysis Hydrogen + van der Waals interactions + cellulose nanocrystals (CN) +++++++++++ + Xyloglucan (XG) +++++++++++ +++++++++++ Multilayered thin films CN-XG +++++++++++ Anchoring layer (PAH) Electrostatic + Hydrogen + van der Waals interactions + mixture of CN/XG +++++++++++ + PAH +++++++++++ +++++++++++ +++++++++++ +++++++++++ +++++++++++ Multilayered thin films PAH-CN/XG Neutrons reflectivity Air n=1 n1 Substrat ns -Kiessig fringes give an indication on the thickness of the layer - Determination of the chemical composition of the films Neutrons reflectivity +++++++ +++++++ thicknessdry (nm) thicknessswollen (nm) Swelling ratio +++++++ +++++++ (C5 - XG1)4 (PAH - C5/XG1)2 65 126 1.9 53 186 3.4 0.45 0.45 0.10 0.27 0.62 0.11 Volume fractions: CN XG Air Cerclier C., et al Biomacromolecules (2013) dx.doi.org/10.1021/bm400967e Degradation study by QCM-D (Quartz Crystal Microbalance with Dissipation) Amplitude time Δf & ΔD ΔfΔD ΔD Δf Time Mass coupled to the surface + viscoelasticity of the coupled layer Degradation study by QCM-D t0 t0 t1 t2 ΔFplateau Dplateau D7 (10-6) F7/7 (Hz) Dmax tplateau time (min) Cerclier C., et al Biomacromolecules (2013) dx.doi.org/10.1021/bm400967e Degradation study by QCM-D Df3/3 Enz = 50 µg.mL-1 DD3/3 (PAH-C5/XG1)2 2,5 +++++++ +++++++ 2 +++++++ Pente slope 1,5 Time (min) Df3/3 Enz = 208 µg.mL-1 DD3/3 1 0,5 +++++++ 0 0 100 200 300 400 500 600 700 [Enz] µg/mL (C5-XG1)4 Hydrolysis is faster when CN and XG are mixed Time (min) Cerclier C., et al Biomacromolecules (2013) dx.doi.org/10.1021/bm400967e Degradation study by QCM-D +++++++ (C5-XG1)4 (PAH-C5/XG1)2 +++++++ +++++++ +++++++ PAH XG CNC PAH The critical parameter of hydrolysis is the swelling level due to cross-links Cerclier C., et al Biomacromolecules (2013) dx.doi.org/10.1021/bm400967e Cellulose nanocrystals Hydrophobic character Dispersion via electrostatic repulsions: Sulfate ester groups OH SO3- 010 1-10 CH 110 100 Hybrid Multilayered thin films for advanced materials Toward new functionnality : CN/SWNT complex Single Wall Carbon Nanotubes (SWNTs) Dimensions length = several µm; section ~1 nm Unique properties Electrical, optical, mechanical… SWNTs polymer nanocomposites Specific properties Multifonctionality Challenges Dispersion : Insolubility in most solvents Covalent fonctionalization : loss of SWNTs properties Sonication with dispersants : surfactant, polymers, biomolecules… Structuration Homogeneous repartition 1D, 2D organization SWNTs dispersion with Cellulose Nanocrystals SWNTs / CNs-H2O O.D. at 891nm Ultrasounds Increasing time of ultrasound Extinction coefficient α = 2.14 mL/mg.mm SWNTs Concentration up to 0.4mg/mL Maximum dispersion yield = 70% SWNTs/Cellulose mass ratios up to 0.15:1 Olivier C., Langmuir, 28 (34), pp 12463–12471, 2012 SWNTs dispersion with Cellulose Nanocrystals SWNTs/CNs dispersion 0.030 0.025 Raman exc. 1064nm (E1 excitation) 0.30 0.25 0.20 0.015 PL exc. = 670nm PL exc. = 810nm (E2 excitation) 0.15 0.010 0.10 0.005 Raman intensity (a.u.) RBM 0.020 PL intensity (a.u.) 0.35 G-band 0.05 0.000 0.00 900 1000 1100 1200 1300 1400 Wavelenght (nm) Well isolated semi-conducting SWNTs 28 SWNTs dispersion with Cellulose Nanocrystals : Morphology Cellulose nanocrystals : anisotropic materials Contrasted surfaces 010 Hydrophilic groups accessibility 1-10 60 More Hydrophobic More hydrophilic 110 100 55 50 hydrophobic plan 45 40 35 30 110 1-10 100 SWNT 010 K. Mazeau Carbohydr. Polym. 2011, 84, 524 « Free » section of SWNT Elaboration of multilayered thin films Growth pattern Linear growth 18 nm/bilayer 17 nm/bilayer SWNT/CN interaction does not significantly affect the adsorption process and the film growth Elaboration of multilayered thin films Excitation at 1064nm Raman signature of SWNTs is obtained from the films containing SWNT/CN dispersions Elaboration of multilayered thin films Excitation at 1064nm A constant number of SWNTs are incorporated into each CN layer Elaboration of multilayered thin films Raman/Luminescence exc: 1064nm Luminescence 8 2 Luminescence : well isolated SWNTs Evaluation of electrical properties SEM image of a 8 bi-layer film Electrical conductivity : 40 S/m (+/- 20 S/m) 1 μm (4-point probe measurements) Percolation of SWNTs Cellulose nanocrystals Hydrophobic character Stiff nanorods with contrasted surfaces OH SO3- 010 1-10 CH 110 100 Pickering emulsions Cellulose nanocrystals based Pickering emulsions Emulsion Definition: Metastable system of two immiscible liquids Macroscopic phase separation Cellulose nanocrystals based Pickering emulsions 3 main types of interfacial stabilisation mono- layer Surfactant molecule multi- layered associated molecules oil oil Surface active agents at an oil / water interface Colloidal particles Pickering emulsion Pickering, S. U. (1907). Journal of Chemical society 91: 2001. Cellulose nanocrystals based Pickering emulsions Size and wetting parameters 900 900 90 0 for g = 50 mN/m hydrophilic Particles E = π . r² . γ (1±cos)² Particles can be considered irreversibly adsorbed. Hydrophobic Particles Oil in water emulsion B.P. Binks Current Opinion in Colloid & Interface Science 7 (2002) 2141 Cellulose nanocrystals based Pickering emulsions hexadecane aqueous phase emulsification suspension of cellulose nanocrystals 10 m Highly stable armored droplets 50µm Droplets stabilized by BCN with double staining (BODIPY and calcofluor). 1 µm Scanning electron micrographs of styrene Pickering emulsion stabilized by BCN and polymerized using thermal initiator Kalashnikova, I et al Biomacromolecules 13 (1), pp 267–275 (2012) Capron et al. Patent N° 1055836 (2010) Cellulose nanocrystals based Pickering emulsions highly stable emulsions • dispersion • concentration creaming process • time over a year • temperature 4°C, 40°C or up to 2 hours at 80°C • pH from 1 to 12 18 16 14 12 10 8 6 4 2 0 0,1 1 10 diametre (µm) 100 Cellulose nanocrystals : amphilic material? Hydrophilic groups accessibility 010 60 More Hydrophobic More hydrophilic 55 50 45 40 35 30 110 1-10 100 010 K. Mazeau Carbohydr. Polym. 2011, 84, 524 1-10 110 100 Emulsion vs concentration : Exemple of BCN Diameter Emulsion volume 1000 900 60 50 700 D(3 ,2 ) (µ m) Vol d'émulsion (µL) 800 600 500 400 300 200 40 30 20 10 100 0 0 0 1 2 3 4 5 6 7 8 9 0 10 1g/L 4 6 8 10 conc (g/L) conc (g/L) 0,8g/L 2 1,5g/L 2g/L 5g/L 7 g/L 10 m Optical microscopy Limited coalescence process Decreasing interface area + emulsion suspension oil Not covered droplets droplets stabilised The drop size is controlled by the amount of particles introduced Cellulose nanocrystals based Pickering emulsions Emulsions prepared varying concentration 0.1 0.2 0.3 0.5 0.8 1 1.2 1.5 2 3 4 5 (g/L) 0,9 emulsion ratio (%) % hexadecane After centrifugation 4000g 0,8 0,7 0,6 74% of hexadecane Close packing conditions 0,5 0,4 0,3 0,2 0.1 0.2 0.3 0.5 0.8 1 1.2 1.5 2 3 4 5 (g/L) 0,1 0 0 1 2 3 4 5 concentration BCN (g/L) BCN concentration (g/L) Kalashnikova, I.; Bizot, H.; Cathala, B.; Capron, I. Langmuir, 27, 7471–7479(2011) 6 Cellulose nanocrystals based Pickering emulsions Inverse drop diameter is proportionnal to the amount of particules to stabilize oil 0,25 Limited coalescence 1/D (µm-1) 1/D (µm-1) 0,2 0,15 0,1 Changing covering mode 0,05 0 0 2 4 6 8 10 12 14 mp (mg per mL of hexadecane) mp (mg de NC / ml hexadecane) 2 covering modes Cellulose nanocrystals based Pickering emulsions Stability with partial coverage of the droplet surfaces 1 Coverage : 0,8 Coverage SCN/Sdroplets 0,6 0,4 0,2 0 0 5 10 CN (g/L) 15 Cellulose nanocrystals based Pickering emulsions Stability with partial coverage of the droplet surfaces 1 Coverage : 0,8 Coverage SCN/Sdroplets 0,6 0,4 0,2 0 0 5 10 15 CN (g/L) 500nm 500nm Kalashnikova, I.; et al. Langmuir, 27, 7471–7479(2011) Source and aspect ratio Cotton Bacterial Cellulose 1µm 100 nm 1µm 100nm Cladophora 1µm 100nm Kalashnikova, Bizot, Bertoncini, Cathala and Capron. Soft Matter 2013 Source and aspect ratio 1.4 CCN 1.2 BCN ClaCN Low concentration domain: Isolated beads coverage ratio 1 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 12 14 16 CCN BCN ClaCN mp (mg / mL hexadecane) High concentration domain: Interconnected network Kalashnikova, Bizot, Bertoncini, Cathala and Capron. Soft Matter 2013 High internal phase emulsion … oil as a gel + oil 50% interfaces deformation is achieved without coalescence high drop interface stability 75% 10µm Pickering MIPE 60% 20% Liquid emulsion HIPE Soft gel 85% Hard gel Patent Capron, Bizot Cathala 2011 Kalashnikova, et al Biomacromolecules 2013, 14, 291−296 From emulsion to foams Emulsification Centrifugation Freeze drying 1 µm + cyclohexane 10 µm Tasset S et al, et al submitted Cellulose nanocrystals Electrostatic interactions: films with cationic polyelectrolytes and dispersion. OH SO3- 010 1-10 Stiff nanorods with contrasted surfaces : Hybrid nanobricks and Pickering emulsion CH 110 100 Hydrogen bonds van der Waals interactions: Multilayered thin films with xyloglucan
© Copyright 2026 Paperzz