PIB vs CSF Biomarkers: A Total N = 55 (11 Control Control, 34 MCI MCI, 10 AD) 300 MCI AD Control CSF A 1-42 250 200 Penn Autopsy Sample (56 AD, 52 Cog normal) 192 pg/ml 150 100 50.0 1 1.2 1.4 1.6 1.8 2 Mean Cortical SUVR 2.2 2.4 PIB vs CSF Biomarkers: p-Tau181 90.0 80.0 MCI AD Control CS SF P-tau 70.0 60.0 50.0 40.0 30.0 Penn Autopsy Sample (56 AD, 52 Cog normal) 23 pg/ml 20.0 10 0 10.0 1 1.2 1.4 1.6 1.8 2 Mean Cortical SUVR 2.2 2.4 PIB vs FDG 1.60 1.50 Composiite FDG R ROI 1.40 FDG Cutoff: from ROC analysis of separate ADNI subjects (AD vs Controls) 1.30 1.20 1.10 1.00 0.900 0.800 MCI AD Control 1 1.2 1.4 1.6 1.8 2 Mean Cortical SUVR 2.2 2.4 Biomarker Agreement (kappa) CSF A1-42 CSF t-tau CSF p-tau PIB 0.71 0.21 0.50 FDG 0.23 0.28 0.25 FDG 0.12 Biomarkers vs MMSE FDG CSF A1-42 35.0 35.0 30.0 30.0 30.0 25.0 25.0 25.0 20.0 20.0 15.0 10.0 MMSE 35.0 MMSE MMSE PIB 15.0 R 02 R=0.2 1 1.2 1.4 20.0 15.0 R=0.2 1.6 1.8 2 Mean Cortical SUVR 2.2 2.4 10.0 50 100 150 200 CSF A1-42 250 R=0.6 300 10.0 0.8 0.9 1 1.1 1.2 1.3 FDG Composite ROI Linear regressions combining all 3 subject s bject groups: gro ps MCI, AD, Controls 1.4 1.5 1.6 Simple Rules for Classification 98% specificity p y for FTD in autopsy-confirmed p y cases;; Foster et al. Brain 2007;; 130: 2616-35. FTD May Contaminate AD Clinical Ti l Trials 10 of 93 subjects (10.8%) had FTD-like metabolic pattern at baseline Topographic Extent of Cerebral Hypometabolism Is Intermediate in MCI # of Significant Pixels Diagnosis at Baseline MCI (n = 161) 217 ± 307 AD (n = 75) 579 ± 865 (p < 0.001) CN (n = 80) 86 ± 152 (p < 0.01) Median and quartile plots Lower CMRgl in AD & MCI 92 AD<104 NC 184 MCI<104 NC Reiman et al Banner Alzheimer Institute from Langbaum et al, NeuroImage (in press) Correlations Between Lower CMRgl & Clinical Severity CDR 298 subjects MMSE 298 subjects MMSE 74 AD patients Reiman et al Banner Alzheimer Institute Langbaum et al, NeuroImage (in press) 12-month CMRgl Declines in AD & MCI 69 AD patients 154 MCI patients Reiman et al Banner Alzheimer Institute Empirically pre-defined statistical ROI for the assessment of 12-Month CMRgl declines in AD patients Defined using data from 27 training-set patients using bootstrap with replacement Number of AD patients per group needed in a 12-month multi-center RCT to detect a 25% treatment effect with power=80%, p=0.05 & no need to correct for multiple comparisons FDG PET 61 ADAS-COG11 612 Characterized in 29 test-set patients (excluding HiRez & HRRT scanners) MMSE 493 Reiman et al Banner Alzheimer Institute Empirically pre-defined statistical ROI for the assessment of 12-Month CMRgl declines in MCI patients Defined using data from 50 training-set patients using bootstrap with replacement Number of MCI patients per group needed in a 12-month multi-center RCT to detect a 25% treatment effect with power=80%, p=0.05 & no need to correct for multiple comparisons FDG PET 217 ADAS-COG11 4402 MMSE 5749 Characterized in 74 test-set patients (excluding HiRez & HRRT scanners) Reiman et al Banner Alzheimer Institute FDG-PET and Clinical Outcomes Composite p ROI - Based on p published coordinates (smoothed) ( ) Multivariate Random Effects Models: Baseline FDG vs ADAS-Cog Change Baseline and Longitudinal FDG vs ADAS-Cog Change Longitudinal FDG Sample (1319 scans!) !) N AD MCI N Normal l Baseline 95 206 102 6 Months 86 188 94 12 Months 74 176 85 18 Months NA 76 NA 24 Months 26 66 45 Composite FDG ROI and ADAS-Cog Change Dependent: ADAS-cog change AD Model 1 MCI AD, MCI, N β p β p β p -1.96 0.003 -0.54 0.012 -0.63 <0.001 FDG-ROIs Baseline -1.95 0.002 -0.66 0.003 -0.80 <0.001 FDG ROI Change FDG-ROIs Ch -3.25 <0.001 -1.08 <0.001 -1.73 <0.001 FDG-ROIs Baseline Model 2 Mixed effects models Random slope & intercept to account for individual variability in starting point and change Controlled for age, education, # ApoE 4 alleles, group membership Standardized FDG measure - change in ADAS-Cog per 1 SD difference (either at baseline or change) in FDG ROI MCI Subjects Converters N Gender (M/F) Cognitive tests 28 57 19/9 37/20 p-value ns mean SD mean SD Age (yrs) 78.3 7.5 78.0 7.4 ns Education (yrs) 16.4 2.6 16.3 2.8 ns Total followup time (yrs) 1.9 0.4 1.9 0.4 ns ADAS-cog (baseline) 13.2 4.6 10.3 3.9 0.003 MMSE (baseline) 26.4 1.7 27.3 1.6 0.03 APOE ε4 frequency CSF biomarkers (pg/mL) Non-converters 0.41 0.25 Cont Dichot 0.07 ns FDG-PET 1.13 0.10 1.22 0.14 0.002 0.05 3) Hi Hipp V Volume l (mm ( 2883 558 3187 527 0 009 0.009 0 07 0.07 Aß 149.7 45.3 165.7 57.9 ns ns p-tau 37.1 10.7 34.3 17.8 ns 0.02 t-tau 94 0 94.0 28 1 28.1 100 6 100.6 55 3 55.3 ns ns p-tau/Aß 0.27 0.12 0.25 0.18 ns 0.01 t-tau/Aß 0.68 0.27 0.75 0.62 ns ns AVLT Recall 26.4 6.6 32.2 8.1 0.001 0.01 AVLT Del 1.4 2.2 2.8 3.1 0.03 0.10 LogMem Recall 6.3 3.4 7.7 2.9 0.04 ns LogMem Del 2.9 2.6 4.6 2.7 0.005 ns univariate B +/-SE HR p B +/-SE FDG-PET HR p B +/-SE Hc HR p B +/-SE +/ SE Aβ HR p B +/-SE Ptau HR p B +/-SE +/ SE Tau HR p B +/-SE Ptau/Aβ HR p B +/-SE / SE Tau/Aβ HR p B +/-SE AVLT-Rc HR p B +/-SE AVLT-Del HR p B +/-SE LogMem-Rc HR p B +/-SE LogMemHR Del p ApoE4 C S F b i o m a r k e r s M e m o r y F x n 0.39 +- 0.19 1.47 0.04 -0 73 +- 0.22 -0.73 0 22 0.48 0.001 -0.81 +- 0.24 0.45 0.001 multivariate ns -0.91 -0 91 +- 0.26 0 26 0.40 <0.001 -0.74 +- 0.26 0.48 0.005 Predicting g conversion to AD ns ns ns ns ns ns -0.75 +- 0.23 0.47 0.001 -0.59 +- 0.26 0.56 0.021 -0.48 +- 0.21 0.62 0.020 -0.69 +- 0.21 0.50 0.001 -0.60 +- 0.20 0.55 0.002 ns Predictor variables in continuous form Cox proportional hazards model Controlled for age, education, sex univariate B +/-SE HR p B +/-SE FDG-PET HR p B +/-SE Hc HR p B +/-SE +/ SE Aβ HR p B +/-SE Ptau HR p B +/-SE +/ SE Tau HR p B +/-SE Ptau/Aβ HR p B +/-SE / SE Tau/Aβ HR p B +/-SE AVLT-Rc HR p B +/-SE AVLT-Del HR p B +/-SE LogMem-Rc HR p B +/-SE LogMemHR Del p ApoE4 C S F b i o m a r k e r s M e m o r y F x n 0.66 +- .40 1.94 0.10 1 08 +- .045 1.08 045 2.94 0.016 0.91 +- 0.45 2.49 0.040 multivariate ns 1.08 1 08 +- 0.46 0 46 2.95 0.018 Predicting g conversion to AD ns ns 1.06 +- 0.50 2.88 0.033 Joint hazard ratio: 15.03 15 03 ns 1.38 +- 0.62 3.99 0.025 ns ns 1.54 +- 0.63 4.68 0.014 1.01 +- 0.51 2.75 0.047 1.63 +- 0.63 5.08 0.010 ns ns ns Predictor variables in dichotomous form Cox proportional hazards model Controlled for age age, education education, sex Hypometabolism is More Extensive in MCI Subjects Converting to AD by 1 Year # off Si Significant ifi t Pixels Pi l Remain MCI at 1 year N=138 (92 men men, 46 women) Age: 75.4 ± 6.5 Pixels: 217 ± 307 Convert to AD by 1 year N=23 (14 men, 9 women) Age: 75.3 ± 6.5 Pixels 511 ± 627 (p < 0.02) Distribution of Significant Pixels at Baseline and Clinical Outcome in MCI Subjects Baseline PIB Subjects PiB(+) Definition D fi iti ADNI ROI and 4 Region Avg 3.500 3.5 Ctrl MCI AD 2.500 2.5 SUVR 50-70 SUV VR 50-7 70 3.000 3.0 2.000 2.0 Cut-off 9 1 500 1.500 1.5 1 5 10 47 17 18 2 C ON MC I AD 1.0 1.000 ACG 0.500 FC PAR PRC 4 Reg Avg Aizenstein et al., Arch Neurol 2008; 65:1509-17 Mathis et al 1 Year Changes in PIB SUVR Values by Subject j Group p Longitudinal Mean of 4 Region Average 2 50 2.50 Baseline 2.0 2.00 1.5 PiB SUVR 50-70 SUVR 5 S 50-70 1 year 1.50 B/L Year1 1.0 1.00 05 0.5 0.50 0 0.00 Ctrl C ON MCI PiB- MC I PiB(-) AD AD Ctrl C ON MCI MC I PiB+ PiB(+) AD AD Mathis et al ADNI Subjects with Reliable Change Reliable change defined as >1 SD of test-retest variability or SUVR change >0.215 Ct l Ctrl MCI # >0.215 # >0.215 PiB(-) 6 0 15 PiB(+) 8 4 25 AD # >0.215 0 1 0 4 10 3 Mathis et al Follo Up of PIB-Positive Follow-Up PIB Positi e ADNI MCI’s ADNI PiB MCI’s N = 65, 12 mo. follow-up PiB(-) Converters to AD PiB(+) 18 3 47 Converters to AD 14 Summary CSF A and PIB are closely related, neither is related l t d to t cognition iti FDG-PET is related to cognition and tracks change h att baseline b li and d over time ti Statistically defined ROIs produce small sample sizes in power calculations FDG-PET predicts conversion from MCI to AD PIB PET is PIB-PET i related l t d to t conversion i Still few subjects with PIB-PET longitudinal data The Future: GO and ADNI2 18F Amyloid imaging agents C b Can be distributed di t ib t d to t almost l t every ADNI site it Standardization issues fundamentally identical to FDG Goals Define A load in ADNI cohort especially VMCI Relate to prior longitudinal change (ADNI1) Examine different methods of quantitation ( ) Prediction of decline/conversion (ADNI2) Endophenotype for GWAS studies [18F]-AV-45 (Florpiramine F18) 10 min data acquisition AD QuickTime™ and a decompressor are needed to see this picture. [18F]-AV-45 18 F O O O N Normal Elderly QuickTime™ and a decompressor are needed to see this picture. NHCH3 Ki=3.1 nM Dan Skovronsky, Avid Radiopharmaceuticals [18F]3’-F-PIB and [11C]PIB in the same control and d AD subject bj t CONTROL AD [18F]3’-F-PIB 2.5 18 HO F S N NHCH3 90-120 min Ki = 3 nM [11C]PIB HO S N Ki = 2 nM 0.5 25 2.5 NH11CH3 40-90 40 90 min 05 0.5 Chet Mathis, U Pittsburgh [18F]BAY94-9172 AD subjects CONTROL 90-120 min [18F]BAY94-9172 F]BAY94 9172 18 F O O O NHCH3 Ki = 6.7 nM 61 years (MMSE 30) 80 years (MMSE 26) 83 years (MMSE 20) Rowe et al., Lancet Neurol. 2008 [18F]FDDNP and [11C]PIB in the Same Subjects [11C]PIB HO S NH11CH3 N QuickTime™ and a decompressor are needed to see this picture. p [18F]FDDNP ] NC CH3 18 F CN N CH3 Tolboom et al, J Nucl Med 2009 Florpiramine Clinical Trial Sites QuickTime™ and a decompressor are needed to see this picture. Dan Skovronsky, Avid Radiopharmaceuticals Results: subjects < 70 years old Dan Skovronsky, Avid Radiopharmaceuticals Results: All Subjects (N=89) (N=55) (N=60) Dan Skovronsky, Avid Radiopharmaceuticals Acknowledgements Berkeley ADNI Group Susan Landau Cindee Madison Connie Cheung Beth Mormino Danielle Harvey (UC Davis) ADNI PET Norm Foster Danielle Harvey Bob Koeppe Chet Mathis Eric Reiman Ron Petersen, Paul Aisen, Cliff Jack, Les Shaw, John Trojanowski, Laurel Beckett, Mike Weiner and The ADNI Investigators
© Copyright 2025 Paperzz