The thermodynamic definition of entropy Atkins, Chapter 4 ∆S Sys heat that would be transferred in a reversible process (= maximum heat) qrev = T temperature at which heat exchange takes place Why is this a suitable definition? q>0 q>0 dS Sys dqrev = T small change Adding heat increases the entropy (and disorder) of the system The entropy (and disorder) of the system increases in an isothermal expansion Nils Walter: Chem 260 Entropy change in a system can be calculated from the reversible heat Irreversible Irreversibleexpansion expansion p1 = 15 atm V1 = 1 L T = 298 K n = 1 mol p1 = 15 atm, V1 = 1 L p2 = 1 atm V2 = 15 L T = 298 K n = 1 mol Pressure p2 w = -1.42 kJ w = -4.12 kJ p2 = 1 atm, V2 = 15 L Volume Reversible Reversibleexpansion expansion wrev æ V2 ö = − nRT lnçç ÷÷ = −4.12 kJ è V1 ø qrev = -wrev = + 4.12 kJ Þ The Thesystem systementropy entropyincreases increasesby by the thesame sameamount amountin inboth both expansions expansions(state (statefunction!) function!) qrev 4.12 kJ ∆S = =Nils Walter: Chem = 13260 .8 J K −1 T 298.15 K How do classical and statistical thermodynamic definitions of ∆SSys match? Classical thermodynamic definition of S in the isothermal expansion of a perfect gas: state 2 dqrev 1 ∆S = S 2 − S1 = ò = T T state1 state 2 ò dq state1 rev æ V2 ö qrev = ; wrev = − nRT lnçç ÷÷ = − qrev T è V1 ø isothermal Þ ∆U= q + w = Cv ∆T = 0 ∆ Þ æ V2 ö ∆S = nR lnçç ÷÷ è V1 ø classical classical and entropy statistical change entropy in thechange in isothermal the isothermal expansion expansion of a perfect of a perfect gas gas Statistical thermodynamic definition of S in the isothermal expansion of a perfect gas: V1 W1∝ (V1 )N ∆S = k ln W2 - k ln W1 = k ln (V2)N - k ln (V1)N N æ V2 ö æ V2 ö æ V2 ö ∆S = k lnçç ÷÷ = Nk lnçç ÷÷ = nN A k lnçç ÷÷ è V1 ø è V1 ø è V1 ø N molecules of gas V2 W2∝ (V2 )N R Þ æ V2 ö ÷÷ Walter: Chem 260 ∆S = nR lnçç Nils è V1 ø The second law of thermodynamics ∆∆SSUniverse = ∆S System++∆∆SSSurroundings ≥0 Universe = ∆SSystem Surroundings ≥ 0 The The net net entropy entropy will will increase increase or or stay stay the the same. same. It It will will never never decrease. decrease. ∆SSurr > 0 ∆SSYS < 0 ∆SSurr ≥ q T q ∆SUniv = 0 only for a reversible process ∆SUniv > 0 for all other processes Atkins: tends to increase Atkins: The Theentropy entropyof ofthe theuniverse universe increase Nilstends Walter:to Chem 260 ∆SSys is a state function, while ∆SSurr and ∆SUniv are pathway dependent p2 Irreversible Irreversibleexpansion expansion w = - p2 ∆V = -1.42 kJ qSys = -w = 1.42 kJ p2 = 1 atm V2 = 15 L T = 298 K n = 1 mol Reversible Reversibleexpansion expansion wrev ∆∆SSSurr ==-4.8 JJKK-1-1 -4.8 Surr æ V2 ö = −nRT lnçç ÷÷ = −4.12 kJ = −q rev = −q Sys è V1 ø ∆S Sys qrev = T ∆S Surr = − qSys T ∆∆SSUniv ==99JJKK-1-1 Univ p1 = 15 atm, V1 = 1 L Pressure p1 = 15 atm V1 = 1 L T = 298 K n = 1 mol ∆∆SSSys == 13.8 JJKK-1-1 13.8 Sys w = -1.42 kJ w = -4.12 kJ p2 = 1 atm, V2 = 15 L Volume ∆∆SSSys == 13.8 JJKK-1-1 13.8 Sys ∆∆SSUniv ==00JJKK-1-1 Univ NilsJWalter: ∆∆SSSurr ==-13.8 KK-1-1 Chem 260 -13.8 J Surr Isothermal compression Irreversible Irreversiblecompression compression p1 = 15 atm V1 = 1 L T = 298 K n = 1 mol w = - p1 ∆V = + 21.3 kJ qSys = -w = - 21.3 kJ ∆∆SSSurr ==++71.4 JJKK-1-1 71.4 Surr p2 = 1 atm V2 = 15 L T = 298 K n = 1 mol Reversible Reversiblecompression compression wrev ∆∆SSSys ==--13.8 JJKK-1-1 13.8 Sys æ V1 ö = −nRT lnçç ÷÷ = +4.12 kJ = −q rev = −q Sys è V2 ø ∆S Sys qrev = T ∆S Surr = − qSys T ∆∆SSUniv ==57.6 57.6 Univ JJKK-1-1 p1 = 15 atm, V1 = 1 L Pressure p1 p2 = 1 atm, V2 = 15 L Volume ∆∆SSSys ==--13.8 JJKK-1-1 13.8 Sys ∆∆SSUniv ==00JJKK-1-1 Univ ∆∆SSSurr ==++13.8 JJKK-1-1 Chem 260 13.8 Nils Walter: Surr
© Copyright 2026 Paperzz