CZECH MYCOL. 60(1): 1–11, 2008 Molecular phylogeny and taxonomic position of Trametes cervina and description of a new genus Trametopsis MICHAL TOMŠOVSKÝ Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry in Brno, Zemědělská 3, CZ-613 00, Brno, Czech Republic [email protected] Tomšovský M. (2008): Molecular phylogeny and taxonomic position of Trametes cervina and description of a new genus Trametopsis. – Czech Mycol. 60(1): 1–11. Trametes cervina (Schwein.) Bres. differs from other species of the genus by remarkable morphological characters (shape of pores, hyphal system). Moreover, an earlier published comparison of the DNA sequences within the genus revealed considerable differences between this species and the remaining European members of the genus Trametes. These results were now confirmed using sequences of nuclear LSU and mitochondrial SSU regions of ribosomal DNA. The most related species of Trametes cervina are Ceriporiopsis aneirina and C. resinascens. According to these facts, the new genus Trametopsis Tomšovský is described and the new combination Trametopsis cervina (Schwein.) Tomšovský is proposed. Key words: Trametopsis, Trametes, ribosomal DNA, polypore, taxonomy. Tomšovský M. (2008): Molekulární fylogenetika a taxonomické zařazení outkovky jelení, Trametes cervina, a popis nového rodu Trametopsis. – Czech Mycol. 60(1): 1–11. Outkovka jelení, Trametes cervina (Schwein.) Bres., se liší od ostatních zástupců rodu nápadnými morfologickými znaky (tvar rourek, hyfový systém). Také dříve uveřejněné srovnání sekvencí DNA v rámci rodu Trametes odhalilo významné rozdíly mezi tímto druhem a ostatními evropskými zástupci rodu. Uvedené výsledky byly nyní potvrzeny za použití sekvencí jaderné LSU a mitochondriální SSU oblasti ribozomální DNA, přičemž nejpříbuznějšími druhu Trametes cervina jsou Ceriporiopsis aneirina a C. resinascens. Na základě těchto skutečností je popsán nový rod Trametopsis Tomšovský a je navržena druhová kombinace Trametopsis cervina (Schwein.) Tomšovský. INTRODUCTION The taxonomic position of Trametes cervina (Schwein.) Bres. was not sufficiently resolved until recently. The species differs from other European Trametes species by large irregular pores tending to split, forming daedaleoid, nearly irpicoid hymenophores, and by a distinct hyphal system quite unique among Trametes species. The hyphal system of Trametes cervina is not easy to describe. Different authors classify it as dimitic (Kotlaba and Pouzar 1957, 1983; Ryvarden and Gilbertson 1994) or trimitic (Donk 1974, Bernicchia 2005). The most detailed 1 CZECH MYCOL. 60(1): 1–11, 2008 description of the hyphal system of this species was published by Jahn (1983), who stated it to have a “dimitic with a trimitic aspect“. The problem of the doubtful classification of the hyphal system is caused by the presence of numerous sclerified thick-walled intercalary segments of the contextual generative hyphae, which may be confused with genuine skeletal hyphae when the distal clamps are overlooked or detached by cutting. The second type of thick-walled hyphae is not easy to classify as it possesses characters of both skeletal and binding hyphae. These hyphae originate from a generative hypha, they are thick-walled, rather rarely branched, usually curved and flexuous. This type of skeletoid hyphae (term proposed by Jahn 1983) is quite unique and differs from true binding hyphae in Trametes s. str. According to its hyphal system, T. cervina was in the past placed in the genus Antrodia (Kotlaba and Pouzar 1983). However, the genus Antrodia encompasses species causing a brown rot, while the rot of T. cervina is white. The white rot nature of T. cervina was confirmed (Tomšovský and Homolka 2004), but the production of ligninolytic enzymes is substantially lower (almost undetectable) if compared with genuine Trametes species. Dai (1996) proposed the combination Funalia cervina (Schwein.) Y. C. Dai due to cyanophilous skeletal hyphae and a change of colour in the hairs on the pileus after KOH treatment. Molecular phylogeny methods based on comparisons of DNA sequences of the ITS and LSU regions of ribosomal DNA were applied to T. cervina by Tomšovský et al. (2006). The results did not support the theory about close relatedness between T. cervina and other European Trametes species or fungi traditionally placed in Funalia (Funalia is the synonym of Coriolopsis; see details in Ryvarden and Gilbertson 1994). According to Ryvarden and Gilbertson (1994), pileate fungi with skeletal hyphae causing white rot should in general belong to the genus Tyromyces. However, the pileus habitus of the two taxa is different – pilei of Tyromyces are sappy to watery while those of Trametes cervina are tough. Therefore, the putative relatedness of T. cervina and Tyromyces should be tested by molecular phylogeny methods. The results of Tomšovský et al. (2006) revealed remarkable proximity of T. cervina to Ceriporiopsis aneirina among a large DNA set encompassing various species of Aphyllophorales. Nevertheless, the DNA of C. aneirina was not sequenced by the authors themselves. The sequence was obtained from the GenBank database and the only ITS sequence of the species was accessible at the time of manuscript preparation. Due to possible misidentification of the sequenced fungus, the proximity of T. cervina and C. aneirina should be confirmed by further study including new sequences of the latter species. The aim of the study was to solve the taxonomic position of Trametes cervina using widely adopted methods of molecular taxonomy applying DNA sequences of nuclear (large subunit – LSU) and mitochondrial (small subunit – mitSSU) ribosomal DNA with regard to macro– and micromorphological characters of the species. 2 TOMŠOVSKÝ M.: MOLECULAR PHYLOGENY AND TAXONOMIC POSITION OF TRAMETES CERVINA MATERIAL AND METHODS The earlier obtained DNA sequences of Trametes cervina LSU region (Tab. 1) were completed by mitSSU sequences of Trametes cervina and LSU and mitSSU sequences of Ceriporiopsis aneirina and C. resinascens. C. resinascens was added to the study due to its close proximity to C. aneirina, whereas neither species seems to be closely related to the type of the genus – C. gilvescens (Tomšovský, in prep.). The DNA was isolated from the dried tissue of herbarium specimens or from cultures grown on Petri dishes with 2 % malt extract agar according to Tomšovský et al. (2006). For numbers of source herbarium specimens and cultures, see Tab. 1. Tab. 1. Fungal material newly sequenced in this study and analysed sequences from the GenBank. Species Geographic origin Herbarium specimen Culture number* GenBank Acc. No.** Reference Trametopsis cervina (as Trametes cervina) Czech Republic PRM 900574 CCBAS 018N AY855907 EU368500 Trametopsis cervina (as Trametes cervina) Trametopsis cervina (as Trametes cervina) Ceriporiopsis aneirina Czech Republic PRM 891515 – – MUAF 888 CCBAS 026N AY855917 – – AY986497 EU368503 EU368504 EU368501 EU368502 AY855909 – AF518656 – – U27079 Tomšovský et al. 2006 / this study Tomšovský et al. 2006 unpublished ? Czech Republic DAOM 52884 Trametes suaveolens Czech Republic BRNM 706970 BRNM 706968 – Trametes suaveolens ? – DAOM 196328 Trametes suaveolens ? – DAOM 19632 Antrodia albida USA – CBS 308.82 Antrodia albida Belgium CBS H-9334 CBS 458.86 Antrodia albida Norway – Tyromyces chioneus ? KEW 141 Ceriporiopsis resinascens Czech Republic MUAF 886 this study this study Tomšovský et al. 2006 Hibbett and Binder 2002 Hibbett and Donoghue 1995 AY515348 DQ491441 AY515349 – Kim et al. 2005 / unpublished Kim et al. 2005 FCUG 1100 AY333846 – unpublished – AF393080 AF334896 Binder and Hibbett 2002 * Culture collection abbreviations are listed according to Anonymus 2, except for MUAF (= Culture Collection of Dept. of Forest Protection and Wildlife Management, Mendel University, Brno). ** The first number refers to the LSU sequence, the second one to the mitSSU sequence. 3 CZECH MYCOL. 60(1): 1–11, 2008 For amplification of LSU and mitSSU the primer pairs LR0R/LR6 and MS1/MS2 were used (Anonymus 1; White et al. 1990). The DNA was amplified with PCR, using the Mastercycler® ep thermocycler (Eppendorf). PCR amplifications were performed according to Tomšovský et al. (2006). The PCR products were purified with NucleoSpin Extract II (Macherey-Nagel) prior to sequencing. Sequences were determined with an ABI PRISM 3100 Avant DNA sequencer (Applied Biosystems) at the Department of Animal Morphology, Physiology and Genetics, Faculty of Agriculture, Mendel University, Brno using the ABI PRISM BigDye terminator v1.1 cycle sequencing kit (Applied Biosystems). All samples were sequenced with the primers used in the PCR. The sequences were deposited in the EMBL Nucleotide Sequence Database and their GenBank accession numbers are given in Tab. 1. Additional LSU and mitSSU sequences were searched for in the GenBank. The type species sequences of the genera Antrodia, Trametes and Tyromyces (Antrodia albida, Trametes suaveolens and Tyromyces chioneus, respectively) were added to the alignment to elucidate the taxonomic position of Trametes cervina in relation to these genera (for GenBank accession numbers, see Tab. 1). In the case of mitSSU also the sequence of Trametes cervina deposited in the GenBank was added to the dataset. All sequences were edited manually using BioEdit version 4.7.1. (Hall 1999). The LSU alignment with introduced gaps consisted of 573 including 442 constant, 127 variable and 86 parsimony informative sites. That of mitSSU included 497 positions with 344 constant, 80 variable and 73 parsimony informative characters. Bayesian analysis was performed using the MrBayes 3.0 software (Ronquist and Huelsenbeck 2003) while the maximum parsimony analysis (MP) was performed with PAUP 4.0 (Swofford 1999). Support for the topology of MP trees was estimated using 1000 bootstrap-replicates. Specimens from the herbaria PRM (Prague, Czech Republic) and BRNM (Brno, Czech Republic) were examined. Microscopic characters were observed under an Olympus BX51 microscope and measured in cotton blue (Fluka 95290). RESULTS PHYLOGENETIC ANALYSIS The phylogenetic studies of the LSU and mitSSU gene regions resulted in almost the same phylogram topologies for both MP and Bayesian analyses employed (Fig. 1, Fig. 2). The MP analysis of the LSU data produced 172 most parsimonious trees [tree length = 122, consistency index (CI) = 0.8663, retention index (RI) = 0.8827] while the MP analysis of mitSSU produced 198 most parsimonious trees [tree length = 198, consistency index (CI) = 0.8990, retention index (RI) = 0.8165]. In MrBayes, 2 × 106 generations of the Markov Chain Monte Carlo were run with four simultaneous chains, heating temperature 0.2. The first 2000 trees were discarded as burn-in in both analyses. All analyses confirmed that the DNA sequences of Trametes cervina are not similar to those of Trametes suaveolens, Antrodia albida or Tyromyces chioneus. Nevertheless, studies confirmed the close phylogenetical position of Trametes cervina and the newly sequenced Ceriporiopsis aneirina and C. resinascens specimens. The exact taxonomic relation between Ceriporiopsis species and Trametes cervina is ambiguous comparing the two phylograms. While the mitSSU 4 TOMŠOVSKÝ M.: MOLECULAR PHYLOGENY AND TAXONOMIC POSITION OF TRAMETES CERVINA Fig. 1. Phylogenetic tree of Trametes cervina and related taxa based on sequences of the large subunit (LSU) of nuclear ribosomal DNA region. The unrooted tree was constructed with the Bayesian analysis. Bootstrap values from Maximum Parsimony and Bayesian posterior probabilities, respectively, are shown at the nodes. The bar indicates the number of substitutions per position. phylogram indicates a basal position of T. cervina, according to the LSU phylogram T. cervina forms a derived clade in the paraphyletic clade of the two Ceriporiopsis species. Moreover, the Trametes cervina sequence obtained from the GenBank database (accession no. AY986497) belongs to a different taxon than the specimen sequenced by the author. According to data available from the GenBank, the fungus was obtained from culture collection DAOM (strain no. 5 CZECH MYCOL. 60(1): 1–11, 2008 Fig. 2. Phylogenetic tree of Trametes cervina and related taxa based on sequences of the small subunit of mitochondrial ribosomal DNA region (mitSSU). The unrooted tree was constructed with the Bayesian analysis. Bootstrap values from Maximum Parsimony and Bayesian posterior probabilities, respectively, are shown at the nodes. The bar indicates the number of substitutions per position. 52884), Plant Research Institute, Department of Agriculture, Ottawa, Canada, so the specimen may originate from North America. In contrast, the morphological features (shape of hymenophore, hyphal system, diameter of basidiospores) of the herbarium specimen collected in Canada (PRM 496584) resemble the European specimens. I therefore conclude the culture might have been isolated from incorrectly identified material. 6 TOMŠOVSKÝ M.: MOLECULAR PHYLOGENY AND TAXONOMIC POSITION OF TRAMETES CERVINA On the basis of the phylogenetic analysis, Trametes cervina certainly should not be placed in the genus Trametes. In addition, due to remarkable phenotypical differences between T. cervina and the most closely related Ceriporiopsis species, the description of a new genus is desirable. TAXONOMY Trametopsis Tomšovský, gen. nov. (MycoBank MB511347) D i a g n o s i s l a t i n a. Carpophorus annuus, effusoreflexus, subimbricatus, subresupinatus. Hymenophorum irregulare-poroideum, pori sublacerati. Systema hypharum dimiticum, hyphae generativae fibulatae, tenuitunicatae, partim crassitunicatae. Basidiosporae cylindricae, tenuiter tunicatae, inamyloideae. Ty p e. Boletus cervinus Schwein., Schriften der Naturforschenden Gesellschaft in Leipzig 1: p. 70, 1822. E t y m o l o g y. Trametopsis – genus similar to Trametes. D e s c r i p t i o n. Basidiocarps annual, sessile to effused-reflexed or rarely resupinate, usually in large imbricate clusters; sterile surface hirsute to strigose, pinkish buff to cinnamon or clay colour, usually azonate; pore surface concolorous with upper surface, darkening when dry; pores irregular, daedaloid to irpicoid, dissepiments becoming thin and lacerate; context fibrous, azonate, pale buff; tube layer concolorous with the context. Hyphal system dimitic; generative hyphae in context and trama thin-walled with clamps, hyaline, rarely branched, contextual generative hyphae often sclerified, thick-walled, forming short or rather long intercalary segments with clamps at their distal ends, 2–4 μm wide; skeletoid hyphae thick-walled, hyaline with partial branching, non-septate, usually lacking directional growth but curved, flexuous, often apparently connecting the hyphal strands, 2–4(–6) μm wide. True cystidia absent, fusoid cystidioles occasionally present. Basidia clavate, four-sterigmate, 20–25 × 5–7 μm; basidiospores cylindric, thin-walled, slightly curved, hyaline, negative in Melzer’s reagent, (5.5–)6–7–9(–10) × (1.7–)2–3 μm. For microscopic characters, see Fig. 3. Trametopsis cervina (Schwein.) Tomšovský, comb. nov. (MycoBank 511830) B a s i o n y m. Boletus cervinus Schwein., Schriften der Naturforschenden Gesellschaft in Leipzig 1: p. 70, 1822. S y n o n y m s. Trametes cervina (Schwein.) Bres. 1903, Coriolus cervinus (Schwein.) Bond. 1953, Coriolellus cervinus (Schwein.) Kotl. & Pouzar 1957, Antrodia cervina (Schwein.) Kotl. & Pouzar 1983, Funalia cervina (Schwein.) Y. C. Dai 1996. 7 CZECH MYCOL. 60(1): 1–11, 2008 D i s t r i b u t i o n a n d e c o l o g y. Trametopsis cervina has a holoarctic distribution. The species is known from all over Europe (excluding the British Isles, Nordic countries, Italy and Greece), Africa, Asia and North America (Kotlaba 1984, Ryvarden and Gilbertson 1994, Bernicchia 2005). The fungus forms sporocarps on dead wood of numerous hardwood genera (17 genera according to Ryvarden and Gilbertson 1994), in Central Europe predominantly on Fagus. Jahn (1983) mentioned also records on conifers from Siberia. It causes white rot of dead wood. Specimens studied F r a n c e: Belmont (Aveyron), 20.II.1905, leg. A. Galzin, PRM 492137. – Paris, X.1937, leg. Joachim, PRM 490999. – Millau (Aveyron), Murieu, 22.II.1908, leg. A. Galzin, PRM 492139. A u s t r i a: Wien, Lainzer-Tiergarten, 1.XI.1930, leg. V. Litschauer, PRM 492136. C z e c h R e p u b l i c: Hluboká nad Vltavou, Libochovka Nature Reserve, Fagus sylvatica, 20.IX.1977, leg. F. Kotlaba, PRM 891515. – Nové Hrady, Žofín primeval forest, Fagus sylvatica, 9.X.1968, leg. Z. Pouzar, PRM 868951. – Brno, Coufavá Nature Reserve, Fagus sylvatica, 24. IV.1992, leg. P. Vampola, BRNM 553344. – Blansko, Habrůvecká bučina Nature Reserve, Carpinus betulus, 30.VII.1989, leg. F. Kotlaba, PRM 869999. – Nový Jičín, Hukvaldská obora Nature Reserve, Fagus sylvatica, 30.IX.1998, leg. J. Lederer, PRM 892800. – Kroměříž, Zámeček wood, 190 m a.s.l., Salix alba, 29.X.1954, leg. H. Zavřel, BRNM 709795; ibid., 2.II.1955, BRNM 709794; ibid., 17.XII.1955, BRNM 709796. – Buchlovice, Holý kopec Nature Reserve, Fagus sylvatica, 5.VII.2004, leg. J. Chmelař, BRNM 699666; ibid., 6.XI.2004, BRNM 695678. – Valtice, Rendezvous Nature Reserve, Quercus sp., 19.X.2001, leg. V. Antonín, BRNM 666576; ibid., 15.V.1997, leg. L. Jankovský, BRNM 642657; ibid., 30.VIII.2002, leg. M. Tomšovský, PRM 900574. – Strážnice, Bílé Karpaty Mts., Velká Javořina Nature Reserve, 850–970 m a.s.l., Fagus sylvatica, 21.IX.2006, leg. V. Antonín, BRNM 705295. S l o v a k i a: Malacky, Malé Karpaty Mts. (Kleine Karpathen), Mt. Vysoká, Fagus sylvatica, IV. 1926, leg. J. Hruby, PRM 492142. – Piešťany, Chtelnica, Fagus sylvatica, 23.IV.1959, leg. A. Černý, BRNM 235077. – Bánovce nad Bebravou, Rokoš hill near the village of Uhrov, Fagus sylvatica, 18.X.1988, leg. F. Kotlaba, PRM 866437. – Prenčov, Lehotská Bukovina, Fagus sylvatica, 1889, leg. A. Kmeť, PRM 492198. – Čierny Balog, Dobroč primeval forest, Fagus sylvatica, 24.IX.1965, leg. F. Kotlaba, Z. Pouzar and D.A. Reid, PRM 877827; ibid., PRM 868626. – Banská Bystrica, Badín primeval forest, Fagus sylvatica, 4.VIII.1973, leg. T. Niemelä, PRM 818470. – Svidník, Nižný Komárnik, Dranec Nature Reserve, Fagus sylvatica, 22.VII.1964, leg. F. Kotlaba and Z. Pouzar, PRM 870839. – Humenné, Bukovské vrchy Mts., Havešová Nature Reserve, 500–600 m a.s.l., Fagus sylvatica, 19.X.1989, leg. V. Antonín, BRNM 489807; ibid., leg. P. Vampola, PRM 875217. – Sobrance, Vihorlat Mts., Morské Oko lake, Fagus sylvatica, 2.VII.1961, leg. J. Kubička, PRM 882514; ibid., 4.VII.1961, leg. Z. Pouzar, PRM 870058; ibid., 21.X.1987, leg. F. Kotlaba, PRM 853089. P o l a n d: Bieszczady Mts., Mt. Dzial near the village of Wetlina, 5.IX.1958, leg. S. Domański, PRM 522127. U k r a i n e (for comparison of historical and current geographic names, see Holec 2002): Zakarpatska region, Dilove (ut Trebušany), Menchul (ut Menčul), Fagus sylvatica, VIII.1935, leg. A. Pilát, PRM 20746; ibid., PRM 492496. – Zakarpatska region, Dilove (ut Trebušany), valley of Liščenka stream, Fagus sylvatica, VIII.1936, leg. A. Pilát, PRM 29872. – Zakarpatska region, Zhdeniyeve (ut Ždeňová), Vysoký kámen (hill?), 6.VII.1933, leg. A. Hilitzer, PRM 25219. – Zakarpatska region, Svidovets Mts. (ut Svidovec), Mt. Menchul (ut Kvasovský Menčul), VIII.1929, leg. A. Zlatník, PRM492127. – Zakarpatska region, Kobylets'ka Polyana (ut Žámer, Kobylecká Polana), Fagus sylvatica, VII.1927, leg. A. Pilát, PRM 492130. – Zakarpatska region, Kvasy, Mt. Menchul, Fagus sylvatica, 27.VI.2007, leg. J. Holec, PRM 909446. R u s s i a: Asia orientalis, Amur District, Betula dahurica, 1.VIII.1928, leg. A. Krawtzew, PRM 492138. – Siberia, Wasjuganje, Populus tremula, VIII.1934, leg. A. Krawtzew, PRM 492129. – Kuznetsk, Betula verrucosa, 1931, leg. A. Krawtzew, PRM 492128; ibid., PRM 492133. C a n a d a: Ontario, Brant County, S of New Durham, 8.IX.1937, leg. R.F. Cain, PRM 496584. 8 TOMŠOVSKÝ M.: MOLECULAR PHYLOGENY AND TAXONOMIC POSITION OF TRAMETES CERVINA Fig. 3. Microscopic characters of Trametopsis cervina. A – thin-walled generative hypha; B1, B2 – tramal generative hypha becoming thick-walled with occasional branching; C – contextual skeletoid hypha; D – basidium, E – basidiospores. DISCUSSION The main reason for separating Trametopsis cervina from Trametes comes from molecular analyses, in which it remains far from the genus. Neither the genera Antrodia or Tyromyces are closely related to the species. The proximity of the fungus to the studied Ceriporiopsis species seems to be surprising, however, these fungi share an irregular shape of older basidiocarp pores. The genus Ceriporiopsis contains species causing white rot, possessing resupinate hymenophores and a monomitic hyphal system with clamp connections. Resupinate forms of T. cervina (e. g. PRM 891515) are morphologically very similar to Ceriporiopsis aneirina, C. resinascens and other species of the genus with irregular pores. Nevertheless, T. cervina differs significantly from the Ceriporiopsis species by the dimitic hyphal system and mostly pileate or effused-reflexed sporocarps. Although thick-walled, moderately branched sections could be seen in the trama and subiculum of Ceriporiopsis resinascens (according to Bernicchia 2005, 9 CZECH MYCOL. 60(1): 1–11, 2008 Ryvarden and Gilbertson 1993), the genus Ceriporiopsis is distinguished by having a monomitic hyphal system. Ceriporiopsis aneirina and C. resinascens neither form effused to pileate basidiocarps, which suggests that they are not congeneric with Trametopsis cervina. On the other hand, from the strictly cladistical point of view, the results of the molecular analyses did not show statistically significant differences between Trametopsis cervina and Ceriporiopsis species, so all the fungi should belong to one genus. Nevertheless, I do not follow this opinion due to the remarkable macro– and micromorphological differences between them. I conclude that Trametopsis is a well distinguishable genus closely related to the Ceriporiopsis aneirina – C. resinascens group, whose exact taxonomic position should be a subject of a separate study. ACKNOWLEDGEMENTS The work was supported by the Czech Science Foundation, project no. 526/06/P017 and Ministry of Education, Youth and Sports, project no. MSM 6215648902. REFERENCES ANONYMUS 1 (on-line): Conserved primer sequences for PCR amplification and sequencing from nuclear ribosomal RNA. Vilgalys lab, Duke University. – http://www.biology.duke.edu/fungi/mycolab/primers.htm [accessed 6 March 2008] ANONYMUS 2 (on-line): Home pages of culture collections in the world. – http://wdcm.nig.ac.jp/hpcc.html. [accessed 6 March 2008] BERNICCHIA A. (2005): Polyporaceae s.l. – In: Fungi Europaei 10: 1–808, Alassio. BINDER M. and HIBBETT D. S. (2002): Higher-level phylogenetic relationships of homobasidiomycetes (mushroom-forming fungi) inferred from four rDNA regions. – Molecular Phylogenetics and Evolution 22: 76–90. DAI Y. C. (1996): Changbai wood-rotting fungi 7. A checklist of the polypores. – Fungal Science 11: 79–105. DONK M. A. (1974): Check list of European polypores. – 469 p. Amsterdam-London. HALL T. A. (1999): BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. – Nucleic Acids Symposium Series 41: 95–98. HIBBETT D. S. and BINDER M. (2002): Evolution of complex fruiting-body morphologies in homobasidiomycetes. – Proceedings of the Royal Society of London Series B 269: 1963–1969. HIBBETT D. S. and DONOGHUE M. J. (1995): Progress toward a phylogenetic classification of the Polyporaceae through parsimony analysis of mitochondrial ribosomal DNA sequences. – Canadian Journal of Botany 73: S853–S861. HOLEC J. (2002): Fungi of the Eastern Carpathians (Ukraine) – important works by Albert Pilát, and locations of his collecting sites. – Mycotaxon 83: 1–17. 10 TOMŠOVSKÝ M.: MOLECULAR PHYLOGENY AND TAXONOMIC POSITION OF TRAMETES CERVINA JAHN H. (1983): Einige in der Bundesrepublik Deutschland neue, seltene oder wenig bekannte Porlinge (Polyporaceae s. lato) II. Antrodia malicola (Berk. & Curt.) Donk und Trametes cervina (Schwein.) Bres. – Westfälische Pilzbriefe 10–11: 220–237. KIM K. M., YOON Y. G. and JUNG H. S. (2005): Evaluation of the monophyly of Fomitopsis using parsimony and MCMC methods. – Mycologia 97: 812–822. KOTLABA F. (1984): Zeměpisné rozšíření a ekologie chorošů (Polyporales s.l.) v Československu [Geographical distribution and ecology of polypores (Polyporales s.l.) in Czechoslovakia]. – 194 p. Praha. KOTLABA F. and POUZAR Z. (1957): Poznámky k třídění evropských chorošů [Notes on classification of European pore fungi]. – Česká Mykologie 11: 152–170. KOTLABA F. and POUZAR Z. (1983): Taxonomické a nomenklatorické poznámky o Trametes cervina a Ganoderma atkinsonii [Taxonomic and nomenclatural notes on Trametes cervina and Ganoderma atkinsonii]. – Česká Mykologie 37: 49–51. RYVARDEN L. and GILBERTSON R. L. (1993): European polypores, Part 1. – In: Synopsis Fungorum 6: 1–393, Oslo. RYVARDEN L. and GILBERTSON R. L. (1994): European polypores, Part 2. – In: Synopsis Fungorum 7: 394–743, Oslo. RONQUIST F. and HUELSENBECK J. P. (2003): Mr. Bayes3: Bayesian phylogenetic inference under mixed models. – Bioinformatics 19: 1572–1574. SWOFFORD D. L. (1999): PAUP* Phylogenetic analysis using parsimony. Version 4. – Sunderland, USA. TOMŠOVSKÝ M. and HOMOLKA L. (2004): Cultural characteristics, sexuality and ligninolytic enzyme production of Trametes cervina. – Cryptogamie Mycologie 25: 49–55. TOMŠOVSKÝ M., KOLAŘÍK M., PAŽOUTOVÁ S. and HOMOLKA L. (2006): Molecular phylogeny of European Trametes (Basidiomycetes, Polyporales) species based on LSU and ITS (nrDNA) sequences. – Nova Hedwigia 82: 269–280. WHITE T. J., BRUNS T. D., LEE S. B. and TAYLOR J. W. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. – In: Innis M. A., Gelfand D. H., Sninsky J. J. and White T. J., PCR Protocols, A guide to methods and applications, p. 315–322, New York. 11
© Copyright 2026 Paperzz