Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis Supplementary Data Hanna Lee1, Seong Jeong Yoo1, Jeong Hwan Lee1, Wanhui Kim1, Seung Kwan Yoo1, Heather Fitzgerald2,3, James C. Carrington2,3 and Ji Hoon Ahn1,* 1 Creative Research Initiatives, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea; 2Department of Botany and Plant Pathology, and 3Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA *To whom correspondence should be addressed. Tel: +82-2-3290-3451; Fax: +82-2-927-9028; Email: [email protected] The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint first authors. 1 Supplementary Results Specificities of probes used in miRNA Northern hybridization analysis As miRNAs are only 20–24 nucleotides long and often closely related, it is a prerequisite to test the degree of cross-hybridization of the probes before performing miRNA Northern hybridization analysis. To test the probe specificity, we chose miR156 and miR157, two closely related miRNAs, and performed Northern hybridization. miR156 and miR157 have eight (miR156a–h) and four (miR157a–d) loci, respectively. Six paralogous loci of miR156 (a–f) give rise to an identical mature form (Supplementary Figure S2A); therefore, the mature sequences of miR156a–f were indistinguishable. In contrast, miR156g and miR156h produce unique mature sequences. Three loci (a–c) of miR157 give the same mature sequences, and miR157d produces a unique mature sequence. To test the cross-reactivity of the miR156/157 probes, an equal amount (20 fmol) of synthesized RNA corresponding to miR156a, miR156g, miR156h, miR157a, and miR157d was loaded on 17% polyacrylamide gel and hybridized with each DNA probe. The Northern hybridization revealed that the miR156a probe strongly hybridized to itself and to miR156g with similar intensity, revealing cross-hybridization (Supplementary Figure S2B). In contrast, the miR156a probe did not hybridize to miR156h, miR157a, and miR157d, indicating that it retained selective hybridization properties. Our miR156g probe strongly hybridized to itself and to miR156a, but did not hybridize to miR156h, miR157a, and miR157d, reminiscent of the miR156a probe (Supplementary Figure S2B). The miR156h probe strongly hybridized to itself and weakly to miR157a, and very weak cross-hybridization to other loci was observed. Our miR157a probe strongly hybridized to itself and to miR156h and miR157d with weaker intensity. The miR157d probe strongly hybridized with miR157a, and slightly weakly to itself and miR156h. To investigate the correlation between the selective hybridization properties and the sequence similarity, we predicted the hybridized structures and their melting temperature (Tm) values (Supplementary Figure 2C and D). It was apparent that both the Tm values of the hybridized sequences and the number of mismatches within the hybridized sequences were important in determining the probe specificity. DNA probes did not hybridize to miRNAs with two mismatches (e.g., miR156a:miR156h and miR157d:miR156a). However, in the case of hybridized sequences with one mismatch, it seemed that the hybridization strength depended upon their Tm values. For instance, although both miR156h:miR157a and miR156h:miR156g had one mismatch, the hybridization signal of miR156h:miR156g (Tm = 61.2°C) was weaker than that of miR156h:miR157a (Tm = 67.0°C). An exceptional observation was that the hybridization signal of miR157d:miR157a was stronger than that of miR157d:miR157d. The stronger hybridization signal of miR157d:miR157a can be partly explained by its higher Tm value (70.8°C vs. 69.6°C). In addition, the Tm values between opposite configurations (e.g., miR156g:miR156a and miR56a:miR156g) were different (71.5°C vs. 72.6°C); the discrepancy may be due to the different DNA probe in the pairs (miR156g[DNA]:miR156a[RNA] and miR156a[DNA]:miR156g[RNA]). Together, this analysis suggested that the other probes used in the miRNA Northern hybridization analysis 2 weakly cross-hybridize to other sequences with one mismatch. However, as it was also likely that the probes did not cross-hybridize to miRNA loci with a sequence difference of more than one nucleotide, the probes that we used in the miRNA Northern hybridization could efficiently discriminate between closely related miRNA members. 3 Supplementary Table S1. The porbes used in the imRNA microarray and northern hybridization analyses. Probe used for miRNA microarray Paralogous loci ath-miR156a b,c,d,e,f ath-miR156g ath-miR156h ath-miR157a b,c Sequence Probe sequence (probe) Probe used for miRNA northern Paralogous loci b,c,d,e,f 5'-UGACAGAAGAGAGUGAGCAC-3' 5'-GTGCTCACTCTCTTCTGTCA-3' 1 miR156a 5'-CGACAGAAGAGAGUGAGCACA-3' 5'-TGTGCTCACTCTCTTCTGTCG-3' 2 miR156g 5'-UUGACAGAAGAAAGAGAGCAC-3' 5'-GTGCTCTCTTTCTTCTGTCAA-3' 3 miR156h 5'-UUGACAGAAGAUAGAGAGCAC-3' 5'-GTGCTCTCTATCTTCTGTCAA-3' 4 miR157a b,c Sequence Probe sequence (probe) 5'-TGACAGAAGAGAGTGAGCAC-3' 5'-GTGCTCACTCTCTTCTGTCA-3' 5'-CGACAGAAGAGAGTGAGCACA-3' 5'-TGTGCTCACTCTCTTCTGTCG-3' 5'-TTGACAGAAGAAAGAGAGCAC-3' 5'-GTGCTCTCTTTCTTCTGTCAA-3' 5'-TTGACAGAAGATAGAGAGCAC-3' 5'-GTGCTCTCTATCTTCTGTCAA-3' ath-miR157d 5'-UGACAGAAGAUAGAGAGCAC-3' 5'-GTGCTCTCTATCTTCTGTCA-3' 5 miR157d 5'-TGACAGAAGATAGAGAGCAC-3' 5'-GTGCTCTCTATCTTCTGTCA-3' ath-miR158a 5'-UCCCAAAUGUAGACAAAGCA-3' 5'-TGCTTTGTCTACATTTGGGA-3' 6 miR158a 5'-TCCCAAATGTAGACAAAGCA-3' 5'-TGCTTTGTCTACATTTGGGA-3' ath-miR158b 5'-CCCCAAAUGUAGACAAAGCA-3' 5'-TGCTTTGTCTACATTTGGGG-3' 7 miR158b 5'-CCCCAAATGTAGACAAAGCA-3' 5'-TGCTTTGTCTACATTTGGGG-3' ath-miR159a 5'-UUUGGAUUGAAGGGAGCUCUA-3' 5'-TAGAGCTCCCTTCAATCCAAA-3' 8 miR159a 5'-TTTGGATTGAAGGGAGCTCTA-3' 5'-TAGAGCTCCCTTCAATCCAAA-3' ath-miR159b 5'-UUUGGAUUGAAGGGAGCUCUU-3' 5'-AAGAGCTCCCTTCAATCCAAA-3' 9 miR159b 5'-TTTGGATTGAAGGGAGCTCTT-3' 5'-AAGAGCTCCCTTCAATCCAAA-3' ath-miR159c 5'-UUUGGAUUGAAGGGAGCUCCU-3' 5'-AGGAGCTCCCTTCAATCCAAA-3' 10 miR159c 5'-TTTGGATTGAAGGGAGCTCCT-3' 5'-AGGAGCTCCCTTCAATCCAAA-3' 5'-UGCCUGGCUCCCUGUAUGCCA-3' 5'-TGGCATACAGGGAGCCAGGCA-3' 11 miR160a 5'-TGCCTGGCTCCCTGTATGCCA-3' 5'-TGGCATACAGGGAGCCAGGCA-3' 5'-UUGAAAGUGACUACAUCGGGG-3' 5'-CCCCGATGTAGTCACTTTCAA-3' 12 miR161a.1 5'-TTGAAAGTGACTACATCGGGG-3' 5'-CCCCGATGTAGTCACTTTCAA-3' 13 miR161a.2 5'-TCAATGCATTGAAAGTGACTA-3' 5'-TAGTCACTTTCAATGCATTGA-3' ath-miR160a b,c ath-miR161a b,c ath-miR162a 5'-UCGAUAAACCUCUGCAUCCAG-3' 5'-CTGGATGCAGAGGTTTATCGA-3' 14 miR162a 5'-TCGATAAACCTCTGCATCCAG-3' 5'-CTGGATGCAGAGGTTTATCGA-3' ath-miR163a 5'-UUGAAGAGGACUUGGAACUUCGAU-3' 5'-ATCGAAGTTCCAAGTCCTCTTCAA-3' 15 miR163a 5'-TTGAAGAGGACTTGGAACTTCGAT-3' 5'-ATCGAAGTTCCAAGTCCTCTTCAA-3' ath-miR164a 5'-UGGAGAAGCAGGGCACGUGCA-3' 5'-TGCACGTGCCCTGCTTCTCCA-3' 16 miR164a 5'-TGGAGAAGCAGGGCACGTGCA-3' 5'-TGCACGTGCCCTGCTTCTCCA-3' ath-miR164c 5'-UGGAGAAGCAGGGCACGUGCG-3' 5'-CGCACGTGCCCTGCTTCTCCA-3' 17 miR164c 5'-TGGAGAAGCAGGGCACGTGCG-3' 5'-CGCACGTGCCCTGCTTCTCCA-3' ath-miR165a b 5'-UCGGACCAGGCUUCAUCCCCC-3' 5'-GGGGGATGAAGCCTGGTCCGA-3' 18 miR165a b 5'-TCGGACCAGGCTTCATCCCCC-3' 5'-GGGGGATGAAGCCTGGTCCGA-3' ath-miR166a c,d,e,f,g 5'-UCGGACCAGGCUUCAUUCCCC-3' 5'-GGGGAATGAAGCCTGGTCCGA-3' 19 miR166a c,d,e,f,g 5'-TCGGACCAGGCTTCATTCCCC-3' 5'-GGGGAATGAAGCCTGGTCCGA-3' ath-miR167a b 5'-UGAAGCUGCCAGCAUGAUCUA-3' 5'-TAGATCATGCTGGCAGCTTCA-3' 20 miR167a b 5'-TGAAGCTGCCAGCATGATCTA-3' 5'-TAGATCATGCTGGCAGCTTCA-3' 5'-UUAAGCUGCCAGCAUGAUCUU-3' 5'-AAGATCATGCTGGCAGCTTAA-3' 21 miR167c 5'-TTAAGCTGCCAGCATGATCTT-3' 5'-AAGATCATGCTGGCAGCTTAA-3' 5'-UGAAGCUGCCAGCAUGAUCUGG-3' 5'-CCAGATCATGCTGGCAGCTTCA-3' 22 miR167d 5'-TGAAGCTGCCAGCATGATCTGG-3' 5'-CCAGATCATGCTGGCAGCTTCA-3' 5'-UCGCUUGGUGCAGGUCGGGAA-3' 5'-TTCCCGACCTGCACCAAGCGA-3' 23 miR168a 5'-TCGCTTGGTGCAGGTCGGGAA-3' 5'-TTCCCGACCTGCACCAAGCGA-3' 5'-CAGCCAAGGAUGACUUGCCGA-3' 5'-TCGGCAAGTCATCCTTGGCTG-3' 24 miR169a 5'-CCGGCAAGTCATCCTTGGCTG-3' 25 miR169b 5'-CGGCAAGTCATCCTTGGCTCA-3' 26 ath-miR167c ath-miR167d ath-miR168a b ath-miR169a ath-miR169b c 5'-CAGCCAAGGAUGACUUGCCGG-3' ath-miR169d e,f,g 5'-CAGCCAAGGAUGACUUGCCGG-3' ath|miR169g* ath-miR169h b 5'-CAGCCAAGGATGACTTGCCGA-3' 5'-TCGGCAAGTCATCCTTGGCTG-3' c 5'-CAGCCAAGGATGACTTGCCGG-3' 5'-CCGGCAAGTCATCCTTGGCTG-3' miR169d e,f,g 5'-TGAGCCAAGGATGACTTGCCG-3' 5'-CGGCAAGTCATCCTTGGCTCA-3' i,j,k,l,m,n 5'-AGCCAAGGTCAACTTGCCGGA-3' 5'-UAGCCAAGGAUGACUUGCCUG-3' 5'-CAGGCAAGTCATCCTTGGCTA-3' 27 miR169h 5'-TAGCCAAGGATGACTTGCCTG-3' 5'-CAGGCAAGTCATCCTTGGCTA-3' ath-miR170a 5'-UGAUUGAGCCGUGUCAAUAUC-3' 5'-GATATTGACACGGCTCAATCA-3' 28 miR170a 5'-TGATTGAGCCGTGTCAATATC-3' 5'-GATATTGACACGGCTCAATCA-3' ath-miR171a 5'-UGAUUGAGCCGCGCCAAUAUC-3' 5'-GATATTGGCGCGGCTCAATCA-3' 29 miR171a 5'-TGATTGAGCCGCGCCAATATC-3' 5'-GATATTGGCGCGGCTCAATCA-3' 5'-UUGAGCCGUGCCAAUAUCACG-3' 5'-CGTGATATTGGCACGGCTCAA-3' 30 miR171b 5'-TTGAGCCGTGCCAATATCACG-3' 5'-CGTGATATTGGCACGGCTCAA-3' ath-miR172a 5'-AGAAUCUUGAUGAUGCUGCAU-3' 5'-ATGCAGCATCATCAAGATTCT-3' 31 miR172a 5'-AGAATCTTGATGATGCTGCAT-3' 5'-ATGCAGCATCATCAAGATTCT-3' ath-miR172b* 5'-GCAGCACCAUUAAGAUUCAC-3' 5'-GTGAATCTTAATGGTGCTGC-3' 32 miR172b 5'-GCAGCACCATTAAGATTCAC-3' 5'-GTGAATCTTAATGGTGCTGC-3' ath-miR171b i,j,k,l,m,n c 4 c ath-miR172c d ath-miR172e ath-miR173a ath-miR319a b ath-miR319c ath-miR390a b ath-miR391a ath-miR393a b 5'-AGAAUCUUGAUGAUGCUGCAG-3' 5'-CTGCAGCATCATCAAGATTCT-3' 33 miR172c 5'-GGAAUCUUGAUGAUGCUGCAU-3' 5'-ATGCAGCATCATCAAGATTCC-3' 34 miR172e 5'-UUCGCUUGCAGAGAGAAAUCAC-3' 5'-GTGATTTCTCTCTGCAAGCGAA-3' 35 miR173a 5'-UUGGACUGAAGGGAGCUCCC-3' 5'-GGGAGCTCCCTTCAGTCCAA-3' 36 miR319a 5'-UUGGACUGAAGGGAGCUCCU-3' 5'-AGGAGCTCCCTTCAGTCCAA-3' 37 miR319c 5'-AAGCUCAGGAGGGAUAGCGCC-3' 5'-GGCGCTATCCCTCCTGAGCTT-3' 38 miR390a 5'-UUCGCAGGAGAGAUAGCGCCA-3' 5'-TGGCGCTATCTCTCCTGCGAA-3' 39 miR391a 5'-UCCAAAGGGAUCGCAUUGAUC-3' 5'-GATCAATGCGATCCCTTTGGA-3' 40 miR393a d b b b 5'-AGAATCTTGATGATGCTGCAG-3' 5'-CTGCAGCATCATCAAGATTCT-3' 5'-GGAATCTTGATGATGCTGCAT-3' 5'-ATGCAGCATCATCAAGATTCC-3' 5'-TTCGCTTGCAGAGAGAAATCAC-3' 5'-GTGATTTCTCTCTGCAAGCGAA-3' 5'-TTGGACTGAAGGGAGCTCCC-3' 5'-GGGAGCTCCCTTCAGTCCAA-3' 5'-TTGGACTGAAGGGAGCTCCT-3' 5'-AGGAGCTCCCTTCAGTCCAA-3' 5'-AAGCTCAGGAGGGATAGCGCC-3' 5'-GGCGCTATCCCTCCTGAGCTT-3' 5'-TTCGCAGGAGAGATAGCGCCA-3' 5'-TGGCGCTATCTCTCCTGCGAA-3' 5'-TCCAAAGGGATCGCATTGATC-3' 5'-GATCAATGCGATCCCTTTGGA-3' ath-miR394a b 5'-UUGGCAUUCUGUCCACCUCC-3' 5'-GGAGGTGGACAGAATGCCAA-3' 41 miR394a b 5'-TTGGCATTCTGTCCACCTCC-3' 5'-GGAGGTGGACAGAATGCCAA-3' ath-miR395a d,e 5'-CUGAAGUGUUUGGGGGAACUC-3' 5'-GAGTTCCCCCAAACACTTCAG-3' 42 miR395a d,e 5'-CTGAAGTGTTTGGGGGAACTC-3' 5'-GAGTTCCCCCAAACACTTCAG-3' ath-miR395b c,f 5'-CUGAAGUGUUUGGGGGGACUC-3' 5'-GAGTCCCCCCAAACACTTCAG-3' 43 miR395b c,f 5'-CTGAAGTGTTTGGGGGGACTC-3' 5'-GAGTCCCCCCAAACACTTCAG-3' 5'-UUCCACAGCUUUCUUGAACUG-3' 5'-CAGTTCAAGAAAGCTGTGGAA-3' 44 miR396a 5'-TTCCACAGCTTTCTTGAACTG-3' 5'-CAGTTCAAGAAAGCTGTGGAA-3' ath-miR396b 5'-UUCCACAGCUUUCUUGAACUU-3' 5'-AAGTTCAAGAAAGCTGTGGAA-3' 45 miR396b 5'-TTCCACAGCTTTCTTGAACTT-3' 5'-AAGTTCAAGAAAGCTGTGGAA-3' ath-miR397a 5'-UCAUUGAGUGCAGCGUUGAUG-3' 5'-CATCAACGCTGCACTCAATGA-3' 46 miR397a 5'-TCATTGAGTGCAGCGTTGATG-3' 5'-CATCAACGCTGCACTCAATGA-3' ath-miR397b 5'-UCAUUGAGUGCAUCGUUGAUG-3' 5'-CATCAACGATGCACTCAATGA-3' 47 miR397b 5'-TCATTGAGTGCATCGTTGATG-3' 5'-CATCAACGATGCACTCAATGA-3' 5'-UGUGUUCUCAGGUCACCCCUU-3' 5'-AAGGGGTGACCTGAGAACACA-3' 48 miR398a 5'-UGUGUUCUCAGGUCACCCCUG-3' 5'-CAGGGGTGACCTGAGAACACA-3' 49 miR398b 5'-UGCCAAAGGAGAUUUGCCCUG-3' 5'-CAGGGCAAATCTCCTTTGGCA-3' 50 miR399a 5'-UGCCAAAGGAGAGUUGCCCUG-3' 5'-CAGGGCAACTCTCCTTTGGCA-3' 51 miR399b ath-miR399d 5'-UGCCAAAGGAGAUUUGCCCCG-3' 5'-CGGGGCAAATCTCCTTTGGCA-3' 52 miR399d ath-miR399e 5'-UGCCAAAGGAGAUUUGCCUCG-3' 5'-CGAGGCAAATCTCCTTTGGCA-3' 53 ath-miR399f 5'-UGCCAAAGGAGAUUUGCCCGG-3' 5'-CCGGGCAAATCTCCTTTGGCA-3' 54 ath-miR400a 5'-UAUGAGAGUAUUAUAAGUCAC-3' 5'-GTGACTTATAATACTCTCATA-3' ath-miR401a 5'-CGAAACUGGUGUCGACCGACA-3' 5'-TGTCGGTCGACACCAGTTTCG-3' ath-miR402a 5'-UUCGAGGCCUAUUAAACCUCUG-3' ath-miR403a 5'-UUAGAUUCACGCACAAACUCG-3' ath-miR404a 5'-AUUAACGCUGGCGGUUGCGGCAGC-3' 5'-GCTGCCGCAACCGCCAGCGTTAAT-3' ath-miR405a 5'-AUGAGUUGGGUCUAACCCAUAACU-3' 5'-AGTTATGGGTTAGACCCAACTCAT-3' ath-miR406a 5'-UAGAAUGCUAUUGUAAUCCAG-3' 5'-CTGGATTACAATAGCATTCTA-3' ath-miR407a 5'-UUUAAAUCAUAUACUUUUGGU-3' 5'-ACCAAAAGTATATGATTTAAA-3' ath-miR408a 5'-AUGCACUGCCUCUUCCCUGGC-3' 5'-GCCAGGGAAGAGGCAGTGCAT-3' ath-miR413a 5'-AUAGUUUCUCUUGUUCUGCAC-3' 5'-GTGCAGAACAAGAGAAACTAT-3' ath-miR414a 5'-UCAUCUUCAUCAUCAUCGUCA-3' 5'-TGACGATGATGATGAAGATGA-3' ath-miR415a 5'-AACAGAGCAGAAACAGAACAU-3' 5'-ATGTTCTGTTTCTGCTCTGTT-3' ath-miR416a 5'-GGUUCGUACGUACACUGUUCA-3' 5'-TGAACAGTGTACGTACGAACC-3' ath-miR417a 5'-GAAGGUAGUGAAUUUGUUCGA-3' 5'-TCGAACAAATTCACTACCTTC-3' ath-miR396a ath-miR398a ath-miR398b c ath-miR399a ath-miR399b c c 5'-AAGGGGTGACCTGAGAACACA-3' 5'-CAGGGGTGACCTGAGAACACA-3' 5'-TGCCAAAGGAGATTTGCCCTG-3' 5'-CAGGGCAAATCTCCTTTGGCA-3' 5'-TGCCAAAGGAGAGTTGCCCTG-3' 5'-CAGGGCAACTCTCCTTTGGCA-3' 5'-TGCCAAAGGAGATTTGCCCCG-3' 5'-CGGGGCAAATCTCCTTTGGCA-3' miR399e 5'-TGCCAAAGGAGATTTGCCTCG-3' 5'-CGAGGCAAATCTCCTTTGGCA-3' miR399f 5'-TGCCAAAGGAGATTTGCCCGG-3' 5'-CCGGGCAAATCTCCTTTGGCA-3' 55 miR400a 5'-TATGAGAGTATTATAAGTCAC-3' 5'-GTGACTTATAATACTCTCATA-3' 5'-CAGAGGTTTAATAGGCCTCGAA-3' 56 miR402a 5'-TTCGAGGCCTATTAAACCTCTG-3' 5'-CAGAGGTTTAATAGGCCTCGAA-3' 5'-CGAGTTTGTGCGTGAATCTAA-3' 57 miR403a 5'-TTAGATTCACGCACAAACTCG-3' 5'-CGAGTTTGTGCGTGAATCTAA-3' 58 miR408a 5'-ATGCACTGCCTCTTCCCTGGC-3' 5'-GCCAGGGAAGAGGCAGTGCAT-3' 59 miR416a 5'-GGTTCGTACGTACACTGTTCA-3' 5'-TGAACAGTGTACGTACGAACC-3' ath-miR418a 5'-UAAUGUGAUGAUGAACUGACC-3' 5'-GGTCAGTTCATCATCACATTA-3' ath-miR419a 5'-UUAUGAAUGCUGAGGAUGUUG-3' 5'-CAACATCCTCAGCATTCATAA-3' ath-miR420a 5'-UAAACUAAUCACGGAAAUGCA-3' 5'-TGCATTTCCGTGATTAGTTTA-3' 5 c 5'-TGTGTTCTCAGGTCACCCCTT-3' 5'-TGTGTTCTCAGGTCACCCCTG-3' ath-miR426a 5'-UUUUGGAAAUUUGUCCUUACG-3' 5'-CGTAAGGACAAATTTCCAAAA-3' 5'-UUGGGGACGAGAUGUUUUGUUG-3' 5'-CAACAAAACATCTCGTCCCCAA-3' 60 miR447a 5'-TTGGGGACGAGATGTTTTGTTG-3' 5'-CAACAAAACATCTCGTCCCCAA-3' ath-miR447c 5'-UUGGGGACGACAUCUUUUGUUG-3' 5'-CAACAAAAGATGTCGTCCCCAA-3' 61 miR447c 5'-TTGGGGACGACATCTTTTGTTG-3' 5'-CAACAAAAGATGTCGTCCCCAA-3' 62 miR472a 5'-TTTTTCCTACTCCGCCCATACC-3' 5'-GGTATGGGCGGAGTAGGAAAAA-3' ath-miR771a 5'-UGAGCCUCUGUGGUAGCCCUC-3' 5'-GAGGGCTACCACAGAGGCTCA-3' 63 miR771a 5'-TGAGCCTCTGTGGTAGCCCTC-3' 5'-GAGGGCTACCACAGAGGCTCA-3' ath-miR772a 5'-UUUUUCCUACUCCGCCCAUAC-3' 5'-GTATGGGCGGAGTAGGAAAAA-3' ath-miR773a 5'-UUUGCUUCCAGCUUUUGUCUC-3' 5'-GAGACAAAAGCTGGAAGCAAA-3' 64 miR773a 5'-TTTGCTTCCAGCTTTTGTCTC-3' 5'-GAGACAAAAGCTGGAAGCAAA-3' ath-miR774a 5'-UUGGUUACCCAUAUGGCCAUC-3' 5'-GATGGCCATATGGGTAACCAA-3' 65 miR774a 5'-TTGGTTACCCATATGGCCATC-3' 5'-GATGGCCATATGGGTAACCAA-3' ath-miR775a 5'-UUCGAUGUCUAGCAGUGCCAA-3' 5'-TTGGCACTGCTAGACATCGAA-3' 66 miR775a 5'-TTCGATGTCTAGCAGTGCCAA-3' 5'-TTGGCACTGCTAGACATCGAA-3' ath-miR776a 5'-UCUAAGUCUUCUAUUGAUGUU-3' 5'-AACATCAATAGAAGACTTAGA-3' 67 miR776a 5'-TCTAAGTCTTCTATTGATGTT-3' 5'-AACATCAATAGAAGACTTAGA-3' ath-miR777a 5'-UACGCAUUGAGUUUCGUUGCU-3' 5'-AGCAACGAAACTCAATGCGTA-3' 68 miR777a 5'-TACGCATTGAGTTTCGTTGCT-3' 5'-AGCAACGAAACTCAATGCGTA-3' ath-miR778a 5'-UGGCUUGGUUUAUGUACACCG-3' 5'-CGGTGTACATAAACCAAGCCA-3' 69 miR778a 5'-TGGCTTGGTTTATGTACACCG-3' 5'-CGGTGTACATAAACCAAGCCA-3' ath-miR779a 5'-UUCUGCUAUGUUGCUGCUCAU-3' 5'-ATGAGCAGCAACATAGCAGAA-3' 70 miR779a 5'-TTCTGCTATGTTGCTGCTCAT-3' 5'-ATGAGCAGCAACATAGCAGAA-3' ath-miR780a 5'-UUUCUUCGUGAAUAUCUGGCA-3' 5'-TGCCAGATATTCACGAAGAAA-3' 71 miR780a 5'-TTTCTTCGTGAATATCTGGCA-3' 5'-TGCCAGATATTCACGAAGAAA-3' ath-miR781a 5'-UUAGAGUUUUCUGGAUACUUA-3' 5'-TAAGTATCCAGAAAACTCTAA-3' 72 miR781a 5'-TTAGAGTTTTCTGGATACTTA-3' 5'-TAAGTATCCAGAAAACTCTAA-3' ath-miR782a 5'-ACAAACACCUUGGAUGUUCUU-3' 5'-AAGAACATCCAAGGTGTTTGT-3' ath-miR783a 5'-AAGCUUUGCUCGUUCAUGUUC-3' 5'-GAACATGAACGAGCAAAGCTT-3' 73 miR822 5'-TGCGGGAAGCATTTGCACATG-3' 5'-CATGTGCAAATGCTTCCCGCA-3' 74 miR823a 5'-TGGGTGGTGATCATATAAGAT-3' 5'-ATCTTATATGATCACCACCCA-3' 75 miR824a 5'-TAGACCATTTGTGAGAAGGGA-3' 5'-TCCCTTCTCACAAATGGTCTA-3' 76 miR825a 5'-TTCTCAAGAAGGTGCATGAAC-3' 5'-GTTCATGCACCTTCTTGAGAA-3' 77 miR826a 5'-TAGTCCGGTTTTGGATACGTG-3' 5'-CACGTATCCAAAACCGGACTA-3' 78 miR827a 5'-TTAGATGACCATCAACAAACT-3' 5'-AGTTTGTTGATGGTCATCTAA-3' 79 miR828a 5'-TCTTGCTTAAATGAGTATTCCA-3' 5'-TGGAATACTCATTTAAGCAAGA-3' 80 miR829a 5'-CAAATTAAAGCTTCAAGGTAG-3' 5'-CTACCTTGAAGCTTTAATTTG-3' 81 miR830a 5'-TCTTCTCCAAATAGTTTAGGTT-3' 5'-AACCTAAACTATTTGGAGAAGA-3' 82 miR831a 5'-TGATCTCTTCGTACTCTTCTTG-3' 5'-CAAGAAGAGTACGAAGAGATCA-3' 83 miR832a 5'-TGCTGGGATCGGGAATCGAAA-3' 5'-TTTCGATTCCCGATCCCAGCA-3' 84 miR833a 5'-TAGACCGATGTCAACAAACAAG-3' 5'-CTTGTTTGTTGACATCGGTCTA-3' 85 miR834a 5'-TGGTAGCAGTAGCGGTGGTAA-3' 5'-TTACCACCGCTACTGCTACCA-3' 86 miR835a 5'-TTCTTGCATATGTTCTTTATC-3' 5'-GATAAAGAACATATGCAAGAA-3' 87 miR836a 5'-TCCTGTGTTTCCTTTGATGCGTGG-3' 5'-CCACGCATCAAAGGAAACACAGGA-3' 88 miR837a 5'-ATCAGTTTCTTGTTCGTTTCA-3' 5'-TGAAACGAACAAGAAACTGAT-3' 89 miR838a 5'-TTTTCTTCTACTTCTTGCACA-3' 5'-TGTGCAAGAAGTAGAAGAAAA-3' 90 miR839a 5'-TACCAACCTTTCATCGTTCCC-3' 5'-GGGAACGATGAAAGGTTGGTA-3' 91 miR840a 5'-ACACTGAAGGACCTAAACTAAC-3' 5'-GTTAGTTTAGGTCCTTCAGTGT-3' 92 miR841a 5'-TACGAGCCACTTGAAACTGAA-3' 5'-TTCAGTTTCAAGTGGCTCGTA-3' 93 miR842a 5'-TCATGGTCAGATCCGTCATCC-3' 5'-GGATGACGGATCTGACCATGA-3' 94 miR843a 5'-TTTAGGTCGAGCTTCATTGGA-3' 5'-TCCAATGAAGCTCGACCTAAA-3' ath-miR447a b 6 b 95 miR844a 5'-AATGGTAAGATTGCTTATAAG-3' 5'-CTTATAAGCAATCTTACCATT-3' 96 miR845a 5'-CGGCTCTGATACCAATTGATG-3' 5'-CATCAATTGGTATCAGAGCCG-3' 97 miR845b 5'-TCGCTCTGATACCAAATTGATG-3' 5'-TCGCTCTGATACCAAATTGATG-3' 98 miR846 5'-TTGAATTGAAGTGCTTGAATT-3' 5'-AATTCAAGCACTTCAATTCAA-3' 99 miR847 5'-TCACTCCTCTTCTTCTTGATG-3' 5'-CATCAAGAAGAAGAGGAGTGA-3' 100 miR848 5'-TGACATGGGACTGCCTAAGCTA-3' 5'-TAGCTTAGGCAGTCCCATGTCA-3' 101 miR849 5'-TAACTAAACATTGGTGTAGTA-3' 5'-TACTACACCAATGTTTAGTTA-3' 102 miR850 5'-TAAGATCCGGACTACAACAAAG-3' 5'-CTTTGTTGTAGTCCGGATCTTA-3' 103 miR851 5'-TCTCGGTTCGCGATCCACAAG-3' 5'-CTTGTGGATCGCGAACCGAGA-3' 104 miR852 5'-AAGATAAGCGCCTTAGTTCTGA-3' 5'-TCAGAACTAAGGCGCTTATCTT-3' 105 miR853 5'-TCCCCTCTTTAGCTTGGAGAAG-3' 5'-CTTCTCCAAGCTAAAGAGGGGA-3' 106 miR856 5'-TAATCCTACCAATAACTTCAGC-3' 5'-GCTGAAGTTATTGGTAGGATTA-3' 107 miR857 5'-TTTTGTATGTTGAAGGTGTAT-3' 5'-ATACACCTTCAACATACAAAA-3' 108 miR858 5'-TTTCGTTGTCTGTTCGACCTT-3' 5'-AAGGTCGAACAGACAACGAAA-3' 109 miR859 5'-TCTCTCTGTTGTGAAGTCAAA-3' 5'-TTTGACTTCACAACAGAGAGA-3' 110 miR860 5'-TCAATAGATTGGACTATGTAT-3' 5'-ATACATAGTCCAATCTATTGA-3' 111 miR861 5'-GATGGATATGTCTTCAAGGAC-3' 5'-GTCCTTGAAGACATATCCATC-3' 112 miR862 5'-TCCAATAGGTCGAGCATGTGC-3' 5'-GCACATGCTCGACCTATTGGA-3' 113 miR863 5'-TTGAGAGCAACAAGACATAAT-3' 5'-ATTATGTCTTGTTGCTCTCAA-3' 114 miR864 5'-TCAGGTATGATTGACTTCAAA-3' 5'-TTTGAAGTCAATCATACCTGA-3' 115 miR865 5'-ATGAATTTGGATCTAATTGAG-3' 5'-CTCAATTAGATCCAAATTCAT-3' 116 miR866 5'-ACAAAATCCGTCTTTGAAGA-3' 5'-TCTTCAAAGACGGATTTTGT-3' 117 miR867 5'-TTGAACATGGTTTATTAGGAA-3' 5'-TTCCTAATAAACCATGTTCAA-3' 118 miR868 5'-CTTCTTAAGTGCTGATAATGC-3' 5'-GCATTATCAGCACTTAAGAAG-3' 119 miR869 5'-TCTGGTGTTGAGATAGTTGAC-3' 5'-GTCAACTATCTCAACACCAGA-3' 120 miR870 5'-TAATTTGGTGTTTCTTCGATC-3' 5'-GATCGAAGAAACACCAAATTA-3' *Asterisk indicates the microRNA from opposite arm of the precursor reported by northern blot evidence (Wang et al., 2004). “Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets” Wang XJ, Reyes JL, Chua NH, Gaasterland T. Genome Biol. 5:R65 (2004). 7 Supplementary Table S2. The oligonucleotides used for RT-PCR and qRT-PCR. Gene Annealing Temperature (°C) AGO1 62 AP11 AP2 At1g17590 At1g54160 At1g66690 At1g66700 At1g66720 At3g15640 At3g20910 At5g06510 CSD2 DCL1 60 60 60 60 57 57 57 60 60 60 60 58 Primer Sequence JH5521 5'-GGCCTGGTAAAGGACAGAGT-3' JH5522 5'-AAGAACCTGCAGAGCTTCCT-3' JH5128 5'-CATGGGTGGTCTGTATCAAGAAGAT-3' JH5129 5'-CATGCGGCGAAGCAGCCAAGGTT-3' JH4587 5'-ACAACAAGATTCTCTCCACTCTAATGA-3' JH4588 5'-GCAGCCAATTTTGATGAGGAGTA-3' JH4575 5'-GAATCCCCAAATGACTCGAGTT-3' JH4576 5'-TCATTCAAATGATATCTGGACAAAGC-3' JH4577 5'-GCCATTGCCTCATCACATTC-3' JH4578 5'-TAGTTTGACAATGATTTGAAAGTTCGTC-3' JH4068 5'-TGGATATGGCCCTGAAAGTTAC-3' JH4069 5'-TAGCGGAAACTCATTCTTAGAGTGA-3' JH4509 5'-ATAAACCAAAGTATCAAACAATAAAAGATT-3' JH4071 5'-GTTGAAATCATTGAGGCTGAAATCA-3' JH4072 5'-TAAAATAAACGCGGTGATTTCAA-3' JH4073 5'-AGACTCCACCTTGTCTTTCTCAA-3' JH4533 5'-GAATAAAACATTTGGGGAGTTTCTT-3' JH4535 5'-ATAGTAGGACTTCACAATAGCAGGAGC-3' JH4579 5'-CCACTGCCGCCTGAGATG-3' JH4580 5'-TACTCTTTCATGGCTGCTACCG-3' JH4581 5'-AGGCTGAAAAACTGAGTAGATGCCGTAA-3' JH4582 5'-TCAGAGATCTTATGAAGATGCGTAGAA-3' JH3333 5'-TGACACACGGAGCTCCAGAA-3' JH3334 5'-CCTGCGTTTCCAGTGGTCAG-3' JH5517 5'-CTTTCCTTGAGACCGGTGC-3' JH5518 5'-AACTTGGTCTCGAGGTTACG-3' 8 qPCR4 SPL2 60 SPL3 60 SPL4 60 SPL5 59 SPL6 60 SPL9 58 SPL10 58 SPL11 60 SPL13 58 SPL15 60 SVP 62 SVP-qPCR 60 TOE1* 58 TOE2* 58 TOE3* 58 JH5003 5'-CCTCGATTGAGCATGTTCCTATG-3' JH4039 5'-CCATCCAAGAAGTGAGGAAAAGTT-3' JH4040 5'-CAGACCGGTGAGCTACGGG-3' JH4041 5'-AGATACTTTTGAAGAAGAAGAGGCT-3' JH4042 5'-CATGTCGTAGGTTTAGCAGATAGC-3' JH4043 5'-TAGGTAGGGATAGAGTTAGAGGGTC-3' JH4044 5'-GCTTAGCGTTTGCATATAGCTGAT-3' JH4045 5'-TAGCACTGACCGTGTTCCATC-3' JH4046 5'-CGTGTAGGATTTAATACCATGACC-3' JH4047 5'-ATAAGCTTCTTCGCACCTCTCA-3' JH4048 5'-ATAAGCTTCTTCGCACCTCTCA-3' JH4049 5'-TCTCTCTGTGTTAGCTTCTCGTTACG-3' JH4050 5'-AGAAGATTCTCTGATGCAAAGACA-3' JH4051 5'-TCTCTTTCTCTGCGTTTCAAACA-3' JH4052 5'-AGTTGTCATACCAACAGAATCCAG-3' JH4053 5'-GTATGTTCTCTACATCTCAAACCTCAGG-3' JH4054 5'-TCCACCAACTGAGTAACAGGTTTAC-3' JH4055 5'-GAATGACGAGTTGCATCCATGAC-3' JH4056 5'-CTTTTACGCCATAATATGTGAACA-3' JH4057 5'-ATTACTCTCGAATCGCTCCATCT-3' JH4058 5'-GATGTGTTGAGATGGGCGG-3' JH2107 5'-GAAGGAAGTCCTAGAGAGGCATAA-3' JH2108 5'-AATTGTTCCATCTCTAACCACCAT-3' JH3776 5'-GAAGAGAACGAGCGACTTGG-3' JH3777 5'-GAGCTCTCGGAGTCAACAGG-3' JH4583 5'-TTTACTGGAACGGAGCATGC-3' JH4584 5'-GTGTGGATAAAAGTAACCACGTGTT-3' JH4589 5'-GGCATGTGATACGCCTTTCA-3' JH4590 5'-ATAGAGACCGGGCTGATTCAGAT-3' JH4591 5'-TATGATAAAGCGGCAATAAAGTGT-3' JH4592 5'-AGGAATGCGGTAAGGGGAAG-3' 10 FLC FLC-qPCR FT FT-qPCR2 HAP2A HAP2B HAP2C HYL13 PHO2 SE3 SMZ SMZ-qPCR SNZ SNZ-qPCR 62 60 62 60 60 60 60 60 60 62 60 60 60 60 SOC1 62 SOC1- 60 MB73 5'-GTAGCCGACAAGTCACCTTCTCCA-3' MB74 5'-GAGATTTGTCCAGCAGGTGACATCT-3' JH3778 5'-GCCAAGAAGACCGAACTCAT-3' JH3779 5'-TTTGTCCAGCAGGTGACATC-3' JH1002 5'-ACTATAGGCATCATCACCGTTCGTTAC-3' JH1003 5'-ACAACTGGAACAACCTTTGGCAATG-3' JH6163 5'-TCCCTGCTACAACTGGAACAACCTTTG-3' JH6164 5'-CGCAGCCACTCTCCCTCTGACAATTGT-3' JH4506 5'-CGAAGAAAAGTGAGGTAGAAGCG-3' JH4443 5'-TAAACCCACACAATATGAGACTCTGA-3' JH4444 5'-CAGATTCAGTCTCAGCCTAAGCC-3' JH4507 5'-CACACTACTAGTTGGAACAAGTGGG-3' JH4446 5'-CAAAAAACTTCTTCAAGAATCCGA-3' JH4508 5'-TGGTCGTTCTTGTGATGTCTAACA-3' JH5515 5'-ATGACCTCCACTGATGTTTCCTC-3' JH5516 5'-CAGTTCTCCCAGCGCTAATC-3' JH4537 5'-CTGTTTCCCATTTATACTTCAGATTCTA-3' JH4539 5'-CATAATCAGAGAGTGAAATAGAACGCA-3' JH5513 5'-CTGATTCCGTCGATAACCGTCTCC-3' JH5514 5'-CAGGCCTCCCACCCATTTCAC-3' JH5070 5'-CGAAGATCAAGATCGGAAAGTACC-3' JH5071 5'-CCTGTTTTGGAAGAGATGAATCTGA-3' JH6225 5'-CATCATCATCGGAAAGTATAAAGTTGAC-3' JH6226 5'-GTCTTCAGAGGTTTCATGGTTGCCATG-3' JH4585 5'-CTTAGACGAGCGAGTGCAAGC-3' JH4586 5'-CATGGATCAAAACAAGATAAGGACA-3' JH6173 5'-CAGCAGCAGCAAAATGCAATGAG-3' JH6174 5'-CACCGATCGATTCAAACCCATGT-3' JH1145 5'-GGATCGAGTCAGCACCAAACC-3' JH1146 5'-CCCAATGAACAATTGCGTCTC-3' JH5002 5'-CTTCTAAACGTAAACTCTTGGGAGAAG-3' 9 TSF-qPCR TUB-qPCR UBQ10 62 60 62 JH5829 5'-GTGGATCCAGATGTGCCGAGTC-3' JH5830 5'-TCCCTCTGGCAGTTGAAGTAAGAGG-3' JH3792 5'-TGTTCAGGCGAGTGAGTGAG-3' JH3793 5'-ATGTTGCTCTCCGCTTCTGT-3' JH1011 5'-GATCTTTGCCGGAAAACAATTGGAGGATGGT-3' JH1012 5'-CGACTTGTCATTAGAAAGAAAGAGATAACAGG-3' *These primers are used for both RT-PCR and qRT-PCR. 1 (Liu et al. 2008) (Mathieu et al. 2009) 3 (Yang et al. 2006) 4 (Mockler et al. 2004) 2 “Direct interaction of AGL24and SOC1integrates flowering signals in Arabidopsis” Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.H., Liou, Y.C. and Yu, H. Development 135, 1481-1491. (2008) “Repression of Flowering by the miR172 Target SMZ” Mathieu, J., Yant, L.J., Murdter, F., Kuttner, F. and Schmid, M. PLoS Biol, 7, e1000148. (2009) “SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis” Yang L, Liu Z, Lu F, Dong A, Huang H. Plant J. 47:841-850 (2006) “Regulation of flowering time in Arabidopsis by K homology domain proteins.” Mockler, T.C., Yu, X., Shalitin, D., Parikh, D., Michael, T.P., Liou, J., Huang, J., Smith, Z., Alonso, J.M., Ecker, J.R. Proc Natl Acad Sci U S A, 101, 12759-12764. (2004) 11 Supplementary Table S3. Fold change values of the miRNA loci in the microarray analysis. Name Sequence of probe Length Fold(23/16) PM_016_1 PM_016_2 PM_023_1 PM_023_2 ath|miR169a TCGGCAAGTCATCCTTGGCTG 21 -1.56 22358.50 34275.50 18649.13 16972.93 ath|miR156g TGTGCTCACTCTCTTCTGTCG 21 -1.47 28612.25 49487.43 25143.88 26052.96 ath|miR169b CCGGCAAGTCATCCTTGGCTG 21 -1.46 16437.25 24556.89 14567.25 13048.57 ath|miR319c AGGAGCTCCCTTCAGTCCAA 20 -1.41 1636.00 1889.98 1593.25 972.55 ath|miR169h CAGGCAAGTCATCCTTGGCTA 21 -1.37 13863.50 19087.02 12865.63 10904.48 ath|miR156a GTGCTCACTCTCTTCTGTCA 20 -1.36 20129.00 32267.99 20348.13 17199.27 ath|miR159c AGGAGCTCCCTTCAATCCAAA 21 -1.35 9917.50 11454.76 9899.00 6289.10 ath|miR169d CGGCAAGTCATCCTTGGCTCA 21 -1.34 15131.00 22487.37 15302.63 12362.75 ath|miR319a GGGAGCTCCCTTCAGTCCAA 20 -1.32 1030.88 1161.10 963.50 711.69 ath|miR156h GTGCTCTCTTTCTTCTGTCAA 21 -1.21 8678.50 10330.23 9077.38 6780.76 ath|miR173 GTGATTTCTCTCTGCAAGCGAA 22 -1.18 13363.63 18441.62 13584.00 13070.35 ath|miR158b TGCTTTGTCTACATTTGGGG 20 -1.12 1024.13 977.19 986.38 802.64 ath|miR399b CAGGGCAACTCTCCTTTGGCA 21 -1.12 1273.75 2219.38 1545.25 1459.38 ath|miR169g* AGCCAAGGTCAACTTGCCGGA 21 -1.11 112.38 144.43 120.75 108.90 ath|miR400 GTGACTTATAATACTCTCATA 21 -1.11 150.25 175.70 171.50 125.48 ath|miR157a GTGCTCTCTATCTTCTGTCAA 21 -1.10 24159.88 38917.11 28069.88 27658.13 ath|miR158a TGCTTTGTCTACATTTGGGA 20 -1.08 1272.25 1136.45 1303.50 950.90 ath|miR157d GTGCTCTCTATCTTCTGTCA 20 -1.06 16918.75 25467.30 21648.88 17576.09 ath|miR775 TTGGCACTGCTAGACATCGAA 21 -1.05 745.50 1112.12 935.67 799.76 ath|miR447a CAACAAAACATCTCGTCCCCAA 22 -1.04 172.67 290.26 215.83 216.48 ath|miR395b GAGTCCCCCCAAACACTTCAG 21 -1.03 778.25 1243.12 944.75 963.27 ath|miR159a TAGAGCTCCCTTCAATCCAAA 21 -1.01 31295.25 44259.24 39615.13 34136.56 ath|miR159b AAGAGCTCCCTTCAATCCAAA 21 1.02 30486.88 41892.92 39142.88 33761.85 ath|miR162a CTGGATGCAGAGGTTTATCGA 21 1.02 604.75 831.31 782.00 665.65 ath|miR168a TTCCCGACCTGCACCAAGCGA 21 1.02 4664.75 8222.16 6347.25 6338.85 ath|miR170 GATATTGACACGGCTCAATCA 21 1.02 205.00 290.04 279.25 223.62 ath|miR393a GATCAATGCGATCCCTTTGGA 21 1.09 1712.88 2308.95 2625.25 1796.85 ath|miR165a GGGGGATGAAGCCTGGTCCGA 21 1.10 2849.00 4528.19 4516.63 3450.52 ath|miR390a GGCGCTATCCCTCCTGAGCTT 21 1.11 4405.25 7950.93 6450.63 6711.46 ath|miR394a GGAGGTGGACAGAATGCCAA 20 1.12 254.50 288.98 340.50 272.37 ath|miR160a TGGCATACAGGGAGCCAGGCA 21 1.14 6711.25 10075.70 9854.25 8991.43 12 ath|miR166a GGGGAATGAAGCCTGGTCCGA 21 1.16 5170.00 8199.76 8477.38 6725.32 ath|miR172e ATGCAGCATCATCAAGATTCC 21 1.18 676.13 855.02 1013.38 788.16 ath|miR161 CCCCGATGTAGTCACTTTCAA 21 1.19 10995.00 16771.72 16341.75 15968.82 ath|miR396b AAGTTCAAGAAAGCTGTGGAA 21 1.24 187.50 235.06 315.75 213.84 ath|miR171a GATATTGGCGCGGCTCAATCA 21 1.24 2193.88 3440.36 3737.00 3127.66 ath|miR396a CAGTTCAAGAAAGCTGTGGAA 21 1.25 241.00 332.71 410.75 305.29 ath|miR164a TGCACGTGCCCTGCTTCTCCA 21 1.26 1641.50 2971.58 2884.50 2673.62 ath|miR403 CGAGTTTGTGCGTGAATCTAA 21 1.26 849.38 1336.66 1444.38 1245.17 ath|miR164c CGCACGTGCCCTGCTTCTCCA 21 1.26 2111.88 3552.46 3519.25 3401.15 ath|miR167c AAGATCATGCTGGCAGCTTAA 21 1.27 12149.50 14235.54 18035.00 15358.74 ath|miR399f CCGGGCAAATCTCCTTTGGCA 21 1.28 376.63 550.14 633.13 534.48 ath|miR399a CAGGGCAAATCTCCTTTGGCA 21 1.30 415.50 648.06 740.75 615.90 ath|miR399d CGGGGCAAATCTCCTTTGGCA 21 1.31 289.88 467.33 530.75 434.86 ath|miR399e CGAGGCAAATCTCCTTTGGCA 21 1.31 142.75 187.89 236.13 196.39 ath|miR172a ATGCAGCATCATCAAGATTCT 21 1.32 639.13 740.54 1003.00 816.63 ath|miR167a TAGATCATGCTGGCAGCTTCA 21 1.32 12223.75 15967.84 21594.50 15659.33 ath|miR395a GAGTTCCCCCAAACACTTCAG 21 1.33 270.00 437.91 456.13 456.14 ath|miR408 GCCAGGGAAGAGGCAGTGCAT 21 1.35 1023.25 1403.71 1662.63 1575.46 ath|miR167d CCAGATCATGCTGGCAGCTTCA 22 1.36 6605.50 8807.67 11804.13 9101.69 ath|miR171b CGTGATATTGGCACGGCTCAA 21 1.41 2024.00 3804.34 3931.75 3872.39 ath|miR172c CTGCAGCATCATCAAGATTCT 21 1.53 377.38 423.47 697.75 536.70 ath|miR163 ATCGAAGTTCCAAGTCCTCTTCAA 24 1.61 981.38 1998.10 2130.50 2371.67 ath|miR398b CAGGGGTGACCTGAGAACACA 21 1.88 1088.50 1493.54 2766.75 2069.72 ath|miR398a AAGGGGTGACCTGAGAACACA 21 1.97 777.63 1046.22 2076.13 1519.16 The miRNA loci that did not satisfy our selection criterion and thus converted to the background value (see Materials and Methods) were excluded. 13 Supplementary Figure S1. Comparison of sensitivity between enhanced miRNA Northern hybridization analysis using EDC and a procedure using UV cross-linking. miR156a was used as a probe. Total RNAs isolated at the indicated time points were used for this analysis. The autoradiograms were exposed for an equal amount of time (1 h) in a BAS phosphorimager (Fuji BAS, Japan). The numbers below each panel indicate the quantification value of each band. The quantification value of a band from 6-day-old wild-type plants was set to 1.0 to calculate the relative values for the other bands. This analysis revealed that the method using EDC was approximately 100 times more sensitive than the UV cross-linking method. 14 Supplementary Figure S2. Degree of cross-hybridization of the miR156 and miR157 probes used in the miRNA Northern hybridization analysis. (A) Sequence comparison of the mature forms of miR156 and miR157 loci. Different nucleotides within the miR156/157 family are indicated in bold type. (B) Test of cross-hybridization using different miR156 and miR157 probes in the miRNA Northern hybridization analysis. Note that the DNA probes were hybridized to synthesize the miRNA RNA sequences. (C) Predicted Tm value (°C) of the hybridized sequences between a DNA probe and a miRNA. The Tm values were calculated by using DINAMelt (Zuker, 2003). The highest value in different possible combinations from a single probe is shown in bold type. (D) Prediction of the hybridized sequences between different miR156/157 probes by using the Two-state Hybridization program at the DINAMelt Server (http://dinamelt.bioinfo.rpi.edu/twostate.php) (Zuker, 2003). “Mfold web server for nucleic acid folding and hybridization prediction.” Zuker, M. Nucleic Acids Res., 31:3406-3415 (2003). 15 Supplementary Figure S3. The miRNAs that were undetectable in our miRNA Northern hybridization analysis. The numbers above the blots indicate the times of harvest (ZT). Ethidium bromide-stained rRNAs are shown below each blot to demonstrate an equal amount of loading. Note that a probe hybridizes to its paralogous loci as well as itself, because of their identical sequences. 16 Supplementary Figure S4. The miRNAs that did not show significant changes in their expression or that showed inconsistent results between two biological replicates or ZT time points in our miRNA Northern hybridization analysis. The numbers above the blots indicate the times of harvest (ZT). Ethidium bromide-stained rRNAs are shown below each blot to demonstrate an equal amount of loading. Note that a probe hybridizes to its paralogous loci as well as itself, because of their identical sequences. 17 Supplementary Figure S5. qRT-PCR analysis of miR172 target genes in 8-day-old wild type plants grown under LD conditions at 23°C and 16°C. Supplementary Figure S6. Flowering time of the miRNA biogenesis mutants at 23°C and 16°C under LD conditions. The numbers listed below the genotypes denote the ratios of the flowering time at 16°C and 23°C (16°C/23°C). The error bars denote the standard deviation. 18 Supplementary Figure S7. Expression of the miRNA biogenesis genes in 10-day-old wild-type plants grown under LD conditions at 23°C and 16°C. The numbers to the right of every panel indicate the number of PCR cycles used in the RT-PCR analysis. UBQ10 was used as an internal control. 19
© Copyright 2026 Paperzz