Warm Rain Detection & Aerosol Impact on Cloud and Rain Zhanqing Li Feng Niu, Ruiyue Chen, Kwon-Ho Lee University of Maryland, College Park, MD Topics Use of CloudSat, TRMM, Ground-based radars to investigate if MODIS can help detect drizzles estimate rain rate Use of ground-based (ARM) and space-borne (A-Train) measurements to investigate if aerosols have discernible long-term effects on cloud height cloud particle size rainfall frequency Topic I Chen, R., R. Wood, Z. Li, R. Ferraro, F.-L. Chang, 2008, Studying the vertical variation of cloud droplets effective radius using ship and space-borne remote sensing data, J. Geophy. Res., 113, doi: 10.1029/2007/JD009596. Chen, R., F. Chang, Z. Li, R. Ferraro and F. Weng, 2008: Impact of the Vertical Variation of Cloud Droplet Size on the Estimation of Cloud Liquid Water Path and Rain Detection. J. Atmos. Sci. 64, 3843-3853. Chang, F.-L., Z. Li, 2003, Retrieving the vertical profiles of water-cloud droplet effective radius: Algorithm modification and preliminary application, J. Geophy. Res., 108, D(24), 4763, 10.1029/2003JD003906. Chang, F.-L., Z. Li, 2002, Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements, J. Geophy. Res., 107. Schematic Illustration of a Bispectral Retrieval Procedure τ' 0 (a) (a) Conventional re retrievals by assuming dre/dτ = 0. 3.7μm 10 1.6μm 20 4 τ' 0 6 8 10 12 14 16 (b) 3.7μm 10 1.6μm 20 4 τ' 0 6 8 10 12 14 (b) The linear-re retrievals with dre/dτ = Δre/τtotal, where Δre = 13.1−11.8 μm as obtained from the 3.7- (red) and 1.6-μm (green) retrieved re values shown in Figure (a). 16 (c) The optimal linear-re retrieval for the two channels. (c) 10 20 4 6 8 10 re (μm) 12 14 16 Chang and Li (JGR. 2002, 2003) Validation with Ship-borne Radar LWP(mm) C-band reflectivity 60 60 20 0.7 50 50 0.6 10 40 40 0 30 -10 20 km Estimation of cloud DER, DER profile, LWP from MODIS measurements, 1x1 km, instantaneous. Rain estimation at cloud base from C-band ship-based radar during EPIC 2001, 0.5x0.5 km, 5-min averaged km 0.5 0.4 30 0.3 20 0.2 -20 10 10 20 30 km 40 50 60 -30 10 0.1 10 Chen et al. (2008a) 20 30 km 40 50 60 0 Rain rate and Cloud Microphysics 10 1 10 1 C o rre latio n 0 .7 8 10 10 10 Rain Rate(mm/hr) Rain Rate(mm/hr) C orrelation 0.59 0 -1 -2 15 20 Re 10 base (μ m ) 25 30 10 10 10 0 -1 -2 0 0.1 0.2 0.3 0.4 0.5 0.6 L W P (m m ) 1 Rain Rate(mm/hr) C o rre latio n 0 .4 5 10 10 10 0 -1 DER at cloud base are correlated more closely with rain rate than DER at cloud top -2 15 20 R e top ( μ m ) 25 30 Chen et al. (2008b) DER and Drizzling 0.7 0.5 Drizzling, mean 18.55 Non-drizzling, mean 9.75 0.6 Drizzling, mean 20.74 Non-drizzling, mean 5.76 0.4 Probability Probability 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 5 10 15 20 ReTop(μm) 25 30 0 5 10 15 20 ReBase(μm) 25 30 Drizzling increases DER at cloud base by 14.98, increases DER at cloud top by 8.8 Topic II Aerosol Impact on Rain Frequency, Cloud Thickness & Particle Size Using Long-term Ground and Global Satellite Data Indirect Effects Haywood and Boucher Revs. Geophys. 2000 Aerosol Microphysical Effect (AME) 1) Increased CCN - reduces reff 2) Drizzle suppression - increases LWC Aerosol Invigoration Effect (AIE) ‘First’ indirect effect (AME) 3) Increased cloud height 4) Increased cloud lifetime ‘Second’ indirect effect (AIE) A lot of studies on aerosol effects on precipitation with opposite findings Aerosols (not including GCCN) inhibit precipitation: Kaufman and Nakajima 1993; Borys et al, 1998; 2000; Rosenfeld and Lensky 1998; Rosenfeld 1999, 2000; Aerosols can increase precipitation: Ohashi and Kida 2002 Shepherd and Burian 2003 Amiranashvili et al 2004 Filho et al (2004) Khain et al (2004a,b) Givati and Rosenfeld 2004 Tao et al (1995), Ferrier et al (1996) Khain et al (2005-QJRMS) Axel et al (2004); Khain et al, 2001; Axel and Beheng (2004) Khain and Pokrovsky (2004); Tao et al (2004) Khain et al (2004a,b) Van den Heever et al (2004) Axel et al (2004); Tao et al (2004) Lynn et al (2005a,b) Teller and Levin(2006) Lynn et al (2006) Margaritz et al (2006) Khain et al (2005, 2006) Lynn et al (2006) Jirak and Cotton (2006) Khain and Pokrovsky (2006) Rosenfeld IRS08 Talk But little has been done for rain frequency! While rain amount and frequency change in harmony in general, the impact of aerosol on initiation of rain is likely to be more significant than rain amount, as the latter is dictated more by dynamics and abundance of available water Datasets Used Daily ARM SGP data 2003-2008 (~20000 data samples) Most complete and highest quality measurements of aerosol, cloud, atmospheric state Key variables used: Aerosol CN number concentration on the ground Tipping bucket rain gauge LWP from microwave radiometer Cloud bottom and top heights from cloud radar & lidar NOAA/NCAR Reanalysis MODIS cloud particle size Rainfall Frequency for clouds with different liquid water path at SGP (All-Season Data) 60.00% 2.00% 2 50.00% LWP:0.4-0.8mm R2 = 0.037 1.60% LWP:0.0-0.4mm R2 = 0.7803 40.00% AIE ? 1.20% 30.00% 0.80% AME ? 20.00% 0.40% 10.00% 0.00% 0.00% 0-1000 10002000 20003000 30004000 40005000 50006000 CN Number Concentration (1/cm^3) Rainfall Frequency for Clouds with Low LWP Rainfall Frequency for Clouds with High and Moderate LWP LWP:>0.8mm R = 0.9088 Comparison of the Results Obtained in All Seasons and in Summer Only 60.00% LWP:>0.8mm LWP:0.4-0.8mm LWP:0.0-0.8mm All Slope=3.45E-5 Slope=-0.35E-5 Slope=-0.14E-5 Summer Slope=6.6E-5 Slope=-0.25E-5 Slope=-0.07E-5 2.00% 1.60% 50.00% 1.20% 40.00% 30.00% 0.80% 20.00% 0.40% 10.00% 0.00% 0.00% 0-1000 10002000 20003000 30004000 40005000 50006000 CN Number Concentration (1/cm^3) Rainfall Frequency for Clouds with Low LWP Rainfall Frequency for Clouds with High and Moderate LWP 70.00% Cloud Thickness for clouds with different cloud base heights 3500 2 CBH:<1km R = 0.9718 Cloud Thickness (m) 3000 CBH:1km-2km R2 = 0.9159 2 CBH:2km-4km R = 0.1055 2500 2000 1500 1000 500 0 0-1000 10002000 20003000 30004000 40005000 50006000 CN number concentration (1/cm^3) Most Direct Evidence of the Invigoration Effect ! Cloud Base Heights 3500 Cloud Base Height (m) 3000 y = -10.06x + 2969.9 R2 = 0.2024 2500 CBH:<1km CBH:1km-2km 2000 y = 12.978x + 1404.7 R2 = 0.586 1500 CBH:2km-4km Linear (CBH:2km-4km) Linear (CBH:1km-2km) Linear (CBH:<1km) 1000 y = 7.9095x + 330.05 R2 = 0.5579 500 0 0-1000 10002000 20003000 30004000 40005000 50006000 CN Number Concentration (/cm^3) Cloud Top Heights (for clouds of cloud base <1km) Summer Only All Seasons 7000 10000 5000 y = 237x + 4160.4 R2 = 0.8169 4000 3000 2000 y = 32.296x + 964.41 R2 = 0.7245 1000 Cloud Top Height (m) 6000 Cloud Top Height (m) y = 907.49x + 3297.4 R2 = 0.82 9000 8000 7000 6000 CTH:>2km CTH:>2km CTH:<2km CTH:<2km Linear (CTH:>2km) Linear (CTH:>2km) 4000(CTH:<2km) Linear Linear (CTH:<2km) 5000 3000 y = 22.14x + 1159.4 R2 = 0.2692 2000 1000 0 0 0-1000 10002000 20003000 30004000 40005000 50006000 CN Number Concentration (/cm^3) 0-1000 10002000 20003000 30004000 40005000 50006000 CN Number Concentration (/cm^3) For clouds with CBH<1km, clouds are classified into two categories with cloud top heights greater (blue) and less than (red) 2km. Data •Aqua/MODIS: Level 3 daily aerosol product: AOD, Angstrom exponent •Cloudsat: Level 2 daily products 2C-PRECIP-COLUMN product version 000: Precip_rate 2B-TAU product version 008: COD, mean Re 2B-GEOPROF-LIDAR product version 003: layer height 2B-CWC-RO product version 008: LWP, IWP •Available DATA: collected during Aug 2006~Aug. 2007 more will be downloading •Outputs: Scatter plots for cloud properties vs. Aerosol Index (daily observation) Annual mean AI, COD, Re distribution maps (coincident only) Global Non‐Precipitable Clouds MODIS AI Cloudsat COD MODIS pixels were chosen where Cloudsat COD exists. AI=AODxAngstrom [Nakajima et al., 2001] Cloudsat Re Global Mean Aerosol Indirect Effect From CloudSat and MODIS Competition of two opposite effects Meteorological effects Responses of Rainfall frequency to increasing CN Invigoration Increase rainfall Effects Suppress rainfall Microphysical Effect Depend critically on cloudbase !! Depend critically on available water Future Studies Use of GLOBAL CloudSat-Calipso-MODIS-AMSR-E together with LONG-TERM ground measurements to address the following questions What are the NET effects of aerosols on cloud (coverage, hydrometeor amount, height, etc.) and precipitation on long-term and large scales? Under what conditions, the aerosol’s microphysical effect (AME) is dominant over the thermodynamic effect (AIE), and vice versa; and what is the determinant factor? How do the AME and AIE depend on aerosol properties, weather condition and cloud regimes? Surface Pressure (hp) Surface temperature (Degree Celsius) 982 25 20 15 10 T 5 0-1000 10002000 20003000 30004000 40005000 20 10 WV 10002000 30004000 40005000 CN Number Concentration (/cm^3) 50006000 LW P:0.4 LWP: LWP: LW P:0.0 972 P 10002000 20003000 30004000 40005000 50006000 CN Number Concentration (/cm^3) 6 5.5 5 LW LW 4.5 LW 4 3.5 3 20003000 LWP: 0-1000 Surface Wind Speed (m/s) Water Vapor (cm) 30 LW P:>0 974 6.5 40 0-1000 976 50006000 50 0 978 970 CN Number Concentration (per cm^3) 60 980 Wind 0-1000 10002000 20003000 30004000 40005000 50006000 CN Num ber Concentration (per cm ^3)
© Copyright 2026 Paperzz