ChangesinUgandanClimateRainfallatthe VillageandForestLevel 1PaddySsentongo,3AbrahamJ.B.Muwanguzi,4UriEden,5TimothySauer, 3GeorgeBwanga,6GeoffreyKateregga,7LawrenceAribo,7MosesOjara, 3WilberforceKisambaMugerwa,1,2StevenJ.Schiff May16,2017 arXiv:1705.05970[physics.ao-ph] 1CenterforNeuralEngineering,DepartmentofEngineeringScienceandMechanics, 2DepartmentsofNeurosurgeryandPhysics,ThePennsylvaniaStateUniversity, UniversityPark,PA 3UgandanNationalPlanningAuthority,Kampala,Uganda 4DepartmentofStatistics,BostonUniversity,Boston,USA 5DepartmentofMathematics,GeorgeMasonUniversity,Fairfax,VA,USA 6MapUganda,Kampala,Uganda 7UgandanNationalMeteorologicalAuthority,Kampala,Uganda Correspondence: StevenJ.Schiff CenterforNeuralEngineering ThePennsylvaniaStateUniversity UniversityPark,PA16802USA [email protected] Page 1 of 19 Abstract In 2013, the US National Oceanographic and Atmospheric Agency refined the historical rainfall estimates over the African Continent and produced the African RainfallClimateversion2.0(ARC2)estimator.ARC2offersanearlycompleterecord of daily rainfall estimates since 1983 at 0.1 x 0.1 degree resolution. Despite shortterm anomalies in twice-yearly rainy season intensities in Uganda, we identify an overall decrease in average rainfall of about 12% during the past 34 years. Spatiotemporally,thesedecreasesaregreatestinagriculturalregionsofcentraland western Uganda, but are also reflective of rainfall decreases in the gorilla habitat within the Bwindi Forest in Southwest Uganda. The findings carry significant implicationsforagriculture,foodsecurity,andwildlifehabitat. Page 2 of 19 Africaisboththedriestandhottestofcontinents,anditsavailablewater is essential for almost all human activities and to support non-human biodiversity.1In2013,theUSNationalOceanographicandAtmosphericAgency refined the historical satellite-based rainfall estimates over the African Continent and produced the African Rainfall Climate version 2.0 (ARC2) estimator2. This estimator combines daily geostationary rainfall estimation throughinfraredcloudreflectivitywithgroundbasedrainfallmeasurementsat a fine grid scale at 0.1o x 0.1o resolution (approximately 11x11 km at the Equator).Therecordreachesbackto1983,andcontinueswithreal-timedaily data production. We here report an analysis of the stationarity and climate patternsofrainfallaffectingUgandaovertheperiod1983-2016. Therearemanycriticalusesofsuchdataatthisfineascale.Fromahuman planningperspective,majorconstructionprojectscanbemappedtothemeanand variability of rainfall for a given location or extent, and engineered to account for anticipated extreme events. Additionally, agricultural planning can be adapted to patternsandpredictedchangesinrainfall.Moreover,sinceinacountrylikeUganda about 70% of the population depends on agriculture, these data may be used to understandpopulationgrowthanddensityingivenregionsandthereforefacilitate planning for settlements and economic activities. From a non-human perspective, habitatlimitationsforendangeredspeciesmayplacetheirsurvivalatgreaterrisk. Manyhumaninfectiousdiseaseshavestrongrelationshipstorainfall:cholera3, malaria4, leptospirosis5, melioidosis6, and the seasonal Neisseria meningitis within Page 3 of 19 theAfricanmeningitisbelt7.Infantinfectionsleadingtopostinfectioushydrocephalus havebeennotedtohaveasignificantrelationshiptorainfall8. Geographically, Uganda stretches from 1.43oS to 4.27oN and from 29.5oE to 35.03oE.At0.1ox0.1oresolutionUgandaiscontainedwithinasquare61x61grid.In Figure1Aweillustratethecountryasacompositeoftheboundariesofthe44,034 villages that comprise the landmass, and superimpose the 3,721 satellite grids overlay. Theentiredatasetforall3,721timeseries(plottedinsequentialcolors)is illustratedinFigure1B.Thecumulativerainfallover34yearsismappedontothe satellitegridinFigure1C.FusingthesewiththecountrymapinFigure1D,thereare severalnotablefeatures.Inthenortheast,thesemi-aridregionofKaramojaisshown withlowcumulativerainfall.TheheaviestrainfallisinthenorthwestovertheCongo Riverbasinrainforest.Theotherregionwithhighrainfalliswherethenortheastedge ofLakeVictoriameetstheUgandanlandmassinthelowercentralregionoftheplot. The averaged power spectral density of all 3,721 time series with error bounds is showninFigure1E,whichreflectsthedominant1and2cycleperyearfrequencies, and the spectrogram in Figure 1F demonstrates the consistency of these two fundamental frequencies throughout the 34 year record. The 2-cycle per year rainfallsintheEastAfricanHighlandsareofunequalsize,augmentingthe1-cycleper yearfrequencyamplitude. Statistically, rainfall distributions are often non-Gaussian due to nonnegativity and pronounced skewness. For such data, the normal distribution will inadequatelyaccountfortherainfallvariability.Thisrendersordinaryleastsquares, Page 4 of 19 with the assumed normal distribution of errors, a problematic choice for model fitting. Indeed, the rainfall distribution for all 46,211,099 daily measurements is highlyskewed(Figure2A),anditiswellknownthatsuchrainfalldatamayfollowa gammadistribution9.Byaveragingacrossthe3,721spatiallocationsforeachdayin time,andfilteringbetweenfrequenciesof1/20to6cyclesperyearforvisualization, thetwice-yearlyrainyseasoncyclesarenowreadilyvisualized(Figure2B),andthe distributionbecomesmuchlessskewedforthe12,419daysofdata(Figure2C).These data can all be appropriately fit using the generalized exponential family of distributionsmodeledwithintheGeneralizedLinearModel(GLM)frameworkthat embracessuchdistributionsrangingfromgammatonormal.10 In Figure 2D we demonstrate a GLM fit to the 34 years of data, spatially averagedforeachdayacrossthespatialgridbutnotfilteredovertime.Weshowboth alog-linkedlinearfitwithtime(log(µ)=A+BT,whereµistheexpectedrainfall),as wellasafitofbothtimeandalinearcombinationoffrequencies(using4,2,1,0.5, and 0.25 cycles per year). There is a significant downward slope of the GLM dependency on time of the spatially averaged rainfall by 12% over the 34-year interval (slope of -0.0038 corresponding to an exp(-.0038)=0.38% reduction in rainfallperyear,p<1.6x10-5,slopestandarderrorSE=0.00088),andthequalityof thefitoftimeandfrequenciesisalsohighlysignificant(Fvsconstantmodel146,p< 7x10-317). Toexaminethespatialcontributionstothisdecreaseinrainfall,wefit3,721 GLMmodelstoeachspatiallocation’stimeseries(withoutaveragingorfiltering).The originoftheaveragenegativeslope,B,forthelinearmodelfit,log(µ)=A+BTinFigure Page 5 of 19 2D,isbaseduponadistributionofslopeswithameanof-0.0031(0.31%reduction peryear),wheretheprobability(fraction)ofnegativeslopesis0.78(2,902/3,721). Wenowplottheseindividualslopesintheirspatiallocationonthesatellitegridin Figure2E.Thecolormapforthespatialdistributionoftheseslopesusestheintensity ofbrownandgreentorepresentthemagnitudeofthedecreaseorincreaseinslope respectively.ThereisbroadregionincentralandwesternUgandathatappearstobe responsiblefortheoveralldecreaseinrainfallshowninFigure2D. These3,721slopes(Figure2E)representamassivemultipletestingproblem. Toexplorethisspatialdistributionfurther,weturntothecontroloffalsediscovery rate (FDR) using the method of Benjamini and Hochberg.11 We plot the curve representing the GLM goodness of fit as p-values (in blue) in Figure 2F against a familyofFDRsrangingfrom0.02to0.2,alongwiththestandardFDRforasingletest (0.05)andtheBonferronicorrectedfalsepositiverateof1.3x10-5.Thedistributions correspondingtotheseFDRsareshowninFigure3A,andtheircorrespondingspatial mapsinFigure3B.Asthefalsediscoveryratesvaryfrom0.1totheBonferronirate, identificationofthe regionofcentralandwestern Ugandawithdecreasingrainfall overthese34yearsremainsrobust. We can independently test these decreases in rainfall by taking difference mapsofcumulativerainfallfordifferentperiodsoftime.InFigure3C,weillustrate thedifferenceofcumulativerainfallinthefirstvsmostrecent15,10and5yearsof thedata,alongwiththesecond5vsnexttolast5yearsegmentsofdata.Thespatial maps illustrating increases or decreases in rainfall illustrating a broad region of Page 6 of 19 decreased rainfall within central Uganda remain reflective of the GLM regression slopesinFigure3Aand3B. Next,weexaminetheBwindiImpenetrableForestwithinUganda.ThisForest reserveconstitutesoneofthelastremaininghabitatsoftheMountainGorilla,andis consideredcrucialforspeciessurvival.Groundbasedrainfalldataisunderstandably incomplete12.Thecoordinatesofthe331squarekmBwindiForestlieswithin0.85oS and -1.15oS, and 29.55oE and 29.85oE on the satellite map. These coordinates correspondto16squaresofourgrid(Figure4A).ThecumulativerainfallfromARC2 isshowninFigure4B.Weagainfindthatthereisasignificantdownwardslopeofthe GLMdependencyontimeofthespatiallyaveragedrainfallby12.8%overallyears (slopeof-0.004correspondingtoa0.4%decreaseinrainfallperyear,p<0.01,slope SE=0.00016),consistentwithourfindingsintheentiregrid. Lastly, both the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole13 (IOD) are known to influence rainfall in East Africa.14 We turn to the techniqueofwaveletcoherency,andseekastatisticalbootstrapthatpreservesmore ofthepropertiesofthedatathanthewhite15orcolored16noiseemployedinprevious workongeophysicalsystems.Followingtherecommendationforanon-parametric bootstrapconstructedfromsurrogatedatafromtheoriginaltimeseries17,weuseda randomization scheme previously employed by swapping binary partitions at randomlocationsinatimeseries,18toensurethatlocalcorrelationsareeffectively destroyed across an ensemble of such resampled time series, yet the relevant frequenciesanddistributionofvaluesremainthesame.Applyingthisbootstrapped statisticalmethod,thereareregionsatthe99%confidencelimitinthelatterhalfof Page 7 of 19 our time series where ENSO (Figure 5A, 2006-2014, 1-2 year periods) and IOD (Figure5B,2004-2015,1-4yearperiods)coherencywithrainfallremainssignificant. TherelativelyshortlengthoftheinstrumentedARC2limitsouranalysisto34 years. Proxy and model simulation suggests that the IOD is more important than ENSO over multidecadal and perhaps longer time scales.19 Although ENSO effects interannualdroughts14,itislessimportantforinterdecadalrainfallpatterns20,and our results are consistent with this. Nevertheless, our findings that ENSO and IOD effectsonUgandanrainfallhavebeenmoresignificantwithinthemorerecenthalfof the34-yearrecordremainsunexplained. The weather patterns in East Africa are unusually complex and regionally disparate21. Uganda is at the western edge of the Greater Horn of Africa22 (GHA) region,andhashistoricallyhadmorerainfallthanneighboringKenyaandTanzania21. AlthoughmanyclimatemodelspredictthatEastAfricawillexperienceanincreasein rainfall as the planet’s atmosphere warms, it has in fact become drier over recent decades19,andresolvingthisdiscrepancyhasbeenatopicofactiveresearch.20 One of the hazards in generalizing from regional models to more localized regions,orextrapolatingusingproxydatatakenfromhighlylocalizedsedimentcore analysis23, is that predictions may not equally apply to all countries within such regions.Forinstance,themulti-decadalinfluenceonEastAfricanrainfallpredicted fromIODdynamics19isnotwellreflectedinour34-yearUgandandataset,wherethe effectsappearsub-decadal. How such rainfall decreases impact infectious disease prevalence and risks will be determined by individual disease characteristics, and will be important for Page 8 of 19 specificlocations.Byfusingthesatelliterainfallgridwiththelocationsofallofthe villages in Uganda, we have a finely granular way to track epidemic disease. Such fusionisaplatformforseekingoptimizationoftreatment,andprevention,ofmany infectiousdiseases. Although climate is global and regional, policy and preparation remains largely dependent upon individual countries. Uganda is a country where 72% of geographicalareaisusedforrain-fedfarmingandthepopulationgrowthisoneofthe highest in the world.12 An average rainfall decrease of this magnitude, over the multipledecadesoftheclimaterecordexaminedhere,isimportantforagriculturein acountrydependentonsubsistencecropyields.Thereisasubstantialneedformore granularandaccuratepredictionmodelingforbothshort-termdroughtanticipation and longer-term rainfall trends within the time-frame relevant for economic planning.Nevertheless,thepresenttrendinrainfalldecreaseisgradualenoughso thatthereremainsanopportunitytobuildadaptivecapacity1throughstrategies22to makethecountrymoreresilient:anticipatoryland-usemanagement,shiftstowards moresustainableagriculturalpractices,andinfrastructuredevelopmenttoincrease theresiliencyofthesocietywithrespecttoshortandlong-termchangesinrainfall. Acknowledgements: WearegratefultoFredrickKayanja(GuluUniversity),MujuniGodfrey(UNMA), TumusiimeMoses,(UNMA),GodwinAyesiga(UNMA),OtimF.C.Obeke(UNMA), TenywaJoseph(NPA),SajjabiFredrick(NPA),OngoraEmmanuel(NPA),Namyalo Jackie(NPA),ArineitweJustine(NPA),andTebugulwaAllen(NPA),fortheirhelpful discussions.SupportedbyUSNIHPioneerAward5DP1HD086071. Page 9 of 19 Methods Data Rainfalldatawasobtainedfromthegridded,daily34yearprecipitationestimation dataset(http://www.cpc.noaa.gov/products/international/data.shtml)centeredoverAfrica at0.1ox0.1ospatialresolution,theAfricanRainfallClimatology,version2(ARC2)2. Thesedataareanestimationderivedfromafusionofthegeostationaryinfrared sensingfromtheEuropeanOrganisationfortheExploitationofMeteorological Satellites,and24hourrainfallmeasurementsfromGlobalTelecommunication Systemgaugeobservations.Thereare341missingdaysintheseARC2data(outof 12,419days)whichwereaccountedforbylinearinterpolation. ElNinoSouthernOscillationdata(ENSO)wasobtainedfromNOAAat https://www.esrl.noaa.gov/psd/enso/mei/table.html.Thesemonthlydatathrough 2016wereexpandedbasedonthelengthofeachmonthintoequivalentdailydata. IndianOceanDipole(IOD)datawasobtainedfromTheExtendedReconstructedSea SurfaceTemperature(ERSST)datasetderivedfromtheInternational ComprehensiveOcean–AtmosphereDataset(ICOADS)atNOAAat https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version4/.IOD/.C 1961-2015/.iod/datatables.html.Thesemonthlydatathrough2015wereexpanded basedonthelengthofeachmonthintoequivalentdailydata. ThegeocodedmapofUgandaatthevillagelevelwascompiledemployingcensus andelectioncommissionrecords,andpublicallyaccessibleat[urltobeestablished attheUgandanNationalPlanningAuthoritywithpublicationofthispaper]. SignalProcessing Spectrawerecalculated,followingremovalofthemeanfromeachofthe3,721time series,usingHammingdatawindows3-yearsinlength(3*365days),with95% overlapofthesewindows,and1-sidedspectralestimationsperformedusing Welch’smethodasimplementedinMatlabfunctionpwelch.24Thepowerspectral density(PSD)fromeachofthe3,721timeseriesfromthedifferentlocationswere Page 10 of 19 thenaveraged,andplottedonadecibelscale(10*log(PSD))inFigure1Efor frequenciesgreaterthanzeroandlessthan12cyclesperyear.Thespectrafrom eachwindowedtimeperiodwerethenassembledintothespectrograminFigure1F. Whenfilteringwasapplied,suchasinFigure2B,weemployedabandwidthof1/20 to6cyclesperyear,anorderof100,frequencyof365daysperyear,Nyquist frequencyof365/2,andafiniteimpulseresponse(FIR)filter(Matlabfunctionfir1) appliedinazero-phasedistortionmannerusingMatlabfunctionfiltfilt.Thespatial meanofall3,721filteredtimeserieswereplottedinFigure2C. Whenemployedinwaveletcoherency,boththespatiallyaveragedrainfalltime series(through2015),andENSOtimeserieswereequivalentlyfilteredwithinthe same1/20–6cycleperyearbandwidth. StatisticalAnalysis GeneralizedLinearModeling Weimplementedgeneralizedlinearmodeling(GLM)usingthemethodsdeveloped byNelderandWedderburn.10,25UsingtheimplementationoftheMatlabfunction glmfit,weemployedgammadistributionsandloglinkfunctions. Thefalsediscoveryrate(FDR)wascontrolledusingthemethodofBenjaminiand Hochberg.11AfamilyofFDRrateswasdeveloped,assumingthatthefalsepositive (TypeI)errorratewasa(nominally0.05),thenumberofcomparisonstestedwas m,asthelargestp(i),where: 𝑝 𝑖 ≤𝛼∗ 𝑖 , 𝑚 0 ≤ 𝑖 ≤ 𝑚. Thesep(i)thresholds,forafamilyofFDRrates,areshownasintersectionsbetween theblueandredlinesinFigure2F. Waveletcoherence WeemployedthemethodofTorrenceandWebster15,asimplementedintheMatlab functionwcoherence,exceptwereplacetheirwhitenoisesurrogatewithsurrogates Page 11 of 19 baseduponrandomlypartitioned18andtimereversedsurrogatesbasedupononeof thetimeseries.Wechosethepartitionedsectionsoftherandomly,swappingthe partitionorder.Thishasprovenarobustmethodtobreakupshortterm correlationsbetweentwotimeseries,whilepreservingthestatisticalproperties otherthanlosingtheslowestoffrequenciesduetothepartitioning.Unlike preservingspectrabyrandomizingthephasesoffrequenciesinaFouriertransform, andtheninvertingthetransform,thismethodalsopreservestheoriginaldata valuesanddistribution,18andismuchmorecomputationallyefficientthan simulatedannealingalternatives.26Wecreatedanensembleof1000suchsurrogate waveletcoherencies,chosethelargest95%or99%surrogatecoherenciesateach pointinthetime-frequencyplot,andusedthesethresholdstobuildour bootstrappedconfidencelimitssettingallvaluestozerowhichdidnotexceedthese thresholds.Weplottheremainingsignificantwaveletmagnitude-squared coherenciesinthesignificanceplotsofFigure5. Codeavailability Thedatasets,andMatlabcoderequiredtoreplicatethefindingsofthispapers,are openlyavailableat[urlwithdurablelinktobeestablishedatthetimeofpublication ofthispaper]. Page 12 of 19 Figure1 Figure1.FusionofsatelliterainfalldatawithmapofUgandaatthevillagelevel.Shownarethepattern ofcumulativerainfalloverthe34yeardataset,andthefrequencycontentoftherainfall demonstratingtwice-yearlyrainyseasons.A)SatellitegridoverlayoverUgandashowingthe44,034 villagesaspolygons,overlainwiththe61x61,0.1ox0.1o,satellitegrid.B)Rainfallperdayfromeachof 3721gridlocationsfor12,340days.C)Cumulativerainfallon61x61gridforall12,419daysover34 yearsfrom1983–2016.D)Fusionofcumulativerainfallwithvillageandcountrymap.Notethatthe heaviestrainsareovertherainforestwithintheCongoRiverBasintothewestofUganda,andwhere thenortheastcornerofLakeVictoriaabutstheUgandanlandmass.Thedriestregionisinin northeastUganda,wheretheKaramojadistrictabutsnorthwestKenyaandSouthSudan.E)Spectral densityestimatedfromeachof3,721gridlocationsover12,419days,withmeanand±1SD.Hanning windowof3x365with95%overlap.Pointsplottedasdecibels(10log10).F)Spectrogramwithmean removedfromsignal.Notethedominantrainycyclesat1and2xperyear. Page 13 of 19 Figure2 Figure2.Spatiallyaveragedrainfalldemonstratesadecreaseoverthe34yearrecord.Thenatureofthe datawithandwithoutspatialaveragingisshown,andtheoriginoftheaveragedecreaseinrainfall explainedbythegeographicaldistributionofdecreasesandincreasesinrainfall.A)Histogramofdaily rainfallforalldaysandlocations,truncatedbelow40mmrainperday.B)Dailyrainfallspatiallyaveraged, andfilteredwithfiniteimpulseresponsefilter(order100)forfrequencies0.05-6cyclesperyear.Filter appliedwithzerophasefilteringforwardsandbackwards.Thetwice-yearlyrainyseasonsintheEast AfricanHighlandsarenowplainlyseen.Twodroughtanomaliesfromdroughtsinfallrainyseasonfailures areindicatedfor2010and2016withblackarrows.TheaveragedandfiltereddatasetfromB demonstratesamuchlessskeweddistributioninC.D)LinearGLMfit,log(µ)=A+BT,shownbyyellowline, andfullmodelfittedwith0.25,0.5,1,2,and4cycleperyearfrequenciesshownbyredline,superimposed onspatiallyaveragedbutunfiltereddatainD.InEareshowntheindividualslopesoflinearGLM regressiontoeachgridpointtimeseries,withnoaveraging,onascaleillustratingtheintensityofthe negative(brown)orpositive(green)slopes.F)FalseDiscoveryRate(FDR)plotfortheGLMfitp-values fromtheslopeplotinE,forafamilyofFDRvalues.Theintersectionsofthesortedp-values(blue)withthe Benjamini-Hochbergcoefficients(redlines)formtheFDRthresholdsemployedinFigure3. Page 14 of 19 Figure3 Figure3.Thedecreaseinrainfallisarobustfinding.Wefirstperformedanexploration offalsediscoveryrates,andthenindependentlytestedwithcumulativerainfall differences.A)Histogramofthe3,721GLMslopesfrominFigure2E.Withprogressively moreconservativeFDRrates,weseetheprogressiveeliminationofsmallmagnitude slopes,culminatinginthemostconservativethresholdingwithBonferroni(a/3721).In Bwemapthesedistributionsofslopesbackontothesatellitegrid.Notethatthemost significantslopesretainthecoherentregionsofcentralandwesternUgandawherethe rainfalldecreasesthemostoverthehistoricalrecord.Toindependentlytestthese findings,weexaminethedifferencemapsofcumulativerainfallfromtherawARC2data inC.Indeed,forthefirstandmostrecent15,10,and5yearcumulativedata,andthe secondandsecond-to-last5yearperiods,thedifferencemapsretainthesamerainfall patternofdecreaseindicatedfromtheGLMfits. Page 15 of 19 Figure4 Figure4.ThedecreaseinrainfallisalsoreflectedwithintheBwindiImpenetrableForest region.ThisisoneofthelastremaininghabitatsoftheMountainGorilla.A)TheBwindi ImpenetrableForestinUganda(yellow),coveredby16ofthesatellitegrids.Figure11. B)Cumulativerainfallfrom1983-2016withinterpolatedshadingovertheBwindi coordinates.C)SpatiallyaveragedfilteredtimeseriesoftheBwindirainfall,overlain withtheGLMmodelsasinFigure2.Notethesubstantialrainfalldecreaseoverthe record. Page 16 of 19 Figure5 Figure5.ElNinoSouthernOscillation(ENSO)andIndianOceanDipole(IOD) relationshiptospatiallyaveragedrainfall.Withrigorousstatisticalconfidencebounds, thereisacoherencybetweentheseindicesandtheUgandanrainfall,butonlyinrecent years,andonlyforrelativelyshortperiodsfrom1-4years.A)Waveletcoherency betweenspatiallyaveragedandfilteredrainfall,withtheENSOindexinterpolatedfrom monthlytodailyvalues,andfilteredidenticallyasrainfalldata.Thesecondpanel reflectsthemeanof1000surrogatecoherencycalculations,fromwhich95%(third panel)and99%(fourthpanel)confidencelimitsrevealonlytheregionsthatmetthese significancecriteria.Theconeofinfluence,delimitingwhereedgeeffectssubstantially confoundtheanalysis,isindicatedbythewhitedottedline.B)identicalcalculationsfor theIODindex.ThemostsignificantcoherenciesbetweenENSOandIODoccursduring themostrecent10years,withperiodsfrom1-4years. Page 17 of 19 References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Gan, T. Y. et al. Possible climate change/variability and human impacts, vulnerability of drought-prone regions, water resources and capacity building for Africa. Hydrological Sciences Journal, 1-18, doi:10.1080/02626667.2015.1057143 (2016). Novella, N. S. & Thiaw, W. M. African Rainfall Climatology Version 2 for Famine Early Warning Systems. Journal of Applied Meteorology and Climatology 52, 588-606, doi:10.1175/jamc-d-11-0238.1 (2013). Koelle, K. The impact of climate on the disease dynamics of cholera Koelle - 2009 - Clinical Microbiology and Infection - Wiley Online Library. Clinical microbiology and infection (2009). Hashizume, M., Chaves, L. F. & Minakawa, N. Indian Ocean Dipole drives malaria resurgence in East African highlands. Scientific reports 2, 269269, doi:10.1038/srep00269 (2012). Socolovschi, C. et al. Strikes, flooding, rats, and leptospirosis in Marseille, France. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 15, e710715, doi:10.1016/j.ijid.2011.05.017 (2011). Cheng, A. C. Melioidosis: advances in diagnosis and treatment. Current opinion in infectious diseases 23, 554-559, doi:10.1097/QCO.0b013e32833fb88c (2010). Agier, L. et al. Towards understanding the epidemiology of Neisseria meningitidis in the African meningitis belt: a multi-disciplinary overview. Int J Infect Dis 54, 103-112, doi:10.1016/j.ijid.2016.10.032 (2017). Schiff, S. J., Ranjeva, S. L. & Warf, B. C. Rainfall drives hydrocephalus in East Africa. Journal of neurosurgery Pediatrics 10, 161-167, doi:10.3171/2012.5.PEDS11557 (2012). Coe, R. & Stern, R. D. Fitting Models to Daily Rainfall Data. Journal of Applied Meteorology 21, 1024-1031, doi:10.1175/15200450(1982)021<1024:fmtdrd>2.0.co;2 (1982). McCullagh, P. & Nelder, J. A. Generalized linear models. 2nd edn, (Chapman & Hall/CRC, 1998). Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 57, 289-300 (1995). Diem, J. E., Hartter, J., Ryan, S. J. & Palace, M. W. Validation of Satellite Rainfall Products for Western Uganda. Journal of Hydrometeorology 15, 2030-2038, doi:10.1175/jhm-d-13-0193.1 (2014). Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360-363, doi:10.1038/43854 (1999). Funk C, H. L., Shukla S, Korecha D, Magadzire T, Husak G, Galu G, Hoell A. Assessing the contributions of local and east Pacific warming to the 2015 droughts in Ethiopia and Southern Africa. Bulletin of the American Page 18 of 19 15 16 17 18 19 20 21 22 23 24 25 26 Meterological Society 97, S75-S80, doi:10.1175/BAMS-D-16-0167.1 (2016). Torrence, C. & Webster, P. J. Interdecadal changes in the ENSOmonsoon system. Journal of Climate 12, 2679-2690, doi:Doi 10.1175/1520-0442(1999)012<2679:Icitem>2.0.Co;2 (1999). Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics 11, 561-566 (2004). Maraun, D., Kurths, J. & Holschneider, M. Nonstationary Gaussian processes in wavelet domain: synthesis, estimation, and significance testing. Phys Rev E Stat Nonlin Soft Matter Phys 75, 016707, doi:10.1103/PhysRevE.75.016707 (2007). Schiff, S. J., Sauer, T., Kumar, R. & Weinstein, S. L. Neuronal spatiotemporal pattern discrimination: The dynamical evolution of seizures. NeuroImage 28, 1043-1055, doi:10.1016/j.neuroimage.2005.06.059 (2005). Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389-392, doi:10.1038/nature11785 (2013). Williams, A. P. & Funk, C. A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Climate Dynamics 37, 2417-2435, doi:10.1007/s00382-010-0984-y (2011). Nicholson, S. E. in The limnology, Climatology and Paleoclimatology of the East African Lakes (ed T. C. and Odada Johnson, E. O.) 25-56 (Overseas Publishers Association, 1996). Gizaw, M. S. & Gan, T. Y. Impact of climate change and El Niño episodes on droughts in sub-Saharan Africa. Climate Dynamics, doi:10.1007/s00382-016-3366-2 (2016). Tierney, J. E., Ummenhofer, C. C. & deMenocal, P. B. Past and future rainfall in the Horn of Africa. Sci Adv 1, e1500682, doi:10.1126/sciadv.1500682 (2015). Oppenheim, A. V., Schafer, R. W. & Buck, J. R. Discrete-time signal processing. 2nd edn, (Prentice Hall, 1999). Nelder, J. A. & Wedderburn, R. W. M. Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General) 135, 370, doi:10.2307/2344614 (1972). Schreiber, T. Constrained randomization of time series data. Physical Review Letters 80, 2105-2108, doi:DOI 10.1103/PhysRevLett.80.2105 (1998). Page 19 of 19
© Copyright 2026 Paperzz