Changes in Ugandan Climate Rainfall at the Village and Forest Level

ChangesinUgandanClimateRainfallatthe
VillageandForestLevel
1PaddySsentongo,3AbrahamJ.B.Muwanguzi,4UriEden,5TimothySauer,
3GeorgeBwanga,6GeoffreyKateregga,7LawrenceAribo,7MosesOjara,
3WilberforceKisambaMugerwa,1,2StevenJ.Schiff
May16,2017
arXiv:1705.05970[physics.ao-ph]
1CenterforNeuralEngineering,DepartmentofEngineeringScienceandMechanics,
2DepartmentsofNeurosurgeryandPhysics,ThePennsylvaniaStateUniversity,
UniversityPark,PA
3UgandanNationalPlanningAuthority,Kampala,Uganda
4DepartmentofStatistics,BostonUniversity,Boston,USA
5DepartmentofMathematics,GeorgeMasonUniversity,Fairfax,VA,USA
6MapUganda,Kampala,Uganda
7UgandanNationalMeteorologicalAuthority,Kampala,Uganda
Correspondence:
StevenJ.Schiff
CenterforNeuralEngineering
ThePennsylvaniaStateUniversity
UniversityPark,PA16802USA
[email protected]
Page 1 of 19
Abstract
In 2013, the US National Oceanographic and Atmospheric Agency refined the
historical rainfall estimates over the African Continent and produced the African
RainfallClimateversion2.0(ARC2)estimator.ARC2offersanearlycompleterecord
of daily rainfall estimates since 1983 at 0.1 x 0.1 degree resolution. Despite shortterm anomalies in twice-yearly rainy season intensities in Uganda, we identify an
overall decrease in average rainfall of about 12% during the past 34 years.
Spatiotemporally,thesedecreasesaregreatestinagriculturalregionsofcentraland
western Uganda, but are also reflective of rainfall decreases in the gorilla habitat
within the Bwindi Forest in Southwest Uganda. The findings carry significant
implicationsforagriculture,foodsecurity,andwildlifehabitat.
Page 2 of 19
Africaisboththedriestandhottestofcontinents,anditsavailablewater
is essential for almost all human activities and to support non-human
biodiversity.1In2013,theUSNationalOceanographicandAtmosphericAgency
refined the historical satellite-based rainfall estimates over the African
Continent and produced the African Rainfall Climate version 2.0 (ARC2)
estimator2. This estimator combines daily geostationary rainfall estimation
throughinfraredcloudreflectivitywithgroundbasedrainfallmeasurementsat
a fine grid scale at 0.1o x 0.1o resolution (approximately 11x11 km at the
Equator).Therecordreachesbackto1983,andcontinueswithreal-timedaily
data production. We here report an analysis of the stationarity and climate
patternsofrainfallaffectingUgandaovertheperiod1983-2016.
Therearemanycriticalusesofsuchdataatthisfineascale.Fromahuman
planningperspective,majorconstructionprojectscanbemappedtothemeanand
variability of rainfall for a given location or extent, and engineered to account for
anticipated extreme events. Additionally, agricultural planning can be adapted to
patternsandpredictedchangesinrainfall.Moreover,sinceinacountrylikeUganda
about 70% of the population depends on agriculture, these data may be used to
understandpopulationgrowthanddensityingivenregionsandthereforefacilitate
planning for settlements and economic activities. From a non-human perspective,
habitatlimitationsforendangeredspeciesmayplacetheirsurvivalatgreaterrisk.
Manyhumaninfectiousdiseaseshavestrongrelationshipstorainfall:cholera3,
malaria4, leptospirosis5, melioidosis6, and the seasonal Neisseria meningitis within
Page 3 of 19
theAfricanmeningitisbelt7.Infantinfectionsleadingtopostinfectioushydrocephalus
havebeennotedtohaveasignificantrelationshiptorainfall8.
Geographically, Uganda stretches from 1.43oS to 4.27oN and from 29.5oE to
35.03oE.At0.1ox0.1oresolutionUgandaiscontainedwithinasquare61x61grid.In
Figure1Aweillustratethecountryasacompositeoftheboundariesofthe44,034
villages that comprise the landmass, and superimpose the 3,721 satellite grids
overlay.
Theentiredatasetforall3,721timeseries(plottedinsequentialcolors)is
illustratedinFigure1B.Thecumulativerainfallover34yearsismappedontothe
satellitegridinFigure1C.FusingthesewiththecountrymapinFigure1D,thereare
severalnotablefeatures.Inthenortheast,thesemi-aridregionofKaramojaisshown
withlowcumulativerainfall.TheheaviestrainfallisinthenorthwestovertheCongo
Riverbasinrainforest.Theotherregionwithhighrainfalliswherethenortheastedge
ofLakeVictoriameetstheUgandanlandmassinthelowercentralregionoftheplot.
The averaged power spectral density of all 3,721 time series with error bounds is
showninFigure1E,whichreflectsthedominant1and2cycleperyearfrequencies,
and the spectrogram in Figure 1F demonstrates the consistency of these two
fundamental frequencies throughout the 34 year record. The 2-cycle per year
rainfallsintheEastAfricanHighlandsareofunequalsize,augmentingthe1-cycleper
yearfrequencyamplitude.
Statistically, rainfall distributions are often non-Gaussian due to nonnegativity and pronounced skewness. For such data, the normal distribution will
inadequatelyaccountfortherainfallvariability.Thisrendersordinaryleastsquares,
Page 4 of 19
with the assumed normal distribution of errors, a problematic choice for model
fitting. Indeed, the rainfall distribution for all 46,211,099 daily measurements is
highlyskewed(Figure2A),anditiswellknownthatsuchrainfalldatamayfollowa
gammadistribution9.Byaveragingacrossthe3,721spatiallocationsforeachdayin
time,andfilteringbetweenfrequenciesof1/20to6cyclesperyearforvisualization,
thetwice-yearlyrainyseasoncyclesarenowreadilyvisualized(Figure2B),andthe
distributionbecomesmuchlessskewedforthe12,419daysofdata(Figure2C).These
data can all be appropriately fit using the generalized exponential family of
distributionsmodeledwithintheGeneralizedLinearModel(GLM)frameworkthat
embracessuchdistributionsrangingfromgammatonormal.10
In Figure 2D we demonstrate a GLM fit to the 34 years of data, spatially
averagedforeachdayacrossthespatialgridbutnotfilteredovertime.Weshowboth
alog-linkedlinearfitwithtime(log(µ)=A+BT,whereµistheexpectedrainfall),as
wellasafitofbothtimeandalinearcombinationoffrequencies(using4,2,1,0.5,
and 0.25 cycles per year). There is a significant downward slope of the GLM
dependency on time of the spatially averaged rainfall by 12% over the 34-year
interval (slope of -0.0038 corresponding to an exp(-.0038)=0.38% reduction in
rainfallperyear,p<1.6x10-5,slopestandarderrorSE=0.00088),andthequalityof
thefitoftimeandfrequenciesisalsohighlysignificant(Fvsconstantmodel146,p<
7x10-317).
Toexaminethespatialcontributionstothisdecreaseinrainfall,wefit3,721
GLMmodelstoeachspatiallocation’stimeseries(withoutaveragingorfiltering).The
originoftheaveragenegativeslope,B,forthelinearmodelfit,log(µ)=A+BTinFigure
Page 5 of 19
2D,isbaseduponadistributionofslopeswithameanof-0.0031(0.31%reduction
peryear),wheretheprobability(fraction)ofnegativeslopesis0.78(2,902/3,721).
Wenowplottheseindividualslopesintheirspatiallocationonthesatellitegridin
Figure2E.Thecolormapforthespatialdistributionoftheseslopesusestheintensity
ofbrownandgreentorepresentthemagnitudeofthedecreaseorincreaseinslope
respectively.ThereisbroadregionincentralandwesternUgandathatappearstobe
responsiblefortheoveralldecreaseinrainfallshowninFigure2D.
These3,721slopes(Figure2E)representamassivemultipletestingproblem.
Toexplorethisspatialdistributionfurther,weturntothecontroloffalsediscovery
rate (FDR) using the method of Benjamini and Hochberg.11 We plot the curve
representing the GLM goodness of fit as p-values (in blue) in Figure 2F against a
familyofFDRsrangingfrom0.02to0.2,alongwiththestandardFDRforasingletest
(0.05)andtheBonferronicorrectedfalsepositiverateof1.3x10-5.Thedistributions
correspondingtotheseFDRsareshowninFigure3A,andtheircorrespondingspatial
mapsinFigure3B.Asthefalsediscoveryratesvaryfrom0.1totheBonferronirate,
identificationofthe regionofcentralandwestern Ugandawithdecreasingrainfall
overthese34yearsremainsrobust.
We can independently test these decreases in rainfall by taking difference
mapsofcumulativerainfallfordifferentperiodsoftime.InFigure3C,weillustrate
thedifferenceofcumulativerainfallinthefirstvsmostrecent15,10and5yearsof
thedata,alongwiththesecond5vsnexttolast5yearsegmentsofdata.Thespatial
maps illustrating increases or decreases in rainfall illustrating a broad region of
Page 6 of 19
decreased rainfall within central Uganda remain reflective of the GLM regression
slopesinFigure3Aand3B.
Next,weexaminetheBwindiImpenetrableForestwithinUganda.ThisForest
reserveconstitutesoneofthelastremaininghabitatsoftheMountainGorilla,andis
consideredcrucialforspeciessurvival.Groundbasedrainfalldataisunderstandably
incomplete12.Thecoordinatesofthe331squarekmBwindiForestlieswithin0.85oS
and -1.15oS, and 29.55oE and 29.85oE on the satellite map. These coordinates
correspondto16squaresofourgrid(Figure4A).ThecumulativerainfallfromARC2
isshowninFigure4B.Weagainfindthatthereisasignificantdownwardslopeofthe
GLMdependencyontimeofthespatiallyaveragedrainfallby12.8%overallyears
(slopeof-0.004correspondingtoa0.4%decreaseinrainfallperyear,p<0.01,slope
SE=0.00016),consistentwithourfindingsintheentiregrid.
Lastly, both the El Niño Southern Oscillation (ENSO) and the Indian Ocean
Dipole13 (IOD) are known to influence rainfall in East Africa.14 We turn to the
techniqueofwaveletcoherency,andseekastatisticalbootstrapthatpreservesmore
ofthepropertiesofthedatathanthewhite15orcolored16noiseemployedinprevious
workongeophysicalsystems.Followingtherecommendationforanon-parametric
bootstrapconstructedfromsurrogatedatafromtheoriginaltimeseries17,weuseda
randomization scheme previously employed by swapping binary partitions at
randomlocationsinatimeseries,18toensurethatlocalcorrelationsareeffectively
destroyed across an ensemble of such resampled time series, yet the relevant
frequenciesanddistributionofvaluesremainthesame.Applyingthisbootstrapped
statisticalmethod,thereareregionsatthe99%confidencelimitinthelatterhalfof
Page 7 of 19
our time series where ENSO (Figure 5A, 2006-2014, 1-2 year periods) and IOD
(Figure5B,2004-2015,1-4yearperiods)coherencywithrainfallremainssignificant.
TherelativelyshortlengthoftheinstrumentedARC2limitsouranalysisto34
years. Proxy and model simulation suggests that the IOD is more important than
ENSO over multidecadal and perhaps longer time scales.19 Although ENSO effects
interannualdroughts14,itislessimportantforinterdecadalrainfallpatterns20,and
our results are consistent with this. Nevertheless, our findings that ENSO and IOD
effectsonUgandanrainfallhavebeenmoresignificantwithinthemorerecenthalfof
the34-yearrecordremainsunexplained.
The weather patterns in East Africa are unusually complex and regionally
disparate21. Uganda is at the western edge of the Greater Horn of Africa22 (GHA)
region,andhashistoricallyhadmorerainfallthanneighboringKenyaandTanzania21.
AlthoughmanyclimatemodelspredictthatEastAfricawillexperienceanincreasein
rainfall as the planet’s atmosphere warms, it has in fact become drier over recent
decades19,andresolvingthisdiscrepancyhasbeenatopicofactiveresearch.20
One of the hazards in generalizing from regional models to more localized
regions,orextrapolatingusingproxydatatakenfromhighlylocalizedsedimentcore
analysis23, is that predictions may not equally apply to all countries within such
regions.Forinstance,themulti-decadalinfluenceonEastAfricanrainfallpredicted
fromIODdynamics19isnotwellreflectedinour34-yearUgandandataset,wherethe
effectsappearsub-decadal.
How such rainfall decreases impact infectious disease prevalence and risks
will be determined by individual disease characteristics, and will be important for
Page 8 of 19
specificlocations.Byfusingthesatelliterainfallgridwiththelocationsofallofthe
villages in Uganda, we have a finely granular way to track epidemic disease. Such
fusionisaplatformforseekingoptimizationoftreatment,andprevention,ofmany
infectiousdiseases.
Although climate is global and regional, policy and preparation remains
largely dependent upon individual countries. Uganda is a country where 72% of
geographicalareaisusedforrain-fedfarmingandthepopulationgrowthisoneofthe
highest in the world.12 An average rainfall decrease of this magnitude, over the
multipledecadesoftheclimaterecordexaminedhere,isimportantforagriculturein
acountrydependentonsubsistencecropyields.Thereisasubstantialneedformore
granularandaccuratepredictionmodelingforbothshort-termdroughtanticipation
and longer-term rainfall trends within the time-frame relevant for economic
planning.Nevertheless,thepresenttrendinrainfalldecreaseisgradualenoughso
thatthereremainsanopportunitytobuildadaptivecapacity1throughstrategies22to
makethecountrymoreresilient:anticipatoryland-usemanagement,shiftstowards
moresustainableagriculturalpractices,andinfrastructuredevelopmenttoincrease
theresiliencyofthesocietywithrespecttoshortandlong-termchangesinrainfall.
Acknowledgements:
WearegratefultoFredrickKayanja(GuluUniversity),MujuniGodfrey(UNMA),
TumusiimeMoses,(UNMA),GodwinAyesiga(UNMA),OtimF.C.Obeke(UNMA),
TenywaJoseph(NPA),SajjabiFredrick(NPA),OngoraEmmanuel(NPA),Namyalo
Jackie(NPA),ArineitweJustine(NPA),andTebugulwaAllen(NPA),fortheirhelpful
discussions.SupportedbyUSNIHPioneerAward5DP1HD086071.
Page 9 of 19
Methods
Data
Rainfalldatawasobtainedfromthegridded,daily34yearprecipitationestimation
dataset(http://www.cpc.noaa.gov/products/international/data.shtml)centeredoverAfrica
at0.1ox0.1ospatialresolution,theAfricanRainfallClimatology,version2(ARC2)2.
Thesedataareanestimationderivedfromafusionofthegeostationaryinfrared
sensingfromtheEuropeanOrganisationfortheExploitationofMeteorological
Satellites,and24hourrainfallmeasurementsfromGlobalTelecommunication
Systemgaugeobservations.Thereare341missingdaysintheseARC2data(outof
12,419days)whichwereaccountedforbylinearinterpolation.
ElNinoSouthernOscillationdata(ENSO)wasobtainedfromNOAAat
https://www.esrl.noaa.gov/psd/enso/mei/table.html.Thesemonthlydatathrough
2016wereexpandedbasedonthelengthofeachmonthintoequivalentdailydata.
IndianOceanDipole(IOD)datawasobtainedfromTheExtendedReconstructedSea
SurfaceTemperature(ERSST)datasetderivedfromtheInternational
ComprehensiveOcean–AtmosphereDataset(ICOADS)atNOAAat
https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version4/.IOD/.C
1961-2015/.iod/datatables.html.Thesemonthlydatathrough2015wereexpanded
basedonthelengthofeachmonthintoequivalentdailydata.
ThegeocodedmapofUgandaatthevillagelevelwascompiledemployingcensus
andelectioncommissionrecords,andpublicallyaccessibleat[urltobeestablished
attheUgandanNationalPlanningAuthoritywithpublicationofthispaper].
SignalProcessing
Spectrawerecalculated,followingremovalofthemeanfromeachofthe3,721time
series,usingHammingdatawindows3-yearsinlength(3*365days),with95%
overlapofthesewindows,and1-sidedspectralestimationsperformedusing
Welch’smethodasimplementedinMatlabfunctionpwelch.24Thepowerspectral
density(PSD)fromeachofthe3,721timeseriesfromthedifferentlocationswere
Page 10 of 19
thenaveraged,andplottedonadecibelscale(10*log(PSD))inFigure1Efor
frequenciesgreaterthanzeroandlessthan12cyclesperyear.Thespectrafrom
eachwindowedtimeperiodwerethenassembledintothespectrograminFigure1F.
Whenfilteringwasapplied,suchasinFigure2B,weemployedabandwidthof1/20
to6cyclesperyear,anorderof100,frequencyof365daysperyear,Nyquist
frequencyof365/2,andafiniteimpulseresponse(FIR)filter(Matlabfunctionfir1)
appliedinazero-phasedistortionmannerusingMatlabfunctionfiltfilt.Thespatial
meanofall3,721filteredtimeserieswereplottedinFigure2C.
Whenemployedinwaveletcoherency,boththespatiallyaveragedrainfalltime
series(through2015),andENSOtimeserieswereequivalentlyfilteredwithinthe
same1/20–6cycleperyearbandwidth.
StatisticalAnalysis
GeneralizedLinearModeling
Weimplementedgeneralizedlinearmodeling(GLM)usingthemethodsdeveloped
byNelderandWedderburn.10,25UsingtheimplementationoftheMatlabfunction
glmfit,weemployedgammadistributionsandloglinkfunctions.
Thefalsediscoveryrate(FDR)wascontrolledusingthemethodofBenjaminiand
Hochberg.11AfamilyofFDRrateswasdeveloped,assumingthatthefalsepositive
(TypeI)errorratewasa(nominally0.05),thenumberofcomparisonstestedwas
m,asthelargestp(i),where:
𝑝 𝑖 ≤𝛼∗
𝑖
,
𝑚
0 ≤ 𝑖 ≤ 𝑚.
Thesep(i)thresholds,forafamilyofFDRrates,areshownasintersectionsbetween
theblueandredlinesinFigure2F.
Waveletcoherence
WeemployedthemethodofTorrenceandWebster15,asimplementedintheMatlab
functionwcoherence,exceptwereplacetheirwhitenoisesurrogatewithsurrogates
Page 11 of 19
baseduponrandomlypartitioned18andtimereversedsurrogatesbasedupononeof
thetimeseries.Wechosethepartitionedsectionsoftherandomly,swappingthe
partitionorder.Thishasprovenarobustmethodtobreakupshortterm
correlationsbetweentwotimeseries,whilepreservingthestatisticalproperties
otherthanlosingtheslowestoffrequenciesduetothepartitioning.Unlike
preservingspectrabyrandomizingthephasesoffrequenciesinaFouriertransform,
andtheninvertingthetransform,thismethodalsopreservestheoriginaldata
valuesanddistribution,18andismuchmorecomputationallyefficientthan
simulatedannealingalternatives.26Wecreatedanensembleof1000suchsurrogate
waveletcoherencies,chosethelargest95%or99%surrogatecoherenciesateach
pointinthetime-frequencyplot,andusedthesethresholdstobuildour
bootstrappedconfidencelimitssettingallvaluestozerowhichdidnotexceedthese
thresholds.Weplottheremainingsignificantwaveletmagnitude-squared
coherenciesinthesignificanceplotsofFigure5.
Codeavailability
Thedatasets,andMatlabcoderequiredtoreplicatethefindingsofthispapers,are
openlyavailableat[urlwithdurablelinktobeestablishedatthetimeofpublication
ofthispaper].
Page 12 of 19
Figure1
Figure1.FusionofsatelliterainfalldatawithmapofUgandaatthevillagelevel.Shownarethepattern
ofcumulativerainfalloverthe34yeardataset,andthefrequencycontentoftherainfall
demonstratingtwice-yearlyrainyseasons.A)SatellitegridoverlayoverUgandashowingthe44,034
villagesaspolygons,overlainwiththe61x61,0.1ox0.1o,satellitegrid.B)Rainfallperdayfromeachof
3721gridlocationsfor12,340days.C)Cumulativerainfallon61x61gridforall12,419daysover34
yearsfrom1983–2016.D)Fusionofcumulativerainfallwithvillageandcountrymap.Notethatthe
heaviestrainsareovertherainforestwithintheCongoRiverBasintothewestofUganda,andwhere
thenortheastcornerofLakeVictoriaabutstheUgandanlandmass.Thedriestregionisinin
northeastUganda,wheretheKaramojadistrictabutsnorthwestKenyaandSouthSudan.E)Spectral
densityestimatedfromeachof3,721gridlocationsover12,419days,withmeanand±1SD.Hanning
windowof3x365with95%overlap.Pointsplottedasdecibels(10log10).F)Spectrogramwithmean
removedfromsignal.Notethedominantrainycyclesat1and2xperyear.
Page 13 of 19
Figure2
Figure2.Spatiallyaveragedrainfalldemonstratesadecreaseoverthe34yearrecord.Thenatureofthe
datawithandwithoutspatialaveragingisshown,andtheoriginoftheaveragedecreaseinrainfall
explainedbythegeographicaldistributionofdecreasesandincreasesinrainfall.A)Histogramofdaily
rainfallforalldaysandlocations,truncatedbelow40mmrainperday.B)Dailyrainfallspatiallyaveraged,
andfilteredwithfiniteimpulseresponsefilter(order100)forfrequencies0.05-6cyclesperyear.Filter
appliedwithzerophasefilteringforwardsandbackwards.Thetwice-yearlyrainyseasonsintheEast
AfricanHighlandsarenowplainlyseen.Twodroughtanomaliesfromdroughtsinfallrainyseasonfailures
areindicatedfor2010and2016withblackarrows.TheaveragedandfiltereddatasetfromB
demonstratesamuchlessskeweddistributioninC.D)LinearGLMfit,log(µ)=A+BT,shownbyyellowline,
andfullmodelfittedwith0.25,0.5,1,2,and4cycleperyearfrequenciesshownbyredline,superimposed
onspatiallyaveragedbutunfiltereddatainD.InEareshowntheindividualslopesoflinearGLM
regressiontoeachgridpointtimeseries,withnoaveraging,onascaleillustratingtheintensityofthe
negative(brown)orpositive(green)slopes.F)FalseDiscoveryRate(FDR)plotfortheGLMfitp-values
fromtheslopeplotinE,forafamilyofFDRvalues.Theintersectionsofthesortedp-values(blue)withthe
Benjamini-Hochbergcoefficients(redlines)formtheFDRthresholdsemployedinFigure3.
Page 14 of 19
Figure3
Figure3.Thedecreaseinrainfallisarobustfinding.Wefirstperformedanexploration
offalsediscoveryrates,andthenindependentlytestedwithcumulativerainfall
differences.A)Histogramofthe3,721GLMslopesfrominFigure2E.Withprogressively
moreconservativeFDRrates,weseetheprogressiveeliminationofsmallmagnitude
slopes,culminatinginthemostconservativethresholdingwithBonferroni(a/3721).In
Bwemapthesedistributionsofslopesbackontothesatellitegrid.Notethatthemost
significantslopesretainthecoherentregionsofcentralandwesternUgandawherethe
rainfalldecreasesthemostoverthehistoricalrecord.Toindependentlytestthese
findings,weexaminethedifferencemapsofcumulativerainfallfromtherawARC2data
inC.Indeed,forthefirstandmostrecent15,10,and5yearcumulativedata,andthe
secondandsecond-to-last5yearperiods,thedifferencemapsretainthesamerainfall
patternofdecreaseindicatedfromtheGLMfits.
Page 15 of 19
Figure4
Figure4.ThedecreaseinrainfallisalsoreflectedwithintheBwindiImpenetrableForest
region.ThisisoneofthelastremaininghabitatsoftheMountainGorilla.A)TheBwindi
ImpenetrableForestinUganda(yellow),coveredby16ofthesatellitegrids.Figure11.
B)Cumulativerainfallfrom1983-2016withinterpolatedshadingovertheBwindi
coordinates.C)SpatiallyaveragedfilteredtimeseriesoftheBwindirainfall,overlain
withtheGLMmodelsasinFigure2.Notethesubstantialrainfalldecreaseoverthe
record.
Page 16 of 19
Figure5
Figure5.ElNinoSouthernOscillation(ENSO)andIndianOceanDipole(IOD)
relationshiptospatiallyaveragedrainfall.Withrigorousstatisticalconfidencebounds,
thereisacoherencybetweentheseindicesandtheUgandanrainfall,butonlyinrecent
years,andonlyforrelativelyshortperiodsfrom1-4years.A)Waveletcoherency
betweenspatiallyaveragedandfilteredrainfall,withtheENSOindexinterpolatedfrom
monthlytodailyvalues,andfilteredidenticallyasrainfalldata.Thesecondpanel
reflectsthemeanof1000surrogatecoherencycalculations,fromwhich95%(third
panel)and99%(fourthpanel)confidencelimitsrevealonlytheregionsthatmetthese
significancecriteria.Theconeofinfluence,delimitingwhereedgeeffectssubstantially
confoundtheanalysis,isindicatedbythewhitedottedline.B)identicalcalculationsfor
theIODindex.ThemostsignificantcoherenciesbetweenENSOandIODoccursduring
themostrecent10years,withperiodsfrom1-4years.
Page 17 of 19
References
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Gan, T. Y. et al. Possible climate change/variability and human impacts,
vulnerability of drought-prone regions, water resources and capacity
building for Africa. Hydrological Sciences Journal, 1-18,
doi:10.1080/02626667.2015.1057143 (2016).
Novella, N. S. & Thiaw, W. M. African Rainfall Climatology Version 2 for
Famine Early Warning Systems. Journal of Applied Meteorology and
Climatology 52, 588-606, doi:10.1175/jamc-d-11-0238.1 (2013).
Koelle, K. The impact of climate on the disease dynamics of cholera Koelle - 2009 - Clinical Microbiology and Infection - Wiley Online Library.
Clinical microbiology and infection (2009).
Hashizume, M., Chaves, L. F. & Minakawa, N. Indian Ocean Dipole drives
malaria resurgence in East African highlands. Scientific reports 2, 269269, doi:10.1038/srep00269 (2012).
Socolovschi, C. et al. Strikes, flooding, rats, and leptospirosis in Marseille,
France. International journal of infectious diseases : IJID : official
publication of the International Society for Infectious Diseases 15, e710715, doi:10.1016/j.ijid.2011.05.017 (2011).
Cheng, A. C. Melioidosis: advances in diagnosis and treatment. Current
opinion in infectious diseases 23, 554-559,
doi:10.1097/QCO.0b013e32833fb88c (2010).
Agier, L. et al. Towards understanding the epidemiology of Neisseria
meningitidis in the African meningitis belt: a multi-disciplinary overview. Int
J Infect Dis 54, 103-112, doi:10.1016/j.ijid.2016.10.032 (2017).
Schiff, S. J., Ranjeva, S. L. & Warf, B. C. Rainfall drives hydrocephalus in
East Africa. Journal of neurosurgery Pediatrics 10, 161-167,
doi:10.3171/2012.5.PEDS11557 (2012).
Coe, R. & Stern, R. D. Fitting Models to Daily Rainfall Data. Journal of
Applied Meteorology 21, 1024-1031, doi:10.1175/15200450(1982)021<1024:fmtdrd>2.0.co;2 (1982).
McCullagh, P. & Nelder, J. A. Generalized linear models. 2nd edn,
(Chapman & Hall/CRC, 1998).
Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate - a
Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society Series B-Methodological 57, 289-300 (1995).
Diem, J. E., Hartter, J., Ryan, S. J. & Palace, M. W. Validation of Satellite
Rainfall Products for Western Uganda. Journal of Hydrometeorology 15,
2030-2038, doi:10.1175/jhm-d-13-0193.1 (2014).
Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A
dipole mode in the tropical Indian Ocean. Nature 401, 360-363,
doi:10.1038/43854 (1999).
Funk C, H. L., Shukla S, Korecha D, Magadzire T, Husak G, Galu G, Hoell
A. Assessing the contributions of local and east Pacific warming to the
2015 droughts in Ethiopia and Southern Africa. Bulletin of the American
Page 18 of 19
15
16
17
18
19
20
21
22
23
24
25
26
Meterological Society 97, S75-S80, doi:10.1175/BAMS-D-16-0167.1
(2016).
Torrence, C. & Webster, P. J. Interdecadal changes in the ENSOmonsoon system. Journal of Climate 12, 2679-2690, doi:Doi
10.1175/1520-0442(1999)012<2679:Icitem>2.0.Co;2 (1999).
Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet
transform and wavelet coherence to geophysical time series. Nonlinear
Processes in Geophysics 11, 561-566 (2004).
Maraun, D., Kurths, J. & Holschneider, M. Nonstationary Gaussian
processes in wavelet domain: synthesis, estimation, and significance
testing. Phys Rev E Stat Nonlin Soft Matter Phys 75, 016707,
doi:10.1103/PhysRevE.75.016707 (2007).
Schiff, S. J., Sauer, T., Kumar, R. & Weinstein, S. L. Neuronal
spatiotemporal pattern discrimination: The dynamical evolution of
seizures. NeuroImage 28, 1043-1055,
doi:10.1016/j.neuroimage.2005.06.059 (2005).
Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R.
Multidecadal variability in East African hydroclimate controlled by the
Indian Ocean. Nature 493, 389-392, doi:10.1038/nature11785 (2013).
Williams, A. P. & Funk, C. A westward extension of the warm pool leads to
a westward extension of the Walker circulation, drying eastern Africa.
Climate Dynamics 37, 2417-2435, doi:10.1007/s00382-010-0984-y (2011).
Nicholson, S. E. in The limnology, Climatology and Paleoclimatology of
the East African Lakes (ed T. C. and Odada Johnson, E. O.) 25-56
(Overseas Publishers Association, 1996).
Gizaw, M. S. & Gan, T. Y. Impact of climate change and El Niño episodes
on droughts in sub-Saharan Africa. Climate Dynamics,
doi:10.1007/s00382-016-3366-2 (2016).
Tierney, J. E., Ummenhofer, C. C. & deMenocal, P. B. Past and future
rainfall in the Horn of Africa. Sci Adv 1, e1500682,
doi:10.1126/sciadv.1500682 (2015).
Oppenheim, A. V., Schafer, R. W. & Buck, J. R. Discrete-time signal
processing. 2nd edn, (Prentice Hall, 1999).
Nelder, J. A. & Wedderburn, R. W. M. Generalized Linear Models. Journal
of the Royal Statistical Society. Series A (General) 135, 370,
doi:10.2307/2344614 (1972).
Schreiber, T. Constrained randomization of time series data. Physical
Review Letters 80, 2105-2108, doi:DOI 10.1103/PhysRevLett.80.2105
(1998).
Page 19 of 19