LASER SPECTROSCOPY OF UNSTABLE ISOTOPES R. Neugart To cite this version: R. Neugart. LASER SPECTROSCOPY OF UNSTABLE ISOTOPES. Journal de Physique Colloques, 1979, 40 (C1), pp.C1-38-C1-45. <10.1051/jphyscol:1979111>. <jpa-00218390> HAL Id: jpa-00218390 https://hal.archives-ouvertes.fr/jpa-00218390 Submitted on 1 Jan 1979 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Colloque C l , suppl6ment au no 2 , Tome 40, fgvrier 1979, page C1-38 JOURNAL DE PHYSIQUE LASER SPECTROSCOPY OF UNSTABLE ISOTOPES R. Neugart I n s t i t u t fiir Physik, Johannes Gutenberg U n i v e r s i t a t , Mainz, Germany A b s t r a c t . High-resolution methods of o p t i c a l spectroscopy i n u n s t a b l e i s o t o p e s a r e discussed, w i t h emphasis on fast-beam l a s e r spectroscopy. The c h i e f goal i s t o o b t a i n information about n u c l e a r ground-state p r o p e r t i e s from hyperfine s t r u c t u r e and i s o t o p e s h i f t s . The methods have t o be s u i t a b l e f o r use w i t h minute samples, due t o t h e small amount of r a d i o a c t i v e atoms available. R6sum6. Des mgthodes de s p e c t r o s c o p i e o p t i q u e de h a u t e r S s o l u t i o n s o n t d i s c u t b e s pour l ' a p p l i c a t i o n aux i s o t o p e s i n s t a b l e s , en p a r t i c u l i e r c e l l e s de s p e c t r o s c o p i e l a s e r avec f a i s c e a u rapide. L ' i n t e r t t p r i n c i p a l v i s e l e s p r o p r i b t b s de l ' b t a t fondamental du noyau, a c c e s s i b l e s p a r l a s t r u c t u r e hyperfine e t l e dbplacement i s o t o p i q u e . Ces m6thodes doivent s ' a c c o r d e r aux quant i t b s minimes d'atomes r a d i o a c t i f s d i s p o n i b l e s dans l e s S c h a n t i l l o n s . 1. I n t r o d u c t i o n and t h e quadrupole i n t e r a c t i o n could be proved i n a Laser e x c i t a t i o n of f a s t beams of i o n s o r atoms has few favourable c a s e s of s t r o n g l y deformed n u c l e i . become a n important technique of resonance spectro- Exhaustive i n v e s t i g a t i o n of h f s remained t o be scopy. It was i n i t i a t e d by t h e crossed-beam experi- c a r r i e d out by means of r f spectroscopy. ments of H.J.Andrl e t a l . L1J aiming a t a good time r e s o l u t i o n . Recent experiments t a k e advantage of t h e collinear-beam geometry L2-53. Applications of t h i s The g e n e r a l a p p l i c a t i o n of o p t i c a l spectroscopy t o s t u d i e s of n u c l e i r e q u i r e s a Doppler-free method which allows n a t u r a l l i n e w i d t h r e s o l u t i o n (~10MHz). method t o molecular i o n s a r e demonstrated i n t h r e e c o n t r i b u t i o n s t o t h i s conference [6,7,81. I n t h i s t a l k I s h a l l d i s c u s s t h e a p p l i c a t i o n of fast-beam l a s e r spectroscopy t o u n s t a b l e i s o t o p e s . The method has s e v e r a l o u t s t a n d i n g f e a t u r e s which i n c l u d e high r e s o l u t i o n and s e n s i t i v i t y , and i d e a l 2.1 Hyperfine s t r u c t u r e The h f s energy of a s t a t e w i t h t o t a l angular momen- F= tum I W =-KA F 2 s u i t a b i l i t y f o r use w i t h on-line i s o t o p e s e p a r a t o r s . The experiments c a r r i e d out s o f a r on neutron-rich Rb and Cs isotopes willbe with other ex- periments using d i f f e r e n t methods. with is given by + $K(K+I) - I(I+I) + . J(J+I) B (1) 21(21-1)J(2J-I~ . . K = F(F+l) - I ( I + l ) - J ( J + I ) . It contains t h e nuclear s p i n I , t h e magnetic d i p o l e interaction constant p1<He(O)> 2. Nuclear p r o p e r t i e s from o p t i c a l s p e c t r a The h i s t o r y of atomic spectroscopy a s a t o o l of n u c l e a r physics c 9 1 s t a r t e d about 50 years ago when t h e well-known s p l i t t i n g of s p e c t r a l l i n e s , c a l l e d A = (2) IJ and t h e e l e c t r i c quadrupole i n t e r a c t i o n c o h s t a n t 9 B = e Q < -a' >v s 2 az h y p e r f i n e s t r u c t u r e ( h f s ) was a s c r i b e d t o a rnagneti c coupling,between t h e nucleus and t h e e l e c t r o n For e v a l u a t i n g t h e n u c l e a r q u a n t i t i e s p1 and Qs,one s h e l l . Spins and magnetic moments had t o be i n t r o duced a s b a s i c p r o p e r t i e s o f n u c l e i and could be has t o know t h e magnetic hyperfine f i e l d cH (O)> 2 z e and t h e e l e c t r i c f i e l d g r a d i e n t <a V / a z > produced e v a l u a t e d from h f s s p l i t t i n g s . Improved r e s o l u t i o n by t h e e l e c t r o n s . A c a l i b r a t i o n i s p o s s i b l e , i f pI l e d t o t h e discovery of quadrupole i n t e r a c t i o n , and Qs a r e known f o r a t l e a s t one i s o t o p e of an connected w i t h a n u c l e a r e l e c t r i c quadrupole moment, element. Magnetic moments a r e a v a i l a b l e i n p r a c t i - and of t h e nuclear volume e f f e c t i n i s o t o p e s h i f t s c a l l y a l l cases from n u c l e a r and atomic beam magnee ( I S ) . A l i m i t of r e s o l u t i o n was t h e Doppler width i c resonance, and an i n c r e a s i n g number of s p e c t r o - of o p t i c a l l i n e s ( = I GUz). s c o p i c quadrupole moments i s determined from h f s of For t h a t reason n u c l e a r volume s h i f t s were only observed i n heavy elements, mesic atoms C101. Most quadrupole moments a r e s t i l l . Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979111 based on c a l c u l a t i o n s of r a t e w i t h i n 10 % t o 30 % < a 2V/az 2> 1 1 11 . which a r e accu- + Reactor wall 2.2 I s o t o p e s h i f t The IS between t h e c e n t e r s of g r a v i t y of h f s multip l e t s a r e n o t only a n e f f e c t of change i n n u c l e a r volume ( f i e l d s h i f t ) , b u t a l s o i n nuclear mass [12] Beam For i s o l a t i n g t h e f i e l d s h i f t one has t o know t h e mass s h i f t which i s n o t very important i n t h e heavi- CPS t e s t elements, b u t predominates i n t h e l i g h t ones. A c a l c u l a t i o n accounting f o r t h e c o r r e l a t i o n of e l e c t r o n momenta i s d i f f i c u l t . Only i n simple c a s e s such a s s - p t r a n s i t i o n s t h e " s p e c i f i c " mass s h i f t i s of t h e o r d e r of t h e "normal" one-electron mass shift M = ~11836. The f i e l d s h i f t i s connected with t h e change of t h e 2 AA' by n u c l e a r rms charge r a d i u s 6 < r > where A 1 Y(0) 1 i s t h e change of e l e c t r o n d e n s i t y Fig.1: On-line mass s e p a r a t o r f o r f i s s i o n products. I n t h e y i e l d curve below, s t a r s i n d i c a t e t h e i s o topes i n v e s t i g a t e d by l a s e r spectroscopy. a t t h e nucleus i n t h e e l e c t r o n i c t r a n s i t i o n . This n o n - r e l a t i v i s t i c equation holds a l s o f o r t h e r e l a t i v i s t i c case, i f a c o r r e c t i o n f a c t o r depending on Z and A i s introduced. A I Y(0) 1 has t o be calcu- l a t e d , i f a c a l i b r a t i o n by X-ray i s o t o p e s h i f t s o r cence spectroscopy using a frequency-doubled pulsed dye l a s e r C141 had t o ensure s e n s i t i v i t y . Generally, the a p p l i c a t i o n of s t a n d a r d methods t o u n s t a b l e i s o t o p e s i s l i m i t e d by t h e small amount of d a t a from muonic atoms o r e l e c t r o n s c a t t e r i n g i s r a d i o a c t i v e atoms a v a i l a b l e , and by t h e i r s h o r t n o t p r a c t i c a b l e [I 1 1 half-life. . Disregarding t h e s e complications one can expect t h a t o p t i c a l I S i n a long s e r i e s of i s o t o p e s r e v e a l t h e general t r e n d s a s w e l l a s l o c a l i r r e g u l a r i t i e s of V e r s a t i l e sources of u n s t a b l e n u c l i d e s a r e t h e on-line mass s e p a r a t o r s connected w i t h s p a l l a t i o n o r f i s s i o n t a r g e t s [15]. They y i e l d iso- t o p i c a l l y pure samples i n tfie form of i o n beams. changes i n nuclear r a d i i . This statement i s a l r e a d y As an example, Fig.1 shows t h e set-up used a t Mainz. a p a r t o f a n answer t o t h e question: It has been developed f o r making a v a i l a b l e neutron- 3. Unstable i s o t o p e s - r i c h Rb and Cs i s o t o p e s from f i s s i o n of 2 3 5 ~[163. why and how? The r e a c t o r , operated by t h e n u c l e a r chemistry The fundamental nuclear p r o p e r t i e s which manifest themselves i n t h e o p t i c a l s p e c t r a a r e thoroughly known near t h e v a l l e y of s t a b i l i t y . This i s t h e r e g i o n where nuclear models have been developed and a r e u s u a l l y t e s t e d . But i n t h e r e g i o n f a r from s t a b i l i t y information about nuclear ground s t a t e s i s rather scarce. i n s t i t u t e , i s used a s a source of thermal neutrons. 2 3 5 ~imbedded i n porous g r a p h i t e i s placed i n a tungsten oven c l o s e t o the r e a c t o r c o r e and exposed 2 t o a f l u x of 2 x 10'' neutronslcm s e c . A t temperat u r e s of about 1 2 0 0 ~t h~e a l k a l i s d i f f u s e o u t of t h e t a r g e t and evaporate from t h e tungsten s u r f a c e a s p o s i t i v e ions. Accelerated t o 3-lOkeV New unexpected deformation e f f e c t s were discovered they a r e guided o u t of t h e r e a c t o r i n t o a s e p a r a t i o n magnet, i n t h e f i r s t s y s t e m a t i c study of IS f o r very neu- and t h e i s o t o p i c a l l y pure beam i s a v a i l a b l e i n tron-deficient q u a n t i t i e s shown i n t h e lower p a r t of t h e f i g u r e . i s o t o p e s of Hg C13,141 . I n these experiments, due t o t h e l a r g e h f s and I S of t h e h e a v i e s t elements, t h e Doppler width could be t o l e ? a t e d . But s o p h i s t i c a t e d methods of 8 - r a d i a t i o n d e t e c t e d o p t i c a l pumping (RADOP) C13] o r f l u o r e s - s amuch more e f f i Although ISOLDE I1 a t C ~ ~ ~ l G e n ei v c i e n t ( c f . s e c t i o n 5 ) , t h i s y i e l d can be taken a s t y p i c a l f o r s i m i l a r f a c i l i t i e s . Therefore, o p t i c a l methods designed f o r general use w i t h r a d i o a c t i v e c 1-40 JOURNAL DE PHYSIQUE nuclides should a t l e a s t be a b l e t o work with 10 about 10" atoms per second. The g r e a t advance f o r s e n s i t i v i t y and r e s o l u t i o n of o p t i c a l spectroscopy was t h e development of a cw dye l a s e r . This l a s e r i s now a v a i l a b l e i n s i n g l e mode o p e r a t i o n over t h e e n t i r e v i s i b l e range of t h e spectrum. The o u t p u t power i s s u f f i c i e n t t o satur a t e t h e t r a n s i t i o n s , and t h e linewidth achieved by frequency s t a b i l i z a t i o n i s about t u r e s allow 1MHz. These fea- h i g h l y s e n s i t i v e spectroscopy w i t h natural-linewidth tense i n t e r n a l beam of t h e c v c l o t r o n . Samples of t o 1013 atoms of t h e r e s p e c t i v e i s o t o p e a r e produced by (d,xn) o r (a,xn) r e a c t i o n s i n Ba o r Xe, followed by o f f - l i n e mass s e p a r a t i o n . S i l i c o n d i s k s of ultra-high p u r i t y a r e used a s matrix mater i a l from which Ba i s heated o f f i n t h e atomic-beam oven. Hfs and I S a r e i n v e s t i g a t e d i n t h e t r a n s i t i o n 1 6s2 Iso - 6s6p P I (A = 533.6 nm ) I t s n a t u r a l l i n e - . width i s 19MHz, and t h e beam c o l l i m a t i o n allows f o r Doppler broadening of about 8 M H z . Since a t most resolution. Up t o now t h r e e d i f f e r e n t methods have been i n t r o duced f o r systematic s t u d i e s o f u n s t a b l e i s o t o p e s . The experiments a r e s t i l l going on and f u r t h e r ex- some lo4 atoms/sec a r e p r e s e n t i n t h e beam, s p e c i a l c a r e of high d e t e c t i o n e f f i c i e n c y and low background has t o be taken. The o v e r a l l photon d e t e c t i o n e f f i ciency i s about 2 % . By c a r e f u l e l i m i n a t i o n of t e n s i o n s a r e obvious. s c a t t e r e d l a s e r l i g h t , incandescent l i g h t from t h e I n 1975, G. Huber e t a l . a t Orsay r e p o r t e d t h e f i r s t experiment on 2 1 - 2 5 ~ a 1171. , using e x c i t a t i o n of oven and y - r a d i a t i o n from t h e sample, t h e t o t a l background i s l e s s than 100counts / s e c . The r e s u l t t h e D l i n e s i n a collimated atomic beam which was i s demonstrated i n a resonance curve ( F i g . 2 ) analyzed by a s i x p o l e magnet and a mass spectro- t a i n e d w i t h i n 6min from a sample of about 10 meter. Two y e a r s l a t e r i t was extended t o t h e neu- atoms C2 17 tron-rich ob11 . i s o t o p e s up t o 3 1 ~ produced a by high- energy proton r e a c t i o n s i n a uranium t a r g e t . Quite r e c e n t l y , t h e &me scheme has been a p p l i e d t o neut r o n - d e f i c i e n t Cs i s o t o p e s from ISOLDE. A c o l l i m a t e d atomic beam i s a l s o used i n f l u o r e s cence experiments on neutron-deficient Ba i s o t o p e s a t Karlsruhe, f i r s t r e p o r t e d by G.Nowicki e t a l . i n 1977 [I81 . F i n a l l y we a p p l i e d t h e c o l l i n e a r l a s e r e x c i t a t i o n of a f a s t atomic beam t o neutron-rich i s o t o p e s [I91 . Rb and C s Since t h e C s and Ba experiments a r e c l o s e l y r e l a t e d t o each o t h e r i n t h e i r p h y s i c a l meaning, I s h a l l t a k e them a s examples f o r f u r t h e r d i s c u s s i o n . . 4. Atomic-beam fluorescence spectroscopy The p r e p a r a t i o n o f a sample has t o s t a r t from t h e mass-separated i o n beam. A s t r a i g h t f o r w a r d method Fig.2: Spectrum of 1 2 6 ~ a S t a b l e 13'Ba a reference. i s used a s Measurements were performed f o r t h e r a d i o a c t i v e iso- i s t o c o l l e c t t h e i o n s on a t a r g e t and t o reevapo- topes and isomers 1 3 5 m ~ a 71 3 3 ~ a , 133%a, r a t e them a s n e u t r a l atoms. By forming a c o l l i m a t e d l Z 8 ~ a , 1 2 6 ~ a ,i n a d d i t i o n t o remeasurements of a l l beam and c r o s s i n g i t with t h e l a s e r beam one a r r i v e s s t a b l e i s o t o p e s . R e s u l t s a r e included i n Fig. 15. 13'Ba, a t a s t a n d a r d arrangement o f sub-Doppler spectroscopy 1 2 0 1 . Resonance a b s o r p t i o n may be d e t e c t e d A c o l l i m a t e d atomic beam, c r o s s e d with t h e l a s e r by fluorescence. This i s e s s e n t i a l l y t h e scheme used by t h e K a r l s ruhe group i n t h e experiments on Ba C183 5 . O p t i c a l pumping of atomic beams . Instead of working 6n l i n e w i t h the a c c e l e r a t o r t h i s experiment i s performed s t e p by s t e p . Thus, f o r i s o t o p e s w i t h h a l f - l i v e s 2 1 h it takes advantage of t h e in- beam, i s a l s o used by t h e Orsay group i n experiments on a l k a l i i s o t o p e s [17,22].They introduced a new e f f i c i e n t d e t e c t i o n scheme based on o p t i c a l pumping ( Fig. 3 ) . The atomic beam passes through a s i x p o l e magnet, ~ . were evaporated by h e a t i n g a t about 9 0 0 ~ About atoms of t h e ISOLDE y i e l d was t r a n s m i t t e d t o t h e i n t e r a c t i o n region. It was a m a t t e r of convenience # I7 d~aphragm // N !/laser beam atoms/sec i n t h e region under c o n s i d e r a t i o n . Ions from target and 10'' t h a t t h i s y i e l d i s between 10" I/ 6 . Fast-beam l a s e r spectroscopy t SIX-pole magnet Quite a d i f f e r e n t approach t o s e n s i t i v i t y may s t a r t I to the spectrometer from the problem of e f f i c i e n c y i n preparing t h e sample. I n view of t h e f a c t t h a t u n s t a b l e i s o t o p e s a r e a v a i l a b l e a t mass s e p a r a t o r s one might t h i n k of a method d i r e c t l y u s i n g t h e f a s t i o n beam. The s o l u t i o n of t h i s problem was given i n a paper by S. L. Kaufman i n 1976 [24], and soon a f t e r t h a t we performed t h e p i l o t experiment on f a s t beams of t h e s t a b l e Na and C s i s o t o p e s 151 . The b a s i c i d e a i s v e r y simple: S u f f i c i e n t l y l a r g e e x c i t a t i o n r a t e s a r e obtained, i f t h e time of i n t e r a c t i o n between t h e beam and t h e l a s e r l i g h t i s long Fig.3: Experimental set-up and schematic diagram of o p t i c a l h f s pumping detected by s t a t e selection. enough. Therefore, t h e l a s e r beam has t o be superposed c o l l i n e a r l y t o t h e output beam of t h e separat o r . And, s i n c e resonance l i n e s of ions a r e u s u a l l y which focusses atoms i n t h e s t a t e m = + 1 / 2 i n t o a J s u r f a c e i o n i z e r a c t i n g a s t h e i o n source of a small not a c c e s s i b l e t o cw dye l a s e r s , t h e i o n beam has mass s e p a r a t o r , and t h e atoms t r a n s m i t t e d through t r a l i z a t i o n i s e f f i c i e n t l y performed by charge t h e apparatus a r e d e t e c t e d by i o n counting. I f t h e t r a n s f e r i n an alkali-vapour c e l l . t o b e converted i n t o a f a s t atomic beam. This neu- l a s e r i s tuned t o a l i n e connected with t h e F = I - 1 1 2 h f s l e v e l of t h e ground s t a t e , p a r t of t h e a t o m s a r e pumped t o t h e F = I + 112 l e v e l , and t h e number of atoms belonging t o m J = + 1 / 2 s t a t e s i s increased. A p o s i t i v e s i g n a l i s observed a t t h e i o n d e t e c t o r . S i m i l a r l y t h e t r a n s i t i o n s s t a r t i n g from t h e F = I + 1 / 2 ance of any l o s s of m a t e r i a l between i s o t o p e separ a t i o n and l a s e r e x c i t a t i o n . But t h i s advantage i s only p r o f i t a b l e , i f a l l ( o r a s u f f i c i e n t l y l a r g e number o f ) atoms i n t e r a c t with t h e l i g h t . This i s a q u e s t i o n of t h e a b s o r p t i o n Doppler width. l e v e l give r i s e t o a negative s i g n a l . This non-optical The s t r i k i n g advantage of t h i s concept i s t h e avoid- d e t e c t i o n i s c h a r a c t e r i z e d by an u l t i m a t e e f f i c i e n c y and very low background. Up t o Since t h e spread of k i n e t i c energy i n t h e beam remains unchanged under e l e c t r o s t a t i c a c c e l e r a t i o n 5 0 % of t h e beam a r e counted by t h e d e t e c t o r and, with c a r e f u l s h i e l d i n g of r a d i o a c t i v i t y , t h e background i s about 1 count/sec. Thus, compared t o opti- c a l d e t e c t i o n , t h e signal-to-background ratio is the product of t h e average v e l o c i t y v and t h e v e l o c i t y spread 6 v , o r likewise t h e product of t h e i n c r e a s e d by roughly a f a c t o r of lo3, provided one Doppler s h i f t AvD and t h e Doppler width 6 v D a r e photon p e r atom i s emitted. c o n s t a n t s of the motion. I n o t h e r words: The Doppler I n t h e most r e c e n t experiments on neutron-deficient Cs i s o t o p e s hf s and IS i n the D2 l i n e 6s *?s1 - " 6p L ~ 3 1 2 ( A = 852. I-nm ) could be measured f o r t h e s maglong chain of i s o t o p e s ranging from 3 3 7 ~with width i s considerably reduced from i t s o r i g i n a l value 6v '(0) i n t h e i o n source. For t h e i d e a l c a s e D of a thermal d i s t r i b u t i o n (which i s r e a l i z e d i n s u r f a c e - i o n i z a t i o n sources) i c neutron number t o 121cs, and f o r s e v e r a l isomeric s t a t e s L233. For r e s u l t s s e e F i g . 8 . The r e d u c t i o n f a c t o r i s about 400 f o r a source tem- The apparatus had been connected t o ISOLDE. The p e r a t u r e of mass-separated CS+ beam was stopped i n s i d e a t a n t a - 5 k V . It corresponds t o a Doppler width of lum tube coated with y t t r i u m from which C s atoms f o r t h e b l u e Cs l i n e ( X = 4 5 5 . 5 n m ) , compared t o a 1500K and a n a c c e l e r a t i o n v o l t a g e of 4MHz 4 C 1-42 JOURNAL DE PHYSIQUE n a t u r a l linewidth of 1.2MHz. Natural linewidths of t h e s t r o n g e s t resonance l i n e s a r e even l a r g e r by a f a c t o r of 10. It may be concluded t h a t e s s e n t i a l l y a l l atoms i n t h e beam a r e e x c i t e d and t h a t t h e reso l u t i o n i s comparable t o Doppler-free methods. I t i s presumed, o f course, t h a t t h e charge-transfer process doesn't change t h e v e l o c i t y d i s t r i b u t i o n . This i s a c t u a l l y t h e consequence of t h e l a r g e crosss e c t i o n of about 10- I 4 cm2 which exceeds t h e k i n e t i c c r o s s s e c t i o n by two o r d e r s of magnitude. I n t h e resonant case, e.g. the beam energy remains unchanged, whereas i n t h e n o r r e s o n a n t case, e.g. CS+ + Cs(6s) --C Cs(6p) + CS+ - 1.4 eV o r i n c o l l i s i o n s between d i f f e r e n t p a r t n e r s , t h e fast-beam k i n e t i c energy i s changed by almost exactl y t h e amount of t h e energy d e f e c t A E . Conservation laws r e q u i r e t h a t i n forward s c a t t e r i n g t h e k i n e t i c energy t r a n s f e r r e d t o t h e t a r g e t atom i s of t h e 2 o r d e r (AE) f e u , which i s n e g l i g i b l e f o r beam energ i e s i n t h e range of keV . Fig.5: Hfs and Doppler-scanned resonance curve f o r t h e example of a C s i s o t o p e w i t h I = 7 / 2 c o l l e c t e d along a path l e n g t h of 20cm by a c y l i n - I n any case, t h e width of v e l o c i t y d i s t r i b u t i o n and d r i c a l l e n s and guided i n t o t h e p h o t o m u l t i p l i e r by t h e a n g u l a r divergence i s not a f f e c t e d by charge a l i g h t pipe. t r a n s f e r . However, t h e Doppler-shifted sharp l i n e s Varying t h e Doppler s h i f t a t f i x e d l a s e r frequency may be s p l i t by t h e energy-loss spectrum correspond- o f f e r s a convenient way of scanning the a b s o r p t i o n i n g t o d i f f e r e n t r e a c t i o n channels. s p e c t r a . For t h i s purpose a programmable v o l t a g e i s a p p l i e d t o t h e charge-exchange c e l l , pos t-accelera t i n g the i o n s p r i o r t o n e u t r a l i z a t i o n . Fig.5 i l l u s t r a t e s t h e h f s measurement f o r a C s isotope with s p i n I=7/2. The ground and e x c i t e d s t a t e s p l i t t i a g s give r i s e t o 6 h f s t r a n s i t i o n s i n d i c a t e d by t h e v e r t i c a l arrows. By scanning t h e a c c e l e r a t i o n Beam v o l t a g e t h e s e t r a n s i t i o n s a r e observed a t a s c a l e 1;;Fi'-1 D L Q ~ ~ Plpe shown i n t h e lower p a r t of t h e f i g u r e . Measurement of I S a d d i t i o n a l l y r e q u i r e s comparison t o a r e f e r e n c e i s o t o p e . For t h i s purpose a beam o f Fig.4: Experimental set-up f o r fast-beam l a s e r spectroscopy s a s e p a r a t e i o n source i s run s t a b l e 3 3 3 ~from through the apparatus a l t e r n a t i v e l y t o t h e u n s t a b l e 6.1 The experiment i s o t o p e beam. U n c e r t a i n t i e s bf beam-energy calibra- Fig.4 shows t h e experimental set-up used w i t h t h e t i o n a r e e l i m i n a t e d by r e l a t i n g a l l I S t o 1 3 7 ~ s mass-separated beam of a l k a l i i s o t o p e s from n u c l e a r obtained from t h e mass s e p a r a t o r . f i s s i o n l s e e Fig.1). The i o n beam i s d e f l e c t e d t o merge w i t h t h e l a s e r beam and n e u t r a l i z e d i n t h e heated charge-exchange c e l l c o n t a i n i n g a l k a l i metal a t a vapour p r e s s u r e of 1 0 - ~ T o r r . Laser l i g h t i s absorbed by t h e atoms whenever t h e Doppler-shifted frequency i s tuned t o one of t h e resonance l i n e s . This i s d e t e c t e d by counting fluorescence photons, 6 . 2 Measurements Measurements were performed i n the t r a n s i t i o n s 2 2 6s -Sll2 7p _P3,2 (A = 455.5 nm) of Cs and - 5s L ~ 1 1 2 - 6p L ~ 3 f 2 (A = 420.2 m ) of Rb f o r t h e i s o t o p e s 138-142cs and 89-94~b. T h e i r neutron-rich h a l f - l i v e s extend from 32 min f o r 1 3 8 ~tso 1.7 s e c f o r 1 4 2 ~ s ,and s i m i l a r l y f o r t h e Rb i s o t o p e s between 8 9 ~ band 9 4 ~ b .The i s o t o p e s w i t h magic neutron number, 1 3 7 ~and s 8 7 ~ b ,a r e chosen f o r c a l i b r a t i n g t h e isotope s h i f t s . A spectrum of 13'cs may s e r v e a s a t y p i c a l example (Fig.6). Both groups of h f s components a r e scanned a t a f i x e d l a s e r frequency, simultaneously with t h e 1 3 3 ~rse f e r e n c e . The v o l t a g e s c a l e i s used f o r c a l c u l a t i n g r e l a t i v e Doppler s h i f t s by U I Volts from which t h e h f s parameters and t h e I S can be evaluated. Atomic masses a r e known with s u f f i c i e n t accuracy from s t a n d a r d t a b l e s [251. The linewidth corresponds t o lOMHz i n a frequency s c a l e . By a computer f i t t h e r e s o l u t i o n of exciteds t a t e h f s i s b e t t e r than IMHz, y i e l d i n g t h e very small quadrupole i n t e r a c t i o n c o n s t a n t s with an accuracy of about 2 0 % . Errors i n t h e l a r g e ground-state s p l i t t i n g s and i n i s o t o p e s h i f t s a r e u s u a l l y d e t e r minedby t h e v o l t a g e c a l i b r a t i o n and amount t o seve r a l MHz. Fig.7: Spectrum of 140cs ( I = 1) t o t h e 6 s - 6 p energy d i f f e r e n c e . I n t h i s way t h e d i s t r i b u t i o n of c h a r g e - t r a n s f e r r e a c t i o n products over f i n a l s t a t e s i s d i r e c t l y observed. We have shown t h a t t h i s d i s t r i b u t i o n s t r o n g l y depends on the r e a c t i o n p a r t n e r s C5, 261 . In f a c t , these high-resw l u t i o n measurements can be used t o e v a l u a t e branchi n g r a t i o s of charge-transfer r e a c t i o n channels. 7. R e s u l t s The information obtained throughout t h e described i s t y p i c a l f o r a l l odd The h f s s p l i t t i n g of I3'cs work i n c l u d e s s p i n s , magnetic d i p o l e and e l e c t r i c i s o t o p e s i n t h i s region Which have s p i n s I = 712 quadrupole moments a s w e l l a s d i f f e r e n c e s of nuclear and t h e r e f o r e s i m i l a r magnetic moments. charge r a d i i . Most s p i n s and magnetic moments of Rb and C s i s o t o p e s had previously been measured by o W V) 221 . C. Ekstriim e t a l . C271 using atomic beam resonance 2 5 xlOaatorns lsec on l i n e w i t h ISOLDE, and a few s p i n s were measured by o p t i c a l pumping (RADOP) C163. IOOMHz These q u a n t i t i e s a r e a c c e s s i b l e i n t h e atomic ground s t a t e . The importance of l a s e r spectroscopy i s obvious: Quadrupole i n t e r a c t i o n can only be observed i n e x c i t e d s t a t e s with J L l , and i s o t o p e s h i f t meas- urements have t o involve d i f f e r e n t atomic s t a t e s . It would be beyond t h e scope of t h i s t a l k t o discuss a l l r e s u l t s i n d e t a i l , a p a r t from t h e f a c t t h a t U I Volts Fig.6: Spectrum of 13'cs (I=7/2) t h e i r a n a l y s i s i s f a r from being complete. Publicat i o n s of a l l t h r e e groups comprise r e p o r t s of f i r s t results. A d i f f e r e n t c a s e i s 140cs f o r which the magnetic and e l e c t r i c hyperfine i n t e r a c t i o n i n t h e e x c i t e d s t a t e a r e o f t h e same o r d e r , due t o t h e small magnet'ic moment connected w i t h I = 1 . As shown i n Fig.7 p a r t of t h e s p l i t t i n g s n e a r l y compensate. A general review of n u c l e a r r a d i i i n t h e Cs-Ba r e g i o n can a l r e a d y be given. Fig. 8 contains t h e r e s u l t s of t h e d i f f e r e n t experiments, marked by 2 d i f f e r e n t symbols. The gross run of 6 < r > values near neutron-shell c l o s u r e i s c h a r a c t e r i z e d by a A c h a r a c t e r i s t i c of a l l s p e c t r a a r e t h e s a t e l l i t e s of each l i n e , s e p a r a t e d from t h e main peak by 1.4 v o l t . They a r e due t o t h e non-resonant branch of charge t r a n s f e r t o t h e f i r s t e x c i t e d b p s t a t e of C s , giving r i s e t o a l o s s of k i n e t i c energy equal sharp i n c r e a s e above t h e magic neutron number N=82. This behaviour i s c e r t a i n l y due t o an i n f l u e n c e of neutrons i n t h e opened s h e l l on t h e proton d i s t r i bution. It i s a l s o observed f o r t h e i s o t o n i c s t a b l e JOURNAL DE PHYSIQUE reached. Therefore t h e methods have t o compete with each o t h e r mainly i n s e n s i t i v i t y and s u i t a b i - i l i t y f o r t h e p a r t i c u l a r c a s e . A d e c i s i o n f o r one o r t h e o t h e r method w i l l depend on t h e element and atomic t r a n s i t i o n under c o n s i d e r a t i o n , b u t some gener a l remarks can be made: 1 ) The d e t e c t i o n of fluorescence i s u s u a l l y l i m i t e d t o a few photonsfatom, s i n c e o p t i c a l pumping removes t h e atoms from t h e absorbing s t a t e . M u l t i p l e excit a t i o n i s p o s s i b l e i n some s p e c i a l c a s e s such a s IS ground s t a t e s of doubly-even (I = 0 ) i s o t o p e s . This g a i n of d e t e c t i o n e f f i c i e n c y has been e x p l o i t e d i n t h e measurements on even Ba i s o t o p e s 128 and 126 ( c f . Fig. 2 ) . 2) On t h e o t h e r hand, o p t i c a l pumping i s t h e decisive condition f o r the sophisticated detection v v scheme used by t h e Orsay group, which r e l i e s on s t a t e s e l e c t i o n i n an inhomogeneous magnetic f i e l d . Limited t o paramagnetic atoms i t i s i d e a l l y s u i t e d t o 2 ~ ,21 a l k a l i ground s t a t e s . Furthermore, e f f i c i e n t 1 s u r f a c e i o n i z a t i o n of focussed atoms may hardly Fig.8: Change of rms charge r a d i i r e l a t i v e t o N = 8 2 . work in o t h e r c a s e s . A p o s s i b l e alternative might Symbols: 0 f o r Ba (Karlsruhe) be t h e d e t e c t i o n of atoms by r a d i o a c t i v i t y C271. f o r cs ( o ~ ~ ~ ~ with - I isomers s ~ ~ ~ ~ ) 0 ,f o r C s (Mainz) 3 ) Fast-beam spectroscopy i s based on t h e r e d u c t i o n F u l l symbols denote s t a b l e i s o t o p e s . of Doppler width occuring by a c c e l e r a t i o n . The o p t i nuclides a t N = 50 and N = 82. A f u r t h e r s t r o n g inmum c o n d i t i o n i s a n i d e a l matching t o t h e n a t u r a l 2 c r e a s e of 6<r > i s expected a t t h e o n s e t of s t a b l e linewidth, which i s e a s i l y f u l f i l l e d i n t h e s t r o n g nuclear deformation near N=90. t r a n s i t i o n s of a l k a l i atoms t o t h e f i r s t e x c i t e d - The extemely small v a l u e s of 6<rL> j u s t below N = 8 2 p s t a t e s . I n t h e b l u e Rb and C s l i n e s , which have had been known from standard o p t i c a l spectrascopy been chosen f o r convenience of l a s e r a c t i o n and on t h e s t a b l e and long-lived photon d e t e c t i o n , t h e observed Doppler width (de- i s o t o p e s of Ba, Cs and Xe. They were analyzed by U l l r i c h and Otten C281 i n termined by beam divergence) i s l a r g e r than t h e terms of c o l l e c t i v e nuclear models. The new high- n a t u r a l linewidth of 1.2 MHz by a f a c t o r of 10. r.esolution measurements r e v e a l a p e r f e c t correspond- Extension of t h i s method t o o t h e r elements may r e - ence between f i n e r s t r u c t u r a l e f f e c t s i n Ba and C s q u i r e gas-discharge i o n sources which have a broa- i s o t o n e s (odd-even s t a g g e r i n g ) . I n t h i s c o n t e x t i t d e r energy d i s t r i b u t i o n . This, of course, e f f e c t s should be noted t h a t e r r o r s i n t h e s p e c i f i c mass t h e s e n s i t i v i t y , whereas t h e r e s o l u t i o n needed can s h i f t might considerably change t h e a b s o l u t e scaling be achieved by use of v e l o c i t y - s e l e c t i n g (up t o * 20X)independently f o r both c a s e s , b u t not filters. Another way i s t o i n c r e a s e t h e a c c e l e r a t i o n v o l t a g e t h e s t r u c t u r e of t h e curves. according t o (6) a s f a r a s s u f f i c i e n t l y s t a b l e Measurements on Cs range t o t h e v e r y neutron-defi- high-voltage sources are c i e n t i s o t o p e s , and p r e s e n t d a t a seem t o f i t t h e It seems t o be evident t h a t fast-beam l a s e r spec- assumption of g r a d u a l l y i n c r e a s i n g nuclear defor- troscopy i s a s e n s i t i v e method f o r r a t h e r general mation [29] . use with i o n s o r atoms. The charge-transfer neutra- l i z a t i o n i s by no means l i m i t e d t o p r e s e n t l y s t u - 8. Discussion Three d i f f e r e n t high-resolution d i e d elements. I n cases where ground-state resotechniques of l a s e r spectroscopy have proved s u c c e s s f u l i n systematic s t u d i e s of ufistable n u c l i d e s , and f i r s t r e s u l t s a r e q u i t e promissing f o r f u t u r e work. The r e s o l u t i o n l i m i t of n a t u r a l linewidth i s almost nance l i n e s a r e not a c c e s s i b l e t o cw l a s e r s t h e population of metastable s t a t e s [30]may meet with help to a b s o r p t i o n i n t h e v i s i b l e . Recent ex- periments on ~ e L+4 3 and ~ b +E3ljtook advantage of t h e c o n s i d e r a b l e p o p u l a t i o n of metastable s t a t e s i n the discharge ion source. R.J. Powers, Hyperfine Interactions 4, 123(1978) Further effort may tackle the problem of sensitivi- E.-W. Otten, Hyperfine Interactions ty by improving the efficiency of light collection K. Heilig and A. Steudel, Atomic Data and Nuclear Data Tables 16,613 (1974) J. Bonn, G. Huber, H.-J. Kluge, E.-W.Otten, Z. Physik 187 and 203 (1976) and suppressing the background. Useful techniques may be the excitation and observation at different wavelengths where it is possible, and, for longerlived states, the pulsed excitation and observation of the subsequent decay. A non-optical detection scheme might combine fast-beam laser spectroscopy with the RADOP technique [32j by implantation of optically pumped atoms into a suitable crystal, and observation of the asymmetry in the 8-decay of polarized nuclei. 9. Conclusion I tried to show that optical spectroscopy has recovered its importance for nuclear research. The information obtained on nuclear ground and isomeric states far from stability is hardly accessible to other methods. Present experiments using high-resolution laser techniques have reached a stage of sensitivity sufficient for investigating long isotopic chains which still provide key information about nuclear structure. Lochmann, G. Moruzzi, R. Neugart, E.-W. Otten, L. von Reisky, B. Schinzler, K.P.C. Spath, J. Steinacher and D. Weskott. I like to thank the Karlsruhe and Orsay teams for providing unpublished material, and their permission to present it here References 1) H.J. Andra, in Beam Foil Spectroscopy, Proc.4th Int. Conf., Gatlinburg, Tenn., ed. I.A. Sellin and D.J. Pegg (Plenum Press, New York 1976) Vol. 2, p. 835 2) W.H. Wing, G.A. Ruff, W.E. Lamb, J.J. Spezeski, Phys. Rev. Letters 36, 1488 (1976) 3) M. Dufay, M. Carr'e, M.L. Gaillard, G. Meunier, H. Winter, A. Zgainski, Phys-Rev. Letters 37, 1678 (1976) 4) Th. Meier, H. Hiihnermatn, H. Wagner, Opt. Commun. 0, 397 (1977) 5) K.-R. Anton, S.L. Kaufman, W. Klempt, G.Moruzzi, R. Neugart, E.-W. Otten, B. Schinzler, 642 (1978) Phys. Rev. Letters 9, 6) J. Moseley, Invited paper at this conference 7) A. Carrington, D.R.J. Milverton, P.G. Roberts, P.J. Sarre, Contribution to this conference 8) M. Horani, H. Bukow, Y. Carr'e, M. Druetta, M. L. Gaillard, Contribution to this conference 9) H. Kopfermann, Nuclear Moments, Academic Press New York 1958 127(1976) A, P. ~abkiewicz,C. Duke, H. Fischer, T. Kiihl, H.-J. Kluge, H. Kremmling, E.-W. Otten, H. Schuessler, J.Phys. Soc. Japan 9 suppl., 503 (1978) and Phys.Rev. Letters 2, 180 (1977) H.L. Ravn, Proc. 3rd. Int. Conf. on Nuclei far from Stability, Cargsse, Corsica(France) 1976 CERN 76-13, Geneva 1976, p. 22 J. Bonn, F. Buchinger, P. Dabkiewicz, H. Fischer, S.L. Kaufman, H.-J:Kluge, H. Kremmling, L. Kugler, R. Neugart, E.-W. Otten, L. von Reisky, J.M. Rodriguez-Giles, J. Steinacher, K.P.C. Spath, Hyperfine Interactions 4, 174 (1978) G. Huber, C. Thibault, R. Klapisch, H.T. Duong J.L. Vialle, J. Pinard, P. Juncar, P. Jacquinot, Phys. Rev. Letters 36, 1209 (1975) G. Nowicki, K. Bekk, S. GiSring, H. Hanser, H. Rebel, G. Schatz, Phys. Rev. Letters 3,332 (1977) B. Schinzler, W. Klempt, S.L. Kaufman, H. Lochmann, G. ~oruzzi,R. Neugart, E.-W. Otten, J. Bonn, L. von Reisky, K.P.C. Spath, J. Steinacher, D. Weskott, Phys. Letters B, in press P. Jacquinot, in High-Resolution Laser Spectroscopy, ed. K. Shimoda, Topics in Applied Physics, Vol. 13 (Springer, Berlin 1976)p. 51 Private communication by authors of The fast-beam experiments have been performed in team work by J. Bonn, S.L.Kaufman, W. Klernpt, H. 2, C 18 3 G. Huber, F. Touchard, S. Biittgenbach, G. Thibault, R. Klapisch, S. Liberman, J. Pinard, H.T. Duong, P. Juncar, J.L. Vialle, P. Jacquinot, A. Pesnelle, Phys.Rev.Letters 5,4590978) Private communication by authors of [22 ] S.L. Kaufman, Opt. Commun. 17,309 (1976) A.H. Wapstra and K. Bos, Atomic Data and Nuclear Data Tables 19,'177 (1977) R. Neugart, S.L. Kaufman, W. Klempt, G. Moruzzi, E.-W. Otten, B. Schinzler, in Laser Spectroscopy 111, Proc. 3rd Int. Conf., Jackson Lake Lodge, Wyoming, USA 1977 (Springer, Berlin 1977), p. 446 C. EkstrGm, S. Lngelman, G. Wannberg, M. Skarestad, Nucl. Phys. 144 (1977) and C. EkstrGq private communication S. Ullrich and E.-W. Otten, Nucl. Physics A 248, 173 (1975) G. Huber, private communication A, - J.J. Snyder and J.L. Hall, in Laser Spectroscopy, Proc. 2nd Int. Conf., Megsve, France, 1975, (Springer, Berlin 1975) p. 6 M. Dufay and M.L. Gaillard in Laser Spectroscopy 111, Proc. 3rd Int. Conf., Jackson Lake Lodge, Wyoming, USA, 1977 (Springer, Berlin 1977), p, 231 E.-W. Otten, in Atomic Physics Y, Proc. 5th Int. Conf., Berkeley 1976 (Plenum, New York 1977), p. 239
© Copyright 2026 Paperzz