Problem 3.36 Find the gradient of the following scalar functions: (a) T = 3/(x2 + z2 ), (b) V = xy2 z4 , (c) U = z cos φ /(1 + r2 ), (d) W = e−R sin θ , (e) S = 4x2 e−z + y3 , (f) N = r2 cos2 φ , (g) M = R cos θ sin φ . Solution: (a) From Eq. (3.72), ∇T = −x̂ 6x (x2 + z2 )2 − ẑ 6z (x2 + z2 )2 . (b) From Eq. (3.72), ∇V = x̂y2 z4 + ŷ2xyz4 + ẑ4xy2 z3 . (c) From Eq. (3.82), ∇U = −r̂ 2rz cos φ (1 + r2 )2 − φ̂φ cos φ z sin φ + ẑ . 2 r(1 + r ) 1 + r2 (d) From Eq. (3.83), ∇W = −R̂e−R sin θ + θ̂θ(e−R /R) cos θ . (e) From Eq. (3.72), S = 4x2 e−z + y3 , ∂S ∂S ∂S ∇S = x̂ + ŷ + ẑ = x̂8xe−z + ŷ3y2 − ẑ4x2 e−z . ∂x ∂y ∂z (f) From Eq. (3.82), N = r2 cos2 φ , ∂N ∂N 1 ∂N + ẑ ∇N = r̂ + φ̂φ = r̂2r cos2 φ − φ̂φ2r sin φ cos φ . ∂r r ∂φ ∂z (g) From Eq. (3.83), M = R cos θ sin φ , 1 ∂M cos φ ∂M 1 ∂M + φ̂φ = R̂ cos θ sin φ − θ̂θ sin θ sin φ + φ̂φ . ∇M = R̂ + θ̂θ ∂R R ∂θ R sin θ ∂ φ tan θ Problem 3.40 For the scalar function V = xy2 − z2 , determine its directional derivative along the direction of vector A = (x̂ − ŷz) and then evaluate it at P = (1, −1, 4). Solution: The directional derivative is given by Eq. (3.75) as dV /dl = ∇V · âl , where the unit vector in the direction of A is given by Eq. (3.2): x̂ − ŷz âl = √ , 1 + z2 and the gradient of V in Cartesian coordinates is given by Eq. (3.72): ∇V = x̂y2 + ŷ2xy − ẑ2z. Therefore, by Eq. (3.75), y2 − 2xyz dV = √ . dl 1 + z2 At P = (1, −1, 4), µ ¶¯ 9 dV ¯¯ = √ = 2.18 . ¯ dl (1,−1,4) 17 Problem 3.41 Evaluate the line integral of E = x̂ x − ŷ y along the segment P1 to P2 of the circular path shown in the figure. y P1 = (0, 3) x P2 = (−3, 0) Solution: We need to calculate: Z P2 P1 E · dℓℓ. Since the path is along the perimeter of a circle, it is best to use cylindrical coordinates, which requires expressing both E and dℓℓ in cylindrical coordinates. Using Table 3-2, E = x̂ x − ŷ y = (r̂ cos φ − φ̂φ sin φ )r cos φ − (r̂ sin φ + φ̂φ cos φ )r sin φ = r̂ r(cos2 φ − sin2 φ ) − φ̂φ2r sin φ cos φ The designated path is along the φ -direction at a constant r = 3. From Table 3-1, the applicable component of dℓℓ is: dℓℓ = φ̂φ r d φ . Hence, Z P2 P1 E · dℓℓ = Z φ =180◦ h φ =90◦ Z 180◦ ¯ i ¯ r̂ r(cos2 φ − sin2 φ ) − φ̂φ 2r sin φ cos φ · φ̂φ r d φ ¯ r=3 ¯ −2r2 sin φ cos φ d φ ¯r=3 = 90◦ ¯ ◦ ¯ 2 ¯180 ¯ ¯ 2 sin φ ¯ = −2r = 9. ¯ 2 ¯φ =90◦ ¯ r=3 Problem 3.46 For the vector field E = x̂xz − ŷyz2 − ẑxy, verify the divergence theorem by computing: (a) the total outward flux flowing through the surface of a cube centered at the origin and with sides equal to 2 units each and parallel to the Cartesian axes, and (b) the integral of ∇ · E over the cube’s volume. Solution: (a) For a cube, the closed surface integral has 6 sides: Z E · ds = Ftop + Fbottom + Fright + Fleft + Ffront + Fback , n Ftop = Z 1 Z 1 x=−1 y=−1 =− Z 1 Z 1 ¡ ¢¯ x̂xz − ŷyz2 − ẑxy ¯z=1 · (ẑ dy dx) xy dy dx = x=−1 y=−1 Fbottom = Z 1 Z 1 = Z 1 Z 1 Z 1 Z 1 x=−1 y=−1 õ !¯1 ¶¯1 ¯ x2 y2 ¯¯ ¯ ¯ ¯ 4 y=−1 ¯ = 0, x=−1 ¡ ¢¯ x̂xz − ŷyz2 − ẑxy ¯z=−1 · (−ẑ dy dx) xy dy dx = x=−1 y=−1 õ !¯1 ¶¯1 ¯ x2 y2 ¯¯ ¯ ¯ 4 ¯y=−1 ¯ = 0, x=−1 ¢¯ Fright = x̂xz − ŷyz2 − ẑxy ¯y=1 · (ŷ dz dx) x=−1 z=−1 à µ ¶¯1 !¯1 Z 1 Z 1 ¯ xz3 ¯¯ ¯ 2 =− z dz dx = − ¯ ¯ 3 x=−1 z=−1 z=−1 ¯ ¡ x=−1 Fleft = Z 1 Z 1 Ffront = Z 1 Z 1 = Z 1 Z 1 ¡ ¢¯ x̂xz − ŷyz2 − ẑxy ¯ = −4 , 3 · (−ŷ dz dx) à µ ¶¯1 !¯1 Z 1 Z 1 ¯ −4 xz3 ¯¯ ¯ = z2 dz dx = − =− , ¯ ¯ 3 3 x=−1 z=−1 z=−1 ¯ x=−1 z=−1 y=−1 x=−1 y=−1 z=−1 y=−1 z=−1 ¡ ¢¯ x̂xz − ŷyz2 − ẑxy ¯x=1 · (x̂ dz dy) z dz dy = õ ¶¯1 !¯¯1 yz2 ¯¯ ¯ ¯ 2 ¯z=−1 ¯ y=−1 = 0, Fback = Z 1 Z 1 = Z 1 Z 1 y=−1 z=−1 ¡ ¢¯ x̂xz − ŷyz2 − ẑxy ¯x=−1 · (−x̂ dz dy) z dz dy = y=−1 z=−1 Z E · ds = 0 + 0 + n õ ¶¯1 !¯¯1 yz2 ¯¯ ¯ ¯ ¯ 2 z=−1 ¯ = 0, y=−1 −8 −4 −4 + +0+0 = . 3 3 3 (b) ZZZ ∇·E dv = = Z 1 Z 1 Z 1 x=−1 y=−1 z=−1 Z 1 Z 1 Z 1 x=−1 y=−1 z=−1 à = ∇·(x̂xz − ŷyz2 − ẑxy) dz dy dx (z − z2 ) dz dy dx ¯1 ¯ ¯ ¯ ¯ y=−1 ¯ ¶¶¯1 !¯¯1 µ µ 2 ¯ z3 z ¯ ¯ − xy ¯ ¯ 2 3 z=−1 ¯ x=−1 = −8 . 3 Problem 3.52 Verify Stokes’s theorem for the vector field B = (r̂r cos φ + φ̂φ sin φ ) by evaluating: Z (a) B · dl over the semicircular contour shown in Fig. P3.52(a), and n ZC (b) S × B) · ds over the surface of the semicircle. (∇× y 2 y 2 L2 1 -2 L3 0 L1 (a) x 2 0 L2 L3 L4 L1 1 2 x (b) Figure P3.52: Contour paths for (a) Problem 3.52 and (b) Problem 3.53. Solution: (a) Z B · dl = n Z L1 B · dl + Z L2 B · dl + Z L3 B · dl, B · dl = (r̂r cos φ + φ̂φ sin φ ) · (r̂ dr + φ̂φr d φ + ẑ dz) = r cos φ dr + r sin φ d φ , µZ 2 µZ 0 ¶¯ ¶¯ ¯ ¯ r cos φ dr ¯¯ B · dl = + r sin φ d φ ¯¯ r=0 L1 φ =0 φ =0, z=0 z=0 ¡ 1 2 ¢¯2 = 2 r ¯r=0 + 0 = 2, ¶¯ ¶¯ µZ π µZ 2 Z ¯ ¯ r sin φ d φ ¯¯ B · dl = r cos φ dr ¯¯ + L φ =0 r=2 Z 2 Z L3 Z = 0+ µZ B · dl = z=0 π (−2 cos φ )|φ =0 = 4, ¶¯ 0 ¯ + r cos φ dr ¯¯ r=2 φ =π ,z=0 ¡ ¢¯0 = − 21 r2 ¯r=2 + 0 = 2, B · dl = 2 + 4 + 2 = 8. n r=2, z=0 π ¶¯ ¯ r sin φ d φ ¯¯ φ =π µZ z=0 (b) ∇×B = ∇×(r̂r cos φ + φ̂φ sin φ ) µ ¶ µ ¶ 1 ∂ ∂ ∂ ∂ = r̂ 0 − (sin φ ) + φ̂φ (r cos φ ) − 0 r ∂φ ∂z ∂z ∂r ¶ µ ∂ 1 ∂ (r cos φ ) (r(sin φ )) − + ẑ r ∂r ∂φ ¶ µ 1 1 = r̂0 + φ̂φ0 + ẑ (sin φ + (r sin φ )) = ẑ sin φ 1 + , r r µ ¶¶ ZZ Z π Z 2 µ 1 ∇×B · ds = · (ẑr dr d φ ) ẑ sin φ 1 + r φ =0 r=0 Z π Z 2 ³¡ ¢¯2 ´¯¯π sin φ (r + 1) dr d φ = − cos φ ( 12 r2 + r) ¯r=0 ¯ = φ =0 r=0 φ =0 = 8. Problem 3.56 Determine if each of the following vector fields is solenoidal, conservative, or both: (a) A = x̂x2 − ŷy2xy, (b) B = x̂x2 − ŷy2 + ẑ2z, (c) C = r̂(sin φ )/r2 + φ̂φ(cos φ )/r2 , (d) D = R̂¡/R, ¢ r + ẑz, (e) E = r̂ 3 − 1+r (f) F = (x̂y + ŷx)/(x2 + y2 ) , (g) G = x̂(x2 + z2 ) − ŷ(y2 + x2 ) − ẑ(y2 + z2 ), (h) H = R̂(Re−R ). Solution: (a) ∇·A = ∇·(x̂x2 − ŷ2xy) = ∂ 2 ∂ x − 2xy = 2x − 2x = 0, ∂x ∂y ∇×A = ∇×(x̂x2 − ŷ2xy) ¶ µ ¶ µ ¶ µ ∂ ∂ ∂ 2 ∂ ∂ ∂ 2 0 − (−2xy) + ŷ (x ) − 0 + ẑ (−2xy) − (x ) = x̂ ∂y ∂z ∂z ∂x ∂x ∂y = x̂0 + ŷ0 − ẑ(2y) 6= 0 . The field A is solenoidal but not conservative. (b) ∇·B = ∇·(x̂x2 − ŷy2 + ẑ2z) = ∂ 2 ∂ 2 ∂ x − y + 2z = 2x − 2y + 2 6= 0, ∂x ∂y ∂z ∇×B = ∇×(x̂x2 − ŷy2 + ẑ2z) ¶ µ ¶ µ ∂ ∂ ∂ 2 ∂ (2z) − (−y2 ) + ŷ (x ) − (2z) = x̂ ∂y ∂z ∂z ∂x ¶ µ ∂ ∂ (−y2 ) − (x2 ) + ẑ ∂x ∂y = x̂0 + ŷ0 + ẑ0. The field B is conservative but not solenoidal. (c) µ ¶ sin φ cos φ ∇·C = ∇· r̂ 2 + φ̂φ 2 r r µ µ ¶¶ ¶ µ ∂ 1 ∂ 1 ∂ sin φ cos φ = r + + 0 2 2 r ∂r r r ∂φ r ∂z −2 sin φ − sin φ − sin φ + +0 = , = r3 r3 r3 ¶ µ cos φ sin φ ∇×C = ∇× r̂ 2 + φ̂φ 2 r r µ µ ¶¶ µ µ ¶ ¶ 1 ∂ ∂ cos φ ∂ sin φ ∂ φ = r̂ + φ̂ − 0 0− r ∂φ ∂z r2 ∂z r2 ∂r µ µ µ ¶¶ ¶¶ µ ∂ 1 ∂ cos φ sin φ + ẑ r − 2 r ∂r r ∂φ r2 µ µ ¶ µ ¶¶ 1 −2 cos φ cos φ cos φ φ = r̂0 + φ̂ 0 + ẑ − − = ẑ . r r2 r2 r3 The field C is neither solenoidal nor conservative. (d) à ! µ µ ¶¶ ∂ ∂ 1 1 ∂ 1 1 1 R̂ = 2 R2 + ∇·D = ∇· (0 sin θ ) + 0= 2 , R R ∂R R R sin θ ∂ θ R sin θ ∂ φ R à ! R̂ ∇×D = ∇× R µ µ ¶ ¶ ¶ µ 1 1 1 ∂ ∂ ∂ 1 ∂ = R̂ (0 sin θ ) − 0 + θ̂θ (R(0)) − R sin θ ∂ θ ∂φ R sin θ ∂ φ R ∂R µ ¶¶ µ 1 ∂ 1 ∂ + φ̂φ (R(0)) − = r̂0 + θ̂θ0 + φ̂φ0. R ∂R ∂θ R The field D is conservative but not solenoidal. (e) µ ¶ r E = r̂ 3 − + ẑz, 1+r 1 ∂ 1 ∂ Eφ ∂ Ez + ∇·E = (rEr ) + r ∂r r ∂φ ∂z µ ¶ 2 1 ∂ r = 3r − +1 r ∂r 1+r ¸ · r2 1 2r +1 + = 3− r 1 + r (1 + r)2 · ¸ 1 3 + 3r2 + 6r − 2r − 2r2 + r2 2r2 + 4r + 3 = + 1 6= 0, + 1 = r (1 + r)2 r(1 + r)2 ¶ µ ¶ µ µ ¶ 1 ∂ Er ∂ Er ∂ Ez 1 ∂ 1 ∂ Ez ∂ Eφ − − (rEφ ) − + φ̂φ + ẑ ∇ × E = r̂ = 0. r ∂φ ∂z ∂z ∂r r ∂r r ∂φ Hence, E is conservative, but not solenoidal. (f) x̂y + ŷx y x = x̂ 2 + ŷ 2 , 2 2 2 x +y x +y x + y2 ¶ ¶ µ µ ∂ ∂ y x + ∇·F = 2 2 2 ∂x x +y ∂ y x + y2 −2xy −2xy = 2 + 6= 0, (x + y2 )2 (x2 + y2 )2 µ ¶ µ ¶¸ · ∂ ∂ x y − ∇ × F = x̂(0 − 0) + ŷ(0 − 0) + ẑ ∂ x x2 + y2 ∂ y x2 + y2 ¶ µ 2x2 1 2y2 1 − − + = ẑ 2 x + y2 (x2 + y2 )2 x2 + y2 (x2 + y2 )2 2(y2 − x2 ) 6= 0. = ẑ 2 (x + y2 )2 F= Hence, F is neither solenoidal nor conservative. (g) G = x̂(x2 + z2 ) − ŷ(y2 + x2 ) − ẑ(y2 + z2 ), ∂ 2 2 ∂ ∂ ∇·G = (x + z ) − (y2 + x2 ) − (y2 + z2 ) ∂x ∂y ∂z = 2x − 2y − 2z 6= 0, µ ¶ µ ¶ ∂ 2 2 ∂ 2 ∂ 2 2 ∂ 2 2 2 ∇ × G = x̂ − (y + z ) + (y + x ) + ŷ (x + z ) + (y + z ) ∂y ∂z ∂z ∂x ¶ µ ∂ 2 ∂ 2 2 2 (x + z ) + ẑ − (y + x ) − ∂x ∂y = −x̂ 2y + ŷ 2z − ẑ 2x 6= 0. Hence, G is neither solenoidal nor conservative. (h) H = R̂(Re−R ), 1 ∂ 1 ∇·H = 2 (R3 e−R ) = 2 (3R2 e−R − R3 e−R ) = e−R (3 − R) 6= 0, R ∂R R ∇ × H = 0. Hence, H is conservative, but not solenoidal. Problem 3.57 Find the Laplacian of the following scalar functions: (a) V = 4xy2 z3 , (b) V = xy + yz + zx, (c) V = 3/(x2 + y2 ), (d) V = 5e−r cos φ , (e) V = 10e−R sin θ . Solution: (a) From Eq. (3.110), ∇2 (4xy2 z3 ) = 8xz3 + 24xy2 z. (b) ∇2 (xy + yz + zx) = 0. (c) From the inside back cover of the book, ¶ µ 12 3 2 = ∇2 (3r−2 ) = 12r−4 = . ∇ 2 2 x +y (x2 + y2 )2 (d) ∇ (5e 2 −r cos φ ) = 5e −r (e) ∇ (10e 2 −R sin θ ) = 10e −R ¶ µ 1 1 cos φ 1 − − 2 . r r µ ¸ · ¶ 2 cos2 θ − sin2 θ . sin θ 1 − + R R2 sin θ
© Copyright 2026 Paperzz