Sums and differences of angles 1. sin Ha + bL = sinHaL cosHbL + cosHaL sinHbL 2. sinHa - bL = sinHaL cosHbL - cosHaL sinHbL 3. cos Ha + bL = cosHaL cosHbL - sinHaL sinHbL 4. cos Ha - bL = cosHaL cosHbL + sinHaL sinHbL 5. tan Ha + bL = 6. tan Ha - bL = tanHaL + tanHbL 1 - tanHaL tanHbL tanHaL - tanHbL 1 + tanHaL tanHbL Example 1 Expand and simplify cosH2 a - bL - cosH2 a + bL. Using formula H4L, cos H2 a - bL = cos H2 aL cos HbL + sin H2 aL sin HbL Using formula H3L, cos H2 a + bL = cos H2 aL cos HbL - sin H2 aL sin HbL cos H2 a - bL - cos H2 a + bL = cos H2 aL cos HbL + sin H2 aL sin HbL - cos H2 aL cos HbL + sin H2 aL sin HbL = 2 sinH2 aL sinHbL \ cos H2 a - bL - cos H2 a + bL = 2 sin H2 aL sin HbL Example 2 Without using a calculator, find the exact value of cos105ë . Hint: Write105ë as a sum of two angles with known ratios. cos 105ë = cosH60ë + 45ë L = cosH60ë L cosH45ë L - sinH60ë L sinH45ë L = \ cos 105ë = 2 4 6 1 1 ´ 2 3 - 2 1 ´ 2 1- 3 = 2 1- 3 = 2 2 2 ´ 2 2 2 = 2 4 6
© Copyright 2026 Paperzz