University of Groningen Functional carbohydrates from the

University of Groningen
Functional carbohydrates from the red microalga Galdieria sulphuraria
Martínez García, Marta
IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to
cite from it. Please check the document version below.
Document Version
Publisher's PDF, also known as Version of record
Publication date:
2017
Link to publication in University of Groningen/UMCG research database
Citation for published version (APA):
Martínez García, M. (2017). Functional carbohydrates from the red microalga Galdieria sulphuraria
[Groningen]: University of Groningen
Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).
Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.
Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.
Download date: 19-06-2017
References
115
References
Aikawa, S., Izumi, Y., Matsuda, F., Hasunuma, T., Chang, J. S., & Kondo, A. (2012).
Synergistic enhancement of glycogen production in Arthrospira platensis by
optimization of light intensity and nitrate supply. Bioresource Technology, 108: 211215.
Aikawa, S., Nishida, A., Ho, S. H., Chang, J. S., Hasunuma, T., & Kondo, A. (2014).
Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp.
strain PCC 7002 from an oceanic environment. Biotechnology for Biofuels, 7.
Albertano, P., Ciniglia, C., Pinto, G., & Pollio, A. (2000). The taxonomic position of
Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia, 433: 137-143.
Allen, M. B. (1959) Studies with Cyanidium caldarium, an anomalously pigmented
chlorophyte. Archives of Microbiology, 32: 270-277.
Ao, Z., Simsek, S., Zhang, G., Venkatachalam, M., Reuhs, B. L., & Hamaker, B. R.
(2007). Starch with a slow digestion property produced by altering its chain length,
branch density, and crystalline structure. Journal of Agricultural and Food
Chemistry, 55: 4540-4547.
Atichokudomchai, N., Jane J-L., & Hazlewood, G. (2005) Reaction pattern of a novel
thermostable α-amylase. Carbohydrate Polymers, 64: 582-588.
Backer, D., & Saniez, M. H. (2005). Soluble highly branched glucose polymers and
their method of production. US6861519 B2.
Bailey, R. W., & Staehelin, L. A. (1968). The chemical composition of isolated cell
walls of Cyanidium caldarium. Microbiology, 54: 269-276.
Ball, S. G., & Morell, M. K. (2003). From bacterial glycogen to starch: understanding
the biogenesis of the plant starch granule. Annual Review of Plant Biology, 54: 207-233.
Barbier, G., Oesterhelt, C., Larson, M. D., Halgren, R. G., Wilkerson, C., Garavito, R.
M., Benning, C., & Weber, A. P. (2005). Comparative genomics of two closely related
unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon
merolae, reveals the molecular basis of the metabolic flexibility of Galdieria
sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant
Physiology, 137: 460-474.
Barry, V. C., Halshall, T. G., Hirst, E. L., & Jones, J. K. N. (1949) The polysaccharides
of the Florideae. Floridean starch. Journal of the Chemistry Society, 1468-1470.
Bean, R. C., & Hassid, W. Z. (1955). Assimilation of 14CO2 by a photosynthesizing red
alga, Iridophycus flaccidum. Journal of Biological Chemistry, 212: 411-425.
116
References
Becker, J. U., Vohmann, H. J., & Eilers-König, C. (1979) Glycogen metabolism in
resting and growing cells of Saccharomyces carlsbergensis. Archives of
Microbiology, 12: 143-149.
Bender, H. (1979). Glycogen from Klebsiella pneumonie M 5 al and Escherichia coli K
12. European Journal of Applied Microbiology and Biotechnology, 8: 279-287.
Bhattacharya, D., & Medlin, L. (1995). The phylogeny of plastids: a review based on
comparisons of small subunit ribosomal RNA coding regions. Journal of Phycology, 31:
489-498.
Bijttebier, A., Goesaert, H., & Delcour, J.A. (2008) Amylase action pattern on starch
polymers. Biologia, 63, 989-999.
Biwer, A., Antranikian, G., & Heinzle, E. (2002). Enzymatic production of
cyclodextrins. Applied Microbiology and Biotechnology, 59: 609-617.
Boeck, B., & Schinzel, R. (1998). Growth dependence of α-glucan phosphorylase
activity in Thermus thermophilus. Research in Microbiology, 149: 171-176.
Bondu, S., Cerantola, S., Kervarec, N., & Deslandes, E. (2009). Impact of the salt stress
on the photosynthetic carbon flux and 13C-label distribution within floridoside and
digeneaside in Solieria chordalis. Phytochemistry, 70: 173-184.
Bondu, S., Kervarec, N., Deslandes, E., & Pichon, R. (2007) Separation of floridoside
and isofloridoside by HPLC and complete 1H and 13C NMR spectral assingments for Disofloridoside. Carbohydrate Research, 342: 2470-2473.
Borowitzka, M. A. (1992). Algal biotechnology products and processes. Matching
science and economics. Journal of Applied Phycology, 4: 267-279.
Borowitzka, M. A. (2013). High-value products from microalgae. Their development
and commercialisation. Journal of Applied Phycology, 25: 743-756.
Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., &
Vítová, M. (2011). Microalgae - Novel highly efficient starch producers. Biotechnology
and Bioengineering, 108: 766-776.
Brown, A. D. (1978). Compatible solutes and extreme water stress in eukaryotic microorganisms. Advances in Microbial Physiology, 17: 181-242.
Buchholz,
K.,
&
Seibel,
J.
(2008).
Industrial
biotransformations. Carbohydrate Research, 343: 1966-1979.
carbohydrate
Buléon, A., Colonna, P., Planchot, V., & Ball, S. (1998) Starch granules: structure and
biosynthesis. International Journal of Biological Macromolecules, 23: 85-112.
117
References
Bumbak, F., Cook, S., Zachleder, V., Hauser, S., & Kovar, K. (2011). Best practices in
heterotrophic high-cell-density microalgal processes: achievements, potential and
possible limitations. Applied Microbiology and Biotechnology, 91: 31-46.
Butterworth, P. J., Warren, F. J., & Ellis, P. R. (2011). Human α‐ amylase and starch
digestion: An interesting marriage. Starch/Stärke, 63: 395-405.
Callow, M. E., & Callow,
problem. Biologist, 49:1-5.
J.
A.
(2002).
Marine
biofouling:
a
sticky
Chao, L., & Bowen, C. C. (1971). Purification and properties of glycogen isolated from
a blue-green alga, Nostoc muscorum. Journal of Bacteriology, 105: 331-338.
Ciniglia, C., Yoon, H. S., Pollio, A., Pinto, G., & Bhattacharya, D. (2004). Hidden
biodiversity of the extremophilic Cyanidiales red algae. Molecular Ecology, 13: 18271838.
Ciric, J., Oostland, J., de Vries, J. W., Woortman, A. J. J, & Loos, K (2012) Size
exclusion chromatography with multi detection in combination with matrix-assisted
laser desorption ionization-time-of-flight mass spectrometry as a tool for unraveling the
mechanism of the enzymatic polymerization of polysaccharides. Analytical Chemistry,
84: 10463-10470.
Clarens, A. F., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2010).
Environmental life cycle comparison of algae to other bioenergy
feedstocks. Environmental Science & Technology, 44: 1813-1819.
Cole, K. M., & Sheath, R. G. (1990). Biology of the red algae. Cambridge University
Press.
Colin, H., & Gueguen, E. (1930). Le sucre des Floridées. Comptes Rendus de
l'Académie des Sciences Paris, 191: 163-164.
Courtois, A., Simon-Colin, C., Boisset, C., Berthou, C., Deslandes, E., Guézennec, J.,
& Bordron, A. (2008). Floridoside extracted from the red alga Mastocarpus stellatus is
a potent activator of the classical complement pathway. Marine Drugs, 6: 407-417.
Cozzolino, S., Caputo, P., De Castro, O., Moretti, A., & Pinto, G. (2000). Molecular
variation in Galdieria sulphuraria (Galdieri) Merola and its bearing on
taxonomy. Hydrobiologia, 433: 145-151.
Crabb, W. D., & Mitchinson, C. (1997). Enzymes involved in the processing of starch
to sugars. Trends in Biotechnology, 15: 349-352.
Craigie, J. S., McLachlan, J., & Tocher, R. D. (1968). Some neutral constituents of the
Rhodophyceae with special reference to the occurrence of the floridosides. Canadian
Journal of Botany, 46: 605-611.
118
References
Crowe, J. H., Crowe, L. M., Carpenter, J. F., & Wistrom, C. A. (1987). Stabilization of
dry phospholipid bilayers and proteins by sugars. Biochemical Journal, 242: 1-10.
Da Costa, M. S., Santos, H., & Galinski, E. A. (1998). An overview of the role and
diversity of compatible solutes in Bacteria and Archaea. In Biotechnology of
Extremophiles (pp. 117-153). Springer Berlin Heidelberg.
Damager, I., Jensen, M. T., Olsen, C. E., Blennow, A., Møller, B. L., Svensson, B., &
Motawia, M. S. (2005) Chemical synthesis of a dual branched malto-decasoe: a
potential substrate for α-amylases. ChemBioChem, 6: 1224-1233.
De Luca, P., Moretti, A. (1983) Floridosides in Cyanidium caldarium, Cyanidioschyzon
merolae and Galdieria sulphuraria (Rhodophyta, Cyanidiophyceae). Journal of
Phycology, 19: 368-369.
De Luca, P., Taddei, R., & Varano, L. (1978). Cyanidioschyzon merolae: a new alga of
thermal acidic environments. Webbia, 3: 37-44.
Deremaux, L., Petitjean, C., & Wills, D. (2013) Soluble highly branched glucose
polymers for enteral and parenteral nutrition and for peritoneal dialysis. US8445460B2.
Deschamps, P., Haferkamp, I., d’Hulst, C., Neuhaus, H. E., & Ball, S. G. (2008). The
relocation of starch metabolism to chloroplasts: when, why and how. Trends in Plant
Science, 13: 574-582.
Dismukes, G. C., Carrieri, D., Bennette, N., Ananyev, G. M., & Posewitz, M. C.
(2008). Aquatic phototrophs: efficient alternatives to land-based crops for
biofuels. Current Opinion in Biotechnology, 19: 235-240.
Egorova, K., Grudieva, T., Morinez, C., Kube, J., Santos, H., Da Costa, M. S., &
Antranikian, G. (2007). High yield of mannosylglycerate production by upshock
fermentation and bacterial milking of trehalose-deficient mutant Thermus thermophilus
RQ-1. Applied Microbiology and Biotechnology, 75: 1039-1045.
Ekman, P., Yu, S., & Pedersen, M. (1991). Effects of altered salinity, darkness and
algal nutrient status on floridoside and starch content, α-galactosidase activity and agar
yield of cultivated Gracilaria sordida. British Phycological Journal, 26: 123-131.
Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). New insights on
trehalose: a multifunctional molecule. Glycobiology, 13: 17R-27R.
Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M.,
Prentice, R. D. M., Swatson, J. S., & Tiller, S. A. (1998). Starch production and
industrial use. Journal of the Science of Food and Agriculture, 77: 289-311.
Empadinhas, N., & Costa, M. S. D. (2006). Diversity and biosynthesis of compatible
solutes in hyper-thermophiles. International Microbiology, 9:199-206.
119
References
Englyst, H. N, Veenstra, J., & Hudson, G.J. (1996) Measurement of rapidly available
glucose (RAG) in plant foods: a potential in vitro predictor of the glycaemic response.
British Journal of Nutrition, 75, 327-337.
Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992) Classification and
measurement of nutritionally important starch fractions. European Journal of Clinical
Nutrition, 33-50.
Eriksen, N. T. (2008). Production of phycocyanin - a pigment with applications in
biology, biotechnology, foods and medicine. Applied Microbiology and
Biotechnology, 80: 1-14.
Fleming, I. D., Hirst, E. L., & Manners, D. J. (1956). 553. α-1: 4-Glucosans. Part IV. A
re-examination of the molecular structure of floridean starch. Journal of the Chemical
Society, 2831-2836.
Frampton, J. E., & Plosker, G. L. (2003) Icodextrin. A review of its use in peritoneal
dialysis. Drugs, 63: 2079-2105.
Fuertes, P., Roturier, J. M., & Petitjean, C. (2009). Soluble highly branched glucose
polymers, US7612198 B2.
Fujiwara, T., Ohnuma, M., Yoshida, M., Kuroiwa, T., & Hirano, T. (2013). Gene
targeting in the red alga Cyanidioschyzon merolae: single-and multi-copy insertion
using authentic and chimeric selection markers. PloS one, 8.
Gantt, E. (1981). Phycobilisomes. Annual Review of Plant Physiology, 32: 327-347.
Gidley, M. J. (1985) Quantification of the structural features of starch polysaccahrides
by NMR spectroscopy. Carbohydrate Research, 139: 85-93.
Gilbert, R. G., Wu, A. C., Sullivan, M. A., Sumarriva, G.E., Ersch, N., & Hasjim, J.
(2013) Improving human health through understanding the complex structure of glucose
polymers Anals of Bioanalytical Chemistry, 405: 8969-8980.
Goedl, C., Sawangwan, T., Mueller, M., Schwarz, & Nidetzky, B. (2008) A highyielding biocatalytic process for the production of 2-O-(α-D-glycopyranosyl)-snglycerol, a natural osmolyte and useful moisturizing ingredient. Angewandte Chemie,
47: 10086-10089.
Goedl, C., Sawangwan, T., Nidetzky, B. (2009) Method for producing 2-O-glycerol-αD-glucopyranoside. US 2009/0318372 A1.
Graverholt, O. S., & Eriksen, N. T. (2007). Heterotrophic high-cell-density fed-batch
and continuous-flow cultures of Galdieria sulphuraria and production of
phycocyanin. Applied Microbiology and Biotechnology, 77: 69-75.
120
References
Graziani, G., Schiavo, S., Nicolai, M. A., Buono, S., Fogliano, V., Pinto, G., & Pollio,
A. (2013). Microalgae as human food: chemical and nutritional characteristics of the
thermo-acidophilic microalga Galdieria sulphuraria. Food & Function, 4: 144-152.
Greenwood, C. T., & Thomson, J. (1961). Physicochemical studies on starches. Part
XXIII. Some physical properties of floridean starch and the characterization of
structure-type of branched α-1,4-glucans. Journal of the Chemical Society, 301: 15341537.
Gross, W. (2000). Ecophysiology
environments. Hydrobiologia, 433: 31-37.
of
algae
living
in
highly
acidic
Gross, W., & Oesterhelt, C. (1999) Ecophysiological studies on the red alga Galdieria
sulphuraria isolated from southwest Iceland. Plant Biology, 1: 694-700.
Gross, W., & Schnarrenberger, C. (1995) Heterotrophic growth of two strains of the
acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiology, 36: 633-638.
Gross, W., Küver, J., Tischendorf, G., Bouchaala, N., & Büsch, W. (1998).
Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas.
European Journal of Phycology, 33: 25-31.
Gross, W., Oesterhelt, C., Tischendorf, G., & Lederer, F. (2002) Characterization of a
non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech
Republic). European Journal of Phycology, 37: 477-482.
Guiry, M.D. & Guiry, G.M. 2016. AlgaeBase. World-wide electronic publication,
National University of Ireland, Galway. www.algaebase.org (searched on 25 October
2016).
Gunja-Smith, Z., Marchall, J. J., & Smith, E. E. (1971) Enzymatic determination of the
unit chain length of glycogen and related polysaccharides. FEBS letters, 13: 309-311.
Guo, L., Zhang, J., Hu, J., Du, X., & Cui, B. (2016). The effects of entanglement
concentration on the hydrodynamic properties of cereal starches. Journal of the Science
of Food and Agriculture.
Hagemann, M (2016) Coping with high and variable salinity: molecular aspects of
compatible solute accumulation. In: Borowitzka et al. (eds.) The physiology of
microalgae, 1st edn. Springer International Publishing, pp 359-372.
Hagemann, M. (2011). Molecular biology of cyanobacterial salt acclimation. FEMS
Microbiology Reviews, 35: 87-123.
Hagemann, M., & Pade, N. (2015) Heterosides – compatible solutes occurring in
prokaryotic and eukaryotic phototrophs. Plant Biology, 17: 927-934.
121
References
Hara, F., Akazawa, T., & Kojima, K. (1973). Glycogen biosynthesis in Chromatium
strain D: I. characterization of glycogen. Plant and Cell Physiology, 14: 737-745.
Hejazi, M. A., & Wijffels, R. H. (2004). Milking of microalgae. Trends in
Biotechnology, 22: 189-194.
Hejazi, M. A., Holwerda, E., & Wijffels, R. H. (2004). Milking microalga Dunaliella
salina for β‐ carotene production in two‐ phase bioreactors. Biotechnology and
Bioengineering, 85: 475-481.
Hellio, C., Simon-Colin, C., Clare, A., & Deslandes, E. (2004) Isethonic acid and
floridoside isolated from the red alga Grateloupia turuturu inhibit settlement of Balanus
Amphitrite crypid larvae. Biofouling, 20: 139-145.
Henkanatte-Gedera, S. M., Selvaratnam, T., Karbakhshravari, M., Myint, M.,
Nirmalakhandan, N., Van Voorhies, W., & Lammers, P. J. (2016). Removal of
dissolved organic carbon and nutrients from urban wastewaters by Galdieria
sulphuraria: laboratory to field scale demonstration. Algal Research, article in press.
Hirabaru, C., Izumo, A., Fujiwara, S., Tadokoro, Y., Shimonaga, T., Konishi, M.,
Yoshida, M., Fujita, N., Nakamura, Y., Yoshida, M., Kuroiwa, T., & Tsuzuki, M.
(2010) The primitive rhodophyte Cyanidioschyzon merolae contains a
semiamylopectin-type, but not an amylose-type, α-glucan. Plant Cell Physiology, 51:
682-693.
Hirose, H. (1958). Rearrangement of the systematic position of a thermal alga,
Cyanidium caldarium. Botanical Magazine Tokyo,71: 347-352.
Jeong, J. W., Seo, D. H., Jung, J. H., Park, J. H., Baek, N. I., Kim, M. J., & Park, C. S.
(2014) Biosynthesis of glucosylglycerol, a compatible solute, using intermolecular
transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT.
Applied Biochemistry and Biotechnology, 173: 904-917.
Ju, X., Igarashi, K., Miyashita, S. I., Mitsuhashi, H., Inagaki, K., Fujii, S. I., Sawada,
H., Kuwabara, T., & Minoda, A. (2016). Effective and selective recovery of gold and
palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria
sulphuraria. Bioresource Technology, 211:759-764.
Kasrten, U., Barrow, K. D., & King, R. J. (1993) Floridoside, L-isofloridoside and Disofloridoside in the red alga Porphyra columbina – Seasonal and osmotic effects. Plant
Physiology, 103: 485-491.
Kauss, H. (1968). Galaktosylglyzeride und Osmoregulation in Rotalgen. Zeitschrift für
Pflanzenphysiologie, 58: 428-433.
122
References
Kent, P. W., & Stacey, M. (1949). Studies in the glycogen of M. tuberculosis (human
strain). Biochimica et Biophysica Acta, 3: 641-647.
Kerjean, V., Morel, B., Stiger, V., Bessières, M. A., Simon-Colin, C., Magné, C., &
Deslandes, E. (2007) Optimization of floridoside production in the red alga
Mastocarpus stellatus: pre-conditioning, extraction and seasonal variations. Botanica
Marina, 50: 59-64.
Kerr, R. W., Cleveland, F. C.,& Katzbeck, W. J. (1951) The action of amyloglucosidase on amylose and amylopectin. Journal of the American Chemical Society,
73: 3916-3921.
Khajuria. A. & Krahn, J. (2005) Osmolality revisited – Deriving and validating the
best formula for calculated osmolality. Clinical Biochemistry, 38: 514-519.
Kim, E. J., Ryu, S. I., Bae, H. A., Huong, N. T., & Lee, S. B. (2008). Biochemical
characterisation of a glycogen branching enzyme from Streptococcus mutans:
Enzymatic modification of starch. Food Chemistry, 110: 979-984.
Kim, M. J., Li, Y. X., Dewapriya, P., Ryu, B. M., & Kim, S. K. (2013) Floridoside
suppresses pro-inflamatory reponses by blocking MAPK signaling in activated
microglia. BMB Reports, 46: 398-403.
Kim, S. K., & Chojnacka, K. (Eds.). (2015). Marine Algae Extracts: processes,
products, and applications, 2 Volume Set. John Wiley & Sons.
Kirkman, B. R., & Whelan, W. J. (1986). Glucosamine is a normal component of liver
glycogen. FEBS Letters, 194: 6-11.
Kirst, G. O. (1980) Low MW carbohydrates and ions in Rhodophyceae: quantitative
measurement of floridoside and digeneaside. Phytochemistry, 19: 1107-1110.
Kirst, G. O., & Bisson, M. A. (1979) Regulation of turgor pressure in marine algae:
ions and low-molecular-weight organic compounds. Australian Journal of Plant
Physiology, 6: 539-556.
Klein, J., & Stumm, G. (2011) Use of glucosyl glycerol. US20110207681 A1.
Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating
biopolymer and sustainable raw material. Angewandte Chemie International
Edition, 44: 3358-3393.
Kremer, B. P. (1978). Patterns of photoassimilatory products in Pacific
Rhodophyceae. Canadian Journal of Botany, 56: 1655-1659.
Lee, B. H., Yan, L., Phillips, R. J., Reuhs, B. L., Jones, K., Rose, D. R., Nichols, B. L.,
Quezada-Calvillo, R., Yoo, S. H., & Hamaker, B. R. (2013). Enzyme-synthesized
123
References
highly branched maltodextrins have slow glucose generation at the mucosal αglucosidase level and are slowly digestible in vivo. PloS One, 8.
Lee, C. K., Le, Q. T., Kim, Y. H., Shim, J. H., Lee, S. J., Park, J. H., lee, K. P., Song, S.
H., Auh, J. H., Lee, S. H. & Park, K. H. (2007). Enzymatic synthesis and properties of
highly branched rice starch amylose and amylopectin cluster. Journal of Agricultural
and Food Chemistry, 56: 126-131.
Lee, Y. K. (2001). Microalgal mass culture systems and methods: their limitation and
potential. Journal of Applied Phycology, 13: 307-315.
Li, S. Y., Lellouche, J. P., Shabtai, Y., & Arad, S. (2001). Fixed carbon partitioning in
the red microalga Porphyridium sp.(Rhodophyta). Journal of Phycology, 37: 289-297.
Li, S. Y., Shabtai, Y., & Arad, S. (2002). Floridoside as a carbon precursor for the
synthesis of cell wall polysaccharide in the red microalga Porphyridium
sp.(Rhodophyta). Journal of Phycology, 38: 931-938.
Li, W., Li, C., Gu, Z., Qiu, Y., Cheng, L., Hong, Y., & Li, Z. (2016). Relationship
between structure and retrogradation properties of corn starch treated with 1, 4-α-glucan
branching enzyme. Food Hydrocolloids, 52: 868-875.
Li, Y. X., Li, Y., Lee, S. H., Qian, Z. J., & Kim, S. K. (2009). Inhibitors of oxidation
and matrix metalloproteinases, floridoside, and D-isofloridoside from marine red alga
Laurencia undulata. Journal of Agricultural and Food Chemistry, 58: 578-586.
Lichtenthaler, F. W., & Peters, S. (2004). Carbohydrates as green raw materials for the
chemical industry. Comptes Rendus Chimie, 7: 65-90.
Lillie, S. H., & Pringle, J. R. (1980) Reserve carbohydrate metabolism in
Saccharomyces cervisiae: responses to nutrient limitation. Journal of Bacteriology, 143:
1384-1394.
Lou, J., Dawson, K. A., & Strobel, H. J. (1997). Glycogen Formation by the ruminal
bacterium Prevotella ruminicola. Applied and Environmental Microbiology, 63:14831488.
Manners, D. J. (1991) Recent developments in our understanding of glycogen
structure. Carbohydrate Polymers, 16: 37-82.
Manners, D. J., & Wright, A. (1962). 885. α-1, 4-Glucosans. Part XIV. The interaction
of concanavalin-A with glycogens. Journal of the Chemical Society (Resumed), 45924595.
Martinez-Garcia, M., & van der Maarel, M. J. E. C. (2016) Floridoside production by
the red microalga Galdieria sulphuraria under different conditions of growth and
osmotic stress. AMB Express, 6:71.
124
References
Martinez-Garcia, M., Stuart M. C. A., & van der Maarel M. J. E. C. (2016).
Characterization of the highly branched glycogen from the thermoacidophilic red
microalga Galdieria sulphuraria and comparison with other glycogens. International
Journal of Biological Macromolecules, 89: 12-18.
Matsui, M., Kakuta, M., & Misaki, A. (1993) Comparison of the unit-chain distribution
of glycogens from different biological sources, revealed by anion exchange
chromatography. Bioscience, Biotechnology and Biochemistry, 557: 623-627.
Maughan, R.J. (1998) The sports drinks as a functional food: formulations for
successful performance. Proceedings of the Nutrition Society, 57, 15-23.
McCracken, D. A., & Cain, J. R. (1981). Amylose in floridean starch. New
Phytologist, 88: 67-71.
Meeuse, B. J. D., Andries, M., & Wood, J. A. (1960). Floridean starch. Journal of
Experimental Botany, 11: 129-140.
Meléndez, R., Meléndez-Hevia, E., & Cascante, M. (1997) How did glycogen structure
evolve to satisfy the requirement for rapid mobilization of glucose? A problem of
physical constraints in structure building. Journal of Molecular Evolution, 45: 446-455.
Melendez-Hevia, E., Waddell, T. G., & Shelton, E. D. (1993). Optimization of
molecular design in the evolution of metabolism: the glycogen molecule. Biochemical
Journal, 295: 477-483.
Meng, J., & Srivastava, L. M. (1991). Partial purification and characterization of
floridoside phosphate synthase from Porphyra perforata. Phytochemistry, 30: 17631766.
Meng, J., & Srivastava, L. M. (1993) Variations in floridoside content and floridoside
phosphate synthase activity in Porphyria perforata (Rhodophyta). Journal of
Phycology, 29: 82-84.
Meng, J., Rosell, K. G., & Srivastava, L. M. (1987). Chemical characterization of
floridosides from Porphyra perforata. Carbohydrate Research, 161: 171-180.
Merola, A., Castaldo, R., Luca, P. D., Gambardella, R., Musacchio, A., & Taddei, R.
(1981). Revision of Cyanidium caldarium. Three species of acidophilic algae. Plant
Biosystem, 115: 189-195.
Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal
oil. Bioresource Technology, 97: 841-846.
Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T., & Tanaka, K. (2004).
Improvement of culture conditions and evidence for nuclear transformation by
125
References
homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant and Cell
Physiology, 45: 667-671.
Minoda, A., Sawada, H., Suzuki, S., Miyasita, S., Inagaki, K., Yamamoto, T., &
Tsuzuki, M. (2015) Recovery of rare earth elements from the sulfothermophilic red alga
Galdieria sulphuraria using aqueous acid. Applied Microbiology and Biotechnology,
99: 1513-1519.
Mistry, C. D, & Gokal, R. (1993) Can ultrafiltration occur with a hypo-osmolar
solution in peritoneal dialysis?: the role for “colloid”osmosis. Clinical Science, 85: 495500.
Mistry, C. D., & Gokal, R. (1994). The use of glucose polymer (icodextrin) in
peritoneal dialysis: an overview. Peritoneal Dialysis International, 14: S158-S161.
Moberly, J., Mujais, S., Gehr, T., Hamburger, R., Sprague, S., Kucharski, A., Reynolds,
R., Ogrinc, F., Martis, L., & Wolfson, M. (2002) Pharmacokinetics of icodextrin in
peritoneal dialysis patients. Kidney International, 62: S23-S33.
Möllers, K. B., Cannella, D., Jørgensen, H., & Frigaard, N. U. (2014). Cyanobacterial
biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast
fermentation. Biotechnology for Biofuels, 7.
Morales-Sánchez, D., Martinez-Rodriguez, O. A., & Martinez, A. (2016).
Heterotrophic cultivation of microalgae: production of metabolites of commercial
interest. Journal of Chemical Technology and Biotechnology.
Moreira, D., Le Guyader, H., & Philippe, H. (2000). The origin of red algae and the
evolution of chloroplasts. Nature, 405: 69-72.
Nagasaka, S., Nishizawa, N. K., Mori, S., & Yoshimura, E. (2004). Metal metabolism
in the red alga Cyanidium caldarium and its relationship to metal
tolerance. Biometals, 17: 177-181.
Nagashima, H., Nakamura, S., Nisizawa, K., & Hori, T. (1971). Enzymic synthesis of
floridean starch in a red alga, Serraticardia maxima. Plant and Cell Physiology, 12:
243-253.
Nakamura, Y., Takahashi,J., Sakurau, A., Inaba, Y., Suzuki, E., Nihei, S., Fujiwara, S.,
Tsuzuki, M., Miyashita, H., Ikemoto, H., Kawachi, M., Sekiguchi, H., & Kurano, N.
(2005) Some cyanobacteria synthesize semi-amylopectin type of α-polyglucans instead
of glycogen. Plant Cell Physiology, 46: 539-545.
Nelson, N. (1944) A photometric adaptation of the Somogyi method for the
determination of glucose. Journal of Biological Chemistry, 153: 375-380.
126
References
Nevoigt, E., & Stahl, U. (1997). Osmoregulation and glycerol metabolism in the yeast
Saccharomyces cerevisiae. FEMS Microbiology Reviews, 21: 231-241.
Nordin, J. H., & Hansen, R. G. (1963). Isolation and characterization of galactose from
hydrolysates of glycogen. Journal of Biological Chemistry, 238: 489-494.
Nyvall, P., Pelloux, J., Davies, H. V., Pedersén, M., & Viola, R. (1999). Purification
and characterisation of a novel starch synthase selective for uridine 5′-diphosphate
glucose from the red alga Gracilaria tenuistipitata. Planta, 209: 143-152.
Oesterhelt, C., Schnarrenberger, C., & Gross, W. (1999). Characterization of a
sugar/polyol uptake system in the red alga Galdieria sulphuraria. European Journal of
Phycology, 34: 271-277.
Pade, N., Linka, N., Ruth, W., Weber, A. P. M., & Hagemann, M. (2015) Floridoside
and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in
the red alga Galdieria sulphuraria. NewPhytologist, 205: 1227-1238.
Pazur, J.H., & Ando, T. (1959) The action of an amyloglucosidase of Aspergillus niger
on starch and malto-oligosaccharides. The Journal of Biological Chemistry, 234: 19661970.
Peat, S., Turvey, J. R., & Evans, J. M. (1957). Isolation of nigerose from floridean
starch. Nature ,179: 261 – 262.
Peat, S., Turvey, J. R., & Evans, J. M. (1959). The structure of floridean starch. Part I.
Linkage analysis by partial acid hydrolysis. Journal of the Chemical Society, 653: 32233227.
Perez-Garcia, O., Escalante, F. M., de-Bashan, L. E., & Bashan, Y. (2011).
Heterotrophic cultures of microalgae: metabolism and potential products. Water
Research, 45: 11-36.
Posten, C., & Chen, S. F. (Eds.). (2016). Microalgae Biotechnology (Vol. 153).
Springer.
Powell, P. O., Sullivan, M. A., Sheehy, J. J., Schulz, B. L., Warren, F. J., & Gilbert, R.
G. (2015). Acid hydrolysis and molecular density of phytoglycogen and liver glycogen
helps understand the bonding in glycogen α (composite) particles. PloS One, 10.
Preiss, J. (1984) Bacterial glycogen synthesis and its regulation. Annual Reviews of
Microbiology, 38: 419-458.
Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of
microalgae. Applied Microbiology and Biotechnology, 65: 635-648.
127
References
Putaux, J. L., Buléon, A., Borsali, R., & Chanzy, H. (1999) Ultrastructural aspects of
phytoglycogen from cryo-transmission electron microscopy and quasi-elastic light
scattering data. International Journal of Biological Macromolecules, 26: 145-150.
Qian, P. Y., Xu, Y., & Fusetani, N. (2009). Natural products as antifouling compounds:
recent progress and future perspectives. Biofouling, 26: 223-234.
Radmer, R. J. (1996). Algal diversity and commercial algal products. Bioscience, 46:
263-270.
Reed, R. H. (1985) Osmoacclimation in Bangia atropurpurea (Rhodophyta, Bangiales):
the osmotic role of floridoside. Brithish Phycology Journal, 20: 211-218.
Reed, R. H., Collins, J. C., & Russell, G. (1980). The effects of salinity upon
galactosyl-glycerol content and concentration of the marine red alga Porphyra purpurea
(Roth) C. Ag. Journal of Experimental Botany, 31: 1539-1554.
Renn, D. (1997). Biotechnology and the red seaweed polysaccharide industry: status,
needs and prospects. Trends in Biotechnology, 15: 9-14.
Rigano, C., Fuggi, A., Rigano, V. D. M., & Aliotta, G. (1976). Studies on utilization of
2-ketoglutarate, glutamate and other amino acids by the unicellular alga Cyanidium
caldarium. Archives of Microbiology, 107: 133-138.
Roberts, M. F. (2005). Organic compatible solutes of halotolerant and halophilic
microorganisms. Saline Systems, 1.
Röper, H. (2002). Renewable raw materials in Europe—industrial utilisation of starch
and sugar. Starch/Stärke, 54: 89-99.
Rosenberg, J. N., Oyler, G. A., Wilkinson, L., & Betenbaugh, M. J. (2008). A green
light for engineered algae: redirecting metabolism to fuel a biotechnology
revolution. Current Opinion in Biotechnology, 19: 430-436.
Rothschild, L. J., & Mancinelli,
environments. Nature, 409: 1092-1101.
R.
L.
(2001).
Life
in
extreme
Ryu, B. M., Li, Y. X., Kang, K. H., Kim, S. K., & Kim, D. G. (2015) Floridoside from
Laurencia undulata promotes osteogenic differentiation in murine bone marrow
mesenchymal cells. Journal of Functional Foods, 19: 505-511.
Sakarika, M., & Kornaros, M. (2016). Effect of pH on growth and lipid accumulation
kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur
limitation. Bioresource Technology, 219: 694-701.
Sakurai, T., Aoki, M., Ju, X., Ueda, T., Nakamura, Y., Fujiwara, S., Umemura, T.,
Tsuzuki, M., & Minoda, A. (2016). Profiling of lipid and glycogen accumulations under
128
References
different growth conditions in the sulfothermophilic
sulphuraria. Bioresource Technology, 200: 861-866.
red
alga
Galdieria
Santos, H., & Da Costa, M. S. (2002). Compatible solutes of organisms that live in hot
saline environments. Environmental Microbiology, 4: 501-509.
Sarian, F. D., Rahman, D. Y., Schepers, O. & van der Maarel, M. J. E. C (2016).
Effects of oxygen limitation on the biosynthesis of photo pigments in the red microalgae
Galdieria sulphuraria strain 074G. PloS One, 11.
Sauer, T., & Galinski, E. A. (1998). Bacterial milking: a novel bioprocess for
production of compatible solutes. Biotechnology and Bioengineering, 57: 306-313.
Sawangwan, T., Goedl, C., & Nidetzky, B. (2010). Glucosylglycerol and
glucosylglycerate as enzyme stabilizers. Biotechnology Journal, 5: 187-191.
Scherp, H. W. (1955). Neisseria and neisserial infections. Annual Reviews in
Microbiology, 9: 319-334.
Schmidt, R. A., Wiebe, M. G., & Eriksen, N. T. (2005) Heterotrophic high cell-density
fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria.
Biotechnology and Bioengineering, 90:77-84.
Schönknecht, G., Chen, W. H., Ternes, C. M., Barbier, G. G., Shrestha, R. P., Stanke,
M., Bräutigam, A., Baker, B. J., Banfield, J. F., Garavito, R. M., Carr, K., Wilkerson,
C., Rensing, S. A., Gagneul, D., Dickenson, N. E., Oesterhelt, C., Lercher, M. J., &
Weber, A. P. M. (2013) Gene transfer from bacteria and archaea facilitated evolution of
an extremophilic eukaryote. Science, 339: 1207-1209.
Schwarz, T.; Klein, J. (2011) Compositions containing glucosyl glycerol. US
2011/0306568 A1.
Scigelova, M., Singh, S., & Crout, D. H. G. (1999) Glycosidases – a great synthetic
tool. Journal of Molecular Catalysis, 6: 483-494.
Seckbach, J. (1987). Evolution of eukaryotic cells via bridge algae. Annals of the New
York Academy of Sciences, 503: 424-437.
Seckbach, J. (1999). The Cyanidiophyceae: hot spring acidophilic algae. In Enigmatic
microorganisms and Life in Extreme Environments (pp. 425-435). Springer
Netherlands.
Sekar, S., & Chandramohan, M. (2008). Phycobiliproteins as a commodity: trends in
applied research, patents and commercialization. Journal of Applied Phycology, 20:
113-136.
129
References
Sentsova, O. Y. (1991). Diversity of acido-theromphilic unicellular algae of the genus
Galdieria (Rhodophyta, Cyanidiophyceae). Botanicheskii Zhurnal, 76: 69-79.
Sheath, R. G., Hellebust, J. A., & Sawa, T. (1981). Floridean starch metabolism of
Porphyridium purpureum (Rhodophyta) III. Effects of darkness and metabolic
inhibitors. Phycologia, 20: 22-31.
Shimonaga, T., Fujiwara, S., Kaneko, M., Izumo, A., Nihei, S., Francisco Jr, P. B.,
Satoh, A., Fujita, N., Nakamura, Y., & Tsuzuki, M. (2007). Variation in storage αpolyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and
glycogen type in Cyanidium. Marine Biotechnology, 9: 192-202.
Shimonaga, T., Konoshi, M., Oyama, Y., Fujiwara, S., Satoh, A., Fujita, N., Colleoni,
C., Buléon, A., Putaux, J. L., Ball, S. G., Yokoyama, A., Hara, Y., Nakamura, Y., &
Tsuzuki, M. (2008) Variation in storage α-glucans of the Porphyridiales (Rhodophyta).
Plant Cell Physiology, 49: 103-116.
Shinoahara, M. L., Ihara, M., Abo, M. Hashida, M., Takagi, S., & Beck, T. C. (2001)
A novel thermostable branching enzyme from an extremely thermophilic bacterial
species, Rhodotermus obamensis. Applied Microbiology and Biotechnology, 57: 653659.
Simon-Colin, C., Kervarec, N., & Deslandes, E. (2004) NMR 13C-isotopic enrichment
to study carbon partitioning into organic solutes in the red alga Grateloupia doryphore.
Plant Physiology and Biochemistry, 42:21-26.
Simon-Colin, C., Kervarec, N., Pichon, R., & Deslandes, E. (2002) Complete 1H and
13
C spectral assignment of floridoside. Carbohydrate Research, 337: 179-280.
Smythe, C., & Cohen, P. (1991). The discovery of glycogenin and the priming
mechanism for glycogen biogenesis. In EJB Reviews 1991 (pp. 149-155). Springer
Berlin Heidelberg.
Song, K., Tan, X., Liang, Y., & Lu, X. (2016). The potential of Synechococcus
elongatus UTEX 2973 for sugar feedstock production. Applied Microbiology and
Biotechnology, 1-11.
Stadnichuk, I. N., Rakhimberdieva, M. G., Bolychevtseva, Y. V., Yurina, N. P.,
Karapetyan, N. V., & Selyakh, I. O. (1998). Inhibition by glucose of chlorophyll a and
phycocyanobilin biosynthesis in the unicellular red alga Galdieria partita at the stage of
coproporphyrinogen III formation. Plant science, 136: 11-23.
Stadnichuk, I. N., Semenova, L. R., Smirnova, G. P., & Usov, A. I. (2007). A highly
branched storage polyglucan in the thermoacidophilic red microalga Galdieria maxima
cells. Applied Biochemistry and Microbiology, 43: 78-83.
130
References
Stiller, J. W. & Hall, B.D. (1997) The origin of red algae: implications for plastid
evolution. Proceeding of the National Academy of Science of USA, 94: 4520-4525.
Takenaka, F., & Uchiyama, H. (2000) Synthesis of α-glucosylglycerol by αglucosidase and some of its characteristics. Bioscience, Biotechnology and
Biochemistry, 64: 1321-1326.
Takii, H., Ishihara, K., Kometani, T. Okada, S., & Fushiki, T. (1999). Enhancement of
swimming endurance in mice by highly branched cyclodextrin. Bioscience,
Biotechnology and Biochemistry, 63: 2045-2052.
Takii, H., Takii, Y., Kometani, T., Nishimura, T., Nakae, T., Kuriki, T., Fushiki, T.
(2005) Fluids containing a highly branched cyclic dextrin influence the gastric emptying
rate. International Journal of Sports Medicine, 26: 314-319.
Thiem, J., Scheel, O., & Schneider, G. (1999) Cosmetic formulations having an
effective content of glycosylglycerides. US005891854A.
Thompson, D. B. (2000) On the non-random nature of amylopectin branching.
Carbohydrate Polymers, 43: 223-239.
Tischendorf, G., Oesterhelt, C., Hoffmann, S., Girnus, J., Schnarrenberger, C., &
Gross, W. (2007). Ultrastructure and enzyme complement of proplastids from
heterotrophically grown cells of the red alga Galdieria sulphuraria. European Journal
of Phycology, 42: 243-251.
Toplin, J. A., Norris, T. B., Lehr, C. R., McDermott, T. R., & Castenholz, R. W.
(2008). Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in
Yellowstone National Park, Japan, and New Zealand. Applied and Environmental
Microbiology, 74: 2822-2833.
Usui, T., Yokoyama, M., Yamaoka, N., Matsuda, K., Tuzimira, K., Sugiyama, H., &
Seto, S. (1999) , Proton magnetic resonance spectra of D-gluco-oligosaccharides and Dglucans. Carbohydrate Research, 33: 105-116.
Van der Maarel, M. J., & Leemhuis, H. (2013). Starch modification with microbial
alpha-glucanotransferase enzymes. Carbohydrate Polymers, 93: 116-121.
Van der Maarel, M. J., Van Der Veen, B., Uitdehaag, J. C., Leemhuis, H., &
Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the
α-amylase family. Journal of Biotechnology, 94: 137-155.
Viola, R., Nyvall, P., & Pedersén, M. (2001). The unique features of starch metabolism
in red algae. Proceedings of the Royal Society of London B: Biological Sciences, 268:
1417-1422.
131
References
Wang, L., & Wise, M. J. (2011). Glycogen with short average chain length enhances
bacterial durability. Naturwissenschaften, 98:719-729.
Weber, A., Oesterhelt, C., Gross, W., Bräutigam, A., Imboden, L., Krassovskaya, I.,
Linka, N., Truchina, J., Schneidereit, J., Voll, H., Voll, L. M., Zimmermann, M., Jamai,
A., Riekhof, W. R., Yu, B., Garavito,, M., & Benning, C. (2004). EST-analysis of the
thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A
biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant
Molecular Biology, 55: 17-32.
Weber, M., & Wöber, G. (1975) The fine structure if the branched α-glucan from the
blue green alga Anacystis nidulans: comparison with other bacterial glycogens and
phytoglycogen. Carbohydrate Research, 39: 395-302.
Wei, W., Qi, D., Zhao, H. Z., Lu, Z. X., Fengxia, L. V., & Bie, X. (2013) Synthesis and
characterization of galactosylglycerol by β-galactosidase catalyzed reverse hydrolysis of
galactose and glycerol. Food Chemistry, 141: 3085-3092.
Weïwer, M., Sherwood, T., & Linhardt, R. J. (2008). Synthesis of floridoside. Journal
of Carbohydrate Chemistry, 27:, 420-427.
Whyte, J. N. C., & Strasdine, G. A. (1972). An intracellular α-D-glucan from
Clostridium botulinum, type E. Carbohydrate Research, 25: 435-441.
Wijffels, R. H., & Barbosa,
biofuels. Science, 329: 796-799.
M.
J.
(2010).
An
outlook
on
microalgal
Wilson, W. A., Roach, P. J., Montero, M., Baroja-Fernández, E., Muñoz, F. J.,
Eydallin, G., Viale, A. M., & Pozueta-Romero, J. (2010). Regulation of glycogen
metabolism in yeast and bacteria. FEMS Microbiology Reviews, 34: 952-985.
Wind, J., Smeekens, S., & Hanson, J. (2010). Sucrose: metabolite and signaling
molecule. Phytochemistry, 71:1610-1614.
Yang, E. C., Boo, S. M., Bhattacharya, D., Saunders, G. W., Knoll, A. H., Fredericq, S.,
Graf, L. & Yoon, H. S. (2016). Divergence time estimates and the evolution of major
lineages in the florideophyte red algae. Scientific Reports, 6.
Yoo, S. H., Keppel, C., Spalding, M., & Jane, J. L. (2007). Effects of growth condition
on the structure of glycogen produced in cyanobacterium Synechocystis sp.
PCC6803. International Journal of Biological Macromolecules, 40: 498-504.
Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. D., & Bhattacharya, D. (2006)
Defining the major lineages of red algae (Rhodophyta). Journal of Phycology, 42: 482492.
132
References
Yoon, H., Ciniglia, C., Wu, M., Comeron, J. M., Pinto, G., Pollio, A., & Bhattacharya,
D. (2006). Establishment of endolithic populations of extremophilic Cyanidiales
(Rhodophyta). BMC Evolutionary Biology, 6.
Yoshimura, E., Nagasaka, S., Sato, Y., Satake, K., & Mori, S. (1999). Extraordinary
high aluminium tolerance of the acidophilic thermophilic alga, Cyanidium
caldarium. Soil Science and Plant Nutrition, 45: 721-724.
Yu, S., Blennow, A., Bojko, M., Madsen, F., Olsen, C. E., & Engelsen, S. B. (2002).
Physico-chemical characterization of floridean starch of red algae. Starch/Stärke, 54:
66-74.
Zevenhuizen, L. P. T. M (1966) Formation and function of the glycogen-like
polysaccharide of Arthrobacter. Antonie van Leeuwenhoek, 32: 356-372.
Zierer, M. S., Vieira, R. P., Mulloy, B., & Mourão, P. A. (1995). A novel acidic
glycogen extracted from the marine sponge Aplysina fulva (poriferademospongiae). Carbohydrate Research, 274: 233-244.
133