Discreteness, Hybrid Automata, and Biology

Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Discreteness, Hybrid Automata, and Biology
A. Casagrande1,2
1 DIMI,
C. Piazza1
A. Policriti1,2
University of Udine, Udine, Italy
2 Applied
Genomics Institute, Udine, Italy
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Which is Your Point of View?
The world is dense
The world is discrete
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Which is Your Point of View?
The world is dense
(R, +, ∗, <, 0, 1) first-order theory is decidable
The world is discrete
Diophantine equations are undecidable
What about their interplay?
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Outline
1
Hybrid Automata
2
Examples
3
Undecidability Results
4
Finite Precision Semantics
5
Conclusions
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Hybrid Systems
Many real systems have a double nature. They:
evolve in a continuous way
are ruled by a discrete system
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Hybrid Systems
Many real systems have a double nature. They:
evolve in a continuous way
are ruled by a discrete system
We call such systems hybrid systems and we can formalize
them using hybrid automata
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Hybrid Automata - Intuitively
Intuitively, a hybrid automaton is a finite state automaton H with
continuous variables X
v0
v
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Hybrid Automata - Intuitively
Intuitively, a hybrid automaton is a finite state automaton H with
continuous variables X
v0
v
Dyn(v)[X, X 0 , T ]
Dyn(v 0 )[X, X 0 , T ]
Inv (v)[X]
Inv (v 0 )[X]
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Hybrid Automata - Intuitively
Intuitively, a hybrid automaton is a finite state automaton H with
continuous variables X
Act(e)[X] Reset(e)[X, X 0 ]
v0
v
Dyn(v)[X, X 0 , T ]
Dyn(v 0 )[X, X 0 , T ]
Inv (v)[X]
Inv (v 0 )[X]
Act(e0 )[X] Reset(e0 )[X, X 0 ]
A state is a pair hv , r i where r is an evaluation for X
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Hybrid Automata - Semantics
v0
v
f (t0 )
s
r
Definition (Continuous Transition)
t
hv , r i →
− C hv , si
⇐⇒
there exists a continuous g : R+ 7→
Rk such that r = g(0), s = g(t),
and for each t 0 ∈ [0, t] the formulæ
Inv (v )[g(t 0 )] and Dyn(v )[r , g(t 0 ), t 0 ]
hold
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Hybrid Automata - Semantics
v0
v
r
s
Definition (Discrete Transition)
e
hv , r i −
→D hv 0 , si
⇐⇒
e ∈ E and Inv (v )[r ], Act(e)[r ],
Reset(e)[r , s], and Inv (v 0 )[s]
hold
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Example
Bouncing Ball
X0 = X
V 0 = −γV
Ẋ = V
V̇ = −g
X≥0
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Example
Zeno Behavior The automaton avoids time elapsing by
crossing edges infinitely often
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Example
Zeno Point The limit point of a Zeno behavior
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Delta-Notch
Delta and Notch are proteins involved in cell differentiation
(see, e.g., Collier et al., Ghosh et al.)
Notch production is triggered by high Delta levels in
neighboring cells
Delta production is triggered by low Notch concentrations in
the same cell
High Delta levels lead to differentiation
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Delta-Notch: Single Cell Automaton
q1
q2
0
XD
= fD (XD , T )
0
XD
= gD (XD , T )
0
XN
= fN (XN , T )
0
XN
= fN (XN , T )
0
XD
= fD (XD , T )
0
XD
= gD (XD , T )
0
XN
0
XN
= gN (XN , T )
= gN (XN , T )
q3
q4
fD and fN increase Delta and Notch, gD and gN decrease Delta
and Notch, respectively
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Delta-Notch: Two Cells Automaton
It is the Cartesian product of two “single cell” automata
The Zeno state can occur only in the case of
two cells with identical initial concentrations
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Verification
Question
Can we automatically verify hybrid automata?
Let us start from the basic case of Reachability
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Verification
Question
Can we automatically verify hybrid automata?
Let us start from the basic case of Reachability
Naive Reachability(H, Initial set)
Old ← ∅
New ← Initial set
while New 6= Old do
Old ← New
New ← Discrete Reach(H, Continuous Reach(H, Old))
return Old
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Bounded Sets and Undecidability
Even if the invariants are bounded, reachability is undecidable
Proof sketch
Encode two-counter machine by exploiting density:
each counter value, n, is represented in a continuous
variable by the value 2−n
each control function is mimed by a particular location
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Where is the Problem?
Keeping in mind our examples:
Question “Meaning”
What is the meaning of these undecidability results?
Question “Decidability”
Can we avoid undecidability by adding some natural hypothesis
to the semantics?
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Undecidability in Real Systems
Undecidability in our models comes from . . .
infinite domains: unbounded invariants
dense domains: the “trick” n as 2−n
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Undecidability in Real Systems
Undecidability in our models comes from . . .
infinite domains: unbounded invariants
dense domains: the “trick” n as 2−n
But which real system does involve . . .
unbounded quantities?
infinite precision?
Unboundedness and density abstract discrete large quantities
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Dense vs Discrete - Intuition
We do not really want to completely abandon dense domains
We need to introduce a finite level of precision in bounded
dense domains, we can distinguish two sets only if they differ of
“at least ”
Intuitively, we can see that something new has been reached
only if a reasonable large set of new points has been
discovered, i.e., we are myope
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Dense vs Discrete
Lemma (Convergence)
Let S ⊆ Rk be a bounded set such that S = ∪i∈N Di , with either
Di = Dj or Di ∩ Dj = ∅
If there exists > 0 such that for each i ∈ N there exists ai such
that B({ai }, ) ⊆ Di , then there exists j ∈ N such that
S = ∪i≤j Di
This is a trivial compactness-like result
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Finite Precision Semantics
Definition (-Semantics)
Let > 0. For each formula ψ:
() either {|ψ|} = ∅ or {|ψ|} contains an -ball
(∩) {|ψ1 ∧ ψ2 |} ⊆ {|ψ1 |} ∩ {|ψ2 |}
(∪) {|ψ1 ∨ ψ2 |} = {|ψ1 |} ∪ {|ψ2 |}
(¬) {|ψ|} ∩ {|¬ψ|} = ∅
It is a general framework: there exist many different -semantics
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Reachability
Eps-Reachability(H, ψ[Z ], {| · |} )
R[Z ] ← ψ[Z ]
May New R[Z 0 ] ← ∃Z (Reach1 (Z , Z 0 ) ∧ R[Z ])
New R[Z ] ← May New R[Z ] ∧ ¬R[Z ]
while({|New R[Z ]|} 6= ∅)
R[Z ] ← R[Z ] ∨ New R[Z ]
May New R[Z 0 ] ← ∃Z (Reach1 (Z , Z 0 ) ∧ R[Z ])
New R[Z ] ← May New R[Z ] ∧ ¬R[Z ]
return R[Z ]
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
A Decidability Result
Theorem (Reachability Problem)
Using -semantics and assuming both bounded invariants and
decidability for specification language, we have decidability of
reachability problem for hybrid automata
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
A Decidability Result
Theorem (Reachability Problem)
Using -semantics and assuming both bounded invariants and
decidability for specification language, we have decidability of
reachability problem for hybrid automata
Proof Sketch
Because of condition () of -semantics, continuous steps can
either:
increase the reached set by at least do not increase the reach set
(∩), (∪), and (¬) ensure that the sets New R are disjoint
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
An Instance of -semantics
Definition
Let > 0. We define [|ψ|] by structural induction on ψ as
follows:
[|t1 ◦ t2 |] = B([|t1 ◦ t2 |], ), for ◦ ∈ {=, <}
[|ψ1 ∨ ψ2 |] = [|ψ1 |] ∪ [|ψ2 |]
[|ψ1 ∧ ψ2 |] = ∪B({p},)⊆[|ψ1 |] ∩[|ψ2 |] B({p}, )
[|∃Z ψ[Z , X ]|] = ∪p∈R [|ψ[p, X ]|]
[|∀Z ψ[Z , X ]|] = ∪B({p},)⊆∩Z ∈R [|ψ[Z ,X ]|] B({p}, )
[|¬ψ|] = ∪B({p},)∩[|ψ|] =∅ B({p}, )
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Conclusions
Hybrid automata are both powerful and natural in the
modeling of hybrid systems
May be a little bit too expressive . . .
Real systems always have finite precision
-semantics introduce a finite precision ingredient in hybrid
automata
Using -semantics we do not have Zeno behaviors
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Why not. . .
. . . modeling systems over discrete latices?
00
11
000
111
00
11
00
11
000
111
00
11
00
11
000
111
00
11
00
11
000
111
0000000
0000000
1111111
00000
11111
00000
11111
0000000
1111111
00
000000
111111
000000
0000
00001111111
1111
1111
000000011
0000000
00000
00000111111
0000000
1111111
1111111
11111
11111
1111111
000000
111111
000000
111111
0000
0000
1111
1111
0000000
1111111
0000000
00000
11111
00000
11111
0000000
1111111
000000
111111
000000
0000
1111
0000
1111
0000000 1111111
1111111
0000000
1111111
00000
11111
00000111111
11111
0000000
1111111
000000
111111
000000
111111
0000
00001111111
1111
1111
0000000
1111111
0000000
1111111
00000
11111
00000
11111
0000000
000000
111111
000000
111111
0000
1111
0000
1111
0000000
1111111
0000000
1111111
00000
11111
00000
11111
0000000
000000
111111
000000
111111
0000
1111
00001111111
1111
0000000 1111111
1111111
0000000
1111111
00000
11111
00000111111
11111
0000000
1111111
000000
111111
000000
0000
1111
0000
1111
0000000
0000000
00000
00000
0000000
1111111
11111
11111
1111111
000000
111111
000000
111111
0000
1111
0000
1111
0000000 1111111
1111111
0000000
1111111
00000
11111
00000111111
11111
0000000
1111111
000000
111111
000000
0000
1111
00001111111
1111
0000000
0000000
00000
00000
0000000
1111111
11111
11111
000000
111111
000000
111111
0000
1111
0000
1111
0000000
1111111
0000000
1111111
00000
11111
00000
11111
0000000
000000
111111
000000
111111
0000
1111
00001111111
1111
0000000 1111111
1111111
0000000
1111111
00000
11111
00000111111
11111
0000000
1111111
000000
111111
000000
0000
1111
0000
1111
0000000
1111111
0000000
00000
11111
00000
11111
0000000
1111111
000000
111111
000000
111111
0000
1111
0000
1111
0000000 1111111
1111111
0000000
1111111
00000
11111
00000111111
11111
0000000
1111111
000000
111111
000000
0000
1111
00001111111
1111
0000000
1111111
0000000
00000
11111
00000
11111
0000000
000000
111111
000000
111111
0000
1111
0000
1111
0000000
1111111
0000000
1111111
00000
11111
00000
11111
0000000
000000
111111
000000
111111
0000
00001111111
1111
0000000 1111
1111111
000000
111111
No, because three main reasons:
modeling would became harder
we would increase computational complexity
we would still assume infinite precision!!! (e.g.,
0, 999 . . . 9 6= 1)
. . . using only < and > instead of =?
No, because reachability is still undecidable.
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Under, Over and Demorgan
Example
Consider the formula 1 < X < 5 and = 0.1
We have that [|1 < X < 5|] = [|1 < X ∧ X < 5|] = (0.9, 5.1),
Consider the formula ¬(1 < X < 5)
We get that [|¬(1 < X < 5)|] = (−∞, 0.9) ∪ (5.1, +∞)
Notice that this last formula is not equivalent to X ≤ 1 ∨ X ≥ 5
whose semantics is [|X ≤ 1 ∨ X ≥ 5|] = (−∞, 1.1) ∪ (4.9, +∞)
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology
Hybrid Automata
Examples
Undecidability Results
Finite Precision Semantics
Conclusions
Related Literature
R. Lanotte, S. Tini, “Taylor approximation for hybrid
systems” Inf. Comput. 2007
A. Girard and G. J. Pappas, “Approximation metrics for
discrete and continuous systems”, IEEE TAC 2007
M. Fränzle, “Analysis of hybrid systems: An ounce of
realism can save an infinity of states”, CSL 99
Casagrande, Piazza, Policriti
Discreteness, Hybrid Automata, and Biology