Algebra 2 HS Mathematics Unit: 06 Lesson: 01 Investigating Monomials (pp. 1 of 4) Definition 1) Monomial—What is a monomial? The following are monomials: So monomials can include: 5 3 2 5 3 2x – 8.5 y2 8.5 xy 2 9a 2 b 3 c 7 0 5 However, these are not monomials: 2+x x 2 8. 5 9 x x So a monomial cannot have: Vocabulary Using the monomials above, identify examples of the following definitions. 2) A ___________________ is a monomial with no variables, Examples: 3) In a monomial, the ___________________ is the numeric factor of the variable (or variables) Examples: 4) The _____________________ of a monomial is the sum of the exponents on the variables only Monomial Examples: 2x 5 3 Monomial 1 y2 5 8.5 xy 2 ©2010, TESCCC 9a 2 b 3 c 7 0 08/01/10 Algebra 2 HS Mathematics Unit: 06 Lesson: 01 Investigating Monomials (pp. 2 of 4) Simplifying Monomials Multiplying Sample: Expand: Re-order: Dividing 2 3 4 (5 x y )( 4 xy ) 5x x y y y 4x y y y y 54x x x y y y y y y y Sample: Expand: Simplify: 18 x 4 y 3 6 xy 2 18 x x x x y y y 6 x y y Simplify: What’s the short-cut? the coefficients What’s the short-cut? the coefficients the exponents the exponents What’s the rule? What’s the rule? am an Note: Bases must be the same. am an Note: Bases must be the same. Other Rules a n a m n Samples 1 an a mn m am a m b b (ab ) m a m b m ©2010, TESCCC 5 2 (5 2 ) 3 5 2 8 x = b3 = b9 ( x 4 )5 = (b 2 ) 6 = 4 7 x = y (5 x 2 )2 ( xy 2 ) 6 08/01/10 b3 2 c 5 = ( 4 x 2 y 4 )3 Algebra 2 HS Mathematics Unit: 06 Lesson: 01 Investigating Monomials (pp. 3 of 4) Sample Problems 1) 2ab 4a b c 2) 3x 3) x11 x5 4) 6x y xyz 5) 6a 6) 3x 3 y 6 5 2 1 x y z 7) A rectangle has a width represented by 3 x 2 y 6 and a length represented by 8 x 5 y 3 . What expression can be used to represent the area of the rectangle? 2 3 b2 3 3 3 2 3 2 3 3 2 8x 5 y 3 3x 2 y 6 8) The area of the triangle below is represented by 14 x 4 y 9 . Find the expression that represents the base of the triangle. 7x 2y 5 b=? ©2010, TESCCC 08/01/10 Algebra 2 HS Mathematics Unit: 06 Lesson: 01 Investigating Monomials (pp. 4 of 4) Practice Problems Simplify the following expressions. 1) x3 x3 x x5 2) 3xy 3) x6y 6 x3y 4 4) 3 x 5) ab 4 c 6 a 5 bc 2 6) 2a 5 b 3 c 3 8a 3 b 3 c 7) 40a 1b 7 20a 5 b 3 8) 15m n m n 9) 2 3 2 y 6 4x 2 y 6 5 8 3 2 2 45m 4 n The height of a triangle is represented by the expression 15 p 6 qr 3 . The base is represented by 8 p 2 q 3 r 5 . Find the expression that can be used to represent the area of the triangle. w=? 10) The length and area of a rectangle are given in the diagram below. Find the expression that can be used to represent the width of the rectangle. Area = 72m15n10 4m3n7 ©2010, TESCCC 08/01/10 Algebra 2 HS Mathematics Unit: 06 Lesson: 01 Investigating Monomials (pp. 1 of 4) KEY Definition 1) Monomial—What is a monomial? The following are monomials: 5 3 2 5 3 2x – 8.5 y2 8.5 xy 2 9a 2 b 3 c 7 0 So monomials can include: Numbers Variables Products of numbers and variables 5 However, these are not monomials: 2+x x 2 8. 5 9 x x So a monomial cannot have: Variables under a radical (square root) Variables in a denominator Addition or subtraction Vocabulary Using the monomials above, identify examples of the following definitions. 2) A constant is a monomial with no variables, Examples: 2, 0, – 8.5, 3) 5 3 , 5 In a monomial, the coefficient is the numeric factor of the variable (or variables) 2 Examples: 2 (in 2x), -8.5 (in 8.5 xy ), 4) 5 3 (in 5 3 y 2 ), 9 (in 9a 2b3c 7 ) The degree of a monomial is the sum of the exponents on the variables only Examples: Monomial Degree Monomial Degree 2x 1 9a 2b3c 7 12 y2 2 5 0 3 0 0 5 3 8.5 xy 2 ©2010, TESCCC 08/01/10 Algebra 2 HS Mathematics Unit: 06 Lesson: 01 Investigating Monomials (pp. 2 of 4) KEY Simplifying Monomials Multiplying Sample: Expand: Re-order: Dividing 2 3 4 (5 x y )( 4 xy ) 5x x y y y 4x y y y y 54x x x y y y y y y y Sample: Expand: 20x3y7 Simplify: 18 x 4 y 3 6 xy 2 18 x x x x y y y 6 x y y Simplify: 3x3y What’s the short-cut? Multiply the coefficients What’s the short-cut? Divide the coefficients Add Subtract the exponents What’s the rule? am an What’s the rule? am a m –n n a Note: Bases must be the same. a m+n Note: Bases must be the same. Other Rules an a m n Samples 1 an a mn m am a b bm ab m ©2010, TESCCC the exponents ambm 1 25 4 x = 1 x4 b3 = b9 1 b6 (5 2 ) 3 (5)6 (x 4 ) 5 = x20 (b 2 ) 6 = b-12 25 64 x = y x7 y7 b3 2 c 25x4 ( xy 2 ) 6 x6 y12 5 2 5 2 8 (5 x 2 )2 7 08/01/10 5 = ( 4 x 2 y 4 )3 b15 c 10 64x6 y12 Algebra 2 HS Mathematics Unit: 06 Lesson: 01 Investigating Monomials (pp. 3 of 4) KEY Sample Problems 1) 2ab 4a b c 2 3 3 2) 4 5 -8a b c 3x 2 3 27x6 6 x 4) y 3 xyz 6x5y6z3 6) 3x 3 y 6 5 2 1 x y z 9y16 z2 x4 3) x 11 x5 x6 5) 6a 7) A rectangle has a width represented by 3 x 2 y 6 and a length represented by 8 x 5 y 3 . What expression can be used to represent the area of the rectangle? A = length width A = (3x2y6)(8x5y3) A = 24x7y9 3 b2 a9 216b6 3 2 3 2 8x 5 y 3 3x 2 y 6 8) The area of the triangle below is represented by 14 x 4 y 9 . Find the expression that represents the base of the triangle. A = ½ bh 14x4y9 = ½ b(7x2y5) 28x4y9 = b(7x2y5) 2 5 28x4 y9 7x y b= 7x2 y5 2 4 b = 4x y b=? ©2010, TESCCC 08/01/10 Algebra 2 HS Mathematics Unit: 06 Lesson: 01 Investigating Monomials (pp. 4 of 4) KEY Practice Problems 1) Simplify the following expressions. 3xy x3 x3 x x5 x12 2) x6y 6 x3y 4 -x3y2 4) 5) ab 4 c 6 a 5 bc 2 b3 c4 a4 6) 2a 5 b 3 c 3 8a 3 b 3 c a2 c2 4 7) 40a 1b 7 20a 5 b 3 2a4 b10 8) 15m n m n 3) 9) 2 3 -27x3 y6 3 x y 6 4x 2 y 6 -12x y 2 4 12 5 8 3 2 2 45m 4 n -n3 3m5 The height of a triangle is represented by the expression 15 p 6 qr 3 . The base is represented by 8 p 2 q 3 r 5 . Find the expression that can be used to represent the area of the triangle. A = 60p8q4r8 w=? 10) The length and area of a rectangle are given in the diagram below. Find the expression that can be used to represent the width of the rectangle. Width = 18m12n3 Area = 72m15n10 4m3n7 ©2010, TESCCC 08/01/10
© Copyright 2026 Paperzz