School of Aerospace Engineering Rayleigh Flow - Thermodynamics p • Steady, 1-d, constant area, inviscid T flow with no external work but with v ρ reversible heat transfer M (heating or cooling) Q • Conserved quantities (mass, momentum eqs.) ? – since A=const: mass flux=ρ ρv=constant≡ ≡G – since no forces but pressure: p+ρ ρv2=constant ρ=constant – combining: p+G2/ρ • On h-s diagram, can draw this Rayleigh Line AE3450 Rayleigh Flow -1 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. School of Aerospace Engineering Rayleigh Line p high, v low • p+ρ ρv2=constant, h Þhigh p results in low v M<1 • ds=δQ/T (reversible) heating – heating increases s – cooling decreases s – M=1 at maximum s • Change mass flux new Rayleigh line Rayleigh Flow -2 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. M=1 (ρv)↓ cooling p (ρv)↑ M>1 p low, v high smax s AE3450 1 School of Aerospace Engineering Rayleigh Line - Choking • Heat addition can only increase entropy • For enough heating, Me=1 (Qin=Qmax) h M1 m q=Q Me M<1 M=1 heating (ρv)↓ – heat addition can lead to choked flow M>1 • What happens if Qin>Qmax – subsonic flow: must move to smax s different Rayleigh line (– – –), i.e., lower mass flux – supersonic flow: get a shock (– – –) stays on same Rayleigh line: ρv and p+ρ ρv2 also const. for normal shock AE3450 Rayleigh Flow -3 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. School of Aerospace Engineering Differential Mach Equations • Simplify (X.4-5) for f=dA=0 ( ) γ −21æ 2 γ − 1 2 ö 1+ ì M ÷ 2 22 11++ γ M çM dM f dx 2 dA üï ï2δq 1 + øγMδ q dM 2 è + γ M 2 dTo−= δqý = = í 2 2 c pToc p To DTo 1 − M1 − M 2ïî M2 cAp Tï M þo (X.25) ( dp − γM 2 dM 2 = p 1 + γM 2 M 2 (X.22) ) (X.21) dT dh 1 − γ M 2 dM 2 = = T h 1 + γ M 2 M 2 (X.23) dv dρ − 1 dM 2 =− = v ρ 1 + γ M 2 M 2 (X.24) Rayleigh Flow -4 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. γ dp o dT = − M2 o po 2 To (X.26) ds 1 − M 2 dM 2 = c p 1 + γM 2 M 2 (X.27) • sign changes AE3450 2 School of Aerospace Engineering Property Variations • What can change sign in previous equations – (1-M2) and δq – (1-γM2) in dh,dT for M<1 M<1 <0 >0 δq • s, To just like q M>1 <0 >0 s, To po M, v p, ρ h, T • po opposite of To and s • Heating: M→1; cooling opposite • p, ρ opposite of v (p+ ρv2=const) • h,T same as p,ρ unless M2<1/γ (low speed flow: T oppos. p,ρ) M2<γ-1 δq<0Þ Þcooling Þheating δq>0Þ M2>γ-1 AE3450 Rayleigh Flow -5 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. School of Aerospace Engineering Rayleigh Line Extremum • Combine X.23 and X.27 dh h 1 − γM 2 = ds c p 1 − M 2 1 dh = 0 for M = ds γ dh = ∞ for M = 1 ds h hmax M=γ-0.5 M<1 M=1 heat cool M>1 smax Rayleigh Flow -6 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. s AE3450 3 School of Aerospace Engineering Integrated Mach Equations • Integrating (X.22-27) δq δq dTo q (X.28) = Þ ò dTo = ò Þ (To 2 − To1 ) = 12 (energy) To c pTo cp cp p 2 1 + γM 12 (X.29) = p1 1 + γM 22 T2 æ 1 + γ M 12 ö ÷ =ç T1 çè 1 + γ M 22 ÷ø 2 æ M2 ç çM è 1 po 2 p o1 (X.30) ö ÷ ÷ ø 2 v1 ρ 2 1 + γM 22 æ M 1 ö ÷ ç = = v 2 ρ1 1 + γM 12 çè M 2 ÷ø 2 (X.31) po 2 æ 1+ 1 + γ M 12 ç p2 ç = = p o1 1 + γ M 22 ç p1 ç1+ p1 è p2 To 2 æ 1 + γM 12 ö ÷ =ç To1 çè 1 + γM 22 ÷ø 2 æ M2 ö çç ÷÷ è M1 ø (X.32) γ γ − 1 2 ö γ −1 M2 ÷ 2 ÷ γ −1 2 ÷ M1 ÷ 2 ø γ −1 2 ö M2 ÷ 2 ç ÷ (X.33) çç 1 + γ − 1 M 2 ÷÷ 1 è ø 2 2æ ç1+ éæ M ö 2 æ 1 + γ M 2 ö (γ +1) γ ù s 2 − s1 1 ÷ ú (X.34) = ln êçç 2 ÷÷ çç cp êè M 1 ø è 1 + γ M 22 ÷ø ú ë û Rayleigh Flow -7 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. AE3450 School of Aerospace Engineering Solution Approaches • Two methods to “solve” Rayleigh problems, i.e., for state change from 1→2 • In both, need to “know” one state (including M) and something about other state (1 TD property or q or M) • Method 1: direct solution of integrated equations (X.28-34) – requires iterative solution • Method 2: tabular solutions using reference condition – uses sonic reference condition (similar to A/A* and Fanno methods) – sonic condition based on heat transfer required for flow to go sonic; M2=1, To2= To* Rayleigh Flow -8 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. AE3450 4 School of Aerospace Engineering Direct Solution • Use two equations to find M change – e.g., if state 1 and q12 known use X.28 and X.33 a) get To ratio from X.28 To 2 q = 1 + 12 To1 c pTo1 doesn’t matter how q changes along length, only total q required b) get M2 from X.33 (must know M1) æ 1 + γM 12 ö ç ÷ ç 1 + γM 2 ÷ 2 ø è 2 æ M2 ö çç ÷÷ è M1 ø M1 m q=Q M2 γ −1 2 ö M2 ÷ T requires iterative 2 ç ÷ = o2 çç 1 + γ − 1 M 2 ÷÷ To1 solution for M2 1 è ø 2 2æ ç1 + c) get rest of property changes M2 from X.29-34, e.g., from X.29 p 2 1 + γM 12 = p1 1 + γM 22 AE3450 Rayleigh Flow -9 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. School of Aerospace Engineering Cooled Duct Example • Given: Nitrogen flowing in constant area duct, enters at M=3, T=250 K, p=50 kPa and exits with temperature of 200 K • Find: 1. M2 2. q (including direction) M1=3.0 T1=250K p1=50 kPa q=Q m T2= 200K • Assume: N2 is tpg/cpg, γ=1.4, steady, reversible, no work Rayleigh Flow -10 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. AE3450 5 School of Aerospace Engineering Cooled Duct - Solution • Analysis: – M2 –q (from X.30) æ1 + ç ç1 + è 2 2 M1=3.0 T1=250K T p1=50 kPa = 2 T1 ö æ M2 ö ÷ ÷ ç ÷ çM ÷ ø è 1 ø 2 æ 1 + 1 .4 (3 )2 ö æ M ö 2 200 ç ÷ ç 2÷ = = 0 .80 ç 1 + 1 .4 M 22 ÷ çè 3 ÷ø 250 è ø γM 12 γM 22 Þ M 2 = 0.21, 3.41 q=Q m T2=200K h M<1 heat M=1 cool M>1 s since started M>1, can’t be subsonic (energy: ins = outs) æ γ −1 2 ö To1 = T1ç1 + M2 ÷ 2 è ø 1.4 8314 J kmolK æ 1.4 − 1 2 ö = 700 K 9 ÷ = 250K ç1 + = (700 − 665)K 2 1.4 − 1 28 kg kmol è ø q = c p (To1 − To 2 ) = 36 kJ kg ( ) To 2 = 200 K 1 + 0.2(3.41) = 665K 2 AE3450 Rayleigh Flow -11 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. School of Aerospace Engineering Reference Solution Method but not same • Reference state has M=1, T≡T*, p≡p*,... *Þsonic, state as A* or Fanno γ • State 2→sonic in integ(X.38) γ − 1 2 ö γ −1 æ M ÷ 1+ rated equations (X.29-34) po 1+ γ ç 2 = ç ÷ 1 + γM 2 çç 1 + γ − 1 ÷÷ (X.35) è ø 2 1 − (X.39) γ 2 1+ M2 2 To æç 1 + γ ö÷ 2 2 æ ö T + γ 1 (X.36) = M ÷ = M 2 çç γ −1 To* çè 1 + γM 2 ÷ø 2÷ 1+ T* M 1 + γ è ø 2 1+ γ ü (X.40) v ρ* 1+ γ (X.37) ì * = = M2 γ ï ö æ ï s s 1 − + γ * 2 ρ 1 + γM ÷ v = ln í M 2 çç ý 2 ÷ cp • Note: prop/prop* = f(M) only è 1 + γM ø ï ï þ î • Values for γ=1.4 in Appendix F, John pp2 1 +1 + γ Mγ 12 = pp*1 1 + γM 222 Rayleigh Flow -12 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. p*o AE3450 6 School of Aerospace Engineering Use of Tables • To get change in M, use change in property ratio (like using A/A*), e.g., To To* To 2 To 2 To* M2 = = To1 To1 To* To To* M1 M2 m q=Q M1 • For example, if state 1 and q12 known 1) again get To ratio from X.28 2) look up To/To* at M1 3) calculate To/To* at M2 To 2 q = 1 + 12 To1 c pTo1 To 2 To* = To 2 To1 × To1 To* 4) look up M2 that corresponds to calculated To/To* AE3450 Rayleigh Flow -13 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. School of Aerospace Engineering Heated Duct Example • Given: Air flowing in constant area duct, enters at M=0.2 and given inlet conditions and a heating rate of 765 kJ/kg • Find: 1. Me, poe, Te 2. qmax for Me=1 Mi=0.2 Toi=300K poi=600 kPa m q=Q Me • Assume: air is tpg/cpg, γ=1.4, steady, reversible, no work Rayleigh Flow -14 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. AE3450 7 School of Aerospace Engineering Heated Duct - Solution Mi=0.2 Toi=300K poi=600 kPa • Analysis: q = 765 kJ kg Me Toe q =1+ Toi c pToi (X.28, energy) 765 × 103 J / kg =1+ = 3.54 J 1004 (300 K ) kgK – Me M 0.19 0.20 0.21 0.44 0.45 0.46 3.53 To/To* 0.15814 0.17355 0.18943 0.59748 0.61393 0.63007 0.61393 p o / p ο∗ 1.23765 1.23460 1.23142 1.13936 1.13508 1.13082 5.47054 (Appendix F) Toe Toi = 3.54(0.17355 ) = 0.614 Þ M e = 0.45 = To* Toi To* M =0.2 another solution for M=3.53, but since Toe started with M<1, can’t be supersonic – poe poe = poe p*o p*o poi 1 poi = 1.1351 600kPa = 552kPa 1.2346 AE3450 Rayleigh Flow -15 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. School of Aerospace Engineering Heated Duct Solution (con’t) – Te Mi=0.2 Toi=300K poi=600 kPa q = 765 kJ kg Te = Te Toe Toi Toe Toi Te = 1 3.54(300 K ) = 1021K 0.4 1+ 0.452 2 – qmax qmax requires choked exit, Toe=T* ( ) To* = Me 300 K = 1728 K 0.17355 æ T* ö = c p To* − To = c pTo1ç o − 1÷ ç To1 ÷ T* = To* æç1 + γ − 1ö÷ = 1440K è ø 2 ø è J 1 MJ ö æ 300 K ç = 1004 − 1÷ = 1.43 kgK kg è 0.17355 ø Rayleigh Flow -16 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. AE3450 8 School of Aerospace Engineering Combustor Example • Given: Air entering constant combustor, enters at M=0.2 and given inlet conditions. m q=heating value of fuel (45.5 MJ/kgfuel) × fuel air m • Find: 1. Te and compare to value you Mi=0.2 Me would calculate if neglected Ti=500K air m kinetic energy change fuel = 0.0413 m air m 2. po loss • Assume: air is tpg/cpg, γ=1.4, steady, reversible, no work, fuel m << 1 (can neglect mass addition, just use q) air m Rayleigh Flow -17 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. AE3450 School of Aerospace Engineering Combustor Solution Mi=0.2 Me ? combustion just Ti=500K q Toe another kind of air =1+ m – Te heat addition Toi cp Toi fuel = 0.0413 m air m kg fuel æ MJ ö MJ ç 45.5 ÷ = 1.88 q = 0.0413 kg air çè kg fuel ÷ø kg air even for this subsonic γ − 1 æ ö flow, kinetic energy Toi = Ti ç1 + M 2 ÷ = 500K (1.008) = 504K reduces final T by 160K 2 è ø æ 1.88 × 106 ö ÷ = 504K (4.715) = 2376K Toe = Toi çç1 + ÷ (Appendix F) è 1004(504) ø Toe Toe Toi = = 4.715(0.1736) = 0.818 Þ M e = 0.60 To* Toi To* Toe 2376K Te = = = 2216K 2 1 + M (γ − 1) 2 1 + 0.2(0.6 )2 • Analysis: (energy) Rayleigh Flow -18 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. AE3450 9 School of Aerospace Engineering Combustor Solution (con’t) Mi=0.2 Ti=500K air m * p po 1 = oe = 1 . 0753 = 0 . 871 fuel = 0.0413 m air m 1.2346 p*o poi – poe/poi poe poi Me (Appendix F) • So heat addition (burning fuel) in an engine gives po loss as was case with friction • As we lose po (~13% loss here) – less thrust – less work output AE3450 Rayleigh Flow -19 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. School of Aerospace Engineering Choking • Heating of a flow can lead to choking just like friction • For supersonic flow, depending on back pressure, can get – underexpanded flow – overexpanded flow – shock inside duct Rayleigh Flow -20 Copyright © 2001-2002 by Jerry M. Seitzman. All rights reserved. Q po1 M1>1 p/po1 1 p*/po pb Me pe shock inside shock at exit O pe,sh pe,R U x AE3450 10
© Copyright 2026 Paperzz