A M . ZOOLOCIST, 7:465-481 (1967). Gross-Bridges and Periods in Insect Flight Muscle MICHAEL K. REEDY Department of Physiology, School of Medicine, University of California, Los Angeles 90024 SYNOPSIS. The periodic structure of the cross-bridge lattice of glycerinated Lethocerus Might muscle has been studied in sections by electron microscopy, assisted by optical diffraction, and in unfixed fiber bundles by X-ray diffraction. Diffraction patterns exhibit first through ninth orders of 1166 A, virtually all of which were found to arise from the lattice of cross-bridges. Diffraction and inspection show that "horizontal" cross-bridges of relaxation become slanted in rigor, and may push acting toward the M line in producing the increase in tension seen with the induction of rigor. Myosin filaments contain unexpected structural features. Cross-bridge origins form opposed pairs repeating every 146 A and rotating 67.5 degrees with each repeat, thus defining twin, left-handed, helical tracks which require l]/2 turns (or 8 x 146 A) to establish a meridional repeat of 1166 A. Each origin is dual and gives rise to two bridges; thus, the unit grouping of paired origins involves four bridges. One half-turn of the myosin helix requires 388 A, matching the actin helix exactly in pitch. (Actin is, however, right-handed.) The resulting match seems awkward azimuthally (sixteenfold myosin distributes bridges to a sixfold envelope of actin filaments), but minimizes axial mismatching between subunits of the myosin and actin and lends credence to the theory that all bridges may swing synchronously during typical, low-amplitude, oscillatory contractions. Dr. Riiegg (1967) has just described the relationships between the splitting of ATP and the production of work during oscillatory contraction of insect flight muscle. The glycerol-extracted flight muscle fibers of the giant waterbug, Lethocerus, up to 1.5 cm long, which lend themselves so well to chemical and mechanical studies, have proven no less suitable for structural work. I will describe electron microscopic and X-ray diffraction studies carried out during my period of postdoctoral research in Dr. H. E. Huxley's laboratory in Cambridge, using samples of the muscle preparation provided by Dr. J. W. S. Pringle. The first stage of this work has been reported earlier (Reedy, Holmes, and Tregear, 1965), and the remainder is in preparation as a series of papers to be submitted elsewhere (Reedy, 1967, and Huxley, Reedy, Holmes, and Tregear, 1967). Since these papers will be lavishly illustrated (as my 60 slides today might lead you to suspect), I am providing relatively scanty illustration for the published version of my talk. In particular, no X-ray pictures will be found here, partly because the two optical dif- fraction pictures convey the same arguments. Nevertheless, I hope to make this text a fair summary of the major findings, conclusions, and implications of this whole investigation. Muscle fibers, either relaxed or in rigor (see footnote, page 467), were serially fixed in aqueous solutions containing glutaraldehyde, osmium tetroxide, and (usually) uranyl acetate, then dehydrated through acetone, and embedded in Epon or Araldite. I should mention four departures from currently conventional electron microscope methods. Using X-ray diffraction, we compared unfixed muscle with fixed and embedded muscle, which enabled us to identify the magnitude and character of preparative artifacts, as described later. Using optical diffraction (Klug and Berger, 1964), we could carry such analysis of periodicity to electron micrographs of small regions of one sarcomere in one section. Measurement of section wrinkles enables me to support a claim to thinner sections (down to 170 A) than it has recently been credible or fashionable to claim; these were cut with a Dupont diamond knife and a (465) 466 MICHAEL REEDY Actlh Uyer FIGS. 1 and 2. Unbranched cylindrical fibrils of glycerinated Lelhocerus flight muscle are 3 /t in diameter, with 2.6 p sarcomeres. FIG. 3. Periodicity (380 A) and cross bands are seen in thick section (1000-1500 A) of rigor sped- men. 36,000 X. FIG. 4. Thick cross section shows gray bridge material connecting dense filaments in regular array. Derivation of the most useful thin longitudinal sections is indicated (see Fig. 6). CROSS-BRIDGES AND PERIODS IN MUSCLE Porter-Blum MT-1 ultramicrotome. The infrequently-used section-staining sequence of potassium permanganate-lead citrate provided better contrast than I have ever achieved otherwise. In brief, we have discovered something about how cross-bridges move, and a good deal about the way in which they are disposed in a lattice. This lattice-model promises to help us to understand how actinmyosin interaction may be maximized and even synchronized throughout active fibrillar insect muscle during the contractile phase of each oscillatory cycle. (See Pringle, 1967) Previous ultrastructural work on asynchronous flight muscle had characterized the regular hexagonal array of myosin and actin filaments (Fig. 4) and the presence of periodically distributed interfilament cross-bridges (Hodge, 1955; Hanson and Huxley, 1957; Worthington, 1962). A straightforward application of the sliding filament model of contractility (Huxley and Hanson, 1960) to this type of muscle is complicated by the fact that the myosin filaments appear to be connected directly to the Z bands (Aubert and Couteaux, 1963). No more will be said of this complication; the results I wish to speak of seem very congenial to a sliding filament interpretation of such muscle, whatever the role of such series-connections. Three bits of information came out of the first stage of ultrastructural study of glycerinated Lethocerus muscle. The first bit concerned the helically structured actin filaments (Hanson and Lowy, 1963), whose exact pitch in Lethocerus was found to be 2 X 388 A, or such that the two-stranded helix completes a half turn in 388 A. (This unpublished result of Brown et al. (1965), was based on X-ray diffraction pictures in which exact measurements of the very strong actin layer lines at 51 A and 59 A were possible.) Second, X-ray diffraction indicated a structural difference between the two mechanical states of rigor and relaxation1, in that rigor specimens produced a powerful off-meridional 388 A layer line, while relaxed specimens pro- 467 duced instead an intense meridional 146 A spot. Third, we used electron microscopy and X-ray diffraction in a complementary fashion that produced a satisfactory and convincing account of the chief rigorrelaxation difference (Reedy, Holmes, and Tregear, 1965). Shrinkage artifacts due to processing reduced myosin-to-myosin filament side-spacing by about 10% to 480 A, and reduced all axial periods by 2%. Nevertheless, X-ray diffraction monitoring proved that the major periodic characteristic of each state was preserved in muscle specimens which had been fixed and embedded for electron microscopic study. Next, electron micrographs demonstrated that the diagnostically dominant period of each state was associated with a particular appearance of the cross-bridge lattice. In both states, the bridges were found to be grouped in symmetrical pairs along myosin filament profiles, and in lateral register across the fibril. In relaxed muscle they were predominantly at right angles to the filaments and were axially spaced so as to express a period of 143 A (note 2% reduction from the prefixation value of 146 A). In rigor, the bridges were angled like barbs on a harpoon, about 45° to the filament-axis, so that the actin end of each bridge was about 150 A closer to the center of the sarcomere than the myosin end, and they clearly expressed an axial period of 380 A (Fig. 5). In very thin sections which included single layers of actin filaments only (Figs. 6-8) the included cross-bridge ends appeared clearly and exl Relaxation (muscle extensible) requires ATP with Mg** (preventing firm or lasting cross-bridge linkages to actin). Rigor (muscle tears when stretched) exists when ATP is absent (cross-bridges attached, cross-link lattice o£ actin and myosin filaments, prevent sliding o£ filaments). One synopsis o£ this work confusingly referred to rigor as "contraction". Huxley and Hanson (1960) have stressed that the mechanical and elastic features which identify rigor, relaxed, or active states of muscle do not depend on length of sarcomere, and can be explained in terms of cross-bridge behavior. This behavior is controlled by ATP and divalent cations, Mg*+ and Ca" (Hasselbach, 1964). This is the model I have assumed in discussing our work on rigor and relaxed fibrillar muscle. 468 MICHAEL REEDY clusively expressive of this period, which we knew reflected the half-pitch of the actin helix. We reasoned, therefore, that the binding of cross-bridges to actin somehow labeled the actin period so that it came to dominate the rigor cross-bridge lattice. The major diffraction findings could be explained. The angling of bridges, so that the actin end of one bridge very often overlapped the myosin end of the next, tended to weaken severely the transverse lattice planes repeating at 146 A. At the same time, the angulation meant that the bridges were aligned along diagonal lattice planes coordinated to the 388 A repeat, hence intensifying the off-meridional scattering on this layer line. Putting tension on these muscle bundles, actually stretching them by up to 5%, failed to alter the dimensions or the intensity of the X-ray diffraction patterns from either relaxed or rigor specimens. Since, as this indicates, the angled rigor cross-bridges seem able to bear tension without "unbending" (a supposition also supported by electron microscopy), we may begin to consider a model in which the micro-event producing contractile tension involves a pushing movement by a cross-bridge which attaches to actin at some non-rigor angle and then swings to approximate the rigor angle. Indeed, David White's finding (1967, Ph. D. thesis) that Lethocerus fibers develop a marked rise in tension during isometric rigor induction, (quickly produced by washing ATP out of a relaxed fiber bundle), and our finding concerning the change in cross-bridge angle during rigor induction, are experimental facts which converge rather insistently towards such a pushing model of cross-bridge activity. A more detailed model of the crossbridge lattice required more information about the distribution of cross-bridges along the myosin filament. Figure 6 shows a thin section of rigor muscle, in which an actin layer, a "myac" layer (alternating myosin and actin filaments), and the transitional "split myosin" region between the two are all visible. My first preconception of my- osin filament structure was difficult to reconcile with the apparent spacing of bridges and with the apparent numbers of bridges recognized in rigor. According to the preconceived model, successive crossbridge pairs repeated at axial intervals of 146 A (143 A) and at azimuthal intervals of 60°. This should have produced an obvious longer period corresponding to 3 X 146 A which would develop an appreciable vernier mismatch with the 388 A (380 A) actin period after just a few repeats. However, the cross-bridges mark 27 to 30 repeats of the 380 A period in each half-sarcomere with no sign of such a mismatch; and even in relaxed muscle no 430 A period is found. Then there was the discrepancy in apparent numbers of bridges. The bridge groupings which formed the chevrons in rigor muscle and marked the 380 A period apparently involved twice as many bridges as expected, for the typical repeating configuration was a double chevron rather than a single chevron. I had to abandon my preconceptions and let the evidence suggest a different model. Three different trails finally led to the model of the surface lattice of a myosin filament portrayed in Figures 11 and 12. One trail involved extracting a maximum of objective periodic information (by optical diffraction) from electron micrographs. Another involved analyzing the screw sense or absolute hand of the helical arrangement of cross-bridges along the myosin filaments. A third involved validating the doublet structure that produced the double chevrons by coming to recognize its manifestations in different views of muscle. Most of the information came from my electron micrographs of rigor muscle, because these showed much more regularity of detail than I ever found in relaxed muscle. However, X-ray diffraction from relaxed muscle (Huxley, et al., 1967) uniquely supports this model, so it should be understood that I intend it for both rigor and relaxation. Returning to Figure 6, one notes prominent oblique striping in the split myosin region. Here, a grazing section of the myac CROSS-BRIDGES AND PERIODS IN MUSCLE 469 — Z — EM-36OA Xray388A FIG. 5. Characteristic cross-bridge positions and dominant periods of rigor and relaxed specimens are seen here in single layers of filaments (myac layers) at various magnifications. layer samples a one-sided aspect of the helical system of cross-bridges. These diagonal stripes are coordinated perfectly with the 380 A period. By considering these stripes together with the symmetry of the chevrons in a myac layer, I began to think of a myosin-filament model in which bridges were disposed along twin helical tracks which completed one half-turn every 380 A (388 A). However, one would have 470 MICHAEL REEDV S CROSS-BRIDGES AND PERIODS IN MUSCLE 471 FIG. 6. Thin section (about 200 A) oE rigor muscle passes from actin layer on left through obliquelystriped, split-myosin region to myac layer to second split-myosin region at upper right corner. FIG. 7. Actin layer, in slightly thicker section than Figure 6 (here about 300 A), shows staggered bead- ing in addition to transverse striping. FIG. 8. 380 A cross-bridge period of rigor is marked in thin sections by lateral projections and beads. The beads represent end-on views of cross-bridge segments, and are not prominent in thinnest sections (Fig. 6). to sacrifice either the 146 A feature or the 60° feature of the cross-bridge repeat on the preconceived model. Since relaxed muscle showed a clear 143 A repeat but no sign of the 3 X 143 A period which should arise from a 60° repeat, the latter feature had to go, to be replaced by a 67.5° azimuthal repeat. The "Relaxed" diagram in Figure 5 is based on an incompletely worked out version of this model which I had in mind in the summer of 1965. At about that time, optical diffraction came to my aid and helped me toward a much more rapid and confident solution than would otherwise have been possible. This technique allows analysis of periodic patterns in electron micrographs by using a transparency of the micrograph just as if it were a diffraction grating, through which monochromatic coherent light can be passed so as to produce a diffraction pattern, which we call the optical transform of the micrograph. The first few flight muscle transforms were made for me by Berger and Klug (who introduced this application of optical diffraction, 1964) and clearly demonstrated two periods in rigor (143 A and 570 A) which had escaped the eye in these micrographs, and had yet to be detected by X-ray diffraction. Figures 13 and 14 show the appearance of thick sections of rigor and relaxed muscle, and are accompanied by optical transforms which reflect the periodic structure of each image. Various layer lines are labeled with the value of the corresponding axial periods. The thick section of rigor shows the strong 380 A period typical of that state, most obviously as beading along thin filament profiles, beading which is lined up in very straight rows transversely. Every third row shows increased intensity, indicating a superperiod of 3 X 380 A or 1140 A. Note that the rigor transform ex- hibits layer lines corresponding to first, second, third, fifth, sixth, eighth, and ninth orders of 1140 A. The eighth order is, in fact, 143 A. The surface lattice of the myosin filament diagrammed in Figure 9 or 11 was originally generated from the two parameters assumed earlier, namely, that crossbridge pairs repeat every 146 A, and that they are rotated by enough (67.5°) to develop helical tracks that twist through 180° in 388 A. Note how this develops a "beat" period of 1166 A (1140 A) corresponding to 3 X 388 A and 8 X 14 6 A, and note also how helical tracks are set up which slant or twist in the opposite direction to complete a half-turn every 233 A (fifth order of 1166 A). The fact that 1140 A and 228 A periods can be detected experimentally in micrographs argues very strongly for this model, which appears uniquely capable of developing all four periods. The 228 A (233 A) layer line, though not usually clear on transforms of relaxed muscle, is very satisfyingly indicated (accompanied by the strong 146 A period and a weak 388 A layer line) in X-ray diffraction pictures of relaxed preparations, including some non-glycerinated material examined immediately post-mortem (Huxley, et al, 1967). Some features of the rigor diffraction pattern have not yet been mentioned. The 570 A layer line is probably wholly derived as second-order diffraction from the lattice of points marking the 1140 A period, and the 190 A layer line is at least partly derived in this way from the 380 A lattice. However, part of the 380 A layer line, part of the 190 A layer line, and probably all of the 127 A layer line can be attributed to the lattice set up by the actin ends of the cross-bridges. Figure 15 diagrams the way in which cross-bridge attachments must be distributed along the sixfold actin en- 472 MICHAEL REEDY velope which surrounds each myosin, in order to satisfy all the evidence collected on this point, and the derivation of the three r 388 A periods just mentioned can be appreciated from this diagram. An interesting result from more recent X-ray studies (Huxley, I46A o o oo G .O gb O O O O O. o Q o oXX° ° fj ° ° t "66 A 5 oo ' O 5 O O 7 o o 8 O o o \ r O° 6 36O° 9o o 10 » \ \ «• < \ \ \ 388 \ % \ A_ \ \ * - 146 "A \ 1 • • \ 2 /% 3• * Ai • 6 • i 7 lm 8» \ \ \ " \ " \ \ 9 \ \ % «» \ i \ 233A J_/ \ • \ «• \ m •• m 9 • • / p m t 36O° 11 11 FIGS. 9-10 and 11-12. These represent two stages in the development of a model of the myosin filament. (Fig. 9, left, is a partial radial projection of actin filament structure.) Cross-bridge origins on the surface of the myosin shaft are displayed in radial projection in Fig. 9, center, and Fig. 11. Fig. 9, right, and 10 indicate the effects of azimuthal re- peats of 67.5° on the profile of the filament and on its relation with the sixfold actin envelope. Doubling of bridge numbers without altering the surface lattice leads to configurations of crossbridges as in Fig. 12, including many "flared X" conformations (see Fig. 21). 473 CROSS-BRIDGES AND PERIODS IN MUSCLE t) ft * » ..'.; 1 ': • *' t '.', • * *fi • • < f|'» V • Mr » •i ' • ' • * • ' .: •; \; ]; .: : , T • ' • (1 i' :; 1 . * * * , \ * * i •: • t < <* • ; ' • « • • ^ • • » . -ii tj-, i ; ; s : ! ;: •LL •' i ? i i r / nt* * 'V HI! 1 [1 1 i i 4- • • •• 38OA • • • I/YOA 13 FIG. 13. Rigor, thick section (as Fig. 3), with optical transform oC same. Layer line positions from 0 to 9th orders of 1140 A are indicated; transform shows all but 4th and 7th orders. Inspection of micrograph fails to detect or discriminate the weaker periods shown by diffraction. Periods labelled are those associated with the surface lattice of the myosin (Fig. 11). 474 MICHAEL REEDY FIG. 14. Relaxed thick section with optical transform. Xote more intense period at 143 A and weaker other periods, especially 380 A and 190 A, as compared with rigor in Figure 13. (Horizontal and sloping off-vertical spikes are transforms ot edges of aperture used to mask micrograph for optical diffraction.) CROSS-BRIDGES AND PERIODS IN MUSCLE 1 2 3 4 5 6 1 360° FIG. 15. Distribution of actin ends of cross-bridges to six actins around each myosin is seen here in a radial projection of the actin envelope. Circles represent optimum sites for bridge attachment, repeating with each half-twist of the actin helix. This distribution can be inferred from patterns of bridge periods in Figures 6 and 7. [Each circle indicates the target segment straddled or approximated by two successive pairs of cross-bridges (double chevrons, etc.)] It is interesting to compare this with the surface lattice of the myosin. et al.j 1967) concerns the behavior of these three layer lines during glutaraldehyde fixation of relaxed muscle. Each gains in intensity during fixation. The most interesting interpretation of this holds that the influence of the positions of actin filaments on the ordering of the relaxed cross-bridge lattice is increased by fixation; in other words, relaxed cross-bridges are largely unattached to actin before fixation, but become so attached by the action of the fixative. Prompting this interpretation is the fact that all of the cross-bridges actually seen in sections of relaxed muscle do appear to be joined to actin filaments (e.g., Fig. 4 is from relaxed muscle). Thus diffraction studies can be largely rationalized by a model of the insect crossbridge lattice in which the arrangement of scattering centers at the myosin surface contributes to layer lines corresponding to first, second, third, fifth, and eighth orders of 1166 A, while the arrangement, at a greater radius, of bridge-related scattering centers along the sixfold actin envelope contributes to third, sixth, and ninth order layer lines of 1166 A. I also did experiments in which India ink was used to paint out selected features (myosin shafts, or cross-bridges) in micrographs, and the 475 optical transforms obtained from such selective ablation experiments have supported this idea of slightly different lattices from "myosin ends" and "actin ends" of the same set of cross-bridges. Some problems of specific detail within the bridge lattice remain. Regarding the screw sense of the cross-bridge helix along the myosin filaments, three different strategies were devised for diagnosing this. The first method involved obtaining serial, thin, longitudinal sections (like Fig. 16) and following a given myac layer through two successive sections, with particular attention to the split myosin region bordering this filament layer. It was found that the oblique striping which runs 10 o'clock-4 o'clock (filament axis lying 12 o'clock-6 o'clock) was produced in grazing the near side of the myac layer, while the striping that runs 2 o'clock-7 o'clock was produced where the section grazed tangentially along the far side of the myac layer. A second method of screw diagnosis is based on transverse sections thin enough (150 A-200 A range) to show a well developed herringbone mosaic type of pattern (Fig. 17). These sections are extremely interesting and important. For one thing, they confirm an inference which may be drawn from longitudinal sections, to the effect that all myosin filaments in a sarcomere are in helical register, so that all cross-bridges at the level of any given transfibrillar plane extend along the same azimuthal direction. They do not include all bridges which are distributed to actin filaments along one half-turn of the myosin cross-bridge helix, because the myosin segment sampled in such sections is only about one quarter-turn in length. The plane of section is not precisely parallel to the transfibrillar planes of helical register. Rather, it transects the lattice with a slight obliquity, sampling successive levels and orientations of cross-bridges as it traverses the fibril. Thus the herringbone effect is produced, as the direction of included cross-bridges changes in 60° steps and lends prominence to different planes of the array of hexagonal myofilaments. MICHAEL REEDY FIG. 16. This is one of an actual pair of thin serial sections used to diagnose the left-handed screw sense of myosin cross-bridge twin helix, by relating each direction of oblique striping to grazing section o£ near or far sides of myac layers. These sections are about 250 A thick. FIG. 17. Herringbone mosaic effect was well develo|>ed only when sections were thinner than 200 A. Myosin filaments require 380 A for a half twist of screw; sections this thin sample only 1/ turn of screw, and seem to sample cross-bridges lying along only one of three bridging directions (actually, two of three; see Fig. 21). Slight obliquity causes the section to sample successive levels and directions of bridging as the fiber is transected. Text explains how serial sections enable the diagnosis of myosin screw sense. CROSS-BRIDGES AND PERIODS IN MUSCLE In order to use such sections for screw diagnosis, I employed serial sections which partly intercept a landmark such as the Z band or M band. Serial sections enable us to learn whether the slightly oblique plane of section is sloping into the landmark from the nearside or the farside. This in turn enables the observer to determine whether traversing the fibrillar transection from A band to (e.g.) Z band constitutes a withdrawal or an advance along the myosin helices. In the example shown in Figure 17, this method has been employed to learn that progress from left to right represents an "advance" (i.e., away from the observer) along the myosins. As can be seen, this corresponds to a sequence of anticlockwise 60° steps in cross-bridge prominence and direction. A third method of screw diagnosis required neither serial sections nor especially thin sections. It is enough to have one section about 1000 A thick. Here I obtained oblique sections, sliced at an angle of 45° (or better, 38°) from the fiber axis. Figure 20 displays part of one fibril encountered in such a section. Useful in this instance is the finding that the cross-bridges appear more prominent, more dense, and more regularly spaced on the right side of the thick filament profiles than they do on the left side. The photograph of a model (Fig. 18) illustrates why this indicates a left-handed screw when the doubly helical filaments are tilted "top end toward the viewer", as they are known to be in the micrograph shown. A moment's review will show that the results I quoted from the other two methods also indicate a lefthanded screw for the twin helical arrangement of cross-bridge groupings along the myosin filaments. The last property of the model (Fig. 11) which remains to be accounted for is the assignment of two cross-bridge origins to each scattering center in the myosin surface lattice. This solution to the doublet problem (double chevrons, etc.) emerged from ultrathin transverse sections of rigor muscle. If cross-bridge groupings are spaced at axial intervals of 143 A, then sections just 477 thinner than 2 X 143 A should sample sometimes one, and sometimes two, levels of bridge origins. Sections thinner than 1.5 X 143 A should sample one level at a time more often than two levels at once. Such sections were obtained, and their thickness was verified to be 170 A-200 A by measuring the thickness of wrinkles in the sections. (We shall soon see why this was the thickness required in order to get the herringbone mosaic effect discussed earlier in connection with screw diagnosis.) In these sections, the pattern of cross-bridges associated with the majority of profiles of myosin filaments turned out to be the "flared X" configuration of four bridges illustrated in Figures 21 and 12. Once this was accepted as the true unit grouping which repeated along myosin filaments, it provided satisfactory interpretation for various regular but mystifying features of longitudinal sections, including the double chevrons in myac layers and the mixture of beading and lateral projections found in layers of actin filaments. It came as a surprise to recognize that there are twice as many cross-bridges as there are scattering centers on the surface lattice of the insect myosin filament. It is important to realize that if the number of scattering centers were somehow doubled, so as to provide one for each cross-bridge, then the diffraction patterns would be different, for the lattice would be different. Again, this is important in comparing the rigor and relaxed states of the cross-bridge lattice which look so different in micrographs; for the diffraction evidence does not point to any fundamental re-ordering of the surface lattice of the myosin when relaxation replaces rigor. It is therefore still a bit puzzling that visible manifestations of the flared X grouping cannot be demonstrated with any confidence in sections of relaxed muscle. The cross-bridge arrangments already described in rigor enable us to diagnose the screw sense of actin's double helix. Thin sections showing the flared X forms are typically slightly oblique, producing patterns related to the herringbone mosaic 478 MICHAEL REEDY CROSS-BRIDGES AXD PERIODS IN MUSCLE 479 FICS. 18-20. Oblique thick sections of cylindrical fibrils produce an elliptical fibrillar profile (Fig. 19), where seemingly continuous profiles of filaments are actually slanted segments which overlap, as seen in side view to the left of Figure 20. The diagnosis of myosin screw sense uses the principle shown by the model (Fig. 18). In Figure 20, crossbridges are more prominent and periodic along the right sides of profiles of thick filaments. This is best seen by sighting along the filaments in Figure 20 at a glancing angle to the page. The obliquity of the filaments is known here to correspond to that of the model, which thus shows why right-sided bridge prominence indicates lefthanded screw sense. effect mentioned earlier. As the flared X forms rotate in traversing the fibril, changes in form can also be seen with respect to the actin-centered, bridge configurations. The latter are crudely sigmoidal. Two incongruent sigmoids occur. As the flared X forms rotate by one 60° step, the sigmoids change from one enantiomorph to the other (Fig. 21). (This requires an advance of about 130-200 A along the axis.) Figure 22 shows how the azimuth of cross-bridge attachment to actin rotates in the opposite direction from that observed for myosin. Now, since we have already shown myosinchanges to follow a left-handed double helix, this means that actin-changes follow a right-handed double helix. Depue and Rice (1964) first certified this right-handed screw diagnosis for actin filaments prepared by shadowcasting with heavy metals. Since cross-bridges probably correspond to HMM (the heavier of two "meromyosin" fragments derivable from myosin by gentle tryptic digestion), let us not forget Huxley's pleasing observation (1963) that HMM particles "decorate" actin filaments so as to express the pitch and polarity of actin forming a serial arrowhead structure. Such findings are now satisfyingly complemented by the in situ relations between structure of actin and attachment of cross-bridges observed in insect fibrillar muscle. I would like to conclude with a resume of the chief ideas which emerge from this work on the cross-bridge lattice of fibrillar insect flight muscle. 1. X-ray diffraction and optical diffraction studies indicate no artifact other than shrinkage in the rigor cross-bridge lattice. In relaxed muscle, however, it seems likely that the attachment of cross-bridges to actin, as observed microscopically, is a fixation artifact, of which the diffraction studies do indeed give evidence. 2. We have shown that the transition from relaxation to rigor is marked structurally by a change in cross-bridge angle, appropriate in direction and ..magnitude to account for the increase in tension which has been observed to accompany isometric rigor induction. 3. There are four cross-bridges (the flared X grouping) every 146 A along the myosin filaments of insect fibrillar muscle. 4. Both actin and myosin filaments follow double helical patterns, of equal pitch, such that one half-turn is completed every 388 A. The helix is left-handed for myosin, right-handed for actin. Both the pitch and screw senses permit a system where the subunits of myosin and actin filaments can remain in phase through the whole 1.2 ^ length of the half A band. 5. This structural match between filaments of myosin and actin offers strong morphological encouragement for the often-considered idea (in Pringle's group at least) that during each cycle of oscillation the cross-bridges might all fire synchronously, or nearly so. This requires 150300 A of filament travel for one crossbridge cycle, which may not be unreasonable to expect, as discussed elsewhere (Reedy, 1967, and see Pringle, 1967). 6. We are now in a position to relate the X-ray diffraction pattern to the detailed structure of the cross-bridge lattice, including angular positions of the crossbridges. Diffraction studies of working oscillating muscle will soon be attempted to learn how cross-bridges behave in the active state. An active muscle system in which cross-bridge movements were synchronized should yield this information to stroboscopic X-ray studies, where such information may not be accessible in a system of asynchronously moving cross-bridges (e.g., vertebrate striated muscle?). 480 MICHAEL REEDY Acth FIG. 21. In this transverse section of muscle, 180 A thick, unhurried inspection reveals that the predominant cross-bridge configuration is the flared X grouping (see Fig. 12) of four bridges. Note how flared X's rotate counterclockwise as you traverse from right to left, from' bottom to top, due to a slight obliquity like that of Figure 17. •V Example: In the sixth myac row from the bottom, X's are upright until they reach the left-most myosin, where this rotation is observed. Myosinmyosin spacing varies here from less than 400 A to nearly 500 A, depending on effects of compression on the section. X 204,000. FIG. 22. Screw sense of actin is indicated as oppo- CROSS-BRIDGES AND PERIODS IN MUSCLE 481 site that of myosin, because sigmoids involve rotation opposite to that shown by flared X's. Example: Second myac row from bottom shows same changes as diagram, occurring within the span of the ten right-most myosin profiles. 7. The role of the "C filaments" which connect the ends of myosin filaments to the Z bands is far from clear. They seem to offer an explanation for the steep lengthtension curve of relaxed fibrillar muscle. Again, they seem to bring us part way toward an explanation of the role of stretch in supporting the mechanism of active oscillation. However, there is no current evidence to show how or why a strain on the shafts of myosin filaments might trigger the enzymatic and mechanical activity of cross-bridges. Other work on Lethocerus flight muscle seems to be approaching agreement with the quantitative ideas above. The data of Riiegg and Tregear (1966) on the utilization of ATP allow for an interpretation whereby each cross-bridge may split only one ATP molecule per cycle of working oscillation. The first estimates of myosin content in relation to fibrillar structures suggest that there are six myosin molecules per four cross-bridges (Chaplain and Tregear, 1966; their ratio of three myosins per cross-bridge is based on the obsolete filament model with two bridges per 146 A). At present, I believe that the evidence which allows us to enumerate bridge population is more direct and free of assumptions than our first evidence on myosin content. The idea that each cross-bridge contains a variable or non-integral number of myosin molecules does not yet seem the likeliest solution. mass of myosin per cross-bridge in insect fibrillar flight muscle. J. Mol. Biol. 21:275-280. Depue, R. H., and R. V. Rice. 1965. F-actin is a right-handed helix. J. Mol. Biol. 12302-303. Hanson, J., and J. Lowy. 1963. The structure of F-actin filaments isolated from muscle. J. Mol. Biol. 6:46-60. Hasselbach, W. 1964. Relaxing factor and the relaxation of muscle. Prog. Biophysics Mol. Biol. 14:167. Hodge, A. J. 1955. Studies on the structure of muscle. III. Phase contrast and electronmicroscopy of Dipteran flight muscle. J. Biophys. Biochem. Cytol. 1:361-384. Huxley, H. E. 1963. Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7: 281-308. Huxley, H. E., and J. Hanson. 1957. Preliminary observations on the structure of insect flight muscle. Proc. Stockholm Conf. on Electron Microscopy, 1956 (Uppsala). Academic Press, New York. 202-204. Huxley, H. E., and J. Hanson. 1960. The molecular basis of contraction in cross-striated muscles, p. 183-227. In G. H. Bourne, (ed.), The structure and function of muscle, I. Academic Press, New York. Huxley, H. E., M. K. Reedy, K. C. Holmes, and R. T. Tregear. 1967. A study of muscle fixation by X-ray diffraction. (In preparation). Klug, A., and J. E. Berger. 1964. An optical method for the analysis of periodicities in electron micrographs and some observations on the mechanism of negative staining. J. Mol. Biol. 10:565-569. Pringle, J. W. S. 1967. The contractile mechanism of insect fibrillar muscle. Progr. in Biophys. and Mol. Biol. 17:1. Reedy, M. K. 1967. Ultrastructure of insect flight muscle. I. Screw sense and structural grouping in the rigor cross bridge lattice. J. Mol. Biol. 28: Reedy, M. K. 1967. Ultrastructure of insect flight muscle. II. and III. (In preparation). Reedy, M. K., K. C. Holmes, and R. T. Tregear. 1965. Induced changes in orientation of the cross bridges of glycerinated insect flight muscle. Nature 207:1276-1280. Riiegg, J. C. 1967. ATP-driven oscillation of glycerol-extracted insect fibrillar muscle: mechanochemical coupling. Am. Zoologist 7:457-464. Riiegg, J. C, and R. T. Tregear. 1966. Mechanical factors affecting the ATPase activity of glycerolextracted insect fibrillar flight muscle. Proc. Roy. Soc. (London), B. 165:497-512. White, D. C. S. 1967. D. Phil, thesis, Zoology, Oxford University. Worthington, C. R. 1961. X-ray diffraction studies on the large-scale molecular structure of insect muscle. J. Mol. Biol. 3:618-633. I am particularly grateful to Drs. H. E. Huxley, A. Klug, and K. C. Holmes for many stimulating discussions and continued encouragement. For the gifts of living and glycerinated Lethocerus flight muscle, I thank Prof. J. W. S. Pringle. For a sizable gift of time and patience, I thank Deirdre, my wife. I was supported during this work by USPHS Fellowship 2-F2-NB-21075-02 and 03. REFERENCES Auber, J., and R. Couteaux. 1963. Ultrastructure de la strie Z dans des muscles de Dipteres. J. Microscopie 2:309-324. Brown, W., K. C. Holmes, H. E. Huxley, and A. Klug. 1965. Unpublished observations. Chaplain, R. A., and C. T. Tregear. 1966. The
© Copyright 2026 Paperzz