Practice Final CH142, Spring 2012 First here are a group of practice problems on Latimer Diagrams: 1. The Latimer diagram for nitrogen oxides in given below. Is NO stable with respect to disproportionation under standard conditions at 25°C? 0.96 V | | 1.59 V 0.79 V 1.12 V 1.00 V 1.77 V 0.27 V NO3 NO2(g) HNO2 NO N2O N2 NH4+ | 1.25 V | 2. The Latimer diagram for manganese in acidic solution is given below at 25°C. Find the standard reduction potential for the reduction of permanganate ion, MnO4-, to Mn2+ from the potentials listed. 0.56 V 2.26 V 0.95 V 1.51 V -1.18 V MnO4- MnO42- MnO2 (s) Mn3+ Mn2+ Mn (s) | 1.69 V | 1.23 V | 3. The Latimer diagram for manganese in acidic solution is given below at 25°C. (a). Give the best oxidizing agent under standard conditions. (b). Give the best reducing agent. (c). Is Mn(s) a good oxidizing agent? (d). What are the products of the disproportionation of Mn3+ ? 0.56 V 2.26 V 0.95 V 1.51 V -1.18 V 3+ 2+ 2MnO4 MnO4 MnO2 (s) Mn Mn Mn (s) | 1.69 V | 1.23 V | - 4. Given the following standard reduction potentials, construct the Latimer diagram: BrO4 + 2H + 2e → BrO3 + H2O BrO3– + 5H+ + 4e– → HBrO + 2H2O BrO3– + 6H+ + 5e– → ½ Br2 (l) + 3H2O HOBr + H++ e– → ½ Br2 (l) + H2O Br2 (l) + 2e- → 2Br– – + – – E°r ed (V) 1.745 V 1.49 V 1.513 V 1.584 V 1.078 V Chemistry 142 Final Name ______________________ Part 1: Answer 6 of the following 7 questions. If you answer more than 7 cross out the problem that you don’t wish to have graded. (10 points each) 1. Name the following compounds or supply the formula: (a). KClO4 ______________ (b). sulfurous acid __________________ (c). [Al(OH)4]– ______________ (d). diaquadiamminecobalt(II) chloride _________ 2. (a). Name a good oxidizing agent ______________ (b). Name a good reducing agent _____________ (c). Name or draw the structural formula for a good multi-dentate ligand: (d). An element that has several allotropes and name two of the allotropes: 3. (a). Give the balanced chemical reaction for Zn(OH)2 (s) dissolving in a strong acid: (b). Give the balanced chemical reaction for Zn(OH)2 (s) dissolving in a strong base: 4. (a). Give the balanced chemical reaction for Fe3+ acting as an acid: (b). Write a balanced chemical reaction for the disproportionation of hydrogen peroxide: 5. Choose the spontaneous direction for the following aqueous reactions at 298 K: (a). at standard state: Zn (s) + Cr3+ → Zn2+ + Cr2+ (s) or Zn2+ + Cr2+ (s) → Zn (s) + Cr3+ (b). at 0.10 M concentrations for each species: [Cu(NH3)4]2+ → Cu2+ + 4 NH3 or Cu2+ + 4 NH3 → [Cu(NH3)4]2+ (c). at 0.10 M concentrations for each species: PO43- + H2O → HPO42- + OHor HPO42- + OH- → PO43- + H2O (d). BaSO4 (s) with 0.10 M Na2SO4: BaSO4 (s) → Ba2+ + SO42– Ba2+ + SO42–→ BaSO4 (s) or 6. Is perchlorate ion a better oxidizing agent in acidic or basic solution? ____________ In acidic solution: 1.19 V 1.21 V 1.65 V 1.63 V 1.36 V ClO4 ClO3 HClO2 HOCl Cl2 Cl| | 1.47 V In basic solution: 0.36 V 0.35 V 0.65 V 0.40 V 1.36 V ClO4- ClO3- ClO2- OCl- Cl2 Cl| 0.88 V | 7. For solid [Cu(H2O)4(NH3)2]Cl2: (a). The coordination number is: ________ (b). The oxidation state of the metal is: _______ (c). The coordination geometry is : ______ (d). The ions produced in aqueous solution of the compound: Part 2: Answer 4 of the following 5 problems. If you answer more than 4 cross out the problem that you don’t wish to have graded. (10 points each) 1. Calculate the standard state cell voltage, standard state reaction Gibbs energy, and equilibrium constant at 25°C for the reaction: Zn (s) + 2 Fe3+ → Zn2+ + 2 Fe2+. 2. Calculate the solubility of PbBr2 in pure water, Ksp = 2.1x10-6. 3. Calculate the pH at the equivalence point of a titration of 25.0 mL of 0.100 NaBrO with 0.100 M HCl. Ka for HBrO is 2.5x10-9. Show the reaction that determines the pH. 4. Calculate the pH of a solution prepared from 25.0 mL of 0.150 M acetic acid and 25.0 mL of 0.100 M NaOH. Ka for acetic acid is 1.8x10-5. 5. For the first-order reaction 2N2O5 → 2N2O4 + O2, the activation energy is 106. kJ/mol. How many times faster will the reaction go at 100.°C than at 25.0°C? Standard Reduction Potentials at 25°C F2 (g) + 2e- → 2FH2O2 + 2 H+ + 2 e- → 2 Η2O PbO2 (s) + 4H+ + SO42- + 2e- → PbSO4(s) + 2H2O MnO4- + 8H+ + 5e- → Mn2+ + 4H2O PbO2 (s) + 4H+ + 2e- → Pb2+ + 2H2O Cl2 (g) + 2e- → 2ClCr2O72- + 14H+ + 6e- → 2Cr3+ + 7H2O O2 (g) + 4H+ + 4e- → 2H2O Br2 (g) + 2e- → 2BrNO3- + 4H+ + 3e- → NO (g) + 2H2O Hg2+ + 2e- → Hg (l) Ag+ + e- → Ag (s) Fe3+ + e- → Fe2+ O2 (g) + 2 H+ + 2 e- → Η2O2 I2 (s) + 2e- → 2ICu+ + e- → Cu (s) Cu2+ + 2e- → Cu (s) AgCl (s) + 1 e- → Ag (s) + ClCu2+ + e- → Cu+ Sn4+ + 2e- → Sn2+ 2H+ + 2e- → H2 (g) Fe3+ + 3e- → Fe (s) Pb2+ + 2e- → Pb (s) Sn2+ + 2e- → Sn (s) Ni2+ + 2e- → Ni (s) PbSO4 (s) + 2e- → Pb + SO42Cr3+ + e- → Cr2+ Cd2+ + 2e- → Cd (s) Fe2+ + 2e- → Fe (s) Cr3+ + 3e- → Cr (s) Zn2+ + 2e- → Zn (s) V2+ + 2e- → V (s) Mn2+ + 2e- → Mn (s) Al3+ + 3e- → Al (s) Mg2+ + 2e- → Mg (s) Na+ + e- → Na (s) Ca2+ + 2e- → Ca (s) K+ + e- → K (s) Li+ + e- → Li (s) OCl– + H2O (l) + 2 e- → O2 (g) + 2 OH– O2 (g) + 2 H2O (l) + 4 e- → 4 ΟΗ− 2H2O + 2e- → H2 (g) + 2OH– E°r ed (V) 2.87 1.763 1.69 1.49 1.46 1.36 1.33 1.23 1.078 0.96 0.85 0.80 0.77 0.695 0.54 0.52 0.34 0.222 0.15 0.15 0.00 -0.04 -0.13 -0.14 -0.25 -0.359 -0.40 -0.40 -0.41 -0.74 -0.76 -1.18 -1.18 -1.66 -2.37 -2.714 -2.866 -2.925 -3.045 +0.890 +0.401 -0.828 Formulas and Constants Given on the ACS Test R = 8.314 J mol-1⋅K-1 R = 0.0821 L atm mol-1 1 F = 96,485. C mol-1 1 F = 96,485. J V-1 mol Arrhenius Equation: -E /RT k=Ae a NA = 6.022x1023 mol-1 h = 6.626x10-34 J s c = 2.998x1010 m s-1 0°C = 273.15 K Nernst Equation: RT E = E° – ln Q nF Nernst Equation at 25°C: 0.05916 V E = E° – log Q n Integrated Rate Laws: zero: [A] = [A]o – kt first: ln [A] = ln [A]o – k t 1 1 second: = kt+ [A]t [A]o Additional Formulas and Constants Given on the Colby Test t½ = ln 2 0.693 = k k k = A e-Ea/RT ln Ea 1 1 kT2 = – – or kT1 R T2 T1 1 [A]o k Ea 1 ln k= – + ln A R T t½ = ln kT1 Ea 1 1 = – kT2 R T2 T1 x= -b ± b2- 4ac 2a ∆S = nR ln(V2/V1) Kp = Kc (RT)∆n
© Copyright 2026 Paperzz