Altered erythrocyte membrane protein composition m irrors pleiotropic effects of hypertension susceptibility genes and disease pathogenesis Alexey V. Polonikov3, Dmitry V. Ushachevb, Vladimir P. Ivanov3, Mikhail I. Churnosovc, Maxim B. Freidind, Alexander V. Ataman®, Victoria Yu Harbuzova®, Marina A. Bykanova3, Olga Yu Bushueva3, and Maria A. Solodilova3 Objective: The study was designed to assess the effects of polymorphisms in genes associated with essential hypertension on the variation of erythrocyte membrane proteins (EMPs) in hypertensive patients. Methods: Major EMPs content was analyzed in blood from 1162 unrelated Russians (235 hypertensive patients, 176 healthy controls, and 751 random individuals from the Central Russia population). Essential hypertension patients were genotyped for 11 polymorphisms of essential hypertension susceptibility genes including A D D 1 (rs4961), GNB3 (rs5443, rs 16932941), N 0 S 3 (rs 1799983, rs2070744), A C E (rs5186), AGTR1 (rs5186), A G T (rs699, rs4762), MR (rs5534), and TGFB1 (rs1800471). EMP contents and their relationship with the genetic loci were analyzed using various statistical tests. Results: Sex-specific differences in EMP contents between the cases and controls were observed. Regardless of sex, hypertensives exhibited mainly decreased levels of alpha (SPTA1) and beta-spectrin (SPTB) and increased levels of glucose transporter (GLUT1) as compared with healthy subjects (P < 0.001). EMP correlated differently in essential hypertension patients and controls. Almost 70% of the joint variation in the EMP levels is explained by five gender-specific principal components. The essential hypertension susceptibility genes showed considerable effects on the levels of spectrins and glucose transporter. A joint variation of the genes explained about half the total polygenic variance in the GLUT1, SPTA1, and SPTB levels in hypertensives. INTRODUCTION ypertension is a global public h ealth issue and is responsible for at least 45% o f deaths ow ing to heart disease and 51% o f deaths ow ing to stroke [1]. The n u m b er o f deaths attributable to h y p ertension rose from 7.6 to 9-4 m illion estim ated for a period b etw e e n 2000 and 2013 12,3]- H ypertension is k n o w n to b e a multifactorial disease arising from a com plex interplay b e tw e e n m ultiple genetic and environm ental factors jointly contributing to disease susceptibility [4,5]. D espite decades o f intensive basic and clinical research, intrinsic m echanism s underlying essential h y pertension (essential hypertension), the com m on form o f hypertension, rem ain far from being com pleted [6]. T here is a substantial progress tow ard detection o f genes u n d erp in n in g distinct m olecular m echanism s of the disease [5,7,8], and w ide spectrum o f interm ediate ph en o ty p es underlying high BP and essential hypertension has b e e n identified [6,9]A n u m b er o f studies have show n that alterations in structural and functional properties o f the cell m em brane m ay rep resen t disease-associated interm ediate ph en o ty p es reflecting the particular m echanism s o f essential hy p erten sion [10-18]. An elevated erythrocyte N a+-Li+ countertran sport is o n e o f the best k n o w n interm ediate ph en o ty p es of the m em brane abnorm alities found in hypertensive hum ans and anim als [19]. Further studies resulted in the discovery o f generalized structural and functional altera tions in erythrocyte m em brane m irrored the similar p h e n o m e n o n in o th er cell types in essential hypertension H Conclusions: The study showed that essential Journal of Hypertension 2015, 33:000-000 hypertension susceptibility genes are the important factors of the inherited EMP variation, and their pleitropic effects may be mirrored in the altered expression of genes encoding cytoskeletal proteins and those related to intracellular glucose metabolism. aDepartment of Biology, Medical Genetics and Ecology, Kursk State Medical Univer sity, bDivision of Cardiology, Kursk Regional Clinical Hospital, Kursk, department of Medical Biological Disciplines, Belgorod State University, Belgorod, dPopulation Genetics Laboratory, Research Institute for Medical Genetics, Tomsk, Russian Feder ation and department of Physiology, Pathophysiology and Medical Biology, Sumy State University, Sumy, Ukraine Keywords: cytoskeleton, erythrocyte membrane proteins, Correspondence to Alexey Polonikov (Prof, MD, PhD), Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041, Russian Federation. Tel/Fax: +7 4712 58 81 47; e-mail: [email protected] essential hypertension, genetic polymorphism, genetic susceptibility, glucose metabolism, glucose transporter, molecular mechanisms, quantitative variation, spectrin Received 16 February 2015 Revised 10 June 2015 Accepted 10 June 2015 J Hypertens 33:000-000 Copyright (0 2015 Wolters Kluwer Health, Inc. All rights reserved. DOI: 1 0.1097/HJH.0000000000000699 1 [20,21]. Functional alterations in N a+-Li+ countertransport an d o th er m em brane ion transporters are th o ught to b e responsible for abnorm al intracellular distribution of calcium ions req u ired for contraction o f sm ooth m uscle cells, leading to increased cytosolic free calcium and arterial contractility leading to h y p erten sio n [12,22,23]. These observations m ade erythrocytes an attractable and biologi cally plausible m odel for studying the role o f m em brane alterations in the m olecular m echanism s o f hypertension [12,14,24,25]. It is im p o rtan t to n o te that abnorm alities in io n tran s p o rte rs’ fun ctio n s are c o n sid e re d as a genetically d e te r m in ed featu re o f p rim ary h y p erten sio n , rath er th a n the co n se q u e n c e o f lon g -term elev atio n o f BP [12,23]. The altered activity o f m o n o v alen t io n tran sp o rters in essential h y p erten sio n , in contrast to m o n o g en ic hyp erten sio n s, m ay b e b e c a u se o f abnorm alities o f system s involved in th e reg u latio n o f th eir e x p ressio n a n d /o r fu n ctio n [23]. Fam ilial ag g reg atio n an d h ig h er c o n c o rd a n ce o f increased N a+-Li+ c o u n te rtra n sp o rt in m onozy g o tic tw ins th an in dizygotic tw ins suggest m ultifactorial n atu re o f m em b ran e diso rd ers in essential h y p e rte n sio n [24]. This m eans that th e io n tran sp o rt abnorm alities o f cell m em b ran e in essential h y p e rte n sio n are attrib u tab le to the effects o f m ultiple g enes, w h ich have the p o te n tial to m odify ex p ressio n o f g en es w h o se p ro d u cts form the structure o f th e cell m em brane. N um erous studies have sh o w n that the intracellular distribution o f m onovalent ions in h y p ertension is corre lated w ith alterations in p ro tein com position o f the eryth rocyte m em b ran e [14,15,26-31]. D espite incredible advances in gen o m e research, a little co ncern so far is given to u n covering the p ath o g en etic link b etw e en w ell characterized genetic d eterm inants o f essential hy p erten sion a n d altered p ro p erties o f the cell m em brane. A lthough a large n u m b er o f polym orphic gen es w ere found to b e associated w ith susceptibility to essential hypertension, no study has b e e n d o n e to investigate w h eth er these genes contribute to alterations in con ten t o f cell m em brane proteins in the disease. P ursuing this interest, the present study w as designed to test the hypothesis that alterations in the levels o f erythrocyte m em b ran e p roteins in essential h y p erten sio n are related to the effects o f polym orphic genes associated w ith disease susceptibility. M ETHO DS Study participants The study w as carried o u t in four stages (Fig. 1). A total of 1162 u n related individuals w ere involved into the study. All the participants w ere Russians from Central Russia (p re dom inantly from Kursk region). T he Ethical Review Com m ittee o f the Kursk State M edical University has ap p roved the study protocol, an d each participant signed inform ed con sen t at the recruitm ent. A ran d o m sam ple o f 751 (371 m ales an d 380 fem ales) w as enrolled to estim ate the p o p u lation m eans o f the EMPs for statistical genetic analysis. The study g ro u p also included 235 patients w ith doctor-diag n o sed essential h y p erten sio n an d 176 healthy subjects w ith norm al BP. M ean age o f essential h y p ertension patients (67 m en an d 168 w o m en ) w as 47.8 ± 9 -6 years, and the 2 m ean age o f the healthy subjects (75 m en and 132 w om en) w as 45-9 ± 1 1 .2 years. Patients w ith essential hypertension w ere recruited from the C ardiology Clinics o f Kursk Regional Clinical H ospital and Kursk Em ergency M edicine H ospital b etw ee n 2003 and 2007 [32]. D iagnosis o f essential h y p ertension w as verified by qualified cardiologists. Patients w ere defined as hypertensive according to the W orld H ealth O rganization criteria. All these subjects u n d erw en t b o th m olecular genetic analysis for hy p erten sion susceptibility genes and biochem ical investigations for erythrocyte m em brane proteins contents. Molecular genetic analysis O n the basis o f su p p o rtiv e p eer-rev iew ed scientific p u b lications, w e selected gen es involved in the regulation o f vascular hom eostasis w ith a focus o n w ell recognized h y p e rten sio n susceptibility loci th at have b e e n re p o rte d to b e associated w ith the risk o f essential h y p e rten sio n o r/ an d w ith the level o f BP in Russian p o p u latio n s [33-38]. A total o f 11 single n u cleo tid e p o lym orphism s (SNPs) o f h y p e rten sio n susceptibility gen es including transform ing g ro w th factor b eta 1 (TG F B 1) R25P (rsl800471), ad d u cin 1 ( A D D !) G460W (rs496l), g u an in e n u cleo tid e-b in d in g p ro te in b eta p o ly p e p tid e 3 (G N B 3 ) C825T (rs5443) and G272S (rsl6 9 3 2 9 4 l), nitric oxide synthase 3 (N O S J) E298D (rsl799983) a n d —7 8 6 T > C (rs2070744), an g io ten sin Ico n verting enzym e (ACE) I/D (rs5186), a n g io ten sin II re cep to r type 1 (A G T R 1) A1166C (rs5186), an g io tensinog e n (AG E ) M235T (rs699) a n d T174M (rs4762), m ineralocorticoid re cep to r o r n u clear rec ep to r subfam ily 3 g ro u p С m em b er 2 (N R 3 C 2 ) A4582C (rs5534) w ere selected for this study. A pproxim ately 5 ml o f venous b lo o d w ere collected from the patients in K3-EDTA tubes a n d genom ic DNA w as isolated by standard phenol-chloroform extraction. Genetic polym orphism s w ere typed b y PCR-RFLP assays as described elsew here [33-35,39-44]. Each PCR reaction contained internal controls, a n d random retesting o f about 10% o f sam ples resulted in a 100% co ncordance rate w ith initial genotyping data. Biochemical analyses A pproxim ately 5 ml o f fasting w hole b lood sam ples w ere collected from each study participant in the m orning. Eryth rocytes w ere precipitated from fresh heparinized w hole b lo o d sam ples b y the m ethod o f B eutler e t al. [45]. Ghosts o f erythrocytes w ere p rep ared according to a m odified m ethod described by D odge e t al. [46]. W ashed ghosts o f erythrocytes w ere lyophilized, frozen, and stored at —20°C. Fractionation o f m ajor erythrocyte m em brane proteins w as perfom ied by one-dim ensional SDS polyacrylam ide gel electrophoresis (SDS-PAGE) w ith gradient concentration 5-25% according to Laemmli’s m ethod [47]. T he m em brane proteins w ere detected b y im m unological m ethods as described elsew here [48] and classified accordingly as p ro p o sed by Steck and Fairbanks e ta l. [49,50]. The identification and m olecular w eight calculations o f red b lood cell proteins w ere perform ed using standards o f protein m arkers as p re viously reported [48]. The levels o f erythrocyte m em brane proteins w ere quantified through k n o w n concentration o f Overview of the study pipeline S T A G E 1: A n a ly s is for d ifferences in erythrocyte m em brane protein co ntents between hypertensive and norm otensive in d iv id u a ls S T A G E 2: Interrelations between erythrocyte m em brane protein levels in hypertensive patients and healthy su b je cts S T A G E 3: Th e relationship between hypertension su sce p tib ility g e n e s and erythrocyte m em brane protein levels in the patients S T A G E 4: A co m p rehensive contribution of hypertension su sce p tib ility ge n e s to variability of erythrocyte m em brane proteins Aim: To compare major erythrocyte membrane protein (EM P)levels between hypertensive patients and healthy controls in entire and gender-stratified groups Aim: T о measure the strength and direction of the linear relationship between the EMP levels in the study groups stratified by gender. To identify the integral factorsresponsible for the total variability of a complex of EM Ps in hypertensive males and females Aim: To analyzethe impact of polymorphismsin hypertension susceptibility genes on the EMP levels in hypertensive patients Aim: T о estimate the proportion of total phenotypic and polygenic variances ofthe EM Ps explained by the variation of hypertension susceptibility genes Materials: R ussian patients with doctordiagnosed essential hypertension (N = 234; 82 males and 152 females) and healthy subjects with normal blood pressure (N = 176; 75 males and 101 females) from Kursk regiotn. Materials: The EMP levels of the same patients investigated on S T A G E 1 (234 EHpatients and 176 healthy controls). Materials: D N A sam ples obtained from hypertensives who underwent biochemical investigations of EMP contents on S T A G E 1 (N = 234); an independent population sam ple of Russian inhabitants from the Central R u ssia (N = 751; 371 males and 380 females) Materials: The biochemical and genotypic data of hypertensive patients obtained on S T A G E S 1-3 (N = 234); the EMP levels of the population sample investigated on S T A G E 3 ( N = 751) FIGURE 1 Overview of the study pipeline, initial analysis was done to establish differences in contents of 14 major erythrocyte membrane proteins (EMPs) between hypertensive and normotensive subjects (STAGE 1). Then, the strength and direction of alterations in the EMP levels were assessed and the integral factors explaining the joint variation o f membrane proteins in essential hypertension patients were estimated (STAGE 2). Subsequently, the analysis of relationships between 11 common polymorphisms in hypertension susceptibility genes and EMP contents was carried out (STAGE 3) and the estimates of the proportion of total phenotypic and polygenic variances of the proteins explained by the variation of a group of the genetic loci were obtained (STAGE 4). bovine serum album in (|ag) using the program ONE-Dscan (Scanalytics Inc., Fairfax, VA, USA). The average effects o f the particular allele (a,, / = 1 , 2) on EMP variability in hypertensive patients w ere estim ated using algorithm s described in [54]: Statistical analysis The distribution o f the quantitative traits w as evaluated for norm ality b y K o lm ogorov-S m irnov test. D ifferences in EMP contents b e tw e e n the case an d control groups w ere tested using m odifications o f S tudent’s t test for the traits w ith equ al or u n e q u a l variances as required. The BrownForsythe’s test w as ap p lied to assess the equality o f EMP variances b e tw e e n the groups [51]. A P value <0.05 w as co n sid ered significant. P earso n correlation coefficients w ere calculated to m easure the linear relationships b e tw e e n the EMP levels in the study groups. T he principal co m p o n en t analysis w as ap p lied to identify the integral factors responsible for the total variation o f EMPs [52]. The varim ax-norm alized rotation w as u se d to simplify the interpretation o f the principal com ponents. Allele freq u en cies for the polym orphism s w ere estim ated by the gene counting m ethod. H ardy-W einberg equilibrium for g en o type frequencies w as assessed b y / 2 test. A one-w ay and tw o-w ay analysis o f variance (ANOVA) w as perform ed for the EMP levels to test the hypothesis that their p h e n o typic variation is affected b y the genetic polym orphism s alone an d their com binations, respectively [53]. The coef ficient o f determ ination (P2) w as u sed to evaluate the d eg ree o f relationship b e tw e e n genetic polym orphism s an d EMP levels. _ / l l ' P l l + 0-5 '/ 1 2 ' P i 2 h i ' P 22 + 0.5 ' f _2 - P i 2 w here f t is frequency o f allele i; f tj is the frequency of genotype ij exp ected u n d e r the assum ption o f H a rd y W einberg equilibrium ; /x,y is the average o f the trait values for individuals w ith the genotype ij; fi is the estim ate o f the p o p u latio n m ean. The variance attributable to genotypic differences w as co m p u ted as [54]: Of У 'f j ( pj j /2 ) ~■ w here the values are sum m ed for each genotype of the locus. The variance attributable to the average effects o f the alleles at the locus (additive genetic co m p o n en t) w as calculated as: М= 2 ]Г /< 4 3 D = G - A >< ■<cD -D 1/1 Ф _- ^ "пз — сс ф U_ Alterations in contents of erythrocyte membrane proteins in patients with essential hypertension All erythrocyte m em brane p roteins in the study subjects w ere norm ally distributed № > 0 .0 5 ). Table 1 show s a com parison o f EMP levels b e tw e e n patents w ith essential h y p erten sio n an d healthy subjects. The increased levels of p ro tein b a n d 4.1 (ЕРВ4Г), glucose transporter (GLUTl) and actin (ACTB), an d d ecreased levels o f a-sp ectrin (SPTAl), (3-spectrin (SPTB), an d glyceraldehyde-3-phosphate d eh y d ro g en ase (GAPDH) w ere found in hypertensives as c o m p ared w ith controls. Sex-stratified analysis revealed differences in the EMP levels b e tw e e n m ales an d females. The decreased SPTAl levels an d increased GLUTl levels w ere found in hypertensive m ales in com parison w ith h ealthy controls. M eanw hile, the levels o f cytoskeletal proteins SPTAl, SPTB, dem atin (DMTN), an d GAPDH w ere significantly low er in hypertensive fem ales th an in healthy fem ales, w hereas the GLUTl an d ACTB levels w ere higher in hypertensive th e n in norm otensive fem ales. Protein b an d s 2.1 (ankyrin 1, ANK1), an io n ex changer (AEl), pallidin (EPB42), GLUTl, an d GAPDH sh o w ed differences in variances b e tw e e n the study gro u p s (Supplem entary Table 1, http://links.lw w .com /H JH /A 51T ). Joint variability of erythrocyte membrane proteins in hypertensive patients Statistically significant correlations CP< 0 .0 5 ) b e tw ee n the levels o f erythrocyte m em brane proteins w ere observed in b o th hypertensive patients an d healthy controls (Fig. 2). N otably, paired correlation coefficients b etw e e n EMPs, w h o se contents w ere altered in hypertensives in com pari son w ith healthy subjects, sh o w ed considerable differences b e tw e e n the case an d control groups. Correlations b e tw e en such EMPs in m ales an d fem ales w ere o f interest. For instance, SPTAl levels w ere negatively correlated w ith GAPDH contents in hypertensive fem ales and healthy m ales in contrast to hypertensive m ales an d healthy 4 сгГ О гм Гч гм о о О, о о . ю Гч СП гм гм о гм гм гп гм гп о о '— гм 0 о т— Ф "пз с пз i/i LO ’Р ' о о о о о со о гм гм о о о ^7 гм m со о. оо -зо со О о -чГ со со гм (X »— гп гм LO гм гм о Ln m -П оо сп X о 'чГ гм о о . О . О О, о о о . о о. о 00 m Ln m m Гч -3- ю Гч Гч со Пч 0 Q. 3 0 со сп Гч ю гп гм гм «3о о о '— гм гп 01 0 0 -чГ 0 со гм о о О о Ф ' о ф 1/1 о. с 3 ш п t3 Ф in' U) 3 1/1 о 0 0 *3 г “ С II о Л VJ S "O с ПЗ R ESU LTS о (X гм О о гм m оо о о. о. о со ю a 3 о "O Additive an d d om inant co m p o n en ts o f the variance attributable to a com plex o f the loci w ere calculated as w eighted averages o f the trait over all polym orphism s. A percen tag e o f the average value o f the genotypic variance attributable to the interloci variability to heritability (b 2) w as co nsidered as the co ntribution o f genetic variance (G pg) to the total polygenic variance o f the traits. Estimates o f EMP heritability w ere co m p u ted in o u r previous study as a d o u b led p a re n t-c h ild correlation coefficients for each trait [55]. The statistical calculations w ere d o n e using Statistica for W indow s vlO.O (StatSoft; Tulsa, OK, USA) and Microsoft Excel 2007 (Microsoft Corp., USA). гм о о. сп гп гм с о "in С £ Ш 1 +С1/-1 ГМ a > Ф LT1 +3 ПЗ || О. 11 ш СП -н с 2 £ПЗ г^ с II VJ ^ о. с о т— т— оо X X -3гм о. гм г*» о гп со Гч гп о ш СП -н оо ю о о. -чГ Гч гп '— о оо Ln гп гм О со О О. о оо 00 о сп гм о '— р о (X »— LO Ln o' о ю о о Гч m о о о о о. 0 гп Ln 0 Гч гм гм LO СП m О гм '— 0 сп гм СП сп о со LU гм m о ю гм гм ^7 'чГ СП Гч ю ^7 LH со гм гм 'чГ гп <r4 <г4 mi о ^4 <г4 гп гп ^4 о о гп -н -н -н -н -н -н -н -н -н -н -н -н -н -н СП о со - LO сп о LO со m гм LO сп ю Гч гм 0 оо гм гп гм ю ^7 сп ^7 гп сп <f о 00 -З- 00 г^ г^ о со о СО гм LO m СП LO гм Ln m гм - 1-П ш СП -н -Г Z X w ш 1/1 ^ 75 ш о гп -П гм гм -н -н m о со о со о о о 00 0 юоо 0 0 о сп гп оо о гм о -н -н -Н -н -н сп m m ю о -П *— Гч сп cri mi сп m СП Гч СП Ln со СП Ln о гп ю сп Гч 0 о <х гм о о о «-4 <х -н -н -н -н -н -н -н Гч оо Гч оо о Гч Гч сп ю Ln LO гм гм о ю -П Ln гм LH m гм ч о оо СП О m Гч Гч гм Г 0 mП m Гч ^7 гп гм сп С Ln LO гп гм гм со -чГ о гм mi о mi гп -н -н -н -н -н -н -н -н -н -н -н -н -н -н Гч LO гм о по -чГ гм Ln гм гм гм Гч сп ю О ю гм гп гп Ln со гм гп Lfi СП о LO mi LO mi mi mi О ^4 сп СП гм гм Ln m -3- гм ф ф Iф -Q J/1 Ф _> Ф i/i С ■ф ■н О О. _ ГМ £ 00 —о н ПЗ 1/1 " +3 S С сФw 8ф gа сф со го со ^ о сп гм * -с пз о. ф с ПЗ Е ф Е 3 > и О -С * Ф чО ПЗ с ПЗ ф > ■-Р ПЗ 00 00 со гм LO о Г ч mLn ОГ ч сп оо СП гм со О О 00 0 СП «-4 о 0 гм о < х гм о о 0 «-4 о -н -н -н *— -н -н -н -н -н -н -н -Н -н -н -н о о гм о О сп оо СП оо гм со о СП L n гм оо Г ч LO СП оо СП гм LU ^ 4 г ^ mi со mi О со ^ 4 со mi -чЕ a i гм -П гм Ln m гм СП Ц СП гм -Q С О ш Гч СП II -н Z LO гп гм гм 'чГ О с т _ ом II ■С ■н С 2 ФW « t «л О О Г М О О О О О b N O N O ' t O O й) S О Q. с — >.2 -с -и ПЗ а. III О ф| и U) гм го СО < X ? CQ D тСО СО ^ ц - ъ< —' ^ 1 ]> U o o o o < t < C < C < C i - u m ( D Q <t (D < CQ 5 v mean; SE, standard error of mean, bolded are statistically significant differences in the EMP levels between the groups. w h ere the values are sum m ed u p for each allele of the locus. The variance attributable to the nonadditive interactions (dom inant genetic co m p o n en t) b e tw e e n the alleles o f the locus w as calculated as: Pairw ise correlation matrix of erythrocyte m embrane proteins in hypertensive patients and healthy co n tro ls stratified by gender EM Ps SPTA1 SPTB A N K 1 .1 SPTB -0 .3 6 6 -0 ,6 4 5 NS EPB42 GLUT1 DM TN ACTB GAPDH TPM 1 NS -0 ,2 6 6 -0 ,3 0 7 -0 ,3 9 6 NS -0 .5 5 7 -0 ,5 8 2 -0 .3 1 4 NS 0,629 0.257 -0.401 -0 ,6 5 8 -0 .2 8 5 -0 ,2 9 5 GSTM 1 0.166 0.235 0,458 0.540 0,311 0.287 NS -0 .2 2 2 -0 .3 8 9 -0,311 -0.221 -0 ,4 0 5 NS NS 0,527 0.595 NS NS -0 ,3 5 9 NS -0 .3 7 9 -0 ,3 7 3 NS -0 .2 6 1 NS NS 0.461 0.743 0.296 NS 0.358 -0 ,2 5 3 -0 .2 3 4 -0 ,2 3 8 -0 ,2 5 4 NS 0.636 0.796 NS 0,248 NS NS -0 .3 1 9 -0 ,2 5 0 NS -0 .2 8 5 -0 .3 1 7 0.454 0.758 0,325 0.391 NS -0 .4 0 7 -0 ,2 3 9 -0 .2 1 9 0.673 0.791 0,288 0.294 -0 .2 9 0 -0 .4 7 0 NS NS NS 0.296 -0 .4 7 9 ^ ).3 0 6 -0 ,2 4 3 -0.471 -0 .2 4 3 NS NS 0.199 0.282 0.318 NS -0 ,2 6 0 -0 .4 0 9 -0 ,5 5 6 ^ ).3 3 6 NS -0 .1 8 5 0.201 0,238 0.179 0.358 NS -0 .2 9 7 -0 .2 5 1 -0 .4 9 8 -0 ,2 5 2 -0 .3 4 7 NS NS NS 0.387 0.334 NS NS -0 .2 3 7 0.207 0.276 0,269 -0 ,3 1 8 -0 .3 1 7 -0 .2 3 3 NS NS 0,365 0.449 -0 ,3 5 0 -0 .3 1 9 -0 .6 6 0 -0 .6 5 2 -0 ,2 6 4 -0 ,2 3 8 0.160 -0 .7 4 0 -0 .6 9 8 -0 .2 7 4 -0 ,3 4 8 0,246 -0 .2 7 0 ACTB TPM1 EPB41 -0 ,3 0 2 DM TN GAPDH AE1 0.322 NS EPB42 G LUT1 A N K 1 .3 0.647 A N K 1 .3 E P B 41 A N K 1 .2 0,647 A N K 1 .2 AE1 A N K 1 .1 0.416 SPTA1 NS 0.279 0.439 -0 ,2 3 3 NS NS -0 .2 3 6 0,266 0.240 -0,351 -0 ,3 2 0 -0 .2 6 4 0.351 NS 0.477 -0 .2 4 0 -0 ,2 9 3 -0 .2 7 0 NS 0.247 NS 0.292 NS NS -0 ,3 3 7 -0 .4 6 8 -0 .2 4 7 0,255 -0 .2 4 0 -0 ,3 2 2 -0 ,3 8 8 -0 .3 4 1 -0 ,2 4 8 -0 .1 7 9 NS NS -0 ,3 5 5 NS -0.221 -0 ,4 8 0 NS 0,541 -0 .3 1 8 0.437 NS -0 ,3 6 4 -0 .2 9 7 -0 ,2 5 6 -0 ,2 8 3 ^ ).3 3 0 -0 .2 7 2 -0 .2 7 0 -0 .2 7 4 -0 ,5 2 0 -0 .3 0 6 -0 .3 0 4 -0 ,6 0 9 NS -0 ,4 4 6 -0 ,3 2 2 -0 .3 2 3 -0 .1 8 1 -0 ,3 4 0 -0 ,4 5 6 -0 .2 7 0 -0.211 -0 ,3 3 4 NS G STM 1 NS FIGURE 2 Pairwise correlation matrix of erythrocyte membrane proteins in hypertensive patients and healthy controls stratified by sex. Statistically significant correlation coefficients in hypertensive (numerator) and normotensive (denominator) males and females are shown above the central diagonal and below it, respectively. NS means a nonsignificant correlation coefficient. fem ales. T he levels o f GLUT w ere positively correlated w ith EPB41 levels in healthy m ales, b u t n o such correlation w as observ ed in hypertensive males. Principal c o m p o n e n ts analysis w as a p p lied to the d ataset to red u c e th e d im ensionality o f a set o f ery th ro cyte m em b ran e p ro tein s an d to identify the integral factors resp o n sib le for their joint variability. A significant p ro p o rtio n o f th e joint variation o f EMP levels (72.4% in m ales an d 71.0% in fem ales) w as b e c a u se o f the five factors, w h ich sh o w e d differences b e tw e e n sexes (Table 2). In m ales, substantial loadings to the principal c o m p o n e n t 1 (P C I) (ex p lain ed 27% o f total EMP var iance) a p p e a re d for a m ajority o f EMPs su ch as an an ch o rin g m em b ran e p ro tein an kyrin (b an d s 2.1, 2.2, an d 2.3), AE1, АСТВ, TPM1, an d m em b ran e-asso ciated enzym es GAPDH a n d m em b ran e-asso ciated GSTM1. In fem ales, the PCI (ex p lain ed 24% o f total EMP variance) h ad substantial loadings only for ankyrin, actin, T A B LE 2. Principal com p o nents an alysis o f erythrocyte m em brane proteins levels in patents w ith essential hypertension Males M em brane proteins SPTA1 SPTB ANK1.1 ANK1.2 ANK1.3 AE1 EPB41 EPB42 GLUT1 DMTN ACTB GAPDH TPM1 GSTM1 Eigen values of principal components The percentage of total variance explained by the respective number of factors Fem ales PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5 -0 .1 8 9 -0 .1 8 3 -0.711 -0 .6 7 6 -0 .7 2 3 -0.601 -0 .5 0 9 -0 .5 7 6 0.396 0.171 0.501 0.467 0.566 0.552 3.785 27.0 -0 .6 9 2 -0.751 0.089 0.124 0.256 -0 .2 9 7 0.472 -0 .0 5 6 0.819 -0 .3 6 5 0.250 -0 .1 5 4 0.010 -0 .4 1 2 2.506 17.9 -0 .5 0 0 0.032 0.139 0.384 0.450 -0 .2 7 2 -0 .1 4 8 0.133 -0 .0 4 4 0.559 -0 .4 2 4 0.178 0.540 0.323 1.657 11.8 -0 .1 0 9 -0.1 4 9 -0 .2 7 7 0.122 0.030 0.134 0.108 0.600 -0 .1 2 4 0.201 0.437 0.596 -0 .2 5 8 0.006 1.185 8.5 -0 .0 4 9 0.112 0.178 0.440 0.204 -0.1 1 5 -0 .4 4 9 -0 .1 5 8 -0 .0 6 8 -0 .5 2 0 0.348 0.123 -0 .1 1 0 0.255 1.009 7.2 -0 .3 6 3 -0 .3 1 5 -0.71 1 -0 .7 1 5 -0 .7 1 7 -0 .3 1 6 -0 .3 5 3 -0 .3 4 9 0.362 0.096 0.317 0.572 0.642 0.540 3.379 24.1 -0 .7 5 0 -0 .8 0 0 0.016 0.332 0.303 -0 .0 1 7 0.467 0.214 0.774 -0 .2 2 7 0.315 0.047 0.005 -0 .3 9 3 2.575 18.4 0.276 0.113 -0.141 -0 .3 8 3 -0 .3 2 8 0.059 0.361 0.357 -0 .0 8 4 0.111 0.638 0.254 -0 .4 8 0 -0.411 1.515 10.8 0.125 0.066 0.179 -0 .1 1 0 -0 .2 0 5 0.117 0.005 -0 .6 4 3 0.114 -0 .7 9 8 0.306 -0.311 -0 .0 9 9 -0.071 1.388 9.9 -0 .0 4 8 -0 .2 6 3 -0 .3 6 5 -0 .0 7 6 -0 .0 7 3 0.875 -0 .0 2 9 0.006 -0.071 0.095 -0 .0 9 7 -0 .2 5 2 -0.111 0.118 1.096 7.8 Gray cells represent factor loadings with a value > ± 0 .5 0 0 , a threshold selected for inclusion of the trait in the interpretation of principal components. 5 tro p o m y o sin , an d GSTM1. T he PC2 (resp o n sib le for alm ost 18% o f total EMP varian ce) sh o w e d substantial factor loadings for m ajor cytoskeletal p ro tein s su ch as sp ectrin an d p ro te in 4.1, an d also GLUT1 in b o th sexes an d ad ditionally for GSTM1 in m ales. T he PC3 differed substantially b e tw e e n m ales an d fem ales. In m ales, the PC3 h a d sub stan tial loadings for SPTA1, SPTB, ankyrin (b an d 2.3), DMTN, ACTB, an d TPM1. In fem ales, the PC3 w as o n ly associated w ith the variability o f ACTB, TPM1, an d GSTM1. T he rest tw o p rin cip al c o m p o n e n ts w ere resp o n sib le for o n ly 15% an d 17% o f total EMP variance in m ales a n d fem ales, respectively. The average effects of alleles of hypertension susceptibility genes on the levels of erythrocyte membrane proteins W e estim ated average effects o f alleles o n the levels o f EMT in the hypertensives using m ethodology p ro p o se d b y Sing and D avignon [54]. To calculate the average effects, w e used p o p u latio n m eans for each EMP estim ated in a p o pulation sam ple o f Russians (S upplem entary Table 2, http://links.lw w .com /H JH /A 511) an d the frequencies o f alleles of disease susceptibility genes in hypertensives (Supple m entary Table 3, http://links.lw w .com /H JH /A 51T). Figure 3 show s a graphical representation o f the average effects o f alleles o n the EMP levels for genes associated w ith hypertension in o u r popu latio n (the average effects of alleles for oth er loci are given in Supplem entary Figure 1, h ttp :// links.lww.com/HJH/A51T). As expected, allelic variants of alm ost all o f the investigated genes influence, th o u g h in varying degrees, the contents o f EMP in hypertensive patients. In m ost cases, the average effects o f alleles on the EMP levels w ere m oderate, an d the direction o f devi ations o f the trait from the p o p u latio n m ean w as m utually inverted in the carriers o f alternative alleles. Furtherm ore, the effects o f alleles o n the EMP levels w ere u n eq u al in m ales and females. In particular, the 460W allele o f the A D D 1 gene influenced the levels o f spectrins, ankyrin 2.1, GLUT1, DMTN, an d GSTM1 in males, an d SPTA1, SPTB, ankyrin 2.2, AE1, GLUT1, ACTB, GAPDH, an d GSTM1 in females. Notably, the effects o f the allele 460W o n the EMP contents w ere in o pposite directions in hypertensive m ales and females; the allele increased the level o f GLUT1 and w as associated w ith a low er SPTA1 an d SPTB in males, w hereas in fem ales, the allele d ecreased GLUT1 con ten t and increased the levels o f the spectrins. H igher effects o n contents of GLUT1, SPTA1, an d SPTB in fem ales w ere seen for the 272S allele o f the G NB3 gene. The 25P allele o f the TGFB1 gene exhibited similar effects o n GLUT1, SPTA1, and SPTB con tents in b o th sexes, similarly to those found in m ales w ith the 460W allele. In males, the effects o f the HGT235 M allele on the levels o f GLUTand spectrins w ere com parable w ith the effects o f the A D D 1 460W allele. The contribution of the studied genes to quantitative variability of erythrocyte membrane proteins in hypertensive patients Using ANOVA, w e assessed th e im pact o f h y p e rte n sio n susceptibility g en es o n th e EMP levels in fem ale a n d m ale patien ts (Fig. 4). N otew orthy, th e EMPs, w h o se contents 6 w ere ch an g ed in hy p ertensive p atien ts in co m p ariso n w ith h ealth y controls, w ere associated w ith co m binations o f h y p e rten sio n susceptibility genes. In particular, a com bi n a tio n o f the G N B 3 C825T an d H GTT174 M polym orphism s ex p lain e d 24.3% C P = 0.01) o f the total variation o f SPTB an d 17.6% ( p = 0.04) o f GLUT variation in m ales. T he A G T M235T a n d A G T R 1 1166A/C loci w ere resp o n sib le for 21.2% ( p = 0.01) o f SPTB variation, w h ere as a com b in atio n ofMGTM235T w ith the N O S 3 E298D locus w as resp o n sib le for 13-3% ( P = 0.05) o f the total variance o f this cytoskeletal p ro te in in m ales. In fem ales, the A D D 1 G460W an d N O S 3 E298D g en e p o lym orphism s ex p lain e d 7.4% C P = 0.04) o f the total variation o f SPTA1 an d 11.0% C P = 0.01) o f SPTB variation, w h erea s a com b in atio n o f the A G T R 1 1166A/C и G N B 3 G814S loci w as resp o n sib le for 7.5% C P = 0.02) o f SPTB variation. M oreover, co m binations o f the po ly m o r phism s G N B 3 C825T a n d G N B 3 G814S, G N B 3 C825T and N O S3 E298D, G N B 3 G814S an d N O S3 E298D in fem ales ex p lain e d o n average from 5% to 9% o f the variation o f EMPs w h o se co n ten ts w ere altered in hy p erten siv e patients (SPTA1, SPTB, an d GLUT1). As essential h y p e rten sio n is a co m p lex p o lygenic dis ease, th ere is a n e e d for a com p reh en siv e analysis w h ere m ultiple genetic polym orphism s are ev aluated sim ul tan eo u sly reg arding their joint co n trib u tio n to the varia bility o f EMPs in h y p ertensive individuals. T herefore, w e u se d m eth o d o lo g y describ ed by Sing an d D avignon [54] to estim ate the sum m ary co n trib u tio n o f disease susceptibility g en e s to the variation o f erythrocyte m em b ran e p ro tein s in h y p ertensive patients (Table 3; S u pplem entary Tables 4 an d 5, http://links.lw w .com /H JH /A 51T ). The total genetic variance (G ) associated w ith the stu d ied gen es ranges from 3.1 (DMTN) to 47.6% (GLUTT) in m ales, a n d from 1.1 (DMTN) to 27% (SPTAT) in fem ales. N otably, the highest im pact o f the genetic variation w as fo u n d o n the variation o f SPTA1 (24.4% in m ales an d 27% in fem ales) a n d SPTB (29.4% in m ales an d 23.2% in fem ales) an d also integral m em b ran e pro tein s su ch as AE1 (36.8% in m ales an d 12% in fem ales) an d GLUT1 (47.6% in m ales an d 23.1% in fem ales). T aking into ac co u n t heritability for SPTA1 (52%) an d SPTB (60%) [55], the stu d ied gen es w ere esti m ated to b e resp o n sib le for as m u ch as 47 an d 49% o f their total polygenic variances in m ales an d 50 an d 39% in fem ales. M oreover, th ese loci m ay also b e resp o n sib le for as m u ch as 64 an d 31% o f the total polygenic variance o f GLUT in m ales an d fem ales, respectively. D IS C U S S IO N Alterations in the levels of erythrocyte membrane proteins and their joint variation in essential hypertension C onsistently w ith previous studies [12,27,55,56], w e d e m onstrated that essential h y p ertension is accom panied by alterations in the com position o f m ajor erythrocyte m em bran e proteins. In particular, hypertensive patients exhib ited increased levels o f p rotein 4.1, glucose transporter, and actin and also d ecreased levels o f a and SPTB and GAPDH. Tw o in d e p en d e n t studies cond u cted o n Russian families from Kursk region [55,56] sh ow ed similar alterations in integral and p eripheral m em brane proteins (AE1, ACTB, Cell m em brane proteins in hypertension . . , ADD1 460G = 0.791 - Males я A D D 1 G 460W 1-------------------------- 6 ADD1 460W = 0.163 I _ ------------------------------' Fem ales - 4 2 4 o -2 I AGT 23SM = 0.455 » AGT M 2 3 5 T AGT 23ST = 0.S4S | | AGT 23SM = 0.482 -я- AGT 23ST = 0.518 | 1,5 CO к О < Females CO к CL if) ZL Q CL < CD p cT S LU 5 z 5 £ < < < < z z тГ m CL LU OJ 'Sm CL LU z к CO Q < A _ ZD I CD к о ZL Q CL < CD A G T R 1 A 1166C Males z < z OJ 'sсо CL LU < i— ZD CD z к Q CO к О < zl Q CL < i CL к CO к CL if) i i— in CD CD £ £ < < < cT z z z AE1 co CL LU K1 (3) 5 AE1 cT 5 Z < K1 (3) CO к CL if) Females 3 - O J "3- co co CL LU CL LU z к CO ZD CD Q < i— к О ZL Q CL < CD GNB3 25 20 15 10 5 4 o -5 -10 -15 z z z < < < CO к CL AE1 cT К 1(3) -20 -2 5 Ttco CL LU OJ -3co CL LU i— ZD CD z к CO I— > Q < О ZL Q CL < CD TGFB1 R25P Males Females CO к О < ZL Q CL < CD t— t- CL I— I— if) CD i i I— i— in CL CD FIGURE 3 The average effects of alleles in hypertension susceptibility genes on the levels of erythrocyte membrane proteins in hypertensive patients. Line charts represent the average effects of major (blue lines) and minor (red lines) alleles on EMP variability, that is, a deviation of the trait from the population mean (jx) in hypertensive males (left charts) and females (right charts). Pleiotropic and sex-specific effects on the EMPs levels were noted for several hypertension susceptibility genes. For instance, the overall effect of the 460W A D D 1 allele was to decrease of the SPTA1 and SPTB levels and to increase of the content of GLUT1 in hypertensive males, whereas in hypertensive females the 460W allele associated with an increase of both spectrins and decrease of GLUT1. 7 Hypertensive females Hypertensive males | Pairwise interactions between gene polymorphisms I > impact of gene polymorphisms on protein levels FIGURE 4 The effects of pairwise combinations of hypertension susceptibility genes on the levels of erythrocyte membrane proteins in hypertensive patients. The figure shows the significant effects (P < 0.05) of pairwise combinations of the genetic polymorphisms on the EMP levels in hypertensive females (left part) and males (right part). The estimates were performed by two-way AN O VA and expressed as R2 values, which varied between 10 and 2 6 % in males, and between 6 and 11 % in females. The free yEd graph editor was used to draw the figure. EPB41, an d DMTN) an d proteins related to glucose m etab olism (GLUT1 an d GAPDH) in patients w ith essential hy pertension. Similarly, in a sam ple o f Russian hypertensives from M oscow, alterations in GLUT1 an d GAPDH levels in essential hyperten sio n patients in com parison w ith healthy subjects have b e e n also observ ed [27]. Furtherm ore, the p resen t study dem o n strated for the first tim e sex-specific alterations in m ajor erythrocyte m em brane proteins in hypertensive patients. A lthough similar alterations in the levels o f spectrins and GLUT w ere found in b o th sexes, hypertensive fem ales also exhibited decreased levels of DMTN and GAPDH in com bination w ith increased levels o f ACTB. Thus, patients w ith essential h y p ertension d e m onstrate altered expression a n d /o r posttranslational TA B LE 3. Th e percentage o f total ph en o typic and ge n e tic varian ce s o f the EMPs exp lained b y a com prehensive con trib utio n o f disease __________ su scep tib ility ge n e s in hyperten sive patients_________________________________________________________________________________ G enetic com ponents, % M em brane proteins SPTA1 Males Females A N K1 (1) A N K1 (2) AN K1 (3) AE1 EPB41 EPB42 GLUT1 DMTN A CTB GAPDH TPM1 GSTM1 G A D 24 .3 5 2 9 .3 9 6 .8 6 4 .2 6 1 .90 3 6 .8 2 4 .0 2 4 .4 3 4 7 .5 5 3 .0 8 4 .5 9 4 .5 5 1 2 .0 7 1 0 .2 9 15.62 8.73 20.44 8.95 4.94 1.92 2.65 1.61 1.24 0.66 17.23 19.60 2.25 1.77 3.02 1.41 33.03 14.51 1.55 1.53 2.40 2.19 2.74 1.81 5.76 6.31 6.21 4.08 Gpg G A D 4 7 .2 0 4 9 .2 2 9.3 3 6 .5 9 7 .2 4 4 1 .7 5 4 .5 2 2 3 .1 8 6 4 .4 3 3 .8 5 9 .3 4 5 .6 2 1 6.33 2 0 .5 7 26 .9 9 2 3 .2 0 1.7 9 1 .8 5 0.71 1 2 .0 2 0 .9 9 2 .5 6 2 3 .1 2 1.11 1 .79 2.21 2 .6 5 3 .7 0 20.20 6.79 19.07 4.13 1.00 0.79 1.05 0.80 0.44 0.26 6.94 5.08 0.57 0.42 1.59 0.97 15.56 7.57 0.45 0.66 1.25 0.54 1.70 0.51 0.57 2.09 2.08 1.62 1.11 1 3 .4 2 3 1 .3 3 19.1 73.8 Gpg h2, % SPTB 50.31 3 8 .8 7 51.6 59.7 2 .4 4 73.5 2 .8 7 64.6 2 .6 9 26.2 13.6 3 88.2 88.9 1 .3 9 79.9 3 .6 4 49.1 2 .73 80.9 3 .5 9 73.9 7 .3 9 50.0 G (bold face values in white cells) denotes the percentage of total variance of the traits attributable to genotypic differences of the locus; A and D denote additive and dominant components of the G, respectively; Gpg (bold face values in gray cells) denotes the percentage of genotypic variance, attributable to differences between the loci, to the total polygenic variance of the traits; h2 denotes heritability of the traits computed as doubled parent-child correlation coefficients for each trait in our previous study [55]. EMP, erythrocyte membrane protein; DMTN, dematin actin binding protein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLUT1, glucose transporter 1; SPTA1, a-spectrin; SPTB, (3-spectrin. 8 m odifications o f genes en co d in g cytoskeletal proteins and p roteins directly involved in glucose m etabolism . A ltered levels o f erythrocyte m em b ran e p ro tein s in essential h y p e rte n sio n p atien ts are co rrelated to ea ch o t her, suggesting co m m o n so u rces o f th eir co-variations, that is, sh ared m o lecu lar m echanism s u n d erly in g the reg ulation o f ex p re ssio n o f th e c o rre sp o n d in g genes. Principal co m p o n e n ts analysis iden tified several integral factors o f joint variability o f EMPs in h y pertensives. T he first factor m ainly in flu en ced b y AE1, EPB41, EPB42, ACTB, TPM1, GAPDH, a n d GSTM1 reflecting b o th spatial an d fu nctional co u pling o f th ese p ro tein s localized in th e in n e r h alf o f the plasm a m em b ran e. B ased o n th e results o f b io ch em ical studies sh o w e d that th e cytoplasm ic d o m ain o f a n io n ex ch an g er constitu tes a m ajor m u ltip ro tein co m p lex resp o n sib le for erythrocyte m e m b ra n e -p erip h e ra l p ro te in interactions and attach m en t o f th e spectrin -actin n e tw o rk an d cytoskeletal p ro tein s EPB41, EPB42, an d TPM1 to the in n er surface of th e m em b ran e via a n ch o rin g p ro te in ankyrin, w e assum e th at this p rin cip al c o m p o n e n t m ay re p re se n t a fa c to r of m em b ra n e -an c h o rin g p ro te in assem b ly ’ [57-591. The m ul tifunctional d o m ain o f AE1 is also a single b in d in g site for GSTM1, GAPDH, an d o th e r glycolytic enzym es, providing the enzym atic bridge to cytoskeletal p ro tein s an d ion tran sp o rt ATPases [60,61]. The seco n d principal co m p o n e n t w ith the h ig h est loadings for a an d (3-subunits o f sp ectrin an d GLUT m ay re p re se n t m ajor alterations in the EMP co m p o sitio n fo u n d in hypertensives. In general, the results o b tain e d b y PCA confirm ed th at alterations in the levels o f particular erythrocyte m em b ran e p ro tein s in essential h y p erte n sio n p atien ts are closely co rrelated to eac h o th e r form ing distinct g ro u p s o f jointly varying proteins, w h ich could b e attributable to p leitropic effects o f different polygenic system s. Possible relationship between altered protein composition of erythrocyte membrane and pathogenesis of essential hypertension In Fig. 5, w e sum m arized p o ssible m echanism s th ro u g h w h ich alterations in the co n te n t o f EMPs can b e related to the p ath o g en esis o f essential hyp erten sio n . It is w ell k n o w n that alterations in the levels o f the cytoskeletal p ro tein s su ch as spectrins, actin, p ro te in b a n d s 4.1 an d 4.9 A lt e r e d a c tiv ity o f io n tr a n s p o r t e r s a n d C h a n g e s in r e g u la tio n o f s ig n a lin g p a th w a y s c h a n g e s in c e llu la r s ig n a l tr a n s d u c t io n Io n t r a n s p o r t a b n o r m a litie s , in c re a s e d D e c re a s e d m ic r o c ir c u la t io n a n d tis s u e D e c re a s e d a c tiv ity o f N a +K” A T P a s e Im p a ired oxygen in t r a c e llu la r C a 2 + v c o u n te rtra n s p o rt R e a r r a n g e m e n t o f th e r e l e a s e by H b M ic r o c ir c u la t o r y a b n o r m a lit ie s , h y p o x e m ia , tis s u e h y p o x ia In c re a s e d e r y th r o c y te d e fo r m ity AT SPTA1 ж M: N0S3, A C E MR. GNB3, A DD1, TGFB1, A G TR1 F: N 0S3, GNB3, A G T, ADD1, M R S a lt a n d w a te r r e te n tio n by M: A GT. N033. G N B3.A G TR1. A C E . MR. ADD 1 F: N 0S3, GNB3, AG T, M R, A DD 1 k id n e y s M'.AGT. N 0S3. GNB3. A G TR1. A C E . A D D 1 F: not identified c y to s k e le to n ДС r e s is t a n c e o x y g e n a tio n a n d C a 2+~ A T P a s e , in c r e a s e d N a -L i In c r e a s e d — ► p e rip h e r a l v a s c u la r -O f In c r e a s e d ж H y p e r v o le m ia v o lu m e o f M: NO S3. MR. ADD 1 F: not identified e x tr a c e llu la r f lu id "% M: N 0 S3 .A G T R 1 . ADD 1 F: not identified C a r d ia c o u t p u t O x id a tiv e d a m a g e o f th e c e ll m e m b ra n e In c r e a s e d M: N0S3. A C F .A G T R 1 F: GNB3 E n d o th e lia l p r o d u c t io n o f R O S , o x id a tiv e d y s f u n c t io n , I N O s tr e s s M: MR. A G T. GNR3. N0S3. AGTR1. ADD1. A C E . TGFB1 F : N 0S3, GNB3, A G T , A CE, M R, A D D 1, A G TR1, T G FB 1 V a s o c o n s t r ic t io n , H y p e r in s u lin e m ia in fla m m a tio n , v a s c u la r le s io n I n s u lin v s tim u la te d G L U T 1 fo r m a t io n a n d e x p r e s s io n a n d g lu c o s e u p ta k e I n s u lin r e s is ta n c e r e m o d e lin g E n h a n c e d s t im u la t io n o f C N S In c re a s e d s y m p a th e tic o u t f lo w Changes in proteins related to intracellular glucose metabolism Pathogenetic m echanism s of essential hypertension FIGURE 5 Possible molecular mechanisms by which alterations in contents of erythrocyte membrane proteins are involved in the pathogenesis of essential hypertension. The upper left gray box summarizes possible consequences of altered cytoskeletal protein contents in hypertensive patients and their relation to disease phenotypes. The lower left gray box summarizes proposed mechanisms by which membrane proteins related to intracellular glucose metabolism contribute to the development of hypertension. The right gray box represents well characterized mechanisms of essential hypertension [9,62]. Colored blocks indicate membrane proteins showed alterations in hypertensive patients: blue blocks indicate proteins altered only in both sexes, whereas pink blocks indicate proteins altered exclusively in females. Blue arrows indicate a decreased protein level, whereas red arrows indicate an increased protein level. The middle blocks indicate hypertension susceptibility genes influenced alterations in EMP contents in hypertensive males (M, numerator) and females (F, denominator). The dotted lines indicate pathogenetic links between altered contents of erythrocyte membrane proteins and the mechanisms of essential hypertension. See text for more details. A C E, angiotensin i-converting enzyme; ACTB, actin; AD D 1, alpha-adducin; A G T, angiotensinogen; AG TR1, angiotensin ii receptor type 1; DMTN, dematin (actin-binding protein); EPB41, erythrocyte membrane protein band 4.1; GAPDH, giyceraldehyde-3-phosphate dehydrogenase; GLUT1, glucose transporter 1; GNB3, guanine nucleotide-binding protein beta polypeptide 3; Hb, hemoglobin; MR, mineralocorticoid receptor; NO, nitric oxide; N 0 S3, nitric oxide synthase 3; ROS, reactive oxygen species; SPTA1, a-spectrin; SPTB, (3-spectrin; TGFB1, transforming growth factor beta 1. 9 affect rheo lo g ical p ro p e rtie s o f red b lo o d cells th ro u g h the ch an g es in th e cytoskeletal arch itectu re 158,63]- First, rea rra n g em e n t o f cy toskeletal p ro tein s has a co n siderable im pact o n erythrocyte deform ity increasing b lo o d viscosity, w h ic h w as fo u n d to affect vascular b lo o d flow an d ex acerb ate m icrocirculatory d iso rd ers in h y p e rte n sio n [64]. N otably, th e in creased m em b ran e m icroviscosity in h y p erten siv es is acco m p an ied b y altered kinetics o f so d ium -lithium co u n te rtra n sp o rt [65], w h ich is a m ajor ion tran sp o rt abno rm ality in essential h y p erten sio n . Second, rea rra n g em e n t o f cy toskeletal p ro tein s influences the ability o f intracellular h e m o g lo b in to release o x y g en lead ing to tissue hy p o x ia, as it has b e e n sh o w n in hypertensive patien ts [18]. Third, a b n o rm al ratio b e tw e e n spectrins, actin, p ro te in 4.1, a n d d em atin m ay im pair signaling p a th w ays co u p lin g extracellular reg u lato ry stim uli to the cy to sk eleto n th ro u g h spatial d isco o rd in atio n b e tw e e n recep to rs a n d ch an n els involved into th e reg ulation o f m em b ran e tran sp o rt an d signal transd u ction. Lastly, an alteratio n in the p ro te in co m p o sitio n o f the m em b ran e cy to sk eleto n has the ability to in fluence th e functioning o f th e io n tran sp o rt ATPases o f the m em b ran e th ro u g h co n fo rm atio n al m odifications o f th eir active centers [58,66,67]. A nim al studies sh o w e d th at a rem oval o f sp e c trin from erythrocytes results in tw o an d three-fold decreasin g in th e activity o f N a+KTATPase an d Ca2+ATPase, respectively [66,68], p o in tin g o u t th at red u c ed levels o f spectrins has th e p o ten tial to influence the activity o f tran sp o rt ATPases, a p o ssib le m echanism involved into th e io n tran sp o rt abnorm alities in h u m an h y p e rte n sio n [13,23,24]. The p resen t study revealed that the p roteins directly involved in glucose m etabolism such as GLUT and glyco lytic enzym e GAPDH w ere also significantly altered in hypertensive patients co m p ared w ith healthy subjects. A bnorm al glucose m etabolism is a w ell characterized dis o rd er found in essential h y p erten sio n [69,70]. Figure 5 show s p o tential m echanism s b y w h ich GLUT1 and GAPDH m ay contribute to the d ev elo p m en t o f hypertension. Glu cose transporter is a type III integral m em brane p ro tein that facilitates the transport o f glucose over a plasm a m em brane an d m aintains the low level o f basal glucose up tak e req u ired to sustain respiration in the cell [71]. As expression levels o f GLUT1 in cell m em branes are increased by red u ced glucose levels [72], o u r finding o f the increased GLUT1 levels in hypertensives m ay b e attributable to the red u ced glucose influx w ithin the cell o w ing to insulin resistance in patients [73]- GAPDH is a m em b rane-bound enzym e catalyzing an im portant energy-yielding step in the glycolytic b re a k d o w n o f glucose [74]. It is im portant to notify that the enzym e in erythrocytes represents an im port ant part o f the glycolytic m achinery, w h ich com partm en talizes ATP, allow ing its direct co n su m p tio n b y ion pum ps an d transporters [75]. P erhaps the changes in the GLUT1 levels in hypertensives reflect the n e e d o f cells in a higher glucose u p ta k e an d ATP production. This assum ption seem s attractive in the light o f the hypothesis that the cause o f elevated BP in chronic arterial h y p ertension is co n sidered to b e a com p en sato ry resp o n se to decreased ATP biosynthesis [76]. It w as suggested that intracellular Ca2+ overload in h y p erten sio n can b e a c o n seq u en ce of 10 au gm ented ion perm eability o f the plasm a m em brane a n d /o r decreased Ca2+-ATPase activity b ecause o f partial ATP dep letio n [76]. T hese authors p ro p o sed that an atte n u ated intracellular ATP co ntent enhances the stim ulation o f sym pathic nerve system m aintaining long-term elevation o f BP. Thus, changes in expression levels o f the GLUT1 and GAPDH genes in hypertensive patients m ay rep resen t a part o f insulin-m ediated system ic im pairm ent o f glucose dis posal in peripheral tissues, accom panied by decreased glucose u p tak e an d utilization by the cells [70,73,77]. A summary effect of the genes on the variation of erythrocyte membrane proteins in patients with essential hypertension W e rev ealed that h y p e rten sio n susceptibility g enes c o n tribute to the variation o f erythrocyte m em b ran e pro tein s in o u r patients. The stren g th o f th ese effects w as quite substantial (individual R 2 values varied b e tw e e n 6 and 24% in b o th sexes), indicating that the g enes are the im p o rtan t factors o f the in h erited variation o f EMP c o n tents in hypertensives. This m eans th at pleio tro p ic effects o f th ese gen es are n o t lim ited b y the reg u latio n o f vascular to n e, sodium , an d w ate r hom eostasis, b u t also influence the m anifestation o f g en es ex p ressed in erythroid tissue. G enes associated w ith the risk o f essential h y p e rte n sio n su ch as A D D 1 , A G T , A G T R 1 , G N B3, an d TGFB1 ex h ibited co n sid erab le effects o n the levels o f m em b ran e p ro tein s in h y p ertensive patients. In particular, c o m b in atio n o f G N B 3 C825T an d A G T T174M g en e p o lym orphism s sh o w ed h ig h est co n trib u tio n to the variation o f SPTB (24%) and GLUT1 (18%) levels in m ale patients. The stu d ied gen es acco u n t for a b o u t half the total polygenic variance o f GLUT1, SPTA1, an d SPTB levels in b o th hypertensive m ales a n d fem ales. U ndoubtedly, the effects o f genes o n the EMP variation can overlap. As it has b e e n fo u n d in o u r previous study [55], a b o u t 5 -1 0 % o f the total variance o f spectrins an d GLUT as w ell as 95% o f varia bility in the levels o f GLUT an d p ro te in b a n d 4.1 in hyp erten siv es (b o th pro tein s w e re increased in essential h y p e rten sio n p atien ts in co m p ariso n w ith controls) w ere ex p lain e d b y co m m o n und erly in g genes. Finally, the results o f o u r study are in line w ith findings observed by genetic m apping studies o n the anim al m odel o f hu m an hypertension. The com parative g enom e m a p ping allow ed identifying the hom ologous chrom osom al regions in rats and hum ans. In particular, the long piece o f the h um an chrom osom al region lp 3 4 -p ter corresponds to the rat locus 5(a)-5(b) [23]. The 5(a) region contains quantitative trait locus (QTL) for elevated SBP in sp o n taneously hypertensive rats and includes the G lutb gene [78], a rat h o m ologue o f h u m an glucose transporter. In addition, in D ahl S rats, GLUT gene is located in the QTL that has also b e e n rep o rted to со-segregate w ith SBP [79] ■ Interestingly, except for GLUT1 located in a lp34.2, a hom ologous region at h u m an chrom osom e l p contains o r is nearby the loci for a-sp ectrin (lq 2 1 ) and p ro tein b an d 4.1 (Ip33-p32), w h o se altered contents in essential h y p er tension m ay b e related to the pleitropic effect o f putative hom ologous QTL in hypertensive m en. M oreover, an o th er QTL identified in chrom osom e 2(a) is responsible for increased BP in sp o n tan eo u sly hypertensive rats [80] and includes subunits o f N a+-K+ p u m p an d S ptal, a rat hom o logue o f h u m an SPTA1. The p resent study has several limitations. W e cannot exclude the possibility that changes in the levels o f the EMPs in hypertension m ay b e related w ith oxidative dam age o f the m em brane d u e to increased p ro d u ctio n o f reactive oxygen species an d d ecreased antioxidant activity, the m echanism s that are im portant in h y pertension pathogenesis [81—83] ■ Some caution in interpretation o f the data o n genotypep h en o ty p e relationships is w arranted because n o t all possible g en e polym orphism s have b e e n investigated and n o n e o f the param eters representing abn o m ial ion transport o f red b lo o d cell m em brane have b e e n analyzed. To the best o f o u r know ledge, this is the first study in w h ich a sum m ary co ntribution o f disease susceptibility g enes to alterations in contents o f EMPs has b e e n estim ated in hypertension. O ur study results extent and provide further su p p o rt to the hypothesis that abnorm alities in m em brane structure an d function rep resen t an im portant p art o f h y p erten sio n pathogenesis. R ethinking the hy p o th esis o f ‘cell m em b ran e alteration as a source o f prim ary h y p erten sio n ’ [12], w e can highlight that alterations in the levels o f EMPs is not a causative factor o f essential h y p er ten sio n p e r se, b u t is rather a m irror o f the m ultilevel (from organs to the cell) an d m ultisystem (from a particular cell to various cell types/tissues) disorders related to the disease m echanism s. A b etter u n d erstan d in g o f a nature o f cell m em brane disorders an d their p ath o g en etic link w ith hy p erten sio n will contribute to a discovery o f clinically useful biological m arkers an d targets for the d ev elo p m en t of innovative drugs for m anag em en t an d p revention of the disease. A CKN O W LED G EM EN TS The study w as su p p o rted in part (biochem ical investigations o f EMPs) b y the Federal Targeted Program ‘Scientific an d Scientific-Pedagogical P ersonnel o f the Innovative Russia in 2009-2013’- M olecular genetic investigations (genotyping o f genes involved in the regulation o f vascular hom eostasis in hypertensive patients) w ere done w ith su p p o rt o f the Russian R esearch F oundation (№ 1 5 -1 5 - 10010 ). This m anuscript has not b e e n subm itted to any o th er journal n o r p u b lish ed fully or partially elsew here. Conflicts of interest W e declare that there is n o conflict o f interests concerning this m anuscript. REFEREN CES 4 . H a m e t P , P a u s o v a Z , A d a r ic h e v V , A d a r i c h e v a K , T r e m b l a y J . H y p e r t e n s i o n : g e n e s a n d e n v i r o n m e n t . / Hypertens 1 9 9 8 ; 1 6 :3 9 7 - 4 1 8 . 5. P a d m a n a b h a n S, N e w to n -C h e h C, D o m in ic z a k A F. G e n e t i c b a s i s o f b l o o d p r e s s u r e a n d h y p e r t e n s i o n . Trends Genet 2 0 1 2 ; 2 8: 3 9 7 -4 0 8 . 6 . Y a g il C , Y a g il Y . T h e g e n o m i c s o f h y p e r t e n s i o n . . I n : G i n s b u r g G S , W illa r d H F , e d i to r s . Essentials o f genomic and personalized medicine.. N e w Y o r k : A c a d e m ic P r e s s ; 2 0 0 9 - p p . 2 5 9 - 2 6 8 . 7 . L u ft F C . M o le c u la r g e n e t i c s o f h u m a n h y p e r t e n s i o n . o l o g y o f h y p e r t e n s i o n . BMJ 2001; 3 2 2 : 9 1 2 - 9 2 6 . 1 0 . M o n t e n a y - G a r e s t i e r T , A r a g o n I, D e v y n c k M A , M e y e r P , H e l e n e C . E v i d e n c e f o r s t r u c t u r a l c h a n g e s in e r y t h r o c y t e m e m b r a n e s o f s p o n ta n e o u s ly h y p e rte n s io n flu o re s c e n c e p o la riz a tio n s tu d y . ra ts . Clin Sci 1 9 8 2 ; 6 3 : 4 3 - 4 5 . 1 2 . P o s t n o v Y V , O r l o v S N . C e ll m e m b r a n e a l t e r a t i o n a s a s o u r c e o f p r im a r y h y p e r t e n s i o n . J Hypertens 1 9 8 4 ; 2 : 1 - 6 . 13- B ia n c h i G , F e r r a r i P , C u s i D , G u i d i E, S a la r d i S, T o r i e ll i L, et al. C e ll m e m b r a n e a b n o rm a litie s a n d g e n e tic h y p e r te n s io n . / Clin Hypertens 1986; 2 :1 1 4 -1 1 9 . 1 4 . T h o m a s T H , R u t h e r f o r d P A , W i lk in s o n R. M e m b r a n e p r o t e i n i n t e r a c t i o n a n d e r y t h r o c y t e s o d i u m - l i t h i u m c o u n t e r t r a n s p o r t in e s s e n t i a l h y p e rte n s io n . J Hypertens 1 9 9 3 ; 1 1 :1 1 4 6 . 1 5 . Z i c h a J , K u n e s J , D e v y n c k M A. A b n o r m a l iti e s o f m e m b r a n e f u n c t i o n a n d l i p id m e t a b o l i s m in h y p e r t e n s i o n . Am J Hypertens 1 9 9 9 ; 1 2 :3 1 5 — 331. 1 6 . R o d r ig o R, B a c h le r J P , A r a y a J , P r a t H , P a s s a l a c q u a W . R e l a ti o n s h i p b e t w e e n ( N a + K ) - A T P a s e a c tiv ity , l i p id p e r o x i d a t i o n a n d f a tty a c i d p r o f il e in e r y t h r o c y t e s o f h y p e r t e n s i v e a n d n o r m o t e n s i v e s u b je c ts . Mol Cell Biochem 2 0 0 7 ; 3 0 3 : 7 3 - 8 1 . 1 7 . P y te l E, D u c h n o w i c z P , J a c k o w s k a P , W o j d a n K , K o te r - M ic h a la k M , B r o n c e l M . D is o r d e r s o f e r y t h r o c y t e s t r u c t u r e a n d f u n c t i o n in h y p e r t e n s i v e p a t i e n t s . Med Sci Monit 2 0 1 2 ; 1 8 :3 3 1 - 3 3 6 . 1 8 . K a c z m a r s k a M , F o r n a l M , M e s s e r li F H , K o r e c k i J , G r o d z ic k i T , B u r d a K. E r y t h r o c y te m e m b r a n e p r o p e r t i e s in p a t i e n t s w i t h e s s e n t i a l h y p e r t e n s io n . Cell Biochem Biophys 2 0 1 3 ; 6 7 : 1 0 8 9 - 1 1 0 2 . 19. C a n e s s a M, A d ra g n a N , S o lo m o n H S, C o n n o lly T M , T o s te s o n D C . I n c r e a s e d s o d i u m - l i t h i u m c o u n t e r t r a n s p o r t in r e d c e lls o f p a t i e n t s w ith e s s e n t i a l h y p e r t e n s i o n . N Engl J Med 1 9 8 0 ; 3 0 2 : 7 7 2 - 7 7 6 . 2 0 . W e d e r A B . R e d - c e ll l i t h i u m - s o d i u m c o u n t e r t r a n s p o r t a n d r e n a l li th iu m c l e a r a n c e in h y p e r t e n s i o n . N Engl J Med 1 9 8 6 ; 3 1 4 : 1 9 8 - 2 0 1 . 2 1 . C u s i D , N iu tt a E, B a r l a s s i n a C , B o ll in i P , C e s a n a B , S te lla P , et al. E r y t h r o c y te N a + ,K + ,C 1 - c o t r a n s p o r t a n d k i d n e y f u n c t i o n in e s s e n t i a l h y p e r t e n s i o n . J Hypertens 1 9 9 3 ; 1 1 :8 0 5 - 8 1 3 2 2 . L i n d n e r A , H in d s T R , D a v i d s o n R C , V in c e n z i F F. I n c r e a s e d c y t o s o l ic f r e e c a l c i u m in r e d b l o o d c e lls is a s s o c i a t e d w i t h e s s e n t i a l h y p e r t e n s i o n in h u m a n s . Am J Hypertens 1 9 9 3 ; 6 : 7 7 1 - 7 7 9 . 2 3 . O r l o v S N , A d r a g n a N C , A d a r ic h e v V A , H a m e t P . G e n e t i c a n d b i o c h e m ic a l d e te r m in a n ts o f a b n o r m a l m o n o v a le n t io n t r a n s p o r t in p r i m a r y h y p e r t e n s i o n . Am J Physiol 1 9 9 9 ; 2 7 6 : 5 1 1 - 5 3 6 . 2 4 . M o tu ls k y A G , B u r k e W , B illin g s P R , W a r d R H . Hypertension and the genetics of red cell membrane abnormalities. Molecular approaches to hum an polygenic disease. C h ic h e s te r : W ile y ; 1 9 8 7 ; 1 5 0 -1 6 6 . 2 5 . B ia n c h i G , T r i p o d i Ст. G e n e t i c s o f h y p e r t e n s i o n : t h e a d d u c i n p a r a d i g m . A nn N Y Acad Sci 2 0 0 3 ; 9 8 6 : 6 6 0 - 6 6 8 . 2 6 . G u l a k P V , O r l o v S N , P o s t n o v Y V , K ila d z e IS, G r i g o r i a n G L , T a b a g u a M I, K a ju s h in LP. I n v e s ti g a ti o n o f m e m b r a n e p r o t e i n s in r a t e r y t h r o c y t e s in 2 0 1 2 ; 3 8 0 :2 2 2 4 - 2 2 6 0 . A 1981; 1 0 0 :6 6 0 -6 6 5 . 1 1 . O r l o v S N , G u l a k P V , L itv in o v IS, P o s t n o v Y u V . E v i d e n c e o f a l t e r e d s t r u c t u r e o f t h e e r y t h r o c y t e m e m b r a n e in s p o n t a n e o u s l y h y p e r t e n s i v e J Hypertens Lancet r a ts . Biochem Biophys Res Commun 2013- w w w .w h o .in t/c a rd io v a s c u la r_ d is e a s e s /p u b lic a tio n s /g lo b a l_ b rie f _ h y p e rte n s io n /e n /in p re ss. 2. L a w e s C M , V a n d e r H o o r n S, R o d g e r s A . G l o b a l b u r d e n o f b l o o d p r e s s u r e - r e l a t e d d i s e a s e 2 0 0 1 . Lancet 2 0 0 8 ; 3 7 1 :1 5 1 3 - 1 5 1 8 . t a b l e t o 6 7 r is k f a c t o r s a n d r is k f a c t o r c l u s t e r s in 21 r e g i o n s , 1 9 9 0 - 2 0 1 0 : a s y s t e m a t i c a n a ly s is f o r t h e G l o b a l B u r d e n o f D is e a s e S tu d y 2 0 1 0 . 1998; Rev Genet 2 0 0 6 ; 7 :8 2 9 - 8 4 0 . 9 . B e e v e r s G , L ip G Y , O ’B r ie n E. A B C o f h y p e r t e n s i o n : t h e p a t h o p h y s i 1. W o r l d H e a l t h O r g a n i z a t i o n ( W H O ) . A G l o b a l B r ie f o n H y p e r t e n s i o n . 3. L im SS, V o s T , F la x m a n A D , D a n a e i G , S h i b u y a K , A d a ir - R o h a n i H , et al. A c o m p a r a t i v e r is k a s s e s s m e n t o f b u r d e n o f d i s e a s e a n d i n j u r y a t t r i b u J Hypertens 1 6 :1 8 7 1 - 1 8 7 8 . 8 . C o w le y A W J r . T h e g e n e t i c d i s s e c t i o n o f e s s e n t i a l h y p e r t e n s i o n . N a t s p o n ta n e o u s 27. L o g in o v O ganov h y p e rte n s io n 1 9 8 6 ; 4 :3 1 3 - 3 1 7 . V A , M i n c h e n k o B I, by m eans o f s p in -la b e l te c h n iq u e . S u k h o p le c h e v SA , A le x a n d ro v AA, RG. D i s tr ib u t io n o f p r o t e i n s in e r y t h r o c y t e m e m b r a n e s f r o m p a t i e n t s w ith h y p e r t e n s i o n . Clin Exp Hypertens A 1 9 8 9 ; 1 1 :5 5 3 - 5 7 1 . 2 8 . H o jo Y , E b a ta H , K a w a s a k i K , T s u r u y a Y , I k e d a U , N is h in a g a M , et al. A lte r e d le v e ls o f e r y t h r o c y t e c a l c i u m - b i n d i n g p r o t e i n s in e s s e n t i a l h y p e rte n s iv e s w ith g e n e tic p r e d is p o s itio n : c o rre la tio n w ith a m b u la to ry b l o o d p r e s s u r e . J Hypertens 1 9 9 4 ; 1 2 :4 2 9 - 4 3 7 . 11 29 . T h o m a s T H , R u t h e r f o r d P A , V a r e e s a n g t h i p K , W i lk in s o n R, W e s t IC. E r y t h r o c y te m e m b r a n e t h i o l p r o t e i n s a s s o c i a t e d w ith c h a n g e s in t h e k i n e tic s o f N a /L i c o u n t e r t r a n s p o r t : a p o s s i b l e m o l e c u l a r e x p l a n a t i o n o f 4 7 . L a e m m li U K . C l e a v a g e o f s t r u c t u r a l p r o t e i n s d u r i n g t h e a s s e m b l y o f t h e h e a d o f b a c t e r i o p h a g e T 4 . Nature 1 9 7 0 ; 2 2 7 :6 8 0 - 6 8 5 4 8 . I v a n o v V P , P o l o n i k o v A V , S o lo d il o v a M A . T h e c o n t r i b u t i o n o f g e n e t i c a n d e n v i r o n m e n t a l f a c t o r s t o q u a n t i t a t i v e v a r i a b il ity o f e r y t h r o c y t e c h a n g e s in d i s e a s e . Eur J Clin Invest 1 9 9 8 ; 2 8 : 2 5 9 - 2 6 5 . 3 0 . A m a i d e n M R , S a n t a n d e r V S, M o n e s t e r o l o N E , C a m p e te lli A N , R iv e lliJ F , P r e v ita li G , et al. T u b u l i n p o o l s in h u m a n e r y t h r o c y t e s : a l t e r e d d i s t r i b u t i o n in h y p e r t e n s i v e p a t i e n t s a f f e c ts N a + , K + - A T P a s e a c tiv ity . Cell 6 9 :2 5 -3 5 . 49- S te c k TL . T h e o r g a n i z a t i o n o f p r o t e i n s in t h e h u m a n r e d b l o o d c e ll Mol Life Sci 2 0 1 1 ; 6 8 :1 7 5 5 - 1 7 6 8 . 31 . A m a i d e n M R , M o n e s t e r o l o N E , S a n t a n d e r V S, C a m p e te lli A N , A r c e C A , P ie J , et al. I n v o l v e m e n t o f m e m b r a n e t u b u l i n in e r y t h r o c y t e d e f o r m - m e m b r a n e . A r e v i e w . / Cell Biol 1 9 7 4 ; 6 2 : 1 - 1 9 . 5 0 . F a i r b a n k s G , S te c k TL , Wallach D F . E l e c t r o p h o r e t i c a n a ly s is o f t h e m a jo r p o l y p e p t i d e s o f t h e h u m a n e r y t h r o c y t e m e m b r a n e . Biochemistry a b i lit y a n d b l o o d p r e s s u r e . JHypertens 2 0 1 2 ; 3 0 :1 4 1 4 - 1 4 2 2 . 32 . P o l o n i k o v A V , I v a n o v V P , S o lo d il o v a M A , K h o r o s h a y a IV , K o z h u h o v 1971; 1 0 :2 6 0 6 -2 6 1 7 . 5 1 . B r o w n M B , Forsythe A B . R o b u s t te s t s f o r t h e e q u a l i t y o f v a r i a n c e s . J Am Stat Assoc 1 9 7 4 ; 6 9 :3 6 4 - 3 6 7 . M A, Iv a k in V E, et al. A c o m m o n p o l y m o r p h i s m G - 5 0 T in c y t o c h r o m e P 4 5 0 2J2 g e n e is a s s o c i a t e d w i t h i n c r e a s e d r is k o f e s s e n t i a l h y p e r t e n s i o n in a R u s s i a n p o p u l a t i o n . Dis Markers 2 0 0 8 ; 2 4 : 1 1 9 - 1 2 6 . 33- I v a n o v V P , S o lo d il o v a M A , P o l o n i k o v A V , B e l u g in D A , S h e s t a k o v A M , U s h a c h e v D V , et al. A r g 2 5 P r o p o l y m o r p h i s m o f t r a n s f o r m i n g g r o w t h f a c t o r - b e t a l a n d its r o le in t h e p a t h o g e n e s i s o f e s s e n t i a l h y p e r t e n s i o n in R u s s ia n p o p u l a t i o n o f t h e C e n t r a l C h e r n o z e m R e g io n . Bull Exp Biol Med 2 0 0 7 ; 1 4 4 :6 6 - 6 8 . 34 . P o l o n i k o v A V , U s h a c h e v D V , S h e s t a k o v A M , I v a n o v V P , S o lo d il o v a m e m b r a n e p r o t e i n s in p r i m a r y h y p o t e n s i o n . A n n Hum Genet 2005; 5 2 . K im J O , M u e ll e r C W , K le k k a U R . Factor, discriminant, and cluster analysis. M o s c o w P le a s e p r o v i d e p a g e r a n g e in re f. [52].: F in a n c e a n d S ta tis tic s ; 1 9 8 9 ; 2 6 8 - 2 8 5 . 53- G e l m a n A. A n a ly s is o f v a r i a n c e - w h y it is m o r e i m p o r t a n t t h a n e v e r . A n n Statist 2 0 0 5 ; 3 3 :1 - 5 3 5 4 . S in g C F , D a v i g n o n J . R o le o f t h e a p o l i p o p r o t e i n E p o l y m o r p h i s m in d e t e r m i n i n g n o r m a l p l a s m a l i p id a n d l i p o p r o t e i n v a r i a ti o n . Am JH um M A , V ia ly k h EK , etal. P o l y m o r p h i s m G ly 4 6 0 T r p o f a l p h a - a d d u c i n g e n e a n d p r e d is p o s itio n to e s s e n tia l h y p e rte n s io n . T h e ro le o f g e n e -e n v ir o n m e n t in t e r a c t i o n s in t h e d e v e l o p m e n t o f t h e d i s e a s e in R u s s i a n p o p u Genet 1 9 8 5 ; 3 7 : 2 6 8 - 2 8 5 . 55- I v a n o v V P , P o l o n i k o v A V , E m e li y a n o v a O G , S o lo d il o v a M A , M a n d r ik IA . F a m ily b a s e d a n a ly s is o f q u a n t i t a t i v e c h a n g e s o f e r y t h r o c y t e m e m b r a n e p r o t e i n s in e s s e n t i a l h y p e r t e n s i o n . Indian J Hum Genet 2 0 0 4 ; la tio n . Kardiologiia 2 0 1 1 ; 5 1 : 3 3 - 3 9 35- P o l o n i k o v A V , S o lo d il o v a M A , I v a n o v V P , S h e s t a k o v A M , U s h a c h e v D V , V ia ly k h E K , etal. A p r o t e c t i v e e f f e c t o f G L Y 2 7 2 S E R p o l y m o r p h i s m 1 0 :4 6 -5 2 . 5 6 . I v a n o v V P , P o l o n i k o v A V , S o l o d i l o v a M A , E m e li y a n o v a O G . T h e q u a n t i t a t i v e c h a r a c t e r i s t i c s o f e r y t h r o c y t e m e m b r a n e p r o t e i n s in o f G N B 3 g e n e in d e v e l o p m e n t o f e s s e n t i a l h y p e r t e n s i o n a n d its r e l a t i o n s w i t h e n v i r o n m e n t a l h y p e r t e n s i o n r is k f a c t o r s . Ter Arkh 2011; 8 3 6 5 -6 0 . 36 . S t e p a n o v V A , P u z y r e v K V , S p i r i d o n o v a M G , P a v li u k o v a E N , P u z y r e v V P , K a r p o v RS. P o l y m o r p h i s m o f a n g i o t e n s i n - c o n v e r t i n g e n z y m e a n d e n d o t h e l i a l n it r ic o x i d e s y n t h a s e g e n e s in p e o p l e w i t h a r t e r ia l h y p e r t e n s i o n , le f t v e n t r i c u l a r h y p e r t r o p h y , a n d h y p e r t r o p h i c c a r d i o m y o p a t h y . Genetika 1 9 9 8 ; 3 4 :1 5 7 8 - 1 5 8 1 . 37 . K a r p o v RS, P u z y r e v K V , K o s h e l ’s k a i a O A , M a k e e v a O A , S u s l o v a Т Е , p a t i e n t s w i t h v a s c u l a r d y s t o n i a s a n d t h e i r r e l a t i o n s h i p t o lia b ility . 1 9 9 9 ; 5 :2 4 - 2 5 . 5 7 . L o w PS. S tr u c t u r e a n d f u n c t i o n o f t h e c y t o p l a s m i c d o m a i n o f b a n d 3: c e n t e r o f erythrocyte m e m b r a n e - p e r i p h e r a l p r o t e i n i n t e r a c t i o n s . Bio- chim Biophys Acta 1 9 8 6 ; 8 6 4 : 1 4 5 - 1 6 7 . 5 8 . D e n k e r S P , B a r b e r D L. I o n t r a n s p o r t p r o t e i n s a n c h o r a n d r e g u l a t e t h e c y t o s k e l e t o n . Curr Opin Cell Biol 2 0 0 2 ; 1 4 :2 1 4 - 2 2 0 . 59- S a tc h w e ll T J, H a w le y B R , B e ll A J, R ib e ir o M L, T o y e A M . T h e c y t o s k e l e t a l b i n d i n g d o m a i n o f b a n d 3 is r e q u i r e d f o r m u l t i p r o t e i n c o m p l e x f o r m a t i o n a n d r e t e n t i o n d u r i n g erythropoiesis. Haematologica 2 0 1 5 ; 1 0 0 :1 3 3 -1 4 2 . E f im o v a EV , et al. P o l y m o r p h i c m a r k e r s o f G N B 3 ( C 8 2 5 T ) , A G T R 1 ( A 1 1 6 6 C ) a n d A C E (A 2 3 5 0 G a n d I / D ) g e n e s in p a t i e n t s w i t h a r t e r ia l h y p e r t e n s i o n c o m b i n e d w i t h d i a b e t e s m e lli tu s t y p e 2 . Ter Arkh 2004; 7 6 :3 0 -3 5 . 38 . G l o t o v A S, I v a s h c h e n k o Т Е , O b r a z t s o v a G I, N a s e d k i n a T V , B a r a n o v V S. R e n i n - a n g i o t e n s i n a n d k i n i n - b r a d y k i n i n g e n e s p o l y m o r p h i s m e f f e c ts o n p e r m a n e n t a r t e r ia l h y p e r t e n s i o n in c h i l d r e n . Mol Biol (Mosk) 2007; 4 1 :1 8 -2 5 . 39- L e m b o G , D e L u c a N , B a tta g li C , I o v i n o G , A r e tin i A , M u s i c c o M , etal. A c o m m o n v a r i a n t o f e n d o t h e l i a l n it r ic o x i d e s y n t h a s e ( G lu 2 9 8 A s p ) is a n in d e p e n d e n t r is k fa c to r fo r c a ro tid a th e ro s c le ro s is . Stroke s p a s m . Circulation 1 9 9 9 ; 9 9 : 2 8 6 4 - 2 8 7 0 . 4 1 . R ig a t B , H u b e r t C , C o r v o l P , S o u b r i e r F . P C R d e t e c t i o n o f t h e i n s e r t i o n / d e le tio n p o ly m o rp h is m o f th e h u m a n a n g io te n s in c o n v e rtin g e n z y m e g e n e ( D C P 1 ) ( d i p e p t i d y l c a r b o x y p e p t i d a s e 1 ). 6 0 . H a r r is SJ, W i n z o r D J. I n t e r a c t i o n s o f g ly c o ly ti c e n z y m e s w i t h e r y t h r o c y t e m e m b r a n e s . Biochim Biophys Acta 1 9 9 0 ; 1 0 3 8 :3 0 6 - 3 1 4 . 6 1. F o s s e l E T , S o l o m o n A K . R e l a ti o n b e t w e e n r e d c e ll m e m b r a n e (N a + K + )-A T P a s e a n d b a n d 3 p ro te in . Nucleic Acids Res 1 9 9 2 ; 2 0 :1 4 3 3 42 . T a k e m o t o Y , S a k a t a n i M , T a k a m i S, T a c h i b a n a T , H i g a k i J , O g i h a r a T , Biochim Biophys Acta 6 4 9 :5 5 7 -5 7 1 . 6 2 . O p a r i l S, Z a m a n M A , C a l h o u n D A . P a t h o g e n e s i s o f h y p e r t e n s i o n . 1981; A nn Intern Med 63- B e n n e t t 2 0 0 3 ; 1 3 9 :7 6 1 - 7 7 6 . V. S p e c trin -b a s e d m e m b r a n e a d a p to r b e tw e e n 2001; 3 2 :7 3 5 -7 4 0 . 4 0 . N a k a y a m a M , Y a s u e H , Y o s h i m u r a M , S h im a s a k i Y , K u g iy a m a K, O g a w a H , et al. T - 7 8 6 > C m u t a t i o n in t h e 5 ’- f la n k in g r e g i o n o f t h e e n d o t h e l i a l n it r ic o x i d e s y n t h a s e g e n e is a s s o c i a t e d w i t h c o r o n a r y Arter Hypertens (St -Petersburg) p la s m a m e m b ran e s k e le to n : and a m u ltip o te n tia l cytoplasm. Physiol Rev 1 9 9 0 ; 7 0 :1 0 2 9 - 1 0 6 5 . 6 4 . S h a r p D S , C u r b J D , S c h a t z IJ, M e is e l m a n H J, F is h e r T C , B u r c h f i e l C M , et al. M e a n r e d c e ll v o l u m e a s a c o r r e l a t e o f b l o o d p r e s s u r e . Circulation 1996; 9 3 :1 6 7 7 -1 6 8 4 . 65- C a r r SJ, S i k a n d K , M o o r e D , N o r m a n RI. A lte r e d m e m b r a n e m i c r o v is c o s it y in e s s e n t i a l h y p e r t e n s i o n : r e l a t i o n s h i p w i t h f a m ily h i s t o r y o f h y p e r t e n s i o n a n d s o d i u m - l i t h i u m c o u n t e r t r a n s p o r t a c tiv ity . J Hypertens 1995; 1 3 :1 3 9 -1 4 6 . 6 6 . K a z e n n o v A M , M a s lo v a M N . T h e e f f e c t o f t h e m e m b r a n e s k e l e t o n o f et n o n n u c le a te d e ry th ro c y te s o n th e p r o p e r tie s o f tr a n s p o r t A T P ases. A s s o c i a ti o n b e t w e e n a n g i o t e n s i n II r e c e p t o r g e n e p o l y m o r p h i s m a n d s e r u m a n g i o t e n s i n c o n v e r t i n g e n z y m e (S A C E ) a c tiv i ty in p a t i e n t s w i t h s a r c o i d o s i s . Thorax 1 9 9 8 ; 5 3 : 4 5 9 - 4 6 2 . Tsitologiia 1 9 9 1 ; 3 3 : 3 2 - 4 1 . 6 7 . K h u r a n a S. R o le o f a c tin cytoskeleton in r e g u l a t i o n o f io n t r a n s p o r t : e x a m p l e s f r o m e p i t h e l i a l c e l l s . J Membr Biol 2 0 0 0 ; 1 7 8 :7 3 - 8 7 . 43 . S e th i A A , N o r d e s t g a a r d B G , A g e r h o lm - L a r s e n B , F r a n d s e n E, J e n s e n G , T y b ja e rg -H a n s e n A. A n g io te n s in o g e n p o ly m o rp h is m s a n d e le v a te d 6 8 . K a z e n n o v A M , M a s lo v a M N . S tr u c t u r a l b i o c h e m i c a l p r o p e r t i e s o f t h e m e m b r a n e o f n u c l e u s - f r e e e r y t h r o c y t e s . Fiziol Zh SSSR Im IM Seche- al. b l o o d p r e s s u r e in t h e g e n e r a l p o p u l a t i o n : t h e C o p e n h a g e n C ity H e a r t S tu d y . Hypertension 2 0 0 1 ; 3 7 :8 7 5 - 8 8 1 . 4 4 . P o c h E, G o n z a l e z D , G i n e r V , B r a g u l a t E, C o c a A , d e L a S ie r r a A. M o le c u la r b a s i s o f s a lt s e n s iti v ity in h u m a n h y p e r t e n s i o n . E v a lu a t io n o f re n in - a n g io te n s in - a ld o s te r o n e s y s te m g e n e p o ly m o rp h is m s . Hyperten sion 2001; 3 8 :1 2 0 4 -1 2 0 9 . 4 5 . B e u t l e r E, W e s t C , B lu m e K G . T h e r e m o v a l o f l e u k o c y t e s a n d p l a t e l e t s f r o m w h o l e b l o o d . J Lab Clin Med 1 9 7 6 ; 8 8 :3 2 8 - 3 3 3 . 46 . D o d g e G T , M itc h e ll C , H a n a h a n D J. T h e p r e p a r a t i o n a n d c h e m ic a l c h a r a c te r is tic s o f h e m o g l o b i n - f r e e g h o s t s o f h u m a n e r y t h r o c y t e s . 1 9 6 3 ; 1 0 0 :1 1 9 - 1 3 0 . Biochem Biophys 12 Arch nova 69- 1987; 7 3 :1 5 8 7 -1 5 9 8 . R u il o p e LM , L u q u e M , F e r n a n d e z J , O r t e g a R, D a l- R e R, A V A N T S tu d y G r o u p I n v e s ti g a to r s . G l u c o s e m e t a b o l i s m in p a t i e n t s w i t h e s s e n t i a l h y p e r t e n s i o n . Am J Med 2 0 0 6 ; 1 1 9 :3 1 8 - 3 2 6 . Garcia-Puig J , 7 0 . C a r n e v a l e S c h i a n c a G P , F r a СтР, S te f f a n in i M , P o g lia n i G , M a r c o n i C , B ig l io c c a M , P iris i M . I m p a i r e d g l u c o s e m e t a b o l i s m in h y p e r t e n s i v e p a tie n ts w ith /w ith o u t th e m e ta b o lic s y n d ro m e . Eur J Intern Med 2 0 1 4 ; 2 5 :4 7 7 -4 8 1 . 7 1 . C l o h e r t y E K , S u ltz m a n LA, Z o t t o l a RJ, C a r r u t h e r s A. N e t s u g a r t r a n s p o r t is a m u l t i s t e p p r o c e s s . E v i d e n c e f o r c y t o s o l i c s u g a r b i n d i n g s ite s in e ry th ro c y te s . Biochemistry 1 9 9 5 ; 3 4 :1 5 3 9 5 - 1 5 4 0 6 . A Q1 7 2 . O l s o n AL, P e s s i n J E . S tr u c t u r e , f u n c t i o n , a n d r e g u l a t i o n o f t h e m a m m a lia n f a c ilita tiv e g l u c o s e t r a n s p o r t e r g e n e f a m ily . A n n u Rev Nutr 1 9 9 6 ; 1 6 :2 3 5 - 2 5 6 . 7 3 . F e r r a n n i n i E, B u z z ig o li G , B o n a d o n n a R, G i o r ic o M A , O l e g g i n i M , G r a z i a d e i L, etal. I n s u lin r e s i s t a n c e in e s s e n t i a l h y p e r t e n s i o n . N Engl J Med 1987; 3 1 7 :3 5 0 -3 5 7 . 7 4 . S ir o v e r M A . S tr u c t u r a l a n a ly s is d e h y d r o g e n a s e f u n c t i o n a l d iv e r s i ty . of g ly c e ra ld e h y d e -3 -p h o s p h a te Int J Biochem Cell Biol 5 7 :2 0 -2 6 . 75- H o f f m a n J F . A T P c o m p a r t m e n t a t i o n in h u m a n e r y t h r o c y t e s . Hypertension 1996; 2 7 :5 6 4 -5 6 8 . 8 0 . P r a v e n e c M , C r a u g u ie r D , S c h o t t J J, B u a r d J , K r e n V , B ila V , et al. c o s e g r e g a t e s w i t h h y p e r t e n s i o n in D a h l S ra ts . CurrOpin Invest 1 9 9 5 ; 9 6 : 1 9 7 3 - 1 9 7 8 . 8 1 . R e d o n J , O liv a M R , T o r m o s C , G i n e r V , C h a v e s J , I r a d i A , S a e z G T . A n t i o x i d a n t a c tiv i tie s a n d o x i d a t i v e s t r e s s b y p r o d u c t s in h u m a n h y p r o d u c t i o n a s a s o u r c e o f s y s t e m i c a r t e r ia l h y p e r t e n s i o n . Pathophysi ology 2 0 0 7 ; 1 4 : 1 9 5 - 2 0 4 . 7 7 . G o u v e i a LM, P a c c o l a G M , T o r q u a t o M T , M e n e z e s F O , P ic c in a t o C E , Horm Metah Res 79 - S te c D E , D e n g A Y , R a p p J P , R o m a n RJ. C y t o c h r o m e P 4 5 0 4 A g e n o t y p e M a p p i n g o f q u a n t i t a t i v e tr a it lo c i f o r b l o o d p r e s s u r e a n d c a r d i a c m a s s in t h e r a t b y g e n o m e s c a n n i n g o f r e c o m b i n a n t i n b r e d s tr a i n s . / Clin 1 9 9 7 ; 4 :1 1 2 - 1 1 5 . 7 6 . P o s t n o v Y V , O r l o v S N , B u d n i k o v Y Y , D o r o s c h u k A D , P o s t n o v A Y. M ito c h o n d r i a l e n e r g y c o n v e r s i o n d i s t u r b a n c e w i t h d e c r e a s e in A T P h y p e rte n s io n . D e n g AY, D e n e H , R a p p JP . C o n g e n ic s tra in s fo r th e b lo o d p re s s u re q u a n t i t a t i v e tr a it lo c u s o n r a t c h r o m o s o m e 2. Hypertension 1 9 9 7 ; 3 0 :1 9 9 -2 0 2 . 2014; Hematol F o ss M C. P e rip h e ra l g lu c o s e m e ta b o lis m 78. in p a t i e n t s w i t h e s s e n t i a l 2 0 0 0 ; 3 2 :3 5 - 3 9 - R eview ers’ S u m m ary Evaluations Reviewer 1 P olonikov e t al. analyzed the relationship b e tw e e n a num b e r o f h y p erten sio n susceptibility genes and erythrocyte m em brane proteins. T he results p o in t tow ards a few specific gen es an d m em brane p roteins an d provide som e novel pathophysiological insights. T he m ain strength o f the article, how ever, is the integration o f com plex phenotypic, clinical, an d genetic data into disease pathw ays in the spirit o f a system s biology ap proach. The p resen t w ork could b e a tem plate for the analysis an d p resen tatio n o f com plex biological data - at least it is o n e possible approach. p e r t e n s i o n . Hypertension 2 0 0 3 ; 4 1 : 1 0 9 6 - 1 1 0 1 . 8 2 . B r io n e s A M , T o u y z R M . O x i d a t i v e s tr e s s a n d h y p e r t e n s i o n : c u r r e n t c o n c e p t s . Curr Hypertens Rep 2 0 1 0 ; 1 2 : 1 3 5 - 1 4 2 . 83 - T s u d a K . O x i d a t i v e s t r e s s a n d m e m b r a n e f lu i d ity o f r e d b l o o d c e lls in h y p e rte n s iv e a n d n o rm o te n s iv e m e n : a n e le c tro n s p in in v e s t ig a t io n . Int Heart J 2 0 1 0 ; 5 1 : 1 2 1 - 1 2 4 . reso n an ce Reviewer 2 In this interesting study, the authors report that hy p erten sion susceptibility genes contribute to inherited erythrocyte m em brane p rotein variation suggesting that abnorm alities in m em brane structure and function rep resen t an im portant part o f hy pertension pathogenesis. T he study is o f interest. H ow ever, to explore the validity o f the results, findings should b e further validated in bigger and in d e p en d e n t sam ples. 13
© Copyright 2026 Paperzz