Altered erythrocyte membrane protein composition mirrors

Altered erythrocyte membrane protein composition
m irrors pleiotropic effects of hypertension
susceptibility genes and disease pathogenesis
Alexey V. Polonikov3, Dmitry V. Ushachevb, Vladimir P. Ivanov3, Mikhail I. Churnosovc,
Maxim B. Freidind, Alexander V. Ataman®, Victoria Yu Harbuzova®, Marina A. Bykanova3,
Olga Yu Bushueva3, and Maria A. Solodilova3
Objective: The study was designed to assess the effects of
polymorphisms in genes associated with essential
hypertension on the variation of erythrocyte membrane
proteins (EMPs) in hypertensive patients.
Methods: Major EMPs content was analyzed in blood
from 1162 unrelated Russians (235 hypertensive
patients, 176 healthy controls, and 751 random
individuals from the Central Russia population). Essential
hypertension patients were genotyped for 11
polymorphisms of essential hypertension susceptibility
genes including A D D 1 (rs4961), GNB3 (rs5443,
rs 16932941), N 0 S 3 (rs 1799983, rs2070744), A C E
(rs5186), AGTR1 (rs5186), A G T (rs699, rs4762), MR
(rs5534), and TGFB1 (rs1800471). EMP contents and
their relationship with the genetic loci were analyzed
using various statistical tests.
Results: Sex-specific differences in EMP contents between
the cases and controls were observed. Regardless of sex,
hypertensives exhibited mainly decreased levels of alpha
(SPTA1) and beta-spectrin (SPTB) and increased levels of
glucose transporter (GLUT1) as compared with healthy
subjects (P < 0.001). EMP correlated differently in essential
hypertension patients and controls. Almost 70% of the
joint variation in the EMP levels is explained by five
gender-specific principal components. The essential
hypertension susceptibility genes showed considerable
effects on the levels of spectrins and glucose transporter.
A joint variation of the genes explained about half the
total polygenic variance in the GLUT1, SPTA1, and SPTB
levels in hypertensives.
INTRODUCTION
ypertension is a global public h ealth issue and is
responsible for at least 45% o f deaths ow ing to
heart disease and 51% o f deaths ow ing to stroke [1].
The n u m b er o f deaths attributable to h y p ertension rose
from 7.6 to 9-4 m illion estim ated for a period b etw e e n 2000
and 2013 12,3]- H ypertension is k n o w n to b e a multifactorial
disease arising from a com plex interplay b e tw e e n m ultiple
genetic and environm ental factors jointly contributing to
disease susceptibility [4,5]. D espite decades o f intensive
basic and clinical research, intrinsic m echanism s underlying
essential h y pertension (essential hypertension), the com ­
m on form o f hypertension, rem ain far from being com ­
pleted [6]. T here is a substantial progress tow ard detection
o f genes u n d erp in n in g distinct m olecular m echanism s of
the disease [5,7,8], and w ide spectrum o f interm ediate
ph en o ty p es underlying high BP and essential hypertension
has b e e n identified [6,9]A n u m b er o f studies have show n that alterations in
structural and functional properties o f the cell m em brane
m ay rep resen t disease-associated interm ediate ph en o ty p es
reflecting the particular m echanism s o f essential hy p erten ­
sion [10-18]. An elevated erythrocyte N a+-Li+ countertran­
sport is o n e o f the best k n o w n interm ediate ph en o ty p es of
the m em brane abnorm alities found in hypertensive
hum ans and anim als [19]. Further studies resulted in the
discovery o f generalized structural and functional altera­
tions in erythrocyte m em brane m irrored the similar
p h e n o m e n o n in o th er cell types in essential hypertension
H
Conclusions: The study showed that essential
Journal of Hypertension 2015, 33:000-000
hypertension susceptibility genes are the important factors
of the inherited EMP variation, and their pleitropic effects
may be mirrored in the altered expression of genes
encoding cytoskeletal proteins and those related to
intracellular glucose metabolism.
aDepartment of Biology, Medical Genetics and Ecology, Kursk State Medical Univer­
sity, bDivision of Cardiology, Kursk Regional Clinical Hospital, Kursk, department of
Medical Biological Disciplines, Belgorod State University, Belgorod, dPopulation
Genetics Laboratory, Research Institute for Medical Genetics, Tomsk, Russian Feder­
ation and department of Physiology, Pathophysiology and Medical Biology, Sumy
State University, Sumy, Ukraine
Keywords: cytoskeleton, erythrocyte membrane proteins,
Correspondence to Alexey Polonikov (Prof, MD, PhD), Department of Biology, Medical
Genetics and Ecology, Kursk State Medical University, 3 Karl Marx St., Kursk 305041,
Russian Federation. Tel/Fax: +7 4712 58 81 47; e-mail: [email protected]
essential hypertension, genetic polymorphism, genetic
susceptibility, glucose metabolism, glucose transporter,
molecular mechanisms, quantitative variation, spectrin
Received 16 February 2015 Revised 10 June 2015 Accepted 10 June 2015
J Hypertens 33:000-000 Copyright (0 2015 Wolters Kluwer Health, Inc. All rights
reserved.
DOI: 1 0.1097/HJH.0000000000000699
1
[20,21]. Functional alterations in N a+-Li+ countertransport
an d o th er m em brane ion transporters are th o ught to b e
responsible for abnorm al intracellular distribution of
calcium ions req u ired for contraction o f sm ooth m uscle
cells, leading to increased cytosolic free calcium and arterial
contractility leading to h y p erten sio n [12,22,23]. These
observations m ade erythrocytes an attractable and biologi­
cally plausible m odel for studying the role o f m em brane
alterations in the m olecular m echanism s o f hypertension
[12,14,24,25].
It is im p o rtan t to n o te that abnorm alities in io n tran s­
p o rte rs’ fun ctio n s are c o n sid e re d as a genetically d e te r­
m in ed featu re o f p rim ary h y p erten sio n , rath er th a n the
co n se q u e n c e o f lon g -term elev atio n o f BP [12,23]. The
altered activity o f m o n o v alen t io n tran sp o rters in essential
h y p erten sio n , in contrast to m o n o g en ic hyp erten sio n s,
m ay b e b e c a u se o f abnorm alities o f system s involved in
th e reg u latio n o f th eir e x p ressio n a n d /o r fu n ctio n [23].
Fam ilial ag g reg atio n an d h ig h er c o n c o rd a n ce o f increased
N a+-Li+ c o u n te rtra n sp o rt in m onozy g o tic tw ins th an in
dizygotic tw ins suggest m ultifactorial n atu re o f m em b ran e
diso rd ers in essential h y p e rte n sio n [24]. This m eans that
th e io n tran sp o rt abnorm alities o f cell m em b ran e in
essential h y p e rte n sio n are attrib u tab le to the effects o f
m ultiple g enes, w h ich have the p o te n tial to m odify
ex p ressio n o f g en es w h o se p ro d u cts form the structure
o f th e cell m em brane.
N um erous studies have sh o w n that the intracellular
distribution o f m onovalent ions in h y p ertension is corre­
lated w ith alterations in p ro tein com position o f the eryth­
rocyte m em b ran e [14,15,26-31]. D espite incredible
advances in gen o m e research, a little co ncern so far is
given to u n covering the p ath o g en etic link b etw e en w ell
characterized genetic d eterm inants o f essential hy p erten ­
sion a n d altered p ro p erties o f the cell m em brane. A lthough
a large n u m b er o f polym orphic gen es w ere found to b e
associated w ith susceptibility to essential hypertension, no
study has b e e n d o n e to investigate w h eth er these genes
contribute to alterations in con ten t o f cell m em brane
proteins in the disease. P ursuing this interest, the present
study w as designed to test the hypothesis that alterations in
the levels o f erythrocyte m em b ran e p roteins in essential
h y p erten sio n are related to the effects o f polym orphic
genes associated w ith disease susceptibility.
M ETHO DS
Study participants
The study w as carried o u t in four stages (Fig. 1). A total of
1162 u n related individuals w ere involved into the study. All
the participants w ere Russians from Central Russia (p re­
dom inantly from Kursk region). T he Ethical Review Com­
m ittee o f the Kursk State M edical University has ap p roved
the study protocol, an d each participant signed inform ed
con sen t at the recruitm ent. A ran d o m sam ple o f 751 (371
m ales an d 380 fem ales) w as enrolled to estim ate the p o p u ­
lation m eans o f the EMPs for statistical genetic analysis. The
study g ro u p also included 235 patients w ith doctor-diag­
n o sed essential h y p erten sio n an d 176 healthy subjects w ith
norm al BP. M ean age o f essential h y p ertension patients
(67 m en an d 168 w o m en ) w as 47.8 ± 9 -6 years, and the
2
m ean age o f the healthy subjects (75 m en and 132 w om en)
w as 45-9 ± 1 1 .2 years. Patients w ith essential hypertension
w ere recruited from the C ardiology Clinics o f Kursk
Regional Clinical H ospital and Kursk Em ergency M edicine
H ospital b etw ee n 2003 and 2007 [32]. D iagnosis o f essential
h y p ertension w as verified by qualified cardiologists.
Patients w ere defined as hypertensive according to the
W orld H ealth O rganization criteria. All these subjects
u n d erw en t b o th m olecular genetic analysis for hy p erten ­
sion susceptibility genes and biochem ical investigations for
erythrocyte m em brane proteins contents.
Molecular genetic analysis
O n the basis o f su p p o rtiv e p eer-rev iew ed scientific p u b ­
lications, w e selected gen es involved in the regulation o f
vascular hom eostasis w ith a focus o n w ell recognized
h y p e rten sio n susceptibility loci th at have b e e n re p o rte d
to b e associated w ith the risk o f essential h y p e rten sio n o r/
an d w ith the level o f BP in Russian p o p u latio n s [33-38]. A
total o f 11 single n u cleo tid e p o lym orphism s (SNPs) o f
h y p e rten sio n susceptibility gen es including transform ing
g ro w th factor b eta 1 (TG F B 1) R25P (rsl800471), ad d u cin 1
( A D D !) G460W (rs496l), g u an in e n u cleo tid e-b in d in g
p ro te in b eta p o ly p e p tid e 3 (G N B 3 ) C825T (rs5443) and
G272S (rsl6 9 3 2 9 4 l), nitric oxide synthase 3 (N O S J) E298D
(rsl799983) a n d —7 8 6 T > C (rs2070744), an g io ten sin Ico n verting enzym e (ACE) I/D (rs5186), a n g io ten sin II
re cep to r type 1 (A G T R 1) A1166C (rs5186), an g io tensinog e n (AG E ) M235T (rs699) a n d T174M (rs4762), m ineralocorticoid re cep to r o r n u clear rec ep to r subfam ily 3 g ro u p
С m em b er 2 (N R 3 C 2 ) A4582C (rs5534) w ere selected for
this study.
A pproxim ately 5 ml o f venous b lo o d w ere collected
from the patients in K3-EDTA tubes a n d genom ic DNA
w as isolated by standard phenol-chloroform extraction.
Genetic polym orphism s w ere typed b y PCR-RFLP assays
as described elsew here [33-35,39-44]. Each PCR reaction
contained internal controls, a n d random retesting o f about
10% o f sam ples resulted in a 100% co ncordance rate w ith
initial genotyping data.
Biochemical analyses
A pproxim ately 5 ml o f fasting w hole b lood sam ples w ere
collected from each study participant in the m orning. Eryth­
rocytes w ere precipitated from fresh heparinized w hole
b lo o d sam ples b y the m ethod o f B eutler e t al. [45]. Ghosts
o f erythrocytes w ere p rep ared according to a m odified
m ethod described by D odge e t al. [46]. W ashed ghosts o f
erythrocytes w ere lyophilized, frozen, and stored at —20°C.
Fractionation o f m ajor erythrocyte m em brane proteins w as
perfom ied by one-dim ensional SDS polyacrylam ide gel
electrophoresis (SDS-PAGE) w ith gradient concentration
5-25% according to Laemmli’s m ethod [47]. T he m em brane
proteins w ere detected b y im m unological m ethods as
described elsew here [48] and classified accordingly as p ro ­
p o sed by Steck and Fairbanks e ta l. [49,50]. The identification
and m olecular w eight calculations o f red b lood cell proteins
w ere perform ed using standards o f protein m arkers as p re­
viously reported [48]. The levels o f erythrocyte m em brane
proteins w ere quantified through k n o w n concentration o f
Overview of the study pipeline
S T A G E 1: A n a ly s is for
d ifferences in erythrocyte
m em brane protein co ntents
between hypertensive and
norm otensive in d iv id u a ls
S T A G E 2: Interrelations
between erythrocyte
m em brane protein levels in
hypertensive patients and
healthy su b je cts
S T A G E 3: Th e relationship
between hypertension
su sce p tib ility g e n e s and
erythrocyte m em brane protein
levels in the patients
S T A G E 4: A co m p rehensive
contribution of hypertension
su sce p tib ility ge n e s to
variability of erythrocyte
m em brane proteins
Aim:
To compare major erythrocyte
membrane protein (EM P)levels
between hypertensive patients
and healthy controls in entire
and gender-stratified groups
Aim:
T о measure the strength and
direction of the linear
relationship between the EMP
levels in the study groups
stratified by gender. To identify
the integral factorsresponsible
for the total variability of a
complex of EM Ps in
hypertensive males and females
Aim:
To analyzethe impact of
polymorphismsin hypertension
susceptibility genes on the
EMP levels in hypertensive
patients
Aim:
T о estimate the proportion of
total phenotypic and polygenic
variances ofthe EM Ps explained
by the variation of hypertension
susceptibility genes
Materials:
R ussian patients with doctordiagnosed essential
hypertension (N = 234; 82 males
and 152 females) and healthy
subjects with normal blood
pressure (N = 176; 75 males
and 101 females) from
Kursk regiotn.
Materials:
The EMP levels of the same
patients investigated on
S T A G E 1 (234 EHpatients and
176 healthy controls).
Materials:
D N A sam ples obtained from
hypertensives who underwent
biochemical investigations of
EMP contents on S T A G E 1
(N = 234); an independent
population sam ple of Russian
inhabitants from the Central
R u ssia (N = 751; 371 males
and 380 females)
Materials:
The biochemical and genotypic
data of hypertensive patients
obtained on S T A G E S 1-3
(N = 234); the EMP levels of the
population sample investigated
on S T A G E 3 ( N = 751)
FIGURE 1 Overview of the study pipeline, initial analysis was done to establish differences in contents of 14 major erythrocyte membrane proteins (EMPs) between
hypertensive and normotensive subjects (STAGE 1). Then, the strength and direction of alterations in the EMP levels were assessed and the integral factors explaining the
joint variation o f membrane proteins in essential hypertension patients were estimated (STAGE 2). Subsequently, the analysis of relationships between 11 common
polymorphisms in hypertension susceptibility genes and EMP contents was carried out (STAGE 3) and the estimates of the proportion of total phenotypic and polygenic
variances of the proteins explained by the variation of a group of the genetic loci were obtained (STAGE 4).
bovine serum album in (|ag) using the program ONE-Dscan
(Scanalytics Inc., Fairfax, VA, USA).
The average effects o f the particular allele (a,, / = 1 , 2) on
EMP variability in hypertensive patients w ere estim ated
using algorithm s described in [54]:
Statistical analysis
The distribution o f the quantitative traits w as evaluated for
norm ality b y K o lm ogorov-S m irnov test. D ifferences in
EMP contents b e tw e e n the case an d control groups w ere
tested using m odifications o f S tudent’s t test for the traits
w ith equ al or u n e q u a l variances as required. The BrownForsythe’s test w as ap p lied to assess the equality o f EMP
variances b e tw e e n the groups [51]. A P value <0.05 w as
co n sid ered significant. P earso n correlation coefficients
w ere calculated to m easure the linear relationships
b e tw e e n the EMP levels in the study groups. T he principal
co m p o n en t analysis w as ap p lied to identify the integral
factors responsible for the total variation o f EMPs [52]. The
varim ax-norm alized rotation w as u se d to simplify the
interpretation o f the principal com ponents. Allele freq u en ­
cies for the polym orphism s w ere estim ated by the gene
counting m ethod. H ardy-W einberg equilibrium for g en o ­
type frequencies w as assessed b y / 2 test. A one-w ay and
tw o-w ay analysis o f variance (ANOVA) w as perform ed
for the EMP levels to test the hypothesis that their p h e n o ­
typic variation is affected b y the genetic polym orphism s
alone an d their com binations, respectively [53]. The coef­
ficient o f determ ination (P2) w as u sed to evaluate the
d eg ree o f relationship b e tw e e n genetic polym orphism s
an d EMP levels.
_ / l l ' P l l + 0-5 '/ 1 2 ' P i 2
h i ' P 22 + 0.5 ' f _2 - P i 2
w here f t is frequency o f allele i; f tj is the frequency of
genotype ij exp ected u n d e r the assum ption o f H a rd y W einberg equilibrium ; /x,y is the average o f the trait values
for individuals w ith the genotype ij; fi is the estim ate o f the
p o p u latio n m ean.
The variance attributable to genotypic differences w as
co m p u ted as [54]:
Of
У 'f j ( pj j
/2 ) ~■
w here the values are sum m ed for each genotype of
the locus.
The variance attributable to the average effects o f the
alleles at the locus (additive genetic co m p o n en t) w as
calculated as:
М= 2 ]Г /< 4
3
D = G - A
><
■<cD
-D
1/1
Ф _- ^
"пз —
сс
ф
U_
Alterations in contents of erythrocyte
membrane proteins in patients with essential
hypertension
All erythrocyte m em brane p roteins in the study subjects
w ere norm ally distributed № > 0 .0 5 ). Table 1 show s a
com parison o f EMP levels b e tw e e n patents w ith essential
h y p erten sio n an d healthy subjects. The increased levels of
p ro tein b a n d 4.1 (ЕРВ4Г), glucose transporter (GLUTl) and
actin (ACTB), an d d ecreased levels o f a-sp ectrin (SPTAl),
(3-spectrin (SPTB), an d
glyceraldehyde-3-phosphate
d eh y d ro g en ase (GAPDH) w ere found in hypertensives as
c o m p ared w ith controls. Sex-stratified analysis revealed
differences in the EMP levels b e tw e e n m ales an d females.
The decreased SPTAl levels an d increased GLUTl levels
w ere found in hypertensive m ales in com parison w ith
h ealthy controls. M eanw hile, the levels o f cytoskeletal
proteins SPTAl, SPTB, dem atin (DMTN), an d GAPDH w ere
significantly low er in hypertensive fem ales th an in healthy
fem ales, w hereas the GLUTl an d ACTB levels w ere higher
in hypertensive th e n in norm otensive fem ales. Protein
b an d s 2.1 (ankyrin 1, ANK1), an io n ex changer (AEl),
pallidin (EPB42), GLUTl, an d GAPDH sh o w ed differences
in variances b e tw e e n the study gro u p s (Supplem entary
Table 1, http://links.lw w .com /H JH /A 51T ).
Joint variability of erythrocyte membrane
proteins in hypertensive patients
Statistically significant correlations CP< 0 .0 5 ) b e tw ee n the
levels o f erythrocyte m em brane proteins w ere observed in
b o th hypertensive patients an d healthy controls (Fig. 2).
N otably, paired correlation coefficients b etw e e n EMPs,
w h o se contents w ere altered in hypertensives in com pari­
son w ith healthy subjects, sh o w ed considerable differences
b e tw e e n the case an d control groups. Correlations b e tw e en
such EMPs in m ales an d fem ales w ere o f interest. For
instance, SPTAl levels w ere negatively correlated w ith
GAPDH contents in hypertensive fem ales and healthy
m ales in contrast to hypertensive m ales an d healthy
4
сгГ
О гм
Гч
гм о
о О, о о .
ю Гч СП гм
гм о гм гм гп гм
гп
о о
'— гм
0
о
т—
Ф
"пз
с
пз
i/i
LO ’Р '
о о
о о
о со
о
гм гм
о
о
о
^7
гм
m
со
о.
оо
-зо
со
О
о
-чГ
со со
гм (X »—
гп
гм
LO
гм гм о
Ln
m -П оо сп
X о 'чГ
гм о о . О
. О О, о о о
. о о. о
00 m Ln m m Гч -3- ю Гч Гч
со
Пч
0
Q.
3
0
со сп Гч
ю гп гм гм «3о о о
'— гм
гп
01
0
0
-чГ 0
со гм о
о О о
Ф
'
о
ф 1/1
о.
с 3
ш п
t3
Ф
in'
U)
3
1/1 о
0 0
*3 г “
С II
о Л
VJ S
"O
с
ПЗ
R ESU LTS
о (X гм О
о гм m оо
о о.
о.
о со
ю
a
3
о
"O
Additive an d d om inant co m p o n en ts o f the variance
attributable to a com plex o f the loci w ere calculated as
w eighted averages o f the trait over all polym orphism s. A
percen tag e o f the average value o f the genotypic variance
attributable to the interloci variability to heritability (b 2) w as
co nsidered as the co ntribution o f genetic variance (G pg) to
the total polygenic variance o f the traits. Estimates o f EMP
heritability w ere co m p u ted in o u r previous study as a
d o u b led p a re n t-c h ild correlation coefficients for each trait
[55]. The statistical calculations w ere d o n e using Statistica
for W indow s vlO.O (StatSoft; Tulsa, OK, USA) and Microsoft
Excel 2007 (Microsoft Corp., USA).
гм
о
о.
сп
гп
гм
с
о
"in
С
£
Ш
1
+С1/-1
ГМ
a
>
Ф LT1
+3
ПЗ ||
О. 11
ш
СП
-н
с
2
£ПЗ
г^
с II
VJ ^
о.
с
о
т— т— оо
X X -3гм
о.
гм г*» о
гп со Гч
гп о
ш
СП
-н
оо ю
о о.
-чГ Гч
гп
'— о
оо Ln гп
гм О со
О О. о
оо 00
о сп гм
о
'—
р
о (X »— LO Ln o'
о ю о о Гч m
о о о о о.
0
гп
Ln
0
Гч гм гм LO
СП m О
гм '— 0
сп гм
СП сп о со LU
гм m о ю гм
гм ^7 'чГ СП Гч ю ^7
LH со гм гм 'чГ гп
<r4
<г4 mi о ^4 <г4
гп гп ^4 о о гп
-н -н -н -н -н -н -н -н -н -н -н -н -н -н
СП
о
со
-
LO сп о
LO со
m гм LO сп ю Гч
гм 0 оо гм гп гм ю ^7 сп ^7
гп сп
<f о 00 -З- 00 г^ г^ о со о СО гм LO
m
СП
LO
гм Ln m
гм
-
1-П
ш
СП
-н
-Г
Z
X w
ш
1/1 ^
75 ш
о
гп -П
гм гм
-н -н
m о
со о
со о
о о
00
0 юоо
0
0 о
сп
гп оо
о гм о
-н -н -Н -н -н
сп m m ю
о -П
*— Гч
сп cri
mi сп
m
СП
Гч СП Ln со
СП Ln
о гп ю сп Гч 0 о
<х гм о о о «-4 <х
-н -н -н -н -н -н -н
Гч оо Гч оо о
Гч
Гч
сп ю
Ln
LO гм гм
о ю
-П Ln гм LH m
гм
ч о оо
СП О
m Гч Гч гм Г
0 mП m
Гч ^7 гп гм сп С
Ln LO гп
гм гм со -чГ
о
гм mi о
mi гп
-н -н -н -н -н -н -н -н -н -н -н -н -н -н
Гч
LO гм
о по
-чГ
гм
Ln гм гм гм Гч сп ю О ю гм гп гп Ln со
гм гп Lfi СП о LO mi LO mi mi
mi О ^4
сп
СП
гм
гм Ln m -3- гм
ф
ф
Iф
-Q
J/1
Ф
_>
Ф
i/i
С
■ф
■н
О
О.
_ ГМ
£ 00
—о
н
ПЗ
1/1
"
+3
S
С сФw
8ф gа сф
со го со ^ о сп гм *
-с пз
о.
ф
с
ПЗ
Е
ф
Е
3
>
и
О
-С
*
Ф
чО
ПЗ
с
ПЗ
ф
>
■-Р
ПЗ
00 00 со
гм LO
о Г ч mLn ОГ ч сп
оо СП
гм со О О 00 0 СП
«-4 о 0
гм о < х гм о о 0 «-4 о
-н -н -н *—
-н -н -н -н -н -н -н -Н -н -н -н
о о гм о
О сп
оо СП оо
гм со о СП L n гм оо Г ч LO СП оо СП гм LU
^
4
г ^ mi
со mi О со ^ 4 со mi -чЕ
a i гм
-П гм Ln m гм
СП
Ц
СП
гм
-Q
С
О ш
Гч
СП
II -н
Z
LO
гп
гм гм
'чГ
О
с т
_ ом
II
■С
■н С
2
ФW
« t «л
О О Г М О О О О О
b
N
O
N
O
'
t
O
O
й) S
О
Q. с
—
>.2
-с
-и
ПЗ
а.
III
О ф|
и U)
гм го
СО
<
X
?
CQ D
тСО СО
^ ц
- ъ<
—' ^ 1
]> U
o o o o < t < C < C < C i - u m ( D Q <t (D
< CQ
5 v
mean; SE, standard error of mean, bolded are statistically significant differences in the EMP levels between the groups.
w h ere the values are sum m ed u p for each allele of
the locus.
The variance attributable to the nonadditive interactions
(dom inant genetic co m p o n en t) b e tw e e n the alleles o f the
locus w as calculated as:
Pairw ise correlation matrix of erythrocyte m embrane proteins in hypertensive patients and healthy co n tro ls stratified by gender
EM Ps
SPTA1
SPTB
A N K 1 .1
SPTB
-0 .3 6 6
-0 ,6 4 5
NS
EPB42
GLUT1
DM TN
ACTB
GAPDH
TPM 1
NS
-0 ,2 6 6
-0 ,3 0 7
-0 ,3 9 6
NS
-0 .5 5 7
-0 ,5 8 2
-0 .3 1 4
NS
0,629
0.257
-0.401
-0 ,6 5 8
-0 .2 8 5
-0 ,2 9 5
GSTM 1
0.166
0.235
0,458
0.540
0,311
0.287
NS
-0 .2 2 2
-0 .3 8 9
-0,311
-0.221
-0 ,4 0 5
NS
NS
0,527
0.595
NS
NS
-0 ,3 5 9
NS
-0 .3 7 9
-0 ,3 7 3
NS
-0 .2 6 1
NS
NS
0.461
0.743
0.296
NS
0.358
-0 ,2 5 3
-0 .2 3 4
-0 ,2 3 8
-0 ,2 5 4
NS
0.636
0.796
NS
0,248
NS
NS
-0 .3 1 9
-0 ,2 5 0
NS
-0 .2 8 5
-0 .3 1 7
0.454
0.758
0,325
0.391
NS
-0 .4 0 7
-0 ,2 3 9
-0 .2 1 9
0.673
0.791
0,288
0.294
-0 .2 9 0
-0 .4 7 0
NS
NS
NS
0.296
-0 .4 7 9
^ ).3 0 6
-0 ,2 4 3
-0.471
-0 .2 4 3
NS
NS
0.199
0.282
0.318
NS
-0 ,2 6 0
-0 .4 0 9
-0 ,5 5 6
^ ).3 3 6
NS
-0 .1 8 5
0.201
0,238
0.179
0.358
NS
-0 .2 9 7
-0 .2 5 1
-0 .4 9 8
-0 ,2 5 2
-0 .3 4 7
NS
NS
NS
0.387
0.334
NS
NS
-0 .2 3 7
0.207
0.276
0,269
-0 ,3 1 8
-0 .3 1 7
-0 .2 3 3
NS
NS
0,365
0.449
-0 ,3 5 0
-0 .3 1 9
-0 .6 6 0
-0 .6 5 2
-0 ,2 6 4
-0 ,2 3 8
0.160
-0 .7 4 0
-0 .6 9 8
-0 .2 7 4
-0 ,3 4 8
0,246
-0 .2 7 0
ACTB
TPM1
EPB41
-0 ,3 0 2
DM TN
GAPDH
AE1
0.322
NS
EPB42
G LUT1
A N K 1 .3
0.647
A N K 1 .3
E P B 41
A N K 1 .2
0,647
A N K 1 .2
AE1
A N K 1 .1
0.416
SPTA1
NS
0.279
0.439
-0 ,2 3 3
NS
NS
-0 .2 3 6
0,266
0.240
-0,351
-0 ,3 2 0
-0 .2 6 4
0.351
NS
0.477
-0 .2 4 0
-0 ,2 9 3
-0 .2 7 0
NS
0.247
NS
0.292
NS
NS
-0 ,3 3 7
-0 .4 6 8
-0 .2 4 7
0,255
-0 .2 4 0
-0 ,3 2 2
-0 ,3 8 8
-0 .3 4 1
-0 ,2 4 8
-0 .1 7 9
NS
NS
-0 ,3 5 5
NS
-0.221
-0 ,4 8 0
NS
0,541
-0 .3 1 8
0.437
NS
-0 ,3 6 4
-0 .2 9 7
-0 ,2 5 6
-0 ,2 8 3
^ ).3 3 0
-0 .2 7 2
-0 .2 7 0
-0 .2 7 4
-0 ,5 2 0
-0 .3 0 6
-0 .3 0 4
-0 ,6 0 9
NS
-0 ,4 4 6
-0 ,3 2 2
-0 .3 2 3
-0 .1 8 1
-0 ,3 4 0
-0 ,4 5 6
-0 .2 7 0
-0.211
-0 ,3 3 4
NS
G STM 1
NS
FIGURE 2 Pairwise correlation matrix of erythrocyte membrane proteins in hypertensive patients and healthy controls stratified by sex. Statistically significant correlation
coefficients in hypertensive (numerator) and normotensive (denominator) males and females are shown above the central diagonal and below it, respectively. NS means a
nonsignificant correlation coefficient.
fem ales. T he levels o f GLUT w ere positively correlated w ith
EPB41 levels in healthy m ales, b u t n o such correlation w as
observ ed in hypertensive males.
Principal c o m p o n e n ts analysis w as a p p lied to the
d ataset to red u c e th e d im ensionality o f a set o f ery th ro ­
cyte m em b ran e p ro tein s an d to identify the integral
factors resp o n sib le for their joint variability. A significant
p ro p o rtio n o f th e joint variation o f EMP levels (72.4%
in m ales an d 71.0% in fem ales) w as b e c a u se o f the five
factors, w h ich sh o w e d differences b e tw e e n sexes
(Table 2). In m ales, substantial loadings to the principal
c o m p o n e n t 1 (P C I) (ex p lain ed 27% o f total EMP var­
iance) a p p e a re d for a m ajority o f EMPs su ch as an
an ch o rin g m em b ran e p ro tein an kyrin (b an d s 2.1, 2.2,
an d 2.3), AE1, АСТВ, TPM1, an d m em b ran e-asso ciated
enzym es GAPDH a n d m em b ran e-asso ciated GSTM1. In
fem ales, the PCI (ex p lain ed 24% o f total EMP variance)
h ad substantial loadings only for ankyrin, actin,
T A B LE 2. Principal com p o nents an alysis o f erythrocyte m em brane proteins levels in patents w ith essential hypertension
Males
M em brane proteins
SPTA1
SPTB
ANK1.1
ANK1.2
ANK1.3
AE1
EPB41
EPB42
GLUT1
DMTN
ACTB
GAPDH
TPM1
GSTM1
Eigen values of principal components
The percentage of total variance
explained by the respective
number of factors
Fem ales
PC1
PC2
PC3
PC4
PC5
PC1
PC2
PC3
PC4
PC5
-0 .1 8 9
-0 .1 8 3
-0.711
-0 .6 7 6
-0 .7 2 3
-0.601
-0 .5 0 9
-0 .5 7 6
0.396
0.171
0.501
0.467
0.566
0.552
3.785
27.0
-0 .6 9 2
-0.751
0.089
0.124
0.256
-0 .2 9 7
0.472
-0 .0 5 6
0.819
-0 .3 6 5
0.250
-0 .1 5 4
0.010
-0 .4 1 2
2.506
17.9
-0 .5 0 0
0.032
0.139
0.384
0.450
-0 .2 7 2
-0 .1 4 8
0.133
-0 .0 4 4
0.559
-0 .4 2 4
0.178
0.540
0.323
1.657
11.8
-0 .1 0 9
-0.1 4 9
-0 .2 7 7
0.122
0.030
0.134
0.108
0.600
-0 .1 2 4
0.201
0.437
0.596
-0 .2 5 8
0.006
1.185
8.5
-0 .0 4 9
0.112
0.178
0.440
0.204
-0.1 1 5
-0 .4 4 9
-0 .1 5 8
-0 .0 6 8
-0 .5 2 0
0.348
0.123
-0 .1 1 0
0.255
1.009
7.2
-0 .3 6 3
-0 .3 1 5
-0.71 1
-0 .7 1 5
-0 .7 1 7
-0 .3 1 6
-0 .3 5 3
-0 .3 4 9
0.362
0.096
0.317
0.572
0.642
0.540
3.379
24.1
-0 .7 5 0
-0 .8 0 0
0.016
0.332
0.303
-0 .0 1 7
0.467
0.214
0.774
-0 .2 2 7
0.315
0.047
0.005
-0 .3 9 3
2.575
18.4
0.276
0.113
-0.141
-0 .3 8 3
-0 .3 2 8
0.059
0.361
0.357
-0 .0 8 4
0.111
0.638
0.254
-0 .4 8 0
-0.411
1.515
10.8
0.125
0.066
0.179
-0 .1 1 0
-0 .2 0 5
0.117
0.005
-0 .6 4 3
0.114
-0 .7 9 8
0.306
-0.311
-0 .0 9 9
-0.071
1.388
9.9
-0 .0 4 8
-0 .2 6 3
-0 .3 6 5
-0 .0 7 6
-0 .0 7 3
0.875
-0 .0 2 9
0.006
-0.071
0.095
-0 .0 9 7
-0 .2 5 2
-0.111
0.118
1.096
7.8
Gray cells represent factor loadings with a value > ± 0 .5 0 0 , a threshold selected for inclusion of the trait in the interpretation of principal components.
5
tro p o m y o sin , an d GSTM1. T he PC2 (resp o n sib le for
alm ost 18% o f total EMP varian ce) sh o w e d substantial
factor loadings for m ajor cytoskeletal p ro tein s su ch as
sp ectrin an d p ro te in 4.1, an d also GLUT1 in b o th sexes
an d ad ditionally for GSTM1 in m ales. T he PC3 differed
substantially b e tw e e n m ales an d fem ales. In m ales, the
PC3 h a d sub stan tial loadings for SPTA1, SPTB, ankyrin
(b an d 2.3), DMTN, ACTB, an d TPM1. In fem ales, the PC3
w as o n ly associated w ith the variability o f ACTB, TPM1,
an d GSTM1. T he rest tw o p rin cip al c o m p o n e n ts w ere
resp o n sib le for o n ly 15% an d 17% o f total EMP variance
in m ales a n d fem ales, respectively.
The average effects of alleles of hypertension
susceptibility genes on the levels of
erythrocyte membrane proteins
W e estim ated average effects o f alleles o n the levels o f EMT in
the hypertensives using m ethodology p ro p o se d b y Sing and
D avignon [54]. To calculate the average effects, w e used
p o p u latio n m eans for each EMP estim ated in a p o pulation
sam ple o f Russians (S upplem entary Table 2, http://links.lw w .com /H JH /A 511) an d the frequencies o f alleles of
disease susceptibility genes in hypertensives (Supple­
m entary
Table
3,
http://links.lw w .com /H JH /A 51T).
Figure 3 show s a graphical representation o f the average
effects o f alleles o n the EMP levels for genes associated w ith
hypertension in o u r popu latio n (the average effects of alleles
for oth er loci are given in Supplem entary Figure 1, h ttp ://
links.lww.com/HJH/A51T). As expected, allelic variants of
alm ost all o f the investigated genes influence, th o u g h in
varying degrees, the contents o f EMP in hypertensive
patients. In m ost cases, the average effects o f alleles on
the EMP levels w ere m oderate, an d the direction o f devi­
ations o f the trait from the p o p u latio n m ean w as m utually
inverted in the carriers o f alternative alleles. Furtherm ore, the
effects o f alleles o n the EMP levels w ere u n eq u al in m ales and
females. In particular, the 460W allele o f the A D D 1 gene
influenced the levels o f spectrins, ankyrin 2.1, GLUT1,
DMTN, an d GSTM1 in males, an d SPTA1, SPTB, ankyrin
2.2, AE1, GLUT1, ACTB, GAPDH, an d GSTM1 in females.
Notably, the effects o f the allele 460W o n the EMP contents
w ere in o pposite directions in hypertensive m ales and
females; the allele increased the level o f GLUT1 and w as
associated w ith a low er SPTA1 an d SPTB in males, w hereas in
fem ales, the allele d ecreased GLUT1 con ten t and increased
the levels o f the spectrins. H igher effects o n contents of
GLUT1, SPTA1, an d SPTB in fem ales w ere seen for the 272S
allele o f the G NB3 gene. The 25P allele o f the TGFB1 gene
exhibited similar effects o n GLUT1, SPTA1, and SPTB con­
tents in b o th sexes, similarly to those found in m ales w ith the
460W allele. In males, the effects o f the HGT235 M allele on
the levels o f GLUTand spectrins w ere com parable w ith the
effects o f the A D D 1 460W allele.
The contribution of the studied genes to
quantitative variability of erythrocyte
membrane proteins in hypertensive patients
Using ANOVA, w e assessed th e im pact o f h y p e rte n sio n
susceptibility g en es o n th e EMP levels in fem ale a n d m ale
patien ts (Fig. 4). N otew orthy, th e EMPs, w h o se contents
6
w ere ch an g ed in hy p ertensive p atien ts in co m p ariso n w ith
h ealth y controls, w ere associated w ith co m binations o f
h y p e rten sio n susceptibility genes. In particular, a com bi­
n a tio n o f the G N B 3 C825T an d H GTT174 M polym orphism s
ex p lain e d 24.3% C P = 0.01) o f the total variation o f SPTB
an d 17.6% ( p = 0.04) o f GLUT variation in m ales. T he A G T
M235T a n d A G T R 1 1166A/C loci w ere resp o n sib le for
21.2% ( p = 0.01) o f SPTB variation, w h ere as a com b in atio n
ofMGTM235T w ith the N O S 3 E298D locus w as resp o n sib le
for 13-3% ( P = 0.05) o f the total variance o f this cytoskeletal
p ro te in in m ales. In fem ales, the A D D 1 G460W an d N O S 3
E298D g en e p o lym orphism s ex p lain e d 7.4% C P = 0.04) o f
the total variation o f SPTA1 an d 11.0% C P = 0.01) o f SPTB
variation, w h erea s a com b in atio n o f the A G T R 1 1166A/C и
G N B 3 G814S loci w as resp o n sib le for 7.5% C P = 0.02) o f
SPTB variation. M oreover, co m binations o f the po ly m o r­
phism s G N B 3 C825T a n d G N B 3 G814S, G N B 3 C825T and
N O S3 E298D, G N B 3 G814S an d N O S3 E298D in fem ales
ex p lain e d o n average from 5% to 9% o f the variation o f
EMPs w h o se co n ten ts w ere altered in hy p erten siv e patients
(SPTA1, SPTB, an d GLUT1).
As essential h y p e rten sio n is a co m p lex p o lygenic dis­
ease, th ere is a n e e d for a com p reh en siv e analysis w h ere
m ultiple genetic polym orphism s are ev aluated sim ul­
tan eo u sly reg arding their joint co n trib u tio n to the varia­
bility o f EMPs in h y p ertensive individuals. T herefore, w e
u se d m eth o d o lo g y describ ed by Sing an d D avignon [54] to
estim ate the sum m ary co n trib u tio n o f disease susceptibility
g en e s to the variation o f erythrocyte m em b ran e p ro tein s in
h y p ertensive patients (Table 3; S u pplem entary Tables 4
an d 5, http://links.lw w .com /H JH /A 51T ). The total genetic
variance (G ) associated w ith the stu d ied gen es ranges from
3.1 (DMTN) to 47.6% (GLUTT) in m ales, a n d from 1.1
(DMTN) to 27% (SPTAT) in fem ales. N otably, the highest
im pact o f the genetic variation w as fo u n d o n the variation
o f SPTA1 (24.4% in m ales an d 27% in fem ales) a n d SPTB
(29.4% in m ales an d 23.2% in fem ales) an d also integral
m em b ran e pro tein s su ch as AE1 (36.8% in m ales an d 12% in
fem ales) an d GLUT1 (47.6% in m ales an d 23.1% in
fem ales). T aking into ac co u n t heritability for SPTA1
(52%) an d SPTB (60%) [55], the stu d ied gen es w ere esti­
m ated to b e resp o n sib le for as m u ch as 47 an d 49% o f their
total polygenic variances in m ales an d 50 an d 39% in
fem ales. M oreover, th ese loci m ay also b e resp o n sib le
for as m u ch as 64 an d 31% o f the total polygenic variance
o f GLUT in m ales an d fem ales, respectively.
D IS C U S S IO N
Alterations in the levels of erythrocyte
membrane proteins and their joint variation in
essential hypertension
C onsistently w ith previous studies [12,27,55,56], w e d e m ­
onstrated that essential h y p ertension is accom panied by
alterations in the com position o f m ajor erythrocyte m em ­
bran e proteins. In particular, hypertensive patients exhib­
ited increased levels o f p rotein 4.1, glucose transporter, and
actin and also d ecreased levels o f a and SPTB and GAPDH.
Tw o in d e p en d e n t studies cond u cted o n Russian families
from Kursk region [55,56] sh ow ed similar alterations in
integral and p eripheral m em brane proteins (AE1, ACTB,
Cell m em brane proteins in hypertension
. .
,
ADD1 460G = 0.791 -
Males
я
A D D 1 G 460W
1--------------------------
6
ADD1 460W = 0.163 I
_
------------------------------'
Fem ales
-
4
2
4 o
-2
I
AGT 23SM = 0.455
»
AGT M 2 3 5 T
AGT 23ST = 0.S4S |
|
AGT 23SM = 0.482 -я-
AGT 23ST = 0.518 |
1,5
CO
к
О
<
Females
CO
к
CL
if)
ZL
Q
CL
<
CD
p
cT
S
LU
5
z
5
£
<
<
<
<
z
z
тГ
m
CL
LU
OJ
'Sm
CL
LU
z
к
CO
Q
<
A
_
ZD
I
CD
к
о
ZL
Q
CL
<
CD
A G T R 1 A 1166C
Males
z
<
z
OJ
'sсо
CL
LU
<
i—
ZD
CD
z
к
Q
CO
к
О
<
zl
Q
CL
<
i
CL
к
CO
к
CL
if)
i
i—
in
CD
CD
£
£
<
<
<
cT
z
z
z
AE1
co
CL
LU
K1 (3)
5
AE1
cT
5
Z
<
K1 (3)
CO
к
CL
if)
Females
3 -
O
J
"3-
co
co
CL
LU
CL
LU
z
к
CO
ZD
CD
Q
<
i—
к
О
ZL
Q
CL
<
CD
GNB3
25
20
15
10
5
4 o
-5
-10
-15
z
z
z
<
<
<
CO
к
CL
AE1
cT
К 1(3)
-20
-2 5
Ttco
CL
LU
OJ
-3co
CL
LU
i—
ZD
CD
z
к
CO
I—
>
Q
<
О
ZL
Q
CL
<
CD
TGFB1 R25P
Males
Females
CO
к
О
<
ZL
Q
CL
<
CD
t—
t-
CL
I—
I—
if)
CD
i
i
I—
i—
in
CL
CD
FIGURE 3 The average effects of alleles in hypertension susceptibility genes on the levels of erythrocyte membrane proteins in hypertensive patients. Line charts represent
the average effects of major (blue lines) and minor (red lines) alleles on EMP variability, that is, a deviation of the trait from the population mean (jx) in hypertensive males
(left charts) and females (right charts). Pleiotropic and sex-specific effects on the EMPs levels were noted for several hypertension susceptibility genes. For instance, the
overall effect of the 460W A D D 1 allele was to decrease of the SPTA1 and SPTB levels and to increase of the content of GLUT1 in hypertensive males, whereas in
hypertensive females the 460W allele associated with an increase of both spectrins and decrease of GLUT1.
7
Hypertensive females
Hypertensive males
| Pairwise interactions between gene polymorphisms
I > impact of gene polymorphisms on protein levels
FIGURE 4 The effects of pairwise combinations of hypertension susceptibility genes on the levels of erythrocyte membrane proteins in hypertensive patients. The figure
shows the significant effects (P < 0.05) of pairwise combinations of the genetic polymorphisms on the EMP levels in hypertensive females (left part) and males (right part).
The estimates were performed by two-way AN O VA and expressed as R2 values, which varied between 10 and 2 6 % in males, and between 6 and 11 % in females. The
free yEd graph editor was used to draw the figure.
EPB41, an d DMTN) an d proteins related to glucose m etab­
olism (GLUT1 an d GAPDH) in patients w ith essential hy­
pertension. Similarly, in a sam ple o f Russian hypertensives
from M oscow, alterations in GLUT1 an d GAPDH levels in
essential hyperten sio n patients in com parison w ith healthy
subjects have b e e n also observ ed [27]. Furtherm ore, the
p resen t study dem o n strated for the first tim e sex-specific
alterations in m ajor erythrocyte m em brane proteins in
hypertensive patients. A lthough similar alterations in the
levels o f spectrins and GLUT w ere found in b o th sexes,
hypertensive fem ales also exhibited decreased levels of
DMTN and GAPDH in com bination w ith increased levels
o f ACTB. Thus, patients w ith essential h y p ertension d e m ­
onstrate altered expression a n d /o r posttranslational
TA B LE 3. Th e percentage o f total ph en o typic and ge n e tic varian ce s o f the EMPs exp lained b y a com prehensive con trib utio n o f disease
__________ su scep tib ility ge n e s in hyperten sive patients_________________________________________________________________________________
G enetic
com ­
ponents,
%
M em brane proteins
SPTA1
Males
Females
A N K1 (1)
A N K1 (2)
AN K1 (3)
AE1
EPB41
EPB42
GLUT1
DMTN
A CTB
GAPDH
TPM1
GSTM1
G
A
D
24 .3 5
2 9 .3 9
6 .8 6
4 .2 6
1 .90
3 6 .8 2
4 .0 2
4 .4 3
4 7 .5 5
3 .0 8
4 .5 9
4 .5 5
1 2 .0 7
1 0 .2 9
15.62
8.73
20.44
8.95
4.94
1.92
2.65
1.61
1.24
0.66
17.23
19.60
2.25
1.77
3.02
1.41
33.03
14.51
1.55
1.53
2.40
2.19
2.74
1.81
5.76
6.31
6.21
4.08
Gpg
G
A
D
4 7 .2 0
4 9 .2 2
9.3 3
6 .5 9
7 .2 4
4 1 .7 5
4 .5 2
2 3 .1 8
6 4 .4 3
3 .8 5
9 .3 4
5 .6 2
1 6.33
2 0 .5 7
26 .9 9
2 3 .2 0
1.7 9
1 .8 5
0.71
1 2 .0 2
0 .9 9
2 .5 6
2 3 .1 2
1.11
1 .79
2.21
2 .6 5
3 .7 0
20.20
6.79
19.07
4.13
1.00
0.79
1.05
0.80
0.44
0.26
6.94
5.08
0.57
0.42
1.59
0.97
15.56
7.57
0.45
0.66
1.25
0.54
1.70
0.51
0.57
2.09
2.08
1.62
1.11
1 3 .4 2
3 1 .3 3
19.1
73.8
Gpg
h2, %
SPTB
50.31
3 8 .8 7
51.6
59.7
2 .4 4
73.5
2 .8 7
64.6
2 .6 9
26.2
13.6 3
88.2
88.9
1 .3 9
79.9
3 .6 4
49.1
2 .73
80.9
3 .5 9
73.9
7 .3 9
50.0
G (bold face values in white cells) denotes the percentage of total variance of the traits attributable to genotypic differences of the locus; A and D denote additive and dominant
components of the G, respectively; Gpg (bold face values in gray cells) denotes the percentage of genotypic variance, attributable to differences between the loci, to the total polygenic
variance of the traits; h2 denotes heritability of the traits computed as doubled parent-child correlation coefficients for each trait in our previous study [55]. EMP, erythrocyte membrane
protein; DMTN, dematin actin binding protein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLUT1, glucose transporter 1; SPTA1, a-spectrin; SPTB, (3-spectrin.
8
m odifications o f genes en co d in g cytoskeletal proteins and
p roteins directly involved in glucose m etabolism .
A ltered levels o f erythrocyte m em b ran e p ro tein s in
essential h y p e rte n sio n p atien ts are co rrelated to ea ch o t­
her, suggesting co m m o n so u rces o f th eir co-variations, that
is, sh ared m o lecu lar m echanism s u n d erly in g the reg ulation
o f ex p re ssio n o f th e c o rre sp o n d in g genes. Principal co m ­
p o n e n ts analysis iden tified several integral factors o f joint
variability o f EMPs in h y pertensives. T he first factor m ainly
in flu en ced b y AE1, EPB41, EPB42, ACTB, TPM1, GAPDH,
a n d GSTM1 reflecting b o th spatial an d fu nctional co u pling
o f th ese p ro tein s localized in th e in n e r h alf o f the plasm a
m em b ran e. B ased o n th e results o f b io ch em ical studies
sh o w e d that th e cytoplasm ic d o m ain o f a n io n ex ch an g er
constitu tes a m ajor m u ltip ro tein co m p lex resp o n sib le for
erythrocyte m e m b ra n e -p erip h e ra l p ro te in interactions and
attach m en t o f th e spectrin -actin n e tw o rk an d cytoskeletal
p ro tein s EPB41, EPB42, an d TPM1 to the in n er surface of
th e m em b ran e via a n ch o rin g p ro te in ankyrin, w e assum e
th at this p rin cip al c o m p o n e n t m ay re p re se n t a fa c to r of
m em b ra n e -an c h o rin g p ro te in assem b ly ’ [57-591. The m ul­
tifunctional d o m ain o f AE1 is also a single b in d in g site for
GSTM1, GAPDH, an d o th e r glycolytic enzym es, providing
the enzym atic bridge to cytoskeletal p ro tein s an d ion
tran sp o rt ATPases [60,61]. The seco n d principal co m ­
p o n e n t w ith the h ig h est loadings for a an d (3-subunits o f
sp ectrin an d GLUT m ay re p re se n t m ajor alterations in the
EMP co m p o sitio n fo u n d in hypertensives. In general, the
results o b tain e d b y PCA confirm ed th at alterations in the
levels o f particular erythrocyte m em b ran e p ro tein s in
essential h y p erte n sio n p atien ts are closely co rrelated to
eac h o th e r form ing distinct g ro u p s o f jointly varying
proteins, w h ich could b e attributable to p leitropic effects
o f different polygenic system s.
Possible relationship between altered protein
composition of erythrocyte membrane and
pathogenesis of essential hypertension
In Fig. 5, w e sum m arized p o ssible m echanism s th ro u g h
w h ich alterations in the co n te n t o f EMPs can b e related
to the p ath o g en esis o f essential hyp erten sio n . It is w ell
k n o w n that alterations in the levels o f the cytoskeletal
p ro tein s su ch as spectrins, actin, p ro te in b a n d s 4.1 an d 4.9
A lt e r e d a c tiv ity o f io n tr a n s p o r t e r s a n d
C h a n g e s in r e g u la tio n o f s ig n a lin g p a th w a y s
c h a n g e s in c e llu la r s ig n a l tr a n s d u c t io n
Io n t r a n s p o r t a b n o r ­
m a litie s , in c re a s e d
D e c re a s e d m ic r o c ir c u la t io n a n d tis s u e
D e c re a s e d a c tiv ity
o f N a +K” A T P a s e
Im p a ired oxygen
in t r a c e llu la r C a 2 + v
c o u n te rtra n s p o rt
R e a r r a n g e m e n t o f th e
r e l e a s e by H b
M ic r o c ir c u la t o r y a b n o r m a lit ie s ,
h y p o x e m ia , tis s u e h y p o x ia
In c re a s e d e r y th r o c y te
d e fo r m ity
AT
SPTA1
ж
M: N0S3, A C E MR. GNB3, A DD1, TGFB1, A G TR1
F: N 0S3, GNB3, A G T, ADD1, M R
S a lt a n d w a te r r e te n tio n by
M: A GT. N033. G N B3.A G TR1. A C E . MR. ADD 1
F: N 0S3, GNB3, AG T, M R, A DD 1
k id n e y s
M'.AGT. N 0S3. GNB3. A G TR1. A C E . A D D 1
F: not identified
c y to s k e le to n
ДС
r e s is t a n c e
o x y g e n a tio n
a n d C a 2+~ A T P a s e ,
in c r e a s e d N a -L i
In c r e a s e d
— ► p e rip h e r a l v a s c u la r
-O f
In c r e a s e d
ж
H y p e r v o le m ia
v o lu m e o f
M: NO S3. MR. ADD 1
F: not identified
e x tr a c e llu la r
f lu id
"%
M: N 0 S3 .A G T R 1 . ADD 1
F: not identified
C a r d ia c o u t p u t
O x id a tiv e d a m a g e o f
th e c e ll m e m b ra n e
In c r e a s e d
M: N0S3. A C F .A G T R 1
F: GNB3
E n d o th e lia l
p r o d u c t io n o f
R O S , o x id a tiv e
d y s f u n c t io n , I N O
s tr e s s
M: MR. A G T. GNR3. N0S3. AGTR1. ADD1. A C E . TGFB1
F : N 0S3, GNB3, A G T , A CE, M R, A D D 1, A G TR1, T G FB 1
V a s o c o n s t r ic t io n ,
H y p e r in s u lin e m ia
in fla m m a tio n ,
v a s c u la r le s io n
I n s u lin v s tim u la te d G L U T 1
fo r m a t io n a n d
e x p r e s s io n a n d g lu c o s e u p ta k e
I n s u lin r e s is ta n c e
r e m o d e lin g
E n h a n c e d s t im u la t io n o f C N S
In c re a s e d s y m p a th e tic
o u t f lo w
Changes in proteins related to intracellular glucose
metabolism
Pathogenetic m echanism s of essential
hypertension
FIGURE 5 Possible molecular mechanisms by which alterations in contents of erythrocyte membrane proteins are involved in the pathogenesis of essential hypertension.
The upper left gray box summarizes possible consequences of altered cytoskeletal protein contents in hypertensive patients and their relation to disease phenotypes. The
lower left gray box summarizes proposed mechanisms by which membrane proteins related to intracellular glucose metabolism contribute to the development of
hypertension. The right gray box represents well characterized mechanisms of essential hypertension [9,62]. Colored blocks indicate membrane proteins showed alterations
in hypertensive patients: blue blocks indicate proteins altered only in both sexes, whereas pink blocks indicate proteins altered exclusively in females. Blue arrows indicate a
decreased protein level, whereas red arrows indicate an increased protein level. The middle blocks indicate hypertension susceptibility genes influenced alterations in EMP
contents in hypertensive males (M, numerator) and females (F, denominator). The dotted lines indicate pathogenetic links between altered contents of erythrocyte
membrane proteins and the mechanisms of essential hypertension. See text for more details. A C E, angiotensin i-converting enzyme; ACTB, actin; AD D 1, alpha-adducin;
A G T, angiotensinogen; AG TR1, angiotensin ii receptor type 1; DMTN, dematin (actin-binding protein); EPB41, erythrocyte membrane protein band 4.1; GAPDH, giyceraldehyde-3-phosphate dehydrogenase; GLUT1, glucose transporter 1; GNB3, guanine nucleotide-binding protein beta polypeptide 3; Hb, hemoglobin; MR, mineralocorticoid
receptor; NO, nitric oxide; N 0 S3, nitric oxide synthase 3; ROS, reactive oxygen species; SPTA1, a-spectrin; SPTB, (3-spectrin; TGFB1, transforming growth factor beta 1.
9
affect rheo lo g ical p ro p e rtie s o f red b lo o d cells th ro u g h the
ch an g es in th e cytoskeletal arch itectu re 158,63]- First,
rea rra n g em e n t o f cy toskeletal p ro tein s has a co n siderable
im pact o n erythrocyte deform ity increasing b lo o d
viscosity, w h ic h w as fo u n d to affect vascular b lo o d flow
an d ex acerb ate m icrocirculatory d iso rd ers in h y p e rte n ­
sio n [64]. N otably, th e in creased m em b ran e m icroviscosity
in h y p erten siv es is acco m p an ied b y altered kinetics o f
so d ium -lithium co u n te rtra n sp o rt [65], w h ich is a m ajor ion
tran sp o rt abno rm ality in essential h y p erten sio n . Second,
rea rra n g em e n t o f cy toskeletal p ro tein s influences the
ability o f intracellular h e m o g lo b in to release o x y g en lead ­
ing to tissue hy p o x ia, as it has b e e n sh o w n in hypertensive
patien ts [18]. Third, a b n o rm al ratio b e tw e e n spectrins,
actin, p ro te in 4.1, a n d d em atin m ay im pair signaling p a th ­
w ays co u p lin g extracellular reg u lato ry stim uli to the
cy to sk eleto n th ro u g h spatial d isco o rd in atio n b e tw e e n
recep to rs a n d ch an n els involved into th e reg ulation o f
m em b ran e tran sp o rt an d signal transd u ction. Lastly, an
alteratio n in the p ro te in co m p o sitio n o f the m em b ran e
cy to sk eleto n has the ability to in fluence th e functioning o f
th e io n tran sp o rt ATPases o f the m em b ran e th ro u g h
co n fo rm atio n al m odifications o f th eir active centers
[58,66,67]. A nim al studies sh o w e d th at a rem oval o f sp e c ­
trin from erythrocytes results in tw o an d three-fold
decreasin g in th e activity o f N a+KTATPase an d Ca2+ATPase, respectively [66,68], p o in tin g o u t th at red u c ed
levels o f spectrins has th e p o ten tial to influence the
activity o f tran sp o rt ATPases, a p o ssib le m echanism
involved into th e io n tran sp o rt abnorm alities in h u m an
h y p e rte n sio n [13,23,24].
The p resen t study revealed that the p roteins directly
involved in glucose m etabolism such as GLUT and glyco­
lytic enzym e GAPDH w ere also significantly altered in
hypertensive patients co m p ared w ith healthy subjects.
A bnorm al glucose m etabolism is a w ell characterized dis­
o rd er found in essential h y p erten sio n [69,70]. Figure 5
show s p o tential m echanism s b y w h ich GLUT1 and GAPDH
m ay contribute to the d ev elo p m en t o f hypertension. Glu­
cose transporter is a type III integral m em brane p ro tein that
facilitates the transport o f glucose over a plasm a m em brane
an d m aintains the low level o f basal glucose up tak e
req u ired to sustain respiration in the cell [71]. As expression
levels o f GLUT1 in cell m em branes are increased by
red u ced glucose levels [72], o u r finding o f the increased
GLUT1 levels in hypertensives m ay b e attributable to the
red u ced glucose influx w ithin the cell o w ing to insulin
resistance in patients [73]- GAPDH is a m em b rane-bound
enzym e catalyzing an im portant energy-yielding step in the
glycolytic b re a k d o w n o f glucose [74]. It is im portant to
notify that the enzym e in erythrocytes represents an im port­
ant part o f the glycolytic m achinery, w h ich com partm en­
talizes ATP, allow ing its direct co n su m p tio n b y ion pum ps
an d transporters [75]. P erhaps the changes in the GLUT1
levels in hypertensives reflect the n e e d o f cells in a higher
glucose u p ta k e an d ATP production. This assum ption
seem s attractive in the light o f the hypothesis that the cause
o f elevated BP in chronic arterial h y p ertension is co n ­
sidered to b e a com p en sato ry resp o n se to decreased ATP
biosynthesis [76]. It w as suggested that intracellular Ca2+
overload in h y p erten sio n can b e a c o n seq u en ce of
10
au gm ented ion perm eability o f the plasm a m em brane
a n d /o r decreased Ca2+-ATPase activity b ecause o f partial
ATP dep letio n [76]. T hese authors p ro p o sed that an atte­
n u ated intracellular ATP co ntent enhances the stim ulation
o f sym pathic nerve system m aintaining long-term elevation
o f BP. Thus, changes in expression levels o f the GLUT1 and
GAPDH genes in hypertensive patients m ay rep resen t a part
o f insulin-m ediated system ic im pairm ent o f glucose dis­
posal in peripheral tissues, accom panied by decreased
glucose u p tak e an d utilization by the cells [70,73,77].
A summary effect of the genes on the variation
of erythrocyte membrane proteins in patients
with essential hypertension
W e rev ealed that h y p e rten sio n susceptibility g enes c o n ­
tribute to the variation o f erythrocyte m em b ran e pro tein s
in o u r patients. The stren g th o f th ese effects w as quite
substantial (individual R 2 values varied b e tw e e n 6 and
24% in b o th sexes), indicating that the g enes are the
im p o rtan t factors o f the in h erited variation o f EMP c o n ­
tents in hypertensives. This m eans th at pleio tro p ic effects
o f th ese gen es are n o t lim ited b y the reg u latio n o f vascular
to n e, sodium , an d w ate r hom eostasis, b u t also influence
the m anifestation o f g en es ex p ressed in erythroid tissue.
G enes associated w ith the risk o f essential h y p e rte n sio n
su ch as A D D 1 , A G T , A G T R 1 , G N B3, an d TGFB1 ex h ibited
co n sid erab le effects o n the levels o f m em b ran e p ro tein s in
h y p ertensive patients. In particular, c o m b in atio n o f G N B 3
C825T an d A G T T174M g en e p o lym orphism s sh o w ed
h ig h est co n trib u tio n to the variation o f SPTB (24%) and
GLUT1 (18%) levels in m ale patients. The stu d ied gen es
acco u n t for a b o u t half the total polygenic variance o f
GLUT1, SPTA1, an d SPTB levels in b o th hypertensive
m ales a n d fem ales. U ndoubtedly, the effects o f genes
o n the EMP variation can overlap. As it has b e e n fo u n d
in o u r previous study [55], a b o u t 5 -1 0 % o f the total
variance o f spectrins an d GLUT as w ell as 95% o f varia­
bility in the levels o f GLUT an d p ro te in b a n d 4.1 in
hyp erten siv es (b o th pro tein s w e re increased in essential
h y p e rten sio n p atien ts in co m p ariso n w ith controls) w ere
ex p lain e d b y co m m o n und erly in g genes.
Finally, the results o f o u r study are in line w ith findings
observed by genetic m apping studies o n the anim al m odel
o f hu m an hypertension. The com parative g enom e m a p ­
ping allow ed identifying the hom ologous chrom osom al
regions in rats and hum ans. In particular, the long piece
o f the h um an chrom osom al region lp 3 4 -p ter corresponds
to the rat locus 5(a)-5(b) [23]. The 5(a) region contains
quantitative trait locus (QTL) for elevated SBP in sp o n ­
taneously hypertensive rats and includes the G lutb gene
[78], a rat h o m ologue o f h u m an glucose transporter. In
addition, in D ahl S rats, GLUT gene is located in the QTL
that has also b e e n rep o rted to со-segregate w ith SBP [79] ■
Interestingly, except for GLUT1 located in a lp34.2, a
hom ologous region at h u m an chrom osom e l p contains
o r is nearby the loci for a-sp ectrin (lq 2 1 ) and p ro tein b an d
4.1 (Ip33-p32), w h o se altered contents in essential h y p er­
tension m ay b e related to the pleitropic effect o f putative
hom ologous QTL in hypertensive m en. M oreover, an o th er
QTL identified in chrom osom e 2(a) is responsible for
increased BP in sp o n tan eo u sly hypertensive rats [80] and
includes subunits o f N a+-K+ p u m p an d S ptal, a rat hom o logue o f h u m an SPTA1.
The p resent study has several limitations. W e cannot
exclude the possibility that changes in the levels o f the EMPs
in hypertension m ay b e related w ith oxidative dam age o f the
m em brane d u e to increased p ro d u ctio n o f reactive oxygen
species an d d ecreased antioxidant activity, the m echanism s
that are im portant in h y pertension pathogenesis [81—83] ■
Some caution in interpretation o f the data o n genotypep h en o ty p e relationships is w arranted because n o t all
possible g en e polym orphism s have b e e n investigated and
n o n e o f the param eters representing abn o m ial ion transport
o f red b lo o d cell m em brane have b e e n analyzed.
To the best o f o u r know ledge, this is the first study in
w h ich a sum m ary co ntribution o f disease susceptibility
g enes to alterations in contents o f EMPs has b e e n estim ated
in hypertension. O ur study results extent and provide
further su p p o rt to the hypothesis that abnorm alities in
m em brane structure an d function rep resen t an im portant
p art o f h y p erten sio n pathogenesis. R ethinking the hy p o th ­
esis o f ‘cell m em b ran e alteration as a source o f prim ary
h y p erten sio n ’ [12], w e can highlight that alterations in the
levels o f EMPs is not a causative factor o f essential h y p er­
ten sio n p e r se, b u t is rather a m irror o f the m ultilevel (from
organs to the cell) an d m ultisystem (from a particular cell to
various cell types/tissues) disorders related to the disease
m echanism s. A b etter u n d erstan d in g o f a nature o f cell
m em brane disorders an d their p ath o g en etic link w ith hy­
p erten sio n will contribute to a discovery o f clinically useful
biological m arkers an d targets for the d ev elo p m en t of
innovative drugs for m anag em en t an d p revention of
the disease.
A CKN O W LED G EM EN TS
The study w as su p p o rted in part (biochem ical investigations
o f EMPs) b y the Federal Targeted Program ‘Scientific
an d Scientific-Pedagogical P ersonnel o f the Innovative
Russia in 2009-2013’- M olecular genetic investigations
(genotyping o f genes involved in the regulation o f
vascular hom eostasis in hypertensive patients) w ere done
w ith su p p o rt o f the Russian R esearch F oundation (№ 1 5 -1 5 -
10010 ).
This m anuscript has not b e e n subm itted to any o th er
journal n o r p u b lish ed fully or partially elsew here.
Conflicts of interest
W e declare that there is n o conflict o f interests concerning
this m anuscript.
REFEREN CES
4 . H a m e t P , P a u s o v a Z , A d a r ic h e v V , A d a r i c h e v a K , T r e m b l a y J . H y p e r ­
t e n s i o n : g e n e s a n d e n v i r o n m e n t . / Hypertens 1 9 9 8 ; 1 6 :3 9 7 - 4 1 8 .
5. P a d m a n a b h a n
S,
N e w to n -C h e h
C,
D o m in ic z a k
A F. G e n e t i c
b a s i s o f b l o o d p r e s s u r e a n d h y p e r t e n s i o n . Trends Genet 2 0 1 2 ; 2 8:
3 9 7 -4 0 8 .
6 . Y a g il C , Y a g il Y . T h e g e n o m i c s o f h y p e r t e n s i o n . . I n : G i n s b u r g G S ,
W illa r d H F , e d i to r s . Essentials o f genomic and personalized medicine..
N e w Y o r k : A c a d e m ic P r e s s ; 2 0 0 9 - p p . 2 5 9 - 2 6 8 .
7 . L u ft F C . M o le c u la r g e n e t i c s o f h u m a n h y p e r t e n s i o n .
o l o g y o f h y p e r t e n s i o n . BMJ 2001; 3 2 2 : 9 1 2 - 9 2 6 .
1 0 . M o n t e n a y - G a r e s t i e r T , A r a g o n I, D e v y n c k M A , M e y e r P , H e l e n e C .
E v i d e n c e f o r s t r u c t u r a l c h a n g e s in e r y t h r o c y t e m e m b r a n e s o f s p o n ­
ta n e o u s ly
h y p e rte n s io n
flu o re s c e n c e
p o la riz a tio n
s tu d y .
ra ts . Clin Sci 1 9 8 2 ; 6 3 : 4 3 - 4 5 .
1 2 . P o s t n o v Y V , O r l o v S N . C e ll m e m b r a n e a l t e r a t i o n a s a s o u r c e o f p r im a r y
h y p e r t e n s i o n . J Hypertens 1 9 8 4 ; 2 : 1 - 6 .
13- B ia n c h i G , F e r r a r i P , C u s i D , G u i d i E, S a la r d i S, T o r i e ll i L, et al. C e ll
m e m b r a n e a b n o rm a litie s a n d g e n e tic h y p e r te n s io n . /
Clin Hypertens
1986; 2 :1 1 4 -1 1 9 .
1 4 . T h o m a s T H , R u t h e r f o r d P A , W i lk in s o n R. M e m b r a n e p r o t e i n i n t e r ­
a c t i o n a n d e r y t h r o c y t e s o d i u m - l i t h i u m c o u n t e r t r a n s p o r t in e s s e n t i a l
h y p e rte n s io n .
J Hypertens
1 9 9 3 ; 1 1 :1 1 4 6 .
1 5 . Z i c h a J , K u n e s J , D e v y n c k M A. A b n o r m a l iti e s o f m e m b r a n e f u n c t i o n
a n d l i p id m e t a b o l i s m in h y p e r t e n s i o n . Am J Hypertens 1 9 9 9 ; 1 2 :3 1 5 —
331.
1 6 . R o d r ig o R, B a c h le r J P , A r a y a J , P r a t H , P a s s a l a c q u a W . R e l a ti o n s h i p
b e t w e e n ( N a + K ) - A T P a s e a c tiv ity , l i p id p e r o x i d a t i o n a n d f a tty a c i d
p r o f il e in e r y t h r o c y t e s o f h y p e r t e n s i v e a n d n o r m o t e n s i v e s u b je c ts . Mol
Cell Biochem 2 0 0 7 ; 3 0 3 : 7 3 - 8 1 .
1 7 . P y te l E, D u c h n o w i c z P , J a c k o w s k a P , W o j d a n K , K o te r - M ic h a la k M ,
B r o n c e l M . D is o r d e r s o f e r y t h r o c y t e s t r u c t u r e a n d f u n c t i o n in h y p e r ­
t e n s i v e p a t i e n t s . Med Sci Monit 2 0 1 2 ; 1 8 :3 3 1 - 3 3 6 .
1 8 . K a c z m a r s k a M , F o r n a l M , M e s s e r li F H , K o r e c k i J , G r o d z ic k i T , B u r d a K.
E r y t h r o c y te m e m b r a n e p r o p e r t i e s in p a t i e n t s w i t h e s s e n t i a l h y p e r t e n ­
s io n . Cell Biochem Biophys 2 0 1 3 ; 6 7 : 1 0 8 9 - 1 1 0 2 .
19. C a n e s s a M, A d ra g n a N , S o lo m o n H S, C o n n o lly T M , T o s te s o n D C .
I n c r e a s e d s o d i u m - l i t h i u m c o u n t e r t r a n s p o r t in r e d c e lls o f p a t i e n t s w ith
e s s e n t i a l h y p e r t e n s i o n . N Engl J Med 1 9 8 0 ; 3 0 2 : 7 7 2 - 7 7 6 .
2 0 . W e d e r A B . R e d - c e ll l i t h i u m - s o d i u m c o u n t e r t r a n s p o r t a n d r e n a l li th iu m
c l e a r a n c e in h y p e r t e n s i o n . N Engl J Med 1 9 8 6 ; 3 1 4 : 1 9 8 - 2 0 1 .
2 1 . C u s i D , N iu tt a E, B a r l a s s i n a C , B o ll in i P , C e s a n a B , S te lla P ,
et al.
E r y t h r o c y te N a + ,K + ,C 1 - c o t r a n s p o r t a n d k i d n e y f u n c t i o n in e s s e n t i a l
h y p e r t e n s i o n . J Hypertens 1 9 9 3 ; 1 1 :8 0 5 - 8 1 3 2 2 . L i n d n e r A , H in d s T R , D a v i d s o n R C , V in c e n z i F F. I n c r e a s e d c y t o s o l ic
f r e e c a l c i u m in r e d b l o o d c e lls is a s s o c i a t e d w i t h e s s e n t i a l h y p e r t e n s i o n
in h u m a n s . Am J Hypertens 1 9 9 3 ; 6 : 7 7 1 - 7 7 9 .
2 3 . O r l o v S N , A d r a g n a N C , A d a r ic h e v V A , H a m e t P . G e n e t i c a n d b i o ­
c h e m ic a l d e te r m in a n ts
o f a b n o r m a l m o n o v a le n t io n
t r a n s p o r t in
p r i m a r y h y p e r t e n s i o n . Am J Physiol 1 9 9 9 ; 2 7 6 : 5 1 1 - 5 3 6 .
2 4 . M o tu ls k y A G , B u r k e W , B illin g s P R , W a r d R H . Hypertension
and the
genetics of red cell membrane abnormalities. Molecular approaches to
hum an polygenic disease. C h ic h e s te r : W ile y ; 1 9 8 7 ; 1 5 0 -1 6 6 .
2 5 . B ia n c h i G , T r i p o d i Ст. G e n e t i c s o f h y p e r t e n s i o n : t h e a d d u c i n p a r a d i g m .
A nn N Y Acad Sci 2 0 0 3 ; 9 8 6 : 6 6 0 - 6 6 8 .
2 6 . G u l a k P V , O r l o v S N , P o s t n o v Y V , K ila d z e IS, G r i g o r i a n G L , T a b a g u a
M I, K a ju s h in LP. I n v e s ti g a ti o n o f m e m b r a n e p r o t e i n s in r a t e r y t h r o c y t e s
in
2 0 1 2 ; 3 8 0 :2 2 2 4 - 2 2 6 0 .
A
1981; 1 0 0 :6 6 0 -6 6 5 .
1 1 . O r l o v S N , G u l a k P V , L itv in o v IS, P o s t n o v Y u V . E v i d e n c e o f a l t e r e d
s t r u c t u r e o f t h e e r y t h r o c y t e m e m b r a n e in s p o n t a n e o u s l y h y p e r t e n s i v e
J Hypertens
Lancet
r a ts .
Biochem Biophys Res Commun
2013- w w w .w h o .in t/c a rd io v a s c u la r_ d is e a s e s /p u b lic a tio n s /g lo b a l_ b rie
f _ h y p e rte n s io n /e n /in p re ss.
2. L a w e s C M , V a n d e r H o o r n S, R o d g e r s A . G l o b a l b u r d e n o f b l o o d
p r e s s u r e - r e l a t e d d i s e a s e 2 0 0 1 . Lancet 2 0 0 8 ; 3 7 1 :1 5 1 3 - 1 5 1 8 .
t a b l e t o 6 7 r is k f a c t o r s a n d r is k f a c t o r c l u s t e r s in 21 r e g i o n s , 1 9 9 0 - 2 0 1 0 :
a s y s t e m a t i c a n a ly s is f o r t h e G l o b a l B u r d e n o f D is e a s e S tu d y 2 0 1 0 .
1998;
Rev Genet 2 0 0 6 ; 7 :8 2 9 - 8 4 0 .
9 . B e e v e r s G , L ip G Y , O ’B r ie n E. A B C o f h y p e r t e n s i o n : t h e p a t h o p h y s i ­
1. W o r l d H e a l t h O r g a n i z a t i o n ( W H O ) . A G l o b a l B r ie f o n H y p e r t e n s i o n .
3. L im SS, V o s T , F la x m a n A D , D a n a e i G , S h i b u y a K , A d a ir - R o h a n i H , et al.
A c o m p a r a t i v e r is k a s s e s s m e n t o f b u r d e n o f d i s e a s e a n d i n j u r y a t t r i b u ­
J Hypertens
1 6 :1 8 7 1 - 1 8 7 8 .
8 . C o w le y A W J r . T h e g e n e t i c d i s s e c t i o n o f e s s e n t i a l h y p e r t e n s i o n . N a t
s p o n ta n e o u s
27. L o g in o v
O ganov
h y p e rte n s io n
1 9 8 6 ; 4 :3 1 3 - 3 1 7 .
V A , M i n c h e n k o B I,
by
m eans
o f s p in -la b e l te c h n iq u e .
S u k h o p le c h e v
SA ,
A le x a n d ro v
AA,
RG.
D i s tr ib u t io n o f p r o t e i n s in e r y t h r o c y t e m e m b r a n e s f r o m p a t i e n t s w ith
h y p e r t e n s i o n . Clin Exp Hypertens A 1 9 8 9 ; 1 1 :5 5 3 - 5 7 1 .
2 8 . H o jo Y , E b a ta H , K a w a s a k i K , T s u r u y a Y , I k e d a U , N is h in a g a M , et al.
A lte r e d le v e ls o f e r y t h r o c y t e c a l c i u m - b i n d i n g p r o t e i n s in e s s e n t i a l
h y p e rte n s iv e s w ith g e n e tic p r e d is p o s itio n : c o rre la tio n w ith a m b u la to ry
b l o o d p r e s s u r e . J Hypertens 1 9 9 4 ; 1 2 :4 2 9 - 4 3 7 .
11
29 . T h o m a s T H , R u t h e r f o r d P A , V a r e e s a n g t h i p K , W i lk in s o n R, W e s t IC.
E r y t h r o c y te m e m b r a n e t h i o l p r o t e i n s a s s o c i a t e d w ith c h a n g e s in t h e
k i n e tic s o f N a /L i c o u n t e r t r a n s p o r t : a p o s s i b l e m o l e c u l a r e x p l a n a t i o n o f
4 7 . L a e m m li U K . C l e a v a g e o f s t r u c t u r a l p r o t e i n s d u r i n g t h e a s s e m b l y o f t h e
h e a d o f b a c t e r i o p h a g e T 4 . Nature 1 9 7 0 ; 2 2 7 :6 8 0 - 6 8 5 4 8 . I v a n o v V P , P o l o n i k o v A V , S o lo d il o v a M A . T h e c o n t r i b u t i o n o f g e n e t i c
a n d e n v i r o n m e n t a l f a c t o r s t o q u a n t i t a t i v e v a r i a b il ity o f e r y t h r o c y t e
c h a n g e s in d i s e a s e . Eur J Clin Invest 1 9 9 8 ; 2 8 : 2 5 9 - 2 6 5 .
3 0 . A m a i d e n M R , S a n t a n d e r V S, M o n e s t e r o l o N E , C a m p e te lli A N , R iv e lliJ F ,
P r e v ita li G , et al. T u b u l i n p o o l s in h u m a n e r y t h r o c y t e s : a l t e r e d d i s t r i ­
b u t i o n in h y p e r t e n s i v e p a t i e n t s a f f e c ts N a + , K + - A T P a s e a c tiv ity . Cell
6 9 :2 5 -3 5 .
49- S te c k TL . T h e o r g a n i z a t i o n o f p r o t e i n s in t h e h u m a n r e d b l o o d c e ll
Mol Life Sci 2 0 1 1 ; 6 8 :1 7 5 5 - 1 7 6 8 .
31 . A m a i d e n M R , M o n e s t e r o l o N E , S a n t a n d e r V S, C a m p e te lli A N , A r c e C A ,
P ie J , et al. I n v o l v e m e n t o f m e m b r a n e t u b u l i n in e r y t h r o c y t e d e f o r m -
m e m b r a n e . A r e v i e w . / Cell Biol 1 9 7 4 ; 6 2 : 1 - 1 9 .
5 0 . F a i r b a n k s G , S te c k TL , Wallach D F . E l e c t r o p h o r e t i c a n a ly s is o f t h e
m a jo r p o l y p e p t i d e s o f t h e h u m a n e r y t h r o c y t e m e m b r a n e . Biochemistry
a b i lit y a n d b l o o d p r e s s u r e . JHypertens 2 0 1 2 ; 3 0 :1 4 1 4 - 1 4 2 2 .
32 . P o l o n i k o v A V , I v a n o v V P , S o lo d il o v a M A , K h o r o s h a y a IV , K o z h u h o v
1971; 1 0 :2 6 0 6 -2 6 1 7 .
5 1 . B r o w n M B , Forsythe A B . R o b u s t te s t s f o r t h e e q u a l i t y o f v a r i a n c e s . J Am
Stat Assoc 1 9 7 4 ; 6 9 :3 6 4 - 3 6 7 .
M A, Iv a k in V E,
et al.
A c o m m o n p o l y m o r p h i s m G - 5 0 T in c y t o c h r o m e
P 4 5 0 2J2 g e n e is a s s o c i a t e d w i t h i n c r e a s e d r is k o f e s s e n t i a l h y p e r t e n ­
s i o n in a R u s s i a n p o p u l a t i o n . Dis Markers 2 0 0 8 ; 2 4 : 1 1 9 - 1 2 6 .
33- I v a n o v V P , S o lo d il o v a M A , P o l o n i k o v A V , B e l u g in D A , S h e s t a k o v A M ,
U s h a c h e v D V , et al. A r g 2 5 P r o p o l y m o r p h i s m o f t r a n s f o r m i n g g r o w t h
f a c t o r - b e t a l a n d its r o le in t h e p a t h o g e n e s i s o f e s s e n t i a l h y p e r t e n s i o n
in R u s s ia n p o p u l a t i o n o f t h e C e n t r a l C h e r n o z e m R e g io n .
Bull Exp Biol
Med 2 0 0 7 ; 1 4 4 :6 6 - 6 8 .
34 . P o l o n i k o v A V , U s h a c h e v D V , S h e s t a k o v A M , I v a n o v V P , S o lo d il o v a
m e m b r a n e p r o t e i n s in p r i m a r y h y p o t e n s i o n .
A n n Hum Genet
2005;
5 2 . K im J O , M u e ll e r C W , K le k k a U R . Factor, discriminant, and cluster
analysis. M o s c o w P le a s e p r o v i d e p a g e r a n g e in re f. [52].: F in a n c e a n d
S ta tis tic s ; 1 9 8 9 ; 2 6 8 - 2 8 5 .
53- G e l m a n A. A n a ly s is o f v a r i a n c e - w h y it is m o r e i m p o r t a n t t h a n e v e r .
A n n Statist 2 0 0 5 ; 3 3 :1 - 5 3 5 4 . S in g C F , D a v i g n o n J . R o le o f t h e a p o l i p o p r o t e i n E p o l y m o r p h i s m in
d e t e r m i n i n g n o r m a l p l a s m a l i p id a n d l i p o p r o t e i n v a r i a ti o n . Am JH um
M A , V ia ly k h EK , etal. P o l y m o r p h i s m G ly 4 6 0 T r p o f a l p h a - a d d u c i n g e n e
a n d p r e d is p o s itio n to e s s e n tia l h y p e rte n s io n . T h e ro le o f g e n e -e n v ir o n m e n t in t e r a c t i o n s in t h e d e v e l o p m e n t o f t h e d i s e a s e in R u s s i a n p o p u ­
Genet 1 9 8 5 ; 3 7 : 2 6 8 - 2 8 5 .
55- I v a n o v V P , P o l o n i k o v A V , E m e li y a n o v a O G , S o lo d il o v a M A , M a n d r ik
IA . F a m ily b a s e d a n a ly s is o f q u a n t i t a t i v e c h a n g e s o f e r y t h r o c y t e m e m ­
b r a n e p r o t e i n s in e s s e n t i a l h y p e r t e n s i o n . Indian J Hum Genet 2 0 0 4 ;
la tio n . Kardiologiia 2 0 1 1 ; 5 1 : 3 3 - 3 9 35- P o l o n i k o v A V , S o lo d il o v a M A , I v a n o v V P , S h e s t a k o v A M , U s h a c h e v
D V , V ia ly k h E K , etal. A p r o t e c t i v e e f f e c t o f G L Y 2 7 2 S E R p o l y m o r p h i s m
1 0 :4 6 -5 2 .
5 6 . I v a n o v V P , P o l o n i k o v A V , S o l o d i l o v a M A , E m e li y a n o v a O G . T h e
q u a n t i t a t i v e c h a r a c t e r i s t i c s o f e r y t h r o c y t e m e m b r a n e p r o t e i n s in
o f G N B 3 g e n e in d e v e l o p m e n t o f e s s e n t i a l h y p e r t e n s i o n a n d its
r e l a t i o n s w i t h e n v i r o n m e n t a l h y p e r t e n s i o n r is k f a c t o r s . Ter Arkh
2011; 8 3 6 5 -6 0 .
36 . S t e p a n o v V A , P u z y r e v K V , S p i r i d o n o v a M G , P a v li u k o v a E N , P u z y r e v
V P , K a r p o v RS. P o l y m o r p h i s m o f a n g i o t e n s i n - c o n v e r t i n g e n z y m e a n d
e n d o t h e l i a l n it r ic o x i d e s y n t h a s e g e n e s in p e o p l e w i t h a r t e r ia l h y p e r ­
t e n s i o n , le f t v e n t r i c u l a r h y p e r t r o p h y , a n d h y p e r t r o p h i c c a r d i o m y o p ­
a t h y . Genetika 1 9 9 8 ; 3 4 :1 5 7 8 - 1 5 8 1 .
37 . K a r p o v RS, P u z y r e v K V , K o s h e l ’s k a i a O A , M a k e e v a O A , S u s l o v a Т Е ,
p a t i e n t s w i t h v a s c u l a r d y s t o n i a s a n d t h e i r r e l a t i o n s h i p t o lia b ility .
1 9 9 9 ; 5 :2 4 - 2 5 .
5 7 . L o w PS. S tr u c t u r e a n d f u n c t i o n o f t h e c y t o p l a s m i c d o m a i n o f b a n d 3:
c e n t e r o f erythrocyte m e m b r a n e - p e r i p h e r a l p r o t e i n i n t e r a c t i o n s . Bio-
chim Biophys Acta 1 9 8 6 ; 8 6 4 : 1 4 5 - 1 6 7 .
5 8 . D e n k e r S P , B a r b e r D L. I o n t r a n s p o r t p r o t e i n s a n c h o r a n d r e g u l a t e t h e
c y t o s k e l e t o n . Curr Opin Cell Biol 2 0 0 2 ; 1 4 :2 1 4 - 2 2 0 .
59- S a tc h w e ll T J, H a w le y B R , B e ll A J, R ib e ir o M L, T o y e A M . T h e c y t o ­
s k e l e t a l b i n d i n g d o m a i n o f b a n d 3 is r e q u i r e d f o r m u l t i p r o t e i n c o m p l e x
f o r m a t i o n a n d r e t e n t i o n d u r i n g erythropoiesis. Haematologica 2 0 1 5 ;
1 0 0 :1 3 3 -1 4 2 .
E f im o v a EV , et al. P o l y m o r p h i c m a r k e r s o f G N B 3 ( C 8 2 5 T ) , A G T R 1
( A 1 1 6 6 C ) a n d A C E (A 2 3 5 0 G a n d I / D ) g e n e s in p a t i e n t s w i t h a r t e r ia l
h y p e r t e n s i o n c o m b i n e d w i t h d i a b e t e s m e lli tu s t y p e 2 .
Ter Arkh
2004;
7 6 :3 0 -3 5 .
38 . G l o t o v A S, I v a s h c h e n k o Т Е , O b r a z t s o v a G I, N a s e d k i n a T V , B a r a n o v
V S. R e n i n - a n g i o t e n s i n a n d k i n i n - b r a d y k i n i n g e n e s p o l y m o r p h i s m
e f f e c ts o n p e r m a n e n t a r t e r ia l h y p e r t e n s i o n in c h i l d r e n . Mol Biol (Mosk)
2007; 4 1 :1 8 -2 5 .
39- L e m b o G , D e L u c a N , B a tta g li C , I o v i n o G , A r e tin i A , M u s i c c o M , etal. A
c o m m o n v a r i a n t o f e n d o t h e l i a l n it r ic o x i d e s y n t h a s e ( G lu 2 9 8 A s p ) is a n
in d e p e n d e n t
r is k
fa c to r
fo r
c a ro tid
a th e ro s c le ro s is .
Stroke
s p a s m . Circulation 1 9 9 9 ; 9 9 : 2 8 6 4 - 2 8 7 0 .
4 1 . R ig a t B , H u b e r t C , C o r v o l P , S o u b r i e r F . P C R d e t e c t i o n o f t h e i n s e r t i o n /
d e le tio n p o ly m o rp h is m o f th e h u m a n a n g io te n s in c o n v e rtin g e n z y m e
g e n e ( D C P 1 ) ( d i p e p t i d y l c a r b o x y p e p t i d a s e 1 ).
6 0 . H a r r is SJ, W i n z o r D J. I n t e r a c t i o n s o f g ly c o ly ti c e n z y m e s w i t h e r y t h r o ­
c y t e m e m b r a n e s . Biochim Biophys Acta 1 9 9 0 ; 1 0 3 8 :3 0 6 - 3 1 4 .
6 1. F o s s e l E T , S o l o m o n A K . R e l a ti o n b e t w e e n r e d c e ll m e m b r a n e
(N a + K + )-A T P a s e a n d b a n d 3 p ro te in .
Nucleic Acids Res 1 9 9 2 ;
2 0 :1 4 3 3 42 . T a k e m o t o Y , S a k a t a n i M , T a k a m i S, T a c h i b a n a T , H i g a k i J , O g i h a r a T ,
Biochim Biophys Acta
6 4 9 :5 5 7 -5 7 1 .
6 2 . O p a r i l S, Z a m a n M A , C a l h o u n D A . P a t h o g e n e s i s o f h y p e r t e n s i o n .
1981;
A nn
Intern Med
63- B e n n e t t
2 0 0 3 ; 1 3 9 :7 6 1 - 7 7 6 .
V. S p e c trin -b a s e d m e m b r a n e
a d a p to r b e tw e e n
2001;
3 2 :7 3 5 -7 4 0 .
4 0 . N a k a y a m a M , Y a s u e H , Y o s h i m u r a M , S h im a s a k i Y , K u g iy a m a K,
O g a w a H , et al. T - 7 8 6 > C m u t a t i o n in t h e 5 ’- f la n k in g r e g i o n o f t h e
e n d o t h e l i a l n it r ic o x i d e s y n t h a s e g e n e is a s s o c i a t e d w i t h c o r o n a r y
Arter
Hypertens (St -Petersburg)
p la s m a
m e m b ran e
s k e le to n :
and
a
m u ltip o te n tia l
cytoplasm. Physiol Rev
1 9 9 0 ; 7 0 :1 0 2 9 - 1 0 6 5 .
6 4 . S h a r p D S , C u r b J D , S c h a t z IJ, M e is e l m a n H J, F is h e r T C , B u r c h f i e l C M , et
al. M e a n r e d c e ll v o l u m e a s a c o r r e l a t e o f b l o o d p r e s s u r e . Circulation
1996; 9 3 :1 6 7 7 -1 6 8 4 .
65- C a r r SJ, S i k a n d K , M o o r e D , N o r m a n RI. A lte r e d m e m b r a n e m i c r o ­
v is c o s it y in e s s e n t i a l h y p e r t e n s i o n : r e l a t i o n s h i p w i t h f a m ily h i s t o r y o f
h y p e r t e n s i o n a n d s o d i u m - l i t h i u m c o u n t e r t r a n s p o r t a c tiv ity . J Hypertens
1995; 1 3 :1 3 9 -1 4 6 .
6 6 . K a z e n n o v A M , M a s lo v a M N . T h e e f f e c t o f t h e m e m b r a n e s k e l e t o n o f
et
n o n n u c le a te d e ry th ro c y te s o n th e p r o p e r tie s o f tr a n s p o r t A T P ases.
A s s o c i a ti o n b e t w e e n a n g i o t e n s i n II r e c e p t o r g e n e p o l y m o r p h i s m
a n d s e r u m a n g i o t e n s i n c o n v e r t i n g e n z y m e (S A C E ) a c tiv i ty in p a t i e n t s
w i t h s a r c o i d o s i s . Thorax 1 9 9 8 ; 5 3 : 4 5 9 - 4 6 2 .
Tsitologiia 1 9 9 1 ; 3 3 : 3 2 - 4 1 .
6 7 . K h u r a n a S. R o le o f a c tin cytoskeleton in r e g u l a t i o n o f io n t r a n s p o r t :
e x a m p l e s f r o m e p i t h e l i a l c e l l s . J Membr Biol 2 0 0 0 ; 1 7 8 :7 3 - 8 7 .
43 . S e th i A A , N o r d e s t g a a r d B G , A g e r h o lm - L a r s e n B , F r a n d s e n E, J e n s e n G ,
T y b ja e rg -H a n s e n A. A n g io te n s in o g e n p o ly m o rp h is m s a n d e le v a te d
6 8 . K a z e n n o v A M , M a s lo v a M N . S tr u c t u r a l b i o c h e m i c a l p r o p e r t i e s o f t h e
m e m b r a n e o f n u c l e u s - f r e e e r y t h r o c y t e s . Fiziol Zh SSSR Im IM Seche-
al.
b l o o d p r e s s u r e in t h e g e n e r a l p o p u l a t i o n : t h e C o p e n h a g e n C ity H e a r t
S tu d y . Hypertension 2 0 0 1 ; 3 7 :8 7 5 - 8 8 1 .
4 4 . P o c h E, G o n z a l e z D , G i n e r V , B r a g u l a t E, C o c a A , d e L a S ie r r a A.
M o le c u la r b a s i s o f s a lt s e n s iti v ity in h u m a n h y p e r t e n s i o n . E v a lu a t io n o f
re n in - a n g io te n s in - a ld o s te r o n e s y s te m g e n e p o ly m o rp h is m s .
Hyperten­
sion
2001; 3 8 :1 2 0 4 -1 2 0 9 .
4 5 . B e u t l e r E, W e s t C , B lu m e K G . T h e r e m o v a l o f l e u k o c y t e s a n d p l a t e l e t s
f r o m w h o l e b l o o d . J Lab Clin Med 1 9 7 6 ; 8 8 :3 2 8 - 3 3 3 .
46 . D o d g e G T , M itc h e ll C , H a n a h a n D J. T h e p r e p a r a t i o n a n d c h e m ic a l
c h a r a c te r is tic s o f h e m o g l o b i n - f r e e g h o s t s o f h u m a n e r y t h r o c y t e s .
1 9 6 3 ; 1 0 0 :1 1 9 - 1 3 0 .
Biochem Biophys
12
Arch
nova
69-
1987; 7 3 :1 5 8 7 -1 5 9 8 .
R u il o p e LM , L u q u e M , F e r n a n d e z J , O r t e g a R, D a l- R e R,
A V A N T S tu d y G r o u p I n v e s ti g a to r s . G l u c o s e m e t a b o l i s m in p a t i e n t s
w i t h e s s e n t i a l h y p e r t e n s i o n . Am J Med 2 0 0 6 ; 1 1 9 :3 1 8 - 3 2 6 .
Garcia-Puig J ,
7 0 . C a r n e v a l e S c h i a n c a G P , F r a СтР, S te f f a n in i M , P o g lia n i G , M a r c o n i C ,
B ig l io c c a M , P iris i M . I m p a i r e d g l u c o s e m e t a b o l i s m in h y p e r t e n s i v e
p a tie n ts w ith /w ith o u t th e m e ta b o lic s y n d ro m e .
Eur J Intern Med 2 0 1 4 ;
2 5 :4 7 7 -4 8 1 .
7 1 . C l o h e r t y E K , S u ltz m a n LA, Z o t t o l a RJ, C a r r u t h e r s A. N e t s u g a r t r a n s p o r t
is a m u l t i s t e p p r o c e s s . E v i d e n c e f o r c y t o s o l i c s u g a r b i n d i n g s ite s in
e ry th ro c y te s .
Biochemistry
1 9 9 5 ; 3 4 :1 5 3 9 5 - 1 5 4 0 6 .
A Q1
7 2 . O l s o n AL, P e s s i n J E . S tr u c t u r e , f u n c t i o n , a n d r e g u l a t i o n o f t h e m a m ­
m a lia n f a c ilita tiv e g l u c o s e t r a n s p o r t e r g e n e f a m ily . A n n u Rev Nutr
1 9 9 6 ; 1 6 :2 3 5 - 2 5 6 .
7 3 . F e r r a n n i n i E, B u z z ig o li G , B o n a d o n n a R, G i o r ic o M A , O l e g g i n i M ,
G r a z i a d e i L,
etal.
I n s u lin r e s i s t a n c e in e s s e n t i a l h y p e r t e n s i o n .
N Engl J
Med
1987; 3 1 7 :3 5 0 -3 5 7 .
7 4 . S ir o v e r M A . S tr u c t u r a l
a n a ly s is
d e h y d r o g e n a s e f u n c t i o n a l d iv e r s i ty .
of
g ly c e ra ld e h y d e -3 -p h o s p h a te
Int J Biochem Cell Biol
5 7 :2 0 -2 6 .
75- H o f f m a n J F . A T P c o m p a r t m e n t a t i o n in h u m a n e r y t h r o c y t e s .
Hypertension
1996;
2 7 :5 6 4 -5 6 8 .
8 0 . P r a v e n e c M , C r a u g u ie r D , S c h o t t J J, B u a r d J , K r e n V , B ila V ,
et al.
c o s e g r e g a t e s w i t h h y p e r t e n s i o n in D a h l S ra ts .
CurrOpin
Invest 1 9 9 5 ; 9 6 : 1 9 7 3 - 1 9 7 8 .
8 1 . R e d o n J , O liv a M R , T o r m o s C , G i n e r V , C h a v e s J , I r a d i A , S a e z G T .
A n t i o x i d a n t a c tiv i tie s a n d o x i d a t i v e s t r e s s b y p r o d u c t s in h u m a n h y ­
p r o d u c t i o n a s a s o u r c e o f s y s t e m i c a r t e r ia l h y p e r t e n s i o n . Pathophysi­
ology 2 0 0 7 ; 1 4 : 1 9 5 - 2 0 4 .
7 7 . G o u v e i a LM, P a c c o l a G M , T o r q u a t o M T , M e n e z e s F O , P ic c in a t o C E ,
Horm Metah Res
79 - S te c D E , D e n g A Y , R a p p J P , R o m a n RJ. C y t o c h r o m e P 4 5 0 4 A g e n o t y p e
M a p p i n g o f q u a n t i t a t i v e tr a it lo c i f o r b l o o d p r e s s u r e a n d c a r d i a c m a s s
in t h e r a t b y g e n o m e s c a n n i n g o f r e c o m b i n a n t i n b r e d s tr a i n s . / Clin
1 9 9 7 ; 4 :1 1 2 - 1 1 5 .
7 6 . P o s t n o v Y V , O r l o v S N , B u d n i k o v Y Y , D o r o s c h u k A D , P o s t n o v A Y.
M ito c h o n d r i a l e n e r g y c o n v e r s i o n d i s t u r b a n c e w i t h d e c r e a s e in A T P
h y p e rte n s io n .
D e n g AY, D e n e H , R a p p JP . C o n g e n ic s tra in s fo r th e b lo o d p re s s u re
q u a n t i t a t i v e tr a it lo c u s o n r a t c h r o m o s o m e 2. Hypertension 1 9 9 7 ;
3 0 :1 9 9 -2 0 2 .
2014;
Hematol
F o ss M C. P e rip h e ra l g lu c o s e m e ta b o lis m
78.
in p a t i e n t s w i t h e s s e n t i a l
2 0 0 0 ; 3 2 :3 5 - 3 9 -
R eview ers’ S u m m ary Evaluations
Reviewer 1
P olonikov e t al. analyzed the relationship b e tw e e n a num ­
b e r o f h y p erten sio n susceptibility genes and erythrocyte
m em brane proteins. T he results p o in t tow ards a few
specific gen es an d m em brane p roteins an d provide som e
novel pathophysiological insights. T he m ain strength o f the
article, how ever, is the integration o f com plex phenotypic,
clinical, an d genetic data into disease pathw ays in the spirit
o f a system s biology ap proach. The p resen t w ork could b e a
tem plate for the analysis an d p resen tatio n o f com plex
biological data - at least it is o n e possible approach.
p e r t e n s i o n . Hypertension 2 0 0 3 ; 4 1 : 1 0 9 6 - 1 1 0 1 .
8 2 . B r io n e s A M , T o u y z R M . O x i d a t i v e s tr e s s a n d h y p e r t e n s i o n : c u r r e n t
c o n c e p t s . Curr Hypertens Rep 2 0 1 0 ; 1 2 : 1 3 5 - 1 4 2 .
83 - T s u d a K . O x i d a t i v e s t r e s s a n d m e m b r a n e f lu i d ity o f r e d b l o o d c e lls in
h y p e rte n s iv e a n d n o rm o te n s iv e m e n : a n e le c tro n s p in
in v e s t ig a t io n . Int Heart J 2 0 1 0 ; 5 1 : 1 2 1 - 1 2 4 .
reso n an ce
Reviewer 2
In this interesting study, the authors report that hy p erten ­
sion susceptibility genes contribute to inherited erythrocyte
m em brane p rotein variation suggesting that abnorm alities
in m em brane structure and function rep resen t an im portant
part o f hy pertension pathogenesis. T he study is o f interest.
H ow ever, to explore the validity o f the results, findings
should b e further validated in bigger and in d e p en d e n t
sam ples.
13