Welcome! This is the third in a series of teaching aids designed by teachers for teachers at level 5. The worksheets are designed to support the delivery of the National Curriculum in a variety of teaching and learning styles. They are not designed to take the pedagogy away from the teacher. The worksheets are centred around the shown level, but spiral from the level below to the level above. Consult the National Numeracy Strategy for definitive National Curriculum levels. They can be used by parents with the support of the on-line help facility at www.10ticks.co.uk. Contents and Teacher Notes. Pages 3/4. Pages 5/6. Pages 7/8. Pages 9/10. Page 11. Page 12. Pages 13-16. Pages 17/18. Pages 19/20. Pages 21/22. Level 5 Pack 3. Page 1. Using a Protractor. An excellent exercise to practice using a compass, without worrying if pupils are positioning the protractor correctly. It gives plenty of time to check if pupils are using the correct scales. It also uses the two notations meaning angle. Section D is only for the accomplished protractor measurers! Measuring Angles. Now that pupils can use protractors we have a measuring exercise. Page 6 is about the different ways we can measure reflex angles. The first part, extending a straight line, measuring the small angle and adding to 180˚. The second part measuring the unrequired angle and taking this from 360˚. Constructions. Using the new found protractor skills, this is an exercise in constructing triangles. Scale Drawing 1. Using simple ratios to construct a scale drawing. A precursor to scale drawing bearing work/ map skills. Scale Drawing 2. Using simple ratios to construct a scale drawing. A precursor to scale drawing bearing work/ map skills. Battleships. A game for 2 pupils. Battleships using bearings. Measuring Bearings 1/2. Measure the bearings and find the actual distance from the central point. The four maps are progressive scaling outwards from the castle. Angle Properties 1. Angles on a straight line, vertically opposite angles and angles at a point. Typical consolidation exercises. Angle Properties 2. Angle sum of a triangle, special triangles problems involving equilateral and isosceles triangles and interior angles of any polygon. Again, typical consolidation exercises. Angle Properties 3. Angle sum of a quadrilateral. Constructions, these include perpendicular bisector, angle bisector and drawing a line parallel to another using a ruler and a set square. [email protected] Pages 23/24. Logo 1. Introduction to logo and using the REPEAT command. A generic set of instructions as logo appears on many different types of computer operating systems. The specifics of how to access the program etc. have therefore been omitted. Pages 25/26. Logo 2. Writing procedures. Using the repeat command inside a procedure. Pages 27/28. Parallel Lines. Revision of all the level 5 angle properties pupils should know. These are then placed into parallel line diagrams before introducing any further angle properties. Alternate angles and corresponding angles. Discovering the angle properties and consolidation exercises. Pages 29/30. Metric Units - lengths. Changing between units, but now in decimal notation. Pages 31/32. Metric Units - weight/capacity. Changing between units, but now in decimal notation Pages 33/34. Calculations with Metric Units. All the level 5 skills put into context. Page 35. The Imperial System. Converting between units within the imperial system. The links between the units are given at the start. Page 36. Converting between Metric and Imperial Units. Converting between metric and imperial units. The links between the units are given at the start. Pages 37/38. Metric and Imperial Units. Conversion Tables. Using the given conversion tables to change between the metric and imperial systems. Pages 39/40. Time Questions. Changing between the 12 hour and 24 hour systems. Finding time differences in both systems. Putting these skills into context with worded questions. Pages 41/42. Mileage Charts. Taking information from a mileage chart and using it to answer the given questions. Copyright in Worksheets. ©Fisher Educational Ltd. 2000. Copyright in the worksheets belongs to Fisher Educational Ltd. Each purchase of the worksheets represents a licence to use and reproduce the worksheets as set out in the Terms and conditions shown on the 10ticks website. '10TICKS', and '10TICKS.co.uk' and/or other 10TICKS services referenced on this web site or on the Worksheets are trademarks of Fisher Educational Ltd in the UK and/or other countries. Details of copyright ownership in the clip art used in these worksheets: Copyright in the clip art used entirely in this pack is owned by Nova Development Corporation, California, USA. Level 5 Pack 3. Page 2. [email protected] Using a Protractor. A). Angle Police Sir !!! Misuse of a protractor is three years minimum. Read the measurements off the protractor below. Y X G T P V E S M H N O D W Q J L F I B A 1). 6). 11). 16). 21). 26). 31). 36). B). U R C ∠ BAG ∠ CAU BÂF CÂN ∠ BAO CÂE ∠ CAI BÂJ 2). 7). 12). 17). 22). 27). 32). 37). ∠ BAD ∠ CAL BÂM CÂV ∠ BAH BÂI ∠ CAT CÂO ∠ BAP ∠ CAY BÂT CÂX ∠ CAS CÂJ ∠ BAY BÂX 3). 8). 13). 18). 23). 28). 33). 38). 4). 9). 14). 19). 24). 29). 34). 39). ∠ BAS ∠ CAP BÂN CÂW ∠ BAQ BÂE ∠ BAL CÂM 5). 10). 15). 20). 25). 30). 35). 40). ∠ BAU ∠ CAH BÂR CÂF ∠ CAG CÂR ∠ CAD BÂV Read the measurements off the protractor below. They are slightly harder. So this is about 30 ˚.... M E P G Y X T S H L V D O W Q N J F U I B 1). 6). 11). 16). 21). 26). 31). 36). Level 5 Pack 3. Page 3. ∠ BAG ∠ CAU BÂF CÂN ∠ BAO CÂE ∠ CAF BÂJ R C A 2). 7). 12). 17). 22). 27). 32). 37). ∠ BAD ∠ CAL BÂM CÂV ∠ BAH BÂI ∠ CAT CÂO 3). 8). 13). 18). 23). 28). 33). 38). ∠ BAP ∠ CAY BÂT CÂX ∠ CAS CÂJ ∠ BAY BÂX Licensed to De La Salle College 4). 9). 14). 19). 24). 29). 34). 39). ∠ BAS ∠ CAP BÂN CÂW ∠ BAQ BÂE ∠ BAL CÂM 5). 10). 15). 20). 25). 30). 35). 40). ∠ BAU ∠ CAH BÂR CÂI ∠ CAG CÂR ∠ CAD BÂV [email protected] C). Read the measurements off the protractor below, this is as hard as it gets !!. G Y X P T S E H M D L V O Q J N U F I B 1). 6). 11). 16). 21). 26). 31). 36). D). ∠ BAJ BÂG ∠ CAR BÂM ∠ BAF CÂY ∠ CAM CÂE 2). 7). 12). 17). 22). 27). 32). 37). R C A ∠ CAN CÂO ∠ CAG CÂX ∠ CAL BÂX ∠ BAO BÂN 3). 8). 13). 18). 23). 28). 33). 38). ∠ BAD BÂL ∠ BAY CÂW ∠ BAS BÂH ∠ BAE CÂH 4). 9). 14). 19). 24). 29). 34). 39). ∠ BAP BÂQ ∠ CAQ BÂI ∠ CAD CÂP ∠ CAJ CÂF 5). 10). 15). 20). 25). 30). 35). 40). ∠ CAV CÂT ∠ BAT CÂU ∠ CAS CÂI ∠ BAU BÂR To find the required angle, you will need to take two readings from the same scale on the protractor. Then, take the smaller number away from the larger number. I said, " I want a small angle" A-N-G-L-E. M E P G Y X T S L H V D O W Q N J F U R I A 1). 6). 11). 16). 21). 26). 31). 36). Level 5 Pack 3. Page 4. ∠ EAD DÂX ∠ PAD GÂW ∠ LAR HÂT ∠ IAL RÂD 2). 7). 12). 17). 22). 27). 32). 37). ∠ XAS XÂF ∠ JAH HÂJ ∠ PAW OÂM ∠ FAV FÂO 3). 8). 13). 18). 23). 28). 33). 38). ∠ GAE GÂU ∠ SAV TÂN ∠ MAI VÂY ∠ TAI NÂI Licensed to De La Salle College 4). 9). 14). 19). 24). 29). 34). 39). ∠ SAU FÂS ∠ RAX YÂU ∠ YAO GÂN ∠ MAQ QÂJ 5). 10). 15). 20). 25). 30). 35). 40). ∠ EAS UÂD ∠ EAQ PÂI ∠ MAJ RÂP ∠ LAW IÂU [email protected] Measuring Angles. Measure the marked angle. State if the angle is acute or obtuse. (Hint : move the paper about, rather than your protractor). 3). 1). 4). 2). 7). 5). 8). 6). 9). 10). 11). 13). 12). 15). 14). 17). 16). 18). 20). 19). 22). 21). Level 5 Pack 3. Page 5. Licensed to De La Salle College [email protected] Find the marked reflex angle. The dotted/shaded lines drawn on these digrams may help you. 23). 24). 25). 26). 27). By measuring, find the marked angle (use a method that is different from the one above). 28). 29). 30). 33). 31). 32). 34). 35). 36). Use your protractor to draw these angles, in the direction shown in the diagram. Make both your lines 6 cm long. a). 40˚ b). 65˚ c). 80˚ d). 35˚ e). 55˚ f). 110˚ g). 135˚ h). 160˚ i). 95˚ j). 115˚ k). 27˚ l). 62˚ m). 79˚ n). 33˚ o). 18˚ p). 106˚ q). 158˚ r). 99˚ s). 124˚ t). 171˚ u). 210˚ v). 305˚ w). 279˚ x). 327˚ y). 192˚ 37). Use your protractor to draw these angles, in the direction shown in the diagram. Make both your lines 6 cm long again. a). 20˚ b). 55˚ c). 40˚ d). 75˚ e). 35˚ f). 140˚ g). 105˚ h). 100˚ i). 95˚ j). 165˚ k). 56˚ l). 21˚ m). 64˚ n). 39˚ o). 78˚ p). 136˚ q). 108˚ r). 93˚ s). 122˚ t). 157˚ u). 320˚ v). 205˚ w). 309˚ x). 257˚ y). 282˚ Level 5 Pack 3. Page 6. Licensed to De La Salle College 6 cm 6 cm 6 cm 6 cm [email protected] Constructions (Measuring out Acute Angles). Construct the following triangles. Measure all the missing angles and sides and write them down. The diagrams are not drawn to scale. 1). A 2). B 41˚ 33˚ 7 cm 4). C 3). E 23˚ D 45˚ 6 cm F 5). K H 37˚ G 45˚ 8 cm 6). I Q N 5 cm 26˚ J 70˚ L 7). 40˚ M 10 cm 50˚ 9 cm 8). T S 8 cm 15˚ F G 4 cm O 16). P J R U 43˚ A 56˚ 6.4 cm C D 4.2 cm 4.6 cm 22). J N 7.2 cm 4.8 cm L 9.3 cm 23). 52˚ M 7.3 cm W T 8.2 cm 4.1 cm 42˚ 27˚ Level 5 Pack 3. Page 7. 7.9 cm R U O 24). Q P F 7.1 cm 21). K I S 7 cm E 20). 8 cm 4 cm 8.5 cm 9 cm 5.2 cm 7.5 cm L 9 cm 18). H 38˚ 6 cm T 4 cm X C K B 7 cm 48˚ 5.5 cm 15). 17). 19). G 37˚ 8 cm I 10 cm W 9.5 cm A 6 cm Q 5 cm 12 cm V B 12). 8 cm 14). M X H 7 cm N 8 cm 10 cm 11). E 9 cm 13). 36˚ V 9 cm D R 7 cm 8 cm 42˚ 10). 60˚ P 9). W 7 cm U O 37˚ 41˚ 7.4 cm Licensed to De La Salle College S V 6.3 cm X [email protected] Constructions (Measuring out Obtuse Angles). Construct the following triangles. Measure all the missing angles and sides and write them down. The diagrams are not drawn to scale. B 1). 45 mm F 2). u G 3). 37˚ 105˚ 128˚ 17˚ C 3.5 cm A 4). 3.3 cm H 56˚ 47˚ 3.9 cm 5). B 6). 54 mm S 131˚ 27˚ A 46 mm v 138˚ C Q 8). 2.5 cm U U Z 7). T 22˚ 111˚ Y C w 98˚ X 9). 93 mm P D 104˚ 72 mm 19˚ S 48 mm 4.9 cm X E 11). Y 5.2 cm 41 mm 12). R 4.7 cm 53˚ 152˚ J 61˚ P 6.5 cm 10). 23 mm T 124˚ K 9.7 cm 45 mm Q W T L 13). B 14). 8.2 cm 66 mm Y 4.3 cm 8.3 cm A C 5.1 cm 4.0 cm 17). 2.8 cm 83 mm T X E G 18). R 84 mm 3.9 cm 33 mm 6.8 cm 8.8 cm 3.6 cm D 19). 20). E P S 6.4 cm R G 143˚ G 47˚ 23). W 3.4 cm 6.0 cm 3.7 cm H A 24). 98˚ F 108˚ B 9.5 cm 24˚ R 53mm C 21). 117˚ 28 mm 22). 71 mm F Q V S 31 mm F 16). 7.7 cm 15). R W 5.6 cm X C 74 mm Y 63 mm 71mm 120 mm 7.8 cm U Level 5 Pack 3. Page 8. E Licensed to De La Salle College Z [email protected] Scale Drawings/Ratios 1. 1). The following lines have been drawn using a scale of 1 : 4. Write down the length of each line, and then the real length of each line. a). b). c). d). e). 2). The following lines have been drawn using a scale of 1 : 2. Write down the length of each line, and then the real length of each line. a). b). c). d). e). 3). The following lines have been drawn using a scale of 1 : 5. Write down the length of each line, and then the real length of each line. a). b). c). d). e). 4). The following lines have been drawn using a scale of 1 : 4. Write down the length of each line, and then the real length of each line. a). b). c). d). e). 5). The following lines have been drawn out using a scale of 1 : 20. Write down the length of each line, and then the real length of each line ? a). b). c). d). e). 6). The following lines have been drawn using a scale of 1 : 100. Write down the length of each line, and then the real length of each line. a). b). c). d). e). 7). The following lines have been drawn using a scale of 1 : 1 000. Write down the length of each line, and then the real length of each line. a). b). c). d). e). Level 5 Pack 3. Page 9. Licensed to De La Salle College [email protected] 8). The following lines have been drawn using a scale of 1 : 500. Write down the length of each line, and then the real length of each line. a). b). c). d). e). 9). The following lines have been drawn using a scale of 1 : 10 000. Write down the length of each line, and then the real length of each line. a). b). c). d). e). 10). The following lines have been drawn using a scale of 1 : 20 000. Write down the length of each line, and then the real length of each line. a). b). c). d). e). 11). Using a scale of 1 : 2 draw out a line that represents the distance:a). 10 cm b). 14 cm c). 8.4 cm d). 68 mm e). 132 mm Write down under the line the exact length of the line you have drawn in cm. 12). Using a scale of 1 : 4 draw a line that represents the distance:a). 20 cm b). 32 cm c). 44.4 cm d). 132 mm e). Write under the line the exact length of the line you have drawn in cm. 420 mm 13). Using a scale of 1 : 20 draw a line that represents the distance:a). 100 cm b). 280 cm c). 210 cm d). 1.8 m e). Write under the line the exact length of the line you have drawn in cm. 1.1 m 14). Using a scale of 1 : 10 draw a line that represents the distance:a). 90 cm b). 76 cm c). 1 m d). 1.4 m e). Write under the line the exact length of the line you have drawn in cm. 1.28 m 15). Using a scale of 1 : 50 draw a line that represents the distance:a). 400 cm b). 380 cm c). 530 cm d). 6.6 m e). Write under the line the exact length of the line you have drawn in cm. 6.45 m 16). Using a scale of 1 : 200 draw a line that represents the distance:a). 840 cm b). 1100 cm c). 12 m d). 14.8 m e). Write under the line the exact length of the line you have drawn in cm. 19.2 m 17). Using a scale of 1 : 100 draw a line that represents the distance:a). 940 cm b). 1110 cm c). 8.7 m d). 13.6 m e). Write under the line the exact length of the line you have drawn in cm. 6.4 m 18). Using a scale of 1 : 10 000 draw a line that represents the distance:a). 40 000 cm b). 98 000 cm c). 560 m d). 830 m e). Write under the line the exact length of the line you have drawn in cm. 1 Km Level 5 Pack 3. Page 10. Licensed to De La Salle College [email protected] Scale Drawings/Ratios 2. Copy out and complete the following tables. A). Work out the scales used, given the following information. Real Life Scale Drawing Scale Used Distance Distance 5 cm 8 cm 8 cm 6 cm 13 cm 13 cm 2.3 cm 1.6 cm 6.3 cm 0.9 cm 3.2 cm 1.6 cm 1 cm 1 cm 2 cm 6 cm 10.4 cm 13.2 cm Real Life Scale Drawing Scale Used Distance Distance 1). 3). 5). 7). 9). 11). 13). 15). 17). 19). 21). 23). 25). 27). 29). 31). 33). 35). 10 cm 32 cm 24 cm 60 cm 104 cm 624 cm 13.8 cm 4.8 cm 315 cm 900 cm 480 cm 3200 cm 1m 3.5 m 4m 7.5 m 13 m 660 m 2). 20 cm 4). 18 cm 6). 45 cm 8). 90 cm 10). 165 cm 12). 450 cm 14). 36.8 cm 16). 32.6 cm 18). 280 cm 20). 345 cm 22). 495 cm 24). 16000 cm 26). 5m 28). 7.3 m 30). 12 m 32). 70 m 34). 92.4 m 36). 862.5 m B). Work out the missing information and complete the table. Real Life Scale Drawing Scale Used Distance Distance 1). 3). 5). 7). 9). 11). 13). 15). 17). 19). 21). 23). 25). 27). 29). 31). 33). 35). 6 cm 9 cm 24 cm 56 cm 480 cm 415 cm 432 cm 1875 cm 292 cm 400 cm 2m 3.5 m 4.6 m 24 m 1 Km Level 5 Pack 3. Page 11. 16 cm 83 cm 2.9 cm 3.6 cm 1:2 1 : 20 1:6 1:7 1 : 20 1 : 125 1 : 60 1 : 150 7.3 cm 0.4 cm 1 : 100 1 : 50 1 : 40 6 cm 1.4 cm 1 cm 1 : 10000 4 cm 9 cm 9 cm 6 cm 11 cm 9 cm 4.6 cm 3.26 cm 1.4 cm 4.6 cm 2.2 cm 6.4 cm 1 cm 1 cm 4 cm 3.5 cm 15.4 cm 34.5 cm Real Life Scale Drawing Scale Used Distance Distance 2). 4). 6). 40 cm 8). 80 cm 10). 360 cm 12). 408 cm 14). 16). 18). 280 cm 20). 4900 cm 22). 258 cm 24). 11800 cm 26). 3.4 m 28). 7.2 m 30). 18 m 32). 500 m 34). 36). 1 Km Licensed to De La Salle College 7 cm 6 cm 24 cm 34 cm 4.1 cm 9.4 cm 1:5 1:8 1:8 1 : 20 1 : 200 1 : 50 1 : 100 1 : 500 8.6 cm 5.9 cm 1 : 100 1 : 200 4 cm 2.5 cm 5.6 cm 2 cm 1 : 20000 [email protected] Battleships F172 360 o/ 000o 045o 315o 5Km 5Km 4Km 4Km 3Km 3Km 2Km 2Km 1Km 1Km 090o 270o 1Km 1Km 2Km 2Km 3Km 3Km 4Km 4Km 5Km 5Km 225o 135o Enemy Status Grid 360 o/ 000o Rules 180o Each player colours in 12 circles to represent their fleet of ships. Do not let anyone else see these! Take it in turns to call out the position and bearing of a shot. The other player must say if it is a "hit" or a "miss". This can be recorded on the enemy status grid. 270o The winner is the first person to destroy the other one's fleet. 045o 315o 5Km 5Km 4Km 4Km 3Km 3Km 2Km 2Km 1Km 1Km 090o 1Km 1Km 2Km 2Km 3Km 3Km 4Km 4Km 5Km 5Km 225o 135o 180o Level 5 Pack 3. Page 12. Licensed to De La Salle College [email protected] Measuring Bearings 1. 1). The grey horizontal line is to help you position your protractor and ruler. Find the bearing and actual distance from the Throne Room to each of the points around the castle. You will need to use the scale at the bottom to find the actual distance. o). n). r). e). N d). a). q). b). j). h). p). k). f). i). c). m). Scale: 1 cm = 10 m ( 1 : 1 000 ) l). Level 5 Pack 3. Page 13. g). Licensed to De La Salle College [email protected] 2). m). Find the bearing and actual distance from the castle to each of the marked points. The distances must be measured to the nearest mm. You will need to use the scale at the bottom to find the actual distance. This is different from the previous page. q). c). N l). n). f). a). b). Castle r). o). d). i). h). p). k). j). g). Scale: 1 cm = 250 m ( 1 : 25 000 ) Level 5 Pack 3. Page 14. Licensed to De La Salle College e). [email protected] Measuring Bearings 2. 1). The grey horizontal line is to help you position your protractor and ruler. Find the bearing and actual distance from the castle to each of the marked points. You will need to use the scale at the bottom to find the actual distance. Be very accurate with all of your measurements. c). j). Dragon Island k). l). a). N r). o). i). Castle b). q). n). d). m). h). e). p). Level 5 Pack 3. Page 15. Scale: 1 cm = 2 Km ( 1 : 200 000 ) Licensed to De La Salle College f). g). [email protected] 2). Find the bearing and actual distance from Dragon Island to each of the other marked islands. You will need to use the scale at the bottom to find the actual distance, this is a different scale from the previous page. Be very accurate with all of your measurements. k). d). i). h). m). N g). a). q). Dragon Island b). l). p). c). o). n). e). r). j). Scale: 1 cm = 50 Km ( 1 : 5 000 000 ) f). Level 5 Pack 3. Page 16. Licensed to De La Salle College [email protected] Angle Properties 1. Reminder We measure the amount of turn in degrees. One full turn is 360˚. Half a turn is 180˚. Acute angles are less than 90˚. Obtuse angles are greater than 90˚ and less than 180˚. Reflex angles are greater than 180 ˚and less than 360˚. Exterior angle Interior angle Interior angles are inside the shape. If one side of a shape is extended outwards, this makes an exterior angle. Interior angle Exterior angle Angle Notation. B When describing a triangle the vertices are labelled using CAPITAL letters. c The sides can be described using lower case letters of the angle opposite it. a A C b can be written as ∠ BAC or BÂC. The angle marked A. Angles on a Straight Line. Angles on a straight line add up to 180˚. E.g. From the diagram find x. x˚ + 117˚ x˚ 117˚ x˚ = 180˚ (Angles on a straight line) = 63˚. Find the size of the angles marked by letters in each diagram. With each angle found, give a reason. (Diagrams not to scale). 1). 2). 3). 4). 5). 115˚ a˚ b˚ 50˚ 6). 140˚ 7). 30˚ 130˚ c˚ 8). d˚ 9). e˚ 10). i˚ f˚ 35˚ g˚ 105˚ h˚ 65˚ 47˚ j˚ 28˚ 11). 12). 63˚ 126˚ Level 5 Pack 3. Page 17. k˚ 13). m˚ 14). 15). 158˚ n˚ 72˚ Licensed to De La Salle College 97˚ p˚ q˚ [email protected] B. Vertically Opposite Angles. Vertically opposite angles are equal. To show this draw out 2 lines that cross (intersect). Measure both sets of vertically opposite angles with a protractor .Vertically opposite angles are equal. E.g. From the diagram find x and y. x˚ = 40˚ (Vertically opposite angles) y˚ y˚ + 40˚ = 180˚ (Angles on a straight line) 40˚ x˚ y˚ = 140˚. Find the size of the angles marked by letters in each diagram. With each angle found, give a reason. (Diagrams not to scale). 1). 2). 3). 120˚ a˚ 45˚ 4). e˚ 25˚ 135˚ b˚ 5). d˚ c˚ 6). 7). 8). h˚ 130˚ 37˚ 9). 60˚ i˚ g˚ 10). k˚ m˚ n˚ j˚ f˚ 11). 12). p˚ 115˚ 145˚ 40˚ q˚ 13). 14). 15). 46˚ t˚ w˚ s˚ x˚ u˚ r˚ 108˚ a˚ b˚ z˚ 156˚ 123˚ v˚ y˚ e˚ 37˚ c˚ f˚ d˚ C. Angles at a Point. The angles that meet at a point add up to 360˚. E.g. From the diagram find u. u˚ + 90˚ + 100˚ + 75˚ = 360˚ (Angles at a point) u˚ + 265˚ = 360˚ u˚ = 95˚ 75˚ u˚ 100˚ Find the size of the angles marked by letters in each diagram. With each angle found, give a reason. (Diagrams not to scale). 1). 2). 72˚ a˚ 3). 117˚ 6). 7). g˚ 35˚ Level 5 Pack 3. Page 18. 76˚ 87˚ 135˚ 64˚ f˚ 145˚ i˚ 9). m˚ 45˚ k˚ 44˚ 61˚ 32˚ 74˚ e˚ 136˚ 97˚ 54˚ 8). 46˚ h˚ 5). 83˚ d˚ c˚ b˚ 154˚ 4). j˚ 66˚ 82˚ Licensed to De La Salle College 10). t˚ q˚ s˚ p˚ r˚ 38˚ 43˚ 12˚ r˚ 73˚ u˚ [email protected] Angle Properties 2. D. Angle Sum of a Triangle. The interior angles of a triangle add up to 180˚. 1). Cut out a triangle like the one below and mark on the dots. 2). Fold the top vertex to touch the base. 3). Fold in the other two vertices to where they all meet. All the angles are now on a straight line, hence they add up to 180˚. E.g. From the diagram find s and t. s˚ + 50˚ + 70˚ = 180˚ (Angle Sum of a Triangle) s˚ + 120˚ = 180˚ 50˚ s˚ = 60˚ 60˚ + t˚ = 180˚ (Angles on straight line) t˚ 70˚ s˚ t˚ = 120˚ Find the size of the angles marked by letters in each diagram. With each angle found, give a reason. (Diagrams not to scale). 1). 2). 3). 45˚ 80˚ 60˚ 7). 37˚ i˚ 76˚ 55˚ m˚ 16). 13). 81˚ 64˚ 17). 15). v˚ 37˚ 64˚ b˚ w˚ 7˚ 36˚ c˚ e˚ 83˚ f˚ 9˚ d˚ 37˚ 23). 157˚ 81˚ 74˚ 8˚ u˚ 20). a˚ 22). s˚ 106˚ 19). z˚ y˚ 37˚ 83˚ x˚ 64˚ t˚ 18). 16˚ 77˚ 14). r˚ q˚ n˚ 52˚ j˚ 11˚ 12). p˚ 10). h˚ 29˚ 87˚ 11). 21). 86˚ 9). 19˚ 47˚ e˚ 82˚ 8). g˚ 78˚ 55˚ 20˚ 52˚ d˚ 6). k˚ 5). 35˚ c˚ 35˚ b˚ 70˚ a˚ f˚ 4). 24). 25). j˚ i˚ 84˚ k˚ h˚ g˚ 42˚ 83˚ Level 5 Pack 3. Page 19. q˚ 74˚ m˚ 47˚ 29˚ p˚ r˚ Licensed to De La Salle College v˚ 58˚ u˚ s˚ 117˚ t˚ 23˚ z˚ y˚ x˚ w˚ 76˚ [email protected] E. Special Triangles. Reminder: An Isosceles triangle that has 2 sides equal and the two base angles equal. An Equilateral triangle has all the sides the same length and all the angles equal. 1). 2). 3). c˚ 4). b˚ j˚ d˚ f˚ 70˚ 6). 7). h˚ 8). k˚ 10). u˚ n˚ 11). o˚ 63˚ 12). 13). h˚ e˚ c˚ b˚ q˚ s˚ 76˚ g˚ 34˚ 14). 15). 31˚ m˚ 134˚ j˚ n˚ f˚ v˚ t˚ k˚ u˚ r˚ v˚ q˚ p˚ 42˚ a˚ 71˚ i˚ y˚ x˚ z˚ w˚ 38˚ r˚ 38˚ d˚ 22˚ g˚ 9). p˚ m˚ i˚ 80˚ 47˚ a˚ 5). e˚ 72˚ s˚ x˚ t˚ w˚ 73˚ F. Angle Sum of Polygons. All the polygons can be made up of triangles. Triangle Quadrilateral 1 triangle interior angles 1 x 180˚ = 180˚ Pentagon 2 triangles interior angles 2 x 180˚ = 3 triangles Copy and complete these diagrams. Draw the diagrams up to a decagon (10 -sided shape). Copy and complete the table below. Polygon Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon Level 5 Pack 3. Page 20. Number of sides Number of triangles Sum of interior angles 3 4 1 2 1 x 180˚ = 180˚ Licensed to De La Salle College [email protected] Angle Properties 3. G. Angle Sum of a Quadrilateral. The interior angles of a quadrilateral add up to 360˚. E.g. From the diagram find p, q and r. p˚ + 150˚ + 60˚ + 115˚ = 360˚ (Angle Sum of a Quadrilateral) p˚ + 325˚ = 360˚ r˚ q˚ p˚ = 35˚ p˚ 115˚ 35˚ + q˚ = 180˚ (Angles on straight line) q˚ = 145˚ 150˚ 60˚ r˚ = 115˚ (Vertically opposite angles). Find the size of the angles marked by letters in each diagram. With each angle found, give a reason. (Diagrams not to scale). 1). 2). 3). b˚ 75˚ 4). 126˚ 5). c˚ 130˚ 31˚ 143˚ 154˚ a˚ 85˚ 6). g˚ 64˚ 59˚ 8). 97˚ 123˚ i˚ 9). 131˚ 51˚ 10). r˚ p˚ n˚ m˚ 113˚ h˚ j˚ k˚ 85˚ q˚ 83˚ 11). 12). 78˚ 13). 75˚ w˚ a˚ x˚ c˚ 16). 17). 64˚ 76˚ s˚ 118˚ e˚ 62˚ i˚ c˚ 74˚ t˚ y˚ 94˚ k˚ j˚ m˚ g˚ 62˚ 75˚ p˚ 118˚ 20). 18˚ a˚ 64˚ u˚ w˚ x˚ 67˚ 19). v˚ 38˚ 133˚ f˚ r˚ q˚ 98˚ 18). 54˚ 15). h˚ b˚ 108˚ 128˚ v˚ u˚ 80˚ 14). d˚ 67˚ s˚ 36˚ 86˚ t˚ 54˚ 53˚ 103˚ 52˚ 73˚ d˚ e˚ 75˚ 58˚ 7). 69˚ 65˚ f˚ a˚ 44˚ b˚ b˚ e˚ d˚ c˚ d˚ f˚ e˚ 35˚ g˚ h˚ 126˚ i˚ j˚ H. Constructions. The Perpendicular Bisector. This construction will bisect (cut in half) a line. The construction is perpendicular (at right angles) to the line. 1). Put a compass on one end of the line. Draw an arc above and below the line. Level 5 Pack 3. Page 21. 2). Keep the compass open at the same distance. Now place it at the other end of the line and repeat step 1. Licensed to De La Salle College 3). Where these arcs cross, join them up. This is the perpendicular bisector [email protected] The Angle Bisector. This construction 1). 2). Put a compass on the vertex of the angle. Draw arcs that cross both lines of the angle, keeping the compass at the same distance apart. bisects (cuts exactly in half) an angle. Now place the compass at the points marked on each line. Keeping the compass at the same distance draw out arcs. 3). Where these arcs cross, join them up. This is the angle bisector. A line parallel to another. This construction creates parallel lines at a set distance apart. ler Ru x Set Square 1). x The line is to pass through the x. Place the base of the set square along the line. Put a ruler along the other edge. 2). x Move the set square up the edge of the ruler until the base of the set square is in line with the x. 3). Draw along the base of the set square to form the parallel line. 1). Draw lines the following lengths. Using only compasses bisect them. i). 6.3 cm ii). 78 mm iii). 104 mm iv). 12.1 cm 2). Using a protractor measure out the following angles. Using only compasses bisect them. i). 46˚ iii). 87˚ iii). 128˚ iv). 106˚ Construct the following shapes. A 3). i). 8.3 cm Measure the length AC. ii). Bisect ∠ BAC. iii). Measure ∠ ACB. 65˚ C 7.4 cm 4). i). ii). Measure DF. Using only compasses bisect DE. iii). Mark a 132˚ 21˚ E D point 6.5 cm 3 cm along EF away from E. Construct a line parallel to DE through this point. H 5). i). 8.0 cm 100˚ G Level 5 Pack 3. Page 22. 5.6 cm Measure HI. ii). Measure ∠ GHI. iii). Using only compasses bisect HG. iv). Using only compasses bisect ∠ HIJ. I v). Mark a point 3.5 cm from I along IJ. Construct a line parallel to HI through 5.6 cm this point. 140˚ J Licensed to De La Salle College [email protected] F Logo 1. We can use Logo to draw shapes and patterns on the computer. The basic Logo commands are: FORWARD RIGHT PENUP CLEARSCREEN FD RT PU CS BACK SHOWTURTLE PENDOWN TO BK ST PD LEFT HIDETURTLE HOME END LT HT You can use the full command or the shortened version. There must always be a space between commands. Your teacher will show you how to log on to the computer and into the Logo package. You are now ready to start entering commands. Try this 1. Enter the following commands. FD 100 Remember : Leave a space between the LT 90 command and the number. FD 100 LT 90 After each line press FD 100 ENTER. LT 90 FD 100 You should see a square slowly appear on your screen. The FD 100 command tells the turtle to go 100 units forward. The LT 90 command tells the turtle to turn left through 90˚. To clear the screen type in the command CS and press ENTER. Try this 2. Enter the following commands. FD 100 As you work through this try hiding the RT 120 turtle HT followed by ENTER. FD 100 It is difficult to follow what you are doing RT 120 so bring it back ST followed by ENTER. FD 100 You should see an equilateral triangle appear on your screen. When producing shapes and patterns both the starting and finishing positions of the turtle are important, along with the direction it is pointing. Exercise 1. 1). 2). Look at the first example, the square. What effect does changing i). the LT 90 command lines to RT 90 have ? ii). the FD 100 command lines to FD 200 have ? Look at the second example, the triangle. What effect does changing i). the RT 120 command lines to LT 120 have ? ii). the FD 100 command lines to FD 50 have ? Level 5 Pack 3. Page 23. Licensed to De La Salle College [email protected] Exercise 2. Use the basic Logo commands FD, LT and RT to draw these shapes on your computer. Write down your Logo instructions as you go along. Start at . Use distances and angles that you feel are appropriate. 1). 2). 6). 3). 7). 5). 4). 8). 9). Try this 3. Enter these sets of commands and write down what shapes you get. a). FD 100 b). FD 100 c). FD 100 d). FD 100 e). RT 45 RT 72 RT 60 RT 90 FD 100 FD 100 FD 100 FD 100 RT 45 RT 72 RT 60 RT 90 FD 100 FD 100 FD 100 FD 100 RT 45 RT 72 RT 60 RT 90 FD 100 FD 100 FD 100 FD 100 RT 45 RT 72 RT 60 RT 90 FD 100 FD 100 FD 100 RT 45 RT 72 RT 60 FD 100 FD 100 RT 45 RT 60 FD 100 RT 45 FD 100 RT 45 FD 100 RT 40 FD 100 RT 40 FD 100 RT 40 FD 100 RT 40 FD 100 RT 40 FD 100 RT 40 FD 100 RT 40 FD 100 RT 40 FD 100 RT 40 In all these examples the same instructions are repeated a number of times. Instead of all this typing we can use a REPEAT statement. Clear the screen CS and type in: REPEAT 3[FD 100 RT 120] This tells the computer to work through the instructions in the bracket 3 times ! This replaces 6 lines of command, and draws out our equilateral triangle. Exercise 3. Using the REPEAT statement rewrite a - e above so the command is only one line long. Check these on your computer. Level 5 Pack 3. Page 24. Licensed to De La Salle College [email protected] Logo 2. A procedure is a set of instructions we name. We name a set of instructions so we don't have to keep writing them out. We name them by using a TO and END command around our instructions. Try this 1. Type in: TO SQUARE REPEAT 4[FD 50 RT 90] END (Press ENTER key) (Press ENTER key) (Press ENTER key) (A procedure must always finish with an END statement). The procedure should now have been defined. To use it simply type in its name. Type in: SQUARE (Press ENTER key). Exercise 1. Write a procedure that will draw out an equilateral triangle 50 units in length. Name it TRIANGLE. Try this 2. Type in: SQUARE FD 50 SQUARE (Press ENTER key) (Press ENTER key) (Press ENTER key) The shape at the side should appear. If it goes off the screen use your scroll bar to centre it. This last procedure could have been shortened using a REPEAT command. Type in: REPEAT 2[SQUARE FD 50] Exercise 2. Write down the procedure, using similar commands to the one above, that draws out these shapes. 1). 2). 3). If we assign a name to these procedures we can obtain some interesting patterns. Try this 3. Type in: TO BLOCK REPEAT 3[SQUARE FD 50] END (Press ENTER key) (Press ENTER key) Clear the screen (CS) then type in : RT 45 BLOCK The blocks should appear diagonally across the screen. Exercise 3. 1). Write down a similar procedure that will give this shape. Check it on your computer. Level 5 Pack 3. Page 25. Licensed to De La Salle College [email protected] 2). Use the two procedures we have already named (SQUARE and TRIANGLE) along with the REPEAT, FD, LT and RT commands to draw the following shapes. Write down the full set of instructions once you have checked it on your computer. a). b). c). d). e). f). So far in all the procedures the size of the square and triangle have been fixed by the number following the FD command. We can now introduce a number that can be changed (a variable) which will allow us to draw different sizes of triangle and square. This is shown by :SIZE . To delete all the procedures we use the command ERALL. Try this 4. Type in: ERALL TO SQUARE :SIZE REPEAT 4[FD :SIZE RT 90] END ( Make sure you have a space before the : ) ( Make sure you have a space before the : ) The : in front of the word SIZE tells the computer that the word SIZE is a variable. Now when you use the procedure you must say how big you want it. Type in: SQUARE 50 SQUARE 100 SQUARE 150 ( Make sure you have a space before the 50 ) ( Make sure you have a space before the 100 ) ( Make sure you have a space before the 150 ). You should have made a pattern like the one at the side. Exercise 4. 1). Write a procedure that will produce equilateral triangles of any size. Name it TRIANGLE :SIZE . Check it on your computer. 2). Using all your knowledge of logo, write out the instructions you would use to produce these shapes. Remember to try them out on your computer first. a). b). c). d). e). Level 5 Pack 3. Page 26. Licensed to De La Salle College [email protected] Parallel Lines. Revision. Find the value of the letters. Where there is more than one letter to find, find the letters in alphabetical order. Give a reason with the answer. (Diagrams are not drawn to scale). 1). 2). b˚ 132˚ 7). 11). x˚ h˚ 38˚ g˚ y˚ 16). 13). 17). 18). 129˚ r˚ q˚ t˚ 14). p˚ 51˚ u˚ 65˚ z˚ 47˚ o˚ 57˚ n˚ 49˚ 1). f˚ h˚ 142˚ g˚ e˚ 36˚ 20). 156˚ x˚ y˚ 48˚ w˚ b˚ a˚ c˚ d˚ 53˚ Alternate Angles ("z" shapes). A). i˚ 117˚ 15). 19). v˚ 133˚ w˚ j˚ m˚ 142˚ 56˚ 78˚ x˚ 127˚ 10). n˚ m˚ k˚ 73˚ l˚ 18˚ 81˚ 34˚ 63˚ 122˚ 9). e˚ 87˚ f˚ 12). 5). c˚ 176˚ 47˚ 8). 134˚ 153˚ a˚ 46˚ 63˚ d˚ s˚ 4). p˚ 34˚ 6). 3). 78˚ In each diagram are two pairs of alternate angles. Identify them. 2). a˚ b˚ c˚ d˚ 3). p˚ q˚ e˚ f˚ g˚ h˚ 6). s˚ r˚ u˚ t˚ v˚ w˚ 7). 8). e˚ s˚ o˚q˚ r˚ t˚ m˚ p˚ n˚ 4). f˚ g˚ n˚ p˚ m˚ q˚ o˚ t˚ r˚ s˚ h˚ e˚ c˚ f˚ d˚ a˚ b˚ 9). d˚ c˚ e˚ f˚ h˚ g˚ i˚ j˚ g˚ h˚ i˚ k˚ j˚ l˚ 5). s˚ t˚ u˚ v˚ w˚ x˚ y˚ z˚ 10). k˚ l˚ m˚ n˚ o˚ p˚ q˚ r˚ u˚ y˚ z˚ w˚ t˚ s˚ v˚ x˚ B). Find the value of the letters. Where there is more than one letter to find, find the missing letters in alphabetical order. Give a reason with the answer. (Diagrams are not drawn to scale). 1). 2). 3). 5). r˚ 47˚ v˚ s˚ 6). 132˚ 7). x˚ Level 5 Pack 3. Page 27. 141˚ 38˚ e˚ 17˚ g˚ 8). v˚ u˚ y˚ 37˚ 4). 9). a˚ 48˚ b˚ Licensed to De La Salle College 146˚ 10). 129˚ 137˚ r˚ s˚ g˚ h˚ [email protected] 11). 12). 53˚ h˚ 13). 14). v˚ u˚ r˚ q˚ g˚ 147˚ 15). 17). 44˚ e˚ z˚ e˚ 18). 19). 20). u˚ f˚ g˚ y˚ d˚ 131˚ 16). 58˚ 21˚ i˚ t˚ b˚135˚ c˚ d˚ s˚ 108˚ 127˚ t˚ h˚ f˚ g˚ a˚ u˚ v˚ w˚ y˚ z˚ x˚ 83˚ Corresponding Angles ("F" shapes). A). In each diagram are four pairs of corresponding angles. Identify them. 1). 2). 3). a˚ b˚ c˚ d˚ 4). n˚ p˚ m˚ q˚ o˚ t˚ r˚ s˚ p˚ q˚ e˚ f˚ g˚ h˚ 6). s˚ r˚ u˚ t˚ v˚ w˚ 7). 8). e˚ s˚ o˚q˚ r˚ t˚ m˚ p˚ n˚ f˚ g˚ h˚ e˚ c˚ f˚ d˚ a˚ b˚ 9). d˚ c˚ e˚ f˚ h˚ g˚ i˚ j˚ g˚ h˚ i˚ k˚ j˚ l˚ 5). s˚ t˚ u˚ v˚ w˚ x˚ y˚ z˚ 10). k˚ l˚ m˚ n˚ o˚ p˚ q˚ r˚ u˚ y˚ z˚ w˚ t˚ s˚ v˚ x˚ B). Find the value of the letters. Where there is more than one letter to find, find the values of missing letters in alphabetical order. Give a reason with the answer. (Diagrams not to scale). 1). 2). 3). w˚ 4). 136˚ n˚ f˚ 6). 7). c˚ 61˚ 13). 14). q˚ m˚ n˚ 15). 129˚ v˚ x˚ d˚ u˚ p˚ 51˚ 17). 56˚ 18). b˚ c˚ d˚ 19˚ Level 5 Pack 3. Page 28. 49˚ f˚ g˚ 164˚ 12). a˚ 137˚ d˚ 63˚ e˚ c˚ 10). 153˚ b˚ 16). 9). d˚ j˚ 37˚ c˚ 8). s˚ r˚ k˚ 71˚ e˚ 63˚ 55˚ 11). 5). 12˚ x˚ z˚ y˚ a˚ 102˚ Licensed to De La Salle College c˚ 47˚ y˚ 19). 20). f˚ e˚ g˚ d˚ 119˚ c˚ t˚ s˚ x˚ y˚ u˚ 149˚ w˚ v˚ [email protected] Metric Units -Lengths. A). Change the following from centimetres (cm) to millimetres (mm). 1 cm = 10 mm 1). 2). 3). 4). 5). 6). 7). 8). 2 cm 4 cm 7 cm 6 cm 1 cm 9 cm 5 cm 8 cm 9). 10). 11). 12). 13). 14). 15). 16). 15 cm 12 cm 19 cm 25 cm 17 cm 29 cm 35 cm 71 cm 17). 18). 19). 20). 21). 22). 23). 24). 4.1 cm 2.6 cm 1.9 cm 7.2 cm 2.1 cm 9.8 cm 3.4 cm 5.5 cm 25). 26). 27). 28). 29). 30). 31). 32). 0.8 cm 0.2 cm 0.7 cm 0.5 cm 0.1 cm 0.9 cm 0.4 cm 0.6 cm 33). 34). 35). 36). 37). 38). 39). 40). 3 cm 42 cm 6.2 cm 0.3 cm 14 cm 9.8 cm 12.5 cm 18.4 cm B). Change the following from millimetres (mm) to centimetres (cm). 7 mm 9 mm 1 mm 8 mm 4 mm 6 mm 3 mm 5 mm 33). 34). 35). 36). 37). 38). 39). 40). 60 mm 130 mm 360 mm 2 mm 17 mm 183 mm 904 mm 671 mm 1.50 m 1.5 m 1.7 m 0.3 m 7.4 m 9.6 m 7.2 m 0.1 m 9.2 m 6.1 m 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 4m 2.2 m 3.17 m 4.26 m 1.1 m 11 m 0.7 m 6.3 m 5.26 m 14 m 98 cm 56 cm 78 cm 30 cm 62 cm 40 cm 10 cm 83 cm 90 cm 61 cm 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 4000 cm 226 cm 304 cm 1420 cm 810 cm 1045 cm 26 cm 650 cm 60 cm 4720 cm 10 mm = 1 cm 9). 10). 11). 12). 13). 14). 15). 16). 100 mm 160 mm 190 mm 220 mm 460 mm 950 mm 370 mm 710 mm 17). 18). 19). 20). 21). 22). 23). 24). 49 mm 26 mm 18 mm 31 mm 21 mm 87 mm 76 mm 98 mm 25). 26). 27). 28). 29). 30). 31). 32). 1). 2). 3). 4). 5). 6). 7). 8). 70 mm 20 mm 10 mm 90 mm 50 mm 30 mm 80 mm 40 mm C). Change the following from metres (m) to centimetres (cm). 1 m = 100 cm 11). 12). 13). 14). 15). 16). 17). 18). 19). 20). 21). 22). 23). 24). 25). 26). 27). 28). 29). 30). 2.53 m 2.42 m 1.31 m 0.49 m 4.37 m 3.21 m 0.35 m 1.25 m 2.93 m 4.92 m 6.04 m 6.40 m 6.4 m 7.01 m 7.10 m 7.1 m 6.03 m 6.30 m 6.3 m 1.05 m 31). 32). 33). 34). 35). 36). 37). 38). 39). 40). 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). 2m 3m 6m 1m 7m 10 m 9m 5m 12 m 15 m D). Change the following from centimetres (cm) to metres (m). 100 cm = 1 m 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). 200 cm 700 cm 900 cm 100 cm 300 cm 1200 cm 1900 cm 800 cm 1500 cm 2400 cm Level 5 Pack 3. Page 29. 11). 12). 13). 14). 15). 16). 17). 18). 19). 20). 124 cm 257 cm 462 cm 971 cm 352 cm 713 cm 498 cm 2683 cm 1823 cm 3198 cm 21). 22). 23). 24). 25). 26). 27). 28). 29). 30). 206 cm 260 cm 703 cm 730 cm 901 cm 910 cm 720 cm 702 cm 2690 cm 2609 cm Licensed to De La Salle College 31). 32). 33). 34). 35). 36). 37). 38). 39). 40). [email protected] S.I. Units (Système International d'Unités) E). Change the following from kilometres (Km) to metres (m). 1 Km = 1000 m 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). F). 31). 4 Km 11). 2.573 Km 21). 4.92 Km 3 Km 12). 3.428 Km 22). 6.44 Km 32). 6 Km 13). 1.381 Km 23). 1.34 Km 33). 2 Km 24). 0.67 Km 34). 14). 0.493 Km 25). 5.04 Km 35). 7 Km 15). 6.357 Km 14 Km 16). 3.211 Km 26). 0.26 Km 36). 18 Km 17). 0.135 Km 27). 7.90 Km 37). 5 Km 18). 1.057 Km 28). 3.06 Km 38). 21 Km 29). 0.08 Km 39). 19). 2.903 Km 19 Km 30). 2.80 Km 40). 20). 4.920 Km Change the following from metres (m) to kilometres (Km). 2.8 Km 1.4 Km 3.7 Km 0.5 Km 6.0 Km 9.6 Km 7.2 Km 0.8 Km 1.2 Km 6.1 Km 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 15 Km 2.02 Km 3.179 Km 4.2 Km 1.98 Km 0.056 Km 3.6 Km 8 Km 5.266 Km 4.06 Km 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 5000 m 2267 m 3004 m 120 m 817 m 45 m 2689 m 5m 6052 m 472 m 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 5m 2.2 m 3.157 m 4.006 m 1.01 m 31 m 0.07 m 6.3 m 5.206 m 0.008 m 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 4000 mm 2206 mm 34 mm 1420 mm 81 mm 5 mm 2006 mm 6150 mm 603 mm 4020 mm 1000 m = 1 Km 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). G). 11). 1924 m 21). 476 m 31). 398 m 2000 m 22). 269 m 32). 56 m 7000 m 12). 5257 m 33). 18 m 4000 m 13). 8462 m 23). 753 m 1000 m 14). 7971 m 24). 73 m 34). 3 m 15). 2352 m 25). 981 m 35). 12 m 13000 m 26). 912 m 36). 9 m 15000 m 16). 4713 m 37). 4 m 17). 6298 m 27). 725 m 19000 m 28). 32 m 38). 83 m 8000 m 18). 2083 m 39). 92 m 24000 m 19). 1803 m 29). 26 m 40). 6 m 45000 m 20). 3490 m 30). 169 m Change the following from metres (m) to millimetres (mm). 1 m = 1000 mm 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). H). 21). 2.87 m 31). 1.5 m 7m 11). 1.523 m 32). 3.6 m 4m 12). 2.472 m 22). 1.49 m 8m 23). 5.44 m 33). 2.1 m 13). 1.301 m 3m 14). 0.549 m 24). 7.81 m 34). 0.6 m 35). 7.4 m 9m 15). 2.317 m 25). 0.84 m 26). 7.19 m 36). 9.0 m 14 m 16). 3.291 m 10 m 17). 0.305 m 27). 6.03 m 37). 0.2 m 19 m 28). 0.72 m 38). 0.9 m 18). 1.295 m 22 m 19). 2.973 m 29). 8.30 m 39). 9.2 m 30). 1.50 m 40). 4.1 m 35 m 20). 2.870 m Change the following from millimetres (mm) to metres (m). 1000 mm = 1 m 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). 2000 mm 7000 mm 9000 mm 1000 mm 3000 mm 12000 mm 19000 mm 8000 mm 15000 mm 24000 mm Level 5 Pack 3. Page 30. 11). 12). 13). 14). 15). 16). 17). 18). 19). 20). 1274 mm 4257 mm 4062 mm 9701 mm 8252 mm 7213 mm 4098 mm 5683 mm 1823 mm 3190 mm 21). 22). 23). 24). 25). 26). 27). 28). 29). 30). 296 mm 468 mm 103 mm 73 mm 961 mm 919 mm 16 mm 702 mm 26 mm 299 mm Licensed to De La Salle College 31). 32). 33). 34). 35). 36). 37). 38). 39). 40). 598 mm 56 mm 78 mm 3 mm 612 mm 40 mm 17 mm 8 mm 95 mm 6 mm [email protected] Metric Units -Weight. (S.I. Units only) A). Change the following from kilograms (Kg) to grams (g). 1 Kg = 1000 g 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). 3 Kg 5 Kg 9 Kg 2 Kg 10 Kg 14 Kg 7 Kg 20 Kg 21 Kg 54 Kg B). Change the following from grams (g) to kilograms (Kg). 11). 12). 13). 14). 15). 16). 17). 18). 19). 20). 1.583 Kg 3.828 Kg 4.281 Kg 0.513 Kg 6.381 Kg 2.218 Kg 0.185 Kg 1.089 Kg 0.053 Kg 1.520 Kg 21). 22). 23). 24). 25). 26). 27). 28). 29). 30). 1.52 Kg 2.66 Kg 1.72 Kg 0.34 Kg 2.04 Kg 0.96 Kg 7.23 Kg 3.60 Kg 0.04 Kg 6.70 Kg 31). 32). 33). 34). 35). 36). 37). 38). 39). 40). 6.7 Kg 1.9 Kg 2.7 Kg 0.3 Kg 5.0 Kg 7.6 Kg 3.9 Kg 0.8 Kg 1.9 Kg 5.1 Kg 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 19 Kg 4.09 Kg 2.519 Kg 4.9 Kg 1.06 Kg 0.026 Kg 7.1 Kg 8 Kg 5.736 Kg 0.003 Kg 390 g 16 g 38 g 8g 12 g 5g 1g 73 g 92 g 6g 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 8000 g 2927 g 6004 g 720 g 117 g 55 g 2089 g 7g 8052 g 342 g 8.1 g 0.5 g 2.3 g 7.2 g 17). 18). 19). 20). 16 g 4.005 g 2.3 g 0.007g 11 mg 9 mg 17 mg 2 mg 17). 18). 19). 20). 1700 mg 1295 mg 3 mg 420 mg 1000 g = 1 Kg 11). 12). 13). 14). 15). 16). 17). 18). 19). 20). 21). 22). 23). 24). 25). 26). 27). 28). 29). 30). 5724 g 1427 g 8782 g 1971 g 9352 g 2715 g 5298 g 4028 g 8803 g 3560 g 672 g 159 g 633 g 53 g 921 g 712 g 805 g 42 g 21 g 109 g 31). 32). 33). 34). 35). 36). 37). 38). 39). 40). 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). 5000 g 2000 g 7000 g 1000 g 14000 g 11000 g 23000 g 9000 g 28000 g 36000 g C). Change the following from grams (g) to milligrams (mg). 1 g = 1000 mg 1). 2). 3). 4). 6g 14 g 22 g 53 g 5). 6). 7). 8). 3.682 g 1.405 g 0.156 g 4.190 g 9). 10). 11). 12). 2.45 g 3.85 g 0.53 g 0.02 g 13). 14). 15). 16). D). Change the following from milligrams (mg) to grams (g). 1000 mg = 1g 1). 2). 3). 4). 4000 mg 13000 mg 37000 mg 6000 mg Level 5 Pack 3. Page 31. 5). 6). 7). 8). 3659 mg 1384 mg 8210 mg 6019 mg 9). 10). 11). 12). 722 mg 45 mg 523 mg 72 mg Licensed to De La Salle College 13). 14). 15). 16). [email protected] E). Change the following from tonnes (t) to Kilograms (Kg). 1 t = 1000 Kg 1). 2). 3). 4). 3t 9t 18 t 37 t 5). 6). 7). 8). 9.524 t 1.894 t 0.810 t 7.949 t 9). 10). 11). 12). 2.82 t 3.95 t 1.03 t 0.02 t 13). 14). 15). 16). F). Change the following from Kilograms (Kg) to tonnes (t). 1.3 t 0.5 t 2.3 t 8.2 t 17). 18). 19). 20). 5t 1.005 t 0.9 t 5.004 t 31 Kg 549 Kg 17 Kg 9 Kg 17). 18). 19). 20). 305 Kg 1295 Kg 2973 Kg 26 Kg 1000 Kg = 1 t 1). 2). 3). 4). 2000 Kg 43000 Kg 17000 Kg 7000 Kg 5). 6). 7). 8). 9205 Kg 1480 Kg 3093 Kg 6952 Kg 9). 10). 11). 12). 272 Kg 435 Kg 23 Kg 572 Kg 13). 14). 15). 16). Metric Units -Capacity. (S.I. Units only) A). Change the following from litres (l) to millilitres (ml). 1 l = 1000 ml 4l 9l 2l 6l 18 l 24 l 37 l 5l 51 l 98 l B). Change the following from millilitres (ml) to litres (l). 11). 12). 13). 14). 15). 16). 17). 18). 19). 20). 1.343 l 4.878 l 5.81 l 0.833 l 3.381 l 2.898 l 0.285 l 3.019 l 0.043 l 2.560 l 2.56 l 3.76 l 4.72 l 0.38 l 1.04 l 0.56 l 6.23 l 5.30 l 0.08 l 6.40 l 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). 21). 22). 23). 24). 25). 26). 27). 28). 29). 30). 31). 32). 33). 34). 35). 36). 37). 38). 39). 40). 6.4 l 1.8 l 5.1 l 0.4 l 2.0 l 7.5 l 2.9 l 0.6 l 1.9 l 2.1 l 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 13 l 1.07 l 2.539 l 1.9 l 3.02 l 0.016 l 5.1 l 8l 5.932 l 0.001 l 31). 32). 33). 34). 35). 36). 37). 38). 39). 40). 290 ml 26 ml 68 ml 4 ml 15 ml 5 ml 1 ml 33 ml 98 ml 6 ml 41). 42). 43). 44). 45). 46). 47). 48). 49). 50). 8000 ml 2717 ml 5004 ml 220 ml 107 ml 35 ml 2079 ml 7 ml 8092 ml 942 ml 1000 ml = 1 l 1). 2). 3). 4). 5). 6). 7). 8). 9). 10). 7000 ml 4000 ml 6000 ml 12000 ml 34000 ml 11000 ml 3000 ml 9000 ml 48000 ml 86000 ml Level 5 Pack 3. Page 32. 11). 12). 13). 14). 15). 16). 17). 18). 19). 20). 4224 ml 1027 ml 6482 ml 1954 ml 8752 ml 2305 ml 7098 ml 4028 ml 2803 ml 9560 ml 21). 22). 23). 24). 25). 26). 27). 28). 29). 30). 472 ml 259 ml 733 ml 24 ml 525 ml 212 ml 705 ml 34 ml 61 ml 103 ml Licensed to De La Salle College [email protected] Calculations with Metric Units. A). The Four Rules. 1). 4). 7). 10). 13). 16). 19). 22). 4.6 Km + 2.17 Km 10.5 m + 7.74 m 6.54 Kg - 3.26 Kg 2.8 m - 0.93 m 12.45 m x 4 7.038 l x 3 51.6 m ÷ 8 47.6 ml ÷ 7 2). 5). 8). 11). 14). 17). 20). 23). 7.32 m + 2.5 m 6 Kg + 0.74 Kg 6.45 m - 2.7 m 4.8 l - 2.457 l 2.052 Km x 6 3.67 cm x 9 40.5 mm ÷ 9 7.854 Kg ÷ 6 3). 6). 9). 12). 15). 18). 21). 24). 5.83 Kg + 3.4 Kg 4.567 l + 0.87 l + 5 l 8.563 l - 7.4 l 9.32 Kg - 5.602 Kg 9.6 mm x 8 0.746 Kg x 5 12.436 l ÷ 4 55.2 cm ÷ 12 B). Mixed Units. Leave answers in the units you see first. e.g. Number 1 will be left in Km. 1). 4). 7). 10). 13). 16). 19). 22). 25). 28). 4.65 Km + 700 m 5420 mg + 3.2 g 12.4 cm + 37 mm 7400 mm + 3.4 m 9.5 m + 174 cm 2.04 g + 3246 mg 3045 mm + 1.204 m 260 mg + 4.2 g 4904 g + 7.56 Kg 840 mm + 0.3 m 2). 5). 8). 11). 14). 17). 20). 23). 26). 29). 2.32 m + 85 cm 95 cm + 2.86 m 950 g + 1.72 Kg 6.8 Kg + 2374 g 3200 m + 1.453 Km 3.16 m + 1200 mm 2403 ml + 1.57 l 6.03 Km + 845 m 3.6 cm + 84 mm 1.5 Kg + 20 g 3). 6). 9). 12). 15). 18). 21). 24). 27). 30). 1.73 Kg + 370 g 0.767 l + 2487 ml 850 ml + 3.24 l 455 cm + 8.4 m 1.78 t + 921 Kg 2457 Kg + 5.6 t 98 cm + 3.9 m 0.8 t + 750 Kg 0.06 l + 6408 ml 5 cm + 2.7 m 31). 34). 37). 40). 43). 46). 49). 52). 55). 58). 1.654 Km - 500 m 4578 mg - 2.3 g 9.4 cm - 37 mm 4400 mm - 1.5 m 8.5 m - 374 cm 2.04 g - 1246 mg 5045 mm - 1.04 m 7260 mg - 4.2 g 4904 g - 1.56 Kg 840 mm - 0.19 m 32). 35). 38). 41). 44). 47). 50). 53). 56). 59). 4.32 m - 25 cm 210 cm - 1.09 m 1240 g - 0.43 Kg 4.8 Kg - 2374 g 3270 m - 1.453 Km 4.06 m - 1200 mm 2603 ml - 1.37 l 6.03 Km - 845 m 11.6 cm - 89 mm 1.2 Kg - 20 g 33). 36). 39). 42). 45). 48). 51). 54). 57). 60). 2.734 Kg - 613 g 2.767 l - 486 ml 6850 ml - 3.94 l 450 cm - 2.4 m 2.38 t - 826 Kg 5457 Kg - 2.6 t 98 cm - 0.45 m 0.8 t - 257 Kg 4.06 l - 608 ml 455 cm - 0.77 m C). Worded Questions. 1). A runner jogs 4.6 Km on day 1, 8.26 Km on day 2 and 7.362 Km on day 3. How far has the runner jogged altogether? 2). A plank of wood is 3.6 metres long. A piece, 185 cm long, is sawn off. What is the length of the remaining piece of wood, in metres ? 3). A Bungalow is 3.7 metres tall. It is to have an upstairs built on. The upstairs is 2.45 m tall. How high will the new building be ? 4). Five friends measure their heights. John is 1.6 metres, Jenny is 138 centimetres, Gemma is 162 centimetres, Jilly is 1.09 metres and Jim is 1.8 metres. What is their total height ? 5). Claire walks along Hadrian's Wall. The first day she walks 6.1 Km, the second day she walks 12.45 Km and the third day she walks 5025 m. How far has she walked, in metres? Level 5 Pack 3. Page 33. Licensed to De La Salle College [email protected] 6). Charles goes on a diet. He weighed 82.5 Kg and now weighs 64.956 Kg. How much weight did he lose ? 7). A Fir tree, 5.2 metres tall, is casting too much shadow in a garden. Ben decides to cut 1.36 metres off it. How tall is the tree going to be ? 8). Five friends know their weights. Tim is 72.67 Kg, Jill is 47.4 Kg, Eve is 55.3 Kg , Ron is 64.3 Kg and Jim is 58.734 Kg. They get into a lift that has a maximum weight capacity of 295 Kg. a). Will the lift be able to carry all the people ? b). By what weight, over or under the maximum lift capacity, are they ? 9). Here is a shopping list. 2 Kg of sugar ; 3 tins of Tuna Chunks (185 g per tin); 700g of bacon and 0.5 Kg of apples. Item Weight (grams) Weight (Kg) Sugar Tuna Bacon 700 2 Apples Total 0.5 Fill in the table above for this information. 10). In the Great North Black-Pudding Eating Championship the weight of Black-Pudding eaten determines the winner. Here are the weights of Black-Pudding eaten by the four finely tuned contenders. Hamish Billy Zeeshan David a). b). 2.2 Kg 1320 g 2.071 Kg 1.03 Kg 672 g 0.21 Kg 460 g 2.5 Kg 0.012 Kg 1.2 Kg 482 g 36 g 805 g Work out the weights of Black-Pudding eaten by each competitor. Find the final positions in the competition. 11). Jenny lays block paving. Here is the distance she covers in 6 days. Monday 41.4 m Thursday 21.93 m a). b). Tuesday Friday 42.05 m 38.4 m Wednesday Saturday 56.62 m 22 m Work out the total length of block paving Jenny has put down this week. The drive she is block paving is 300 metres long. How much has she now got to do ? 12). Here is a shopping list. 3 litres of cola ; 4 bottles of wine (750ml per bottle); 600 ml of Olive Oil and 6 bottles of beer (0.33 l per bottle). Item Capacity (ml) Capacity (l) Cola Wine Olive Oil 600 Beer Total 3 Fill in the table above for this information. Level 5 Pack 3. Page 34. Licensed to De La Salle College [email protected] The Imperial System 16 ounces = 1 pound 14 pounds = 1 stone 8 stone = 1 hundredweight 20 hundredweight = 1 ton 12 inches = 1 foot 3 feet = 1 yard 1760 yards = 1 mile 20 fluid ounces = 1 pint 8 pints = 1 gallon Use the above information to solve the following questions. 1). 4). 7). 10). 13). 16). 19). 22). 25). 28). 31). 34). 37). 40). 43). 46). 49). 52). 55). 58). 2 feet = __ inches 5 yards = __feet 7 gallons = __ pints 9 miles = __ yards 10 stone = __ pounds 10 miles = __ yards 16 yards = __ feet 1 stone = __ pounds 2 1 stone = __ pounds 7 3 pound = __ ounces 8 1 yard = __ inches 1 mile = __ feet 1 mile = __ inches 96 inches = __ feet 15 feet = __ yards 72 pints = __ gallons 7040 yards = __ miles 196 pounds = __ stone 4 pints = __ gallon 18 inches = __ feet Level 5 Pack 3. Page 35. 2). 5). 8). 11). 14). 17). 20). 23). 26). 29). 32). 35). 38). 41). 44). 47). 50). 53). 56). 59). 3 pounds = __ ounces 4 tons = __ hundredweight 2 miles = __ yards 9 hundredweight = __ stone 14 gallons = __ pints 14 tons = __ hundredweight 9 stone = __ pounds 1 hundredweight = __ stone 4 1 foot = __ inches 3 3 mile = __ yards 4 1 stone = __ ounces 1 hundredweight = _ pounds 1 ton = __ pounds 48 ounces = __ pounds 100 hundredweight = _ tons 240 fluid ounces = __ pints 36 feet = __ yards 460 hundredweight = _ tons 15840 yards = __ miles 40 ounces = __ pounds Licensed to De La Salle College 3). 6). 9). 12). 15). 18). 21). 24). 27). 30). 33). 36). 39). 42). 45). 48). 51). 54). 57). 60). 4 pints = __ fluid ounces 5 stone = __ pounds 12 gallons = __ pints 12 pints = __ fluid ounces 9 pounds = __ ounces 12 pounds = __ ounces 25 yards = __ feet 1 pint = __ fluid ounces 2 3 ton = __ hundredweight 4 3 pint = __ fluid ounces 5 1 gallon = __ fluid ounces 1 ton = __ stone 1 ton = __ ounces 60 fluid ounces = __ pints 84 pounds = __ stone 84 inches = __ feet 120 pints = __ gallons 176 ounces = __ pounds 7 pounds = __ stone 52 ounces = __ pounds [email protected] 90 cm is about 1 yard Converting between Metric and Imperial Units. 1 gallon is about 4.5 litres 4.5 litres ≈ 1 gallon or 45 litres ≈ 10 gallons 1). Using the above facts, find how many litres there are in :a). f). 2). 5 gallons b). 20 gallons g). 15 gallons c). 40 gallons h). 45 gallons d). 70 gallons i). 75 gallons e). 30 gallons j). 750 gallons 120 gallons Using the above facts, find how many gallons there are in :a). f). 45 litres 9 litres b). g). 90 litres c). 22.5 litres h). 180 litres d). 67.5 litres i). 360 litres e). 292.5 litres j). 495 litres 2925 litres 2.2 pounds ≈ 1 Kilogram or 22 pounds ≈ 10 kilograms 3). Using the above facts, find how many pounds there are in :a). f). 4). 5 Kg 70 Kg b). g). 8 Kg 110 Kg c). h). 6 Kg 200 Kg d). i). 9 Kg 160 Kg e). j). 12 Kg 500 Kg e). j). 26.4 lbs 880 lbs Using the above facts, find how many kilograms there are in :a). f). 4.4 lbs 88 lbs b). g). 6.6 lbs 110 lbs c). h). 13.2 lbs 220 lbs d). i). 17.6 lbs 660 lbs 0.9 metres ≈ 1 yard or 9 metres ≈ 10 yards 5). Using the above facts, find how many metres there are in :a). f). 6). 6 yards 30 yards b). g). 9 yards 70 yards c). h). 12 yards d). 140 yards i). 15 yards e). 210 yards j). 19 yards 330 yards 6.3 metres e). 180 metres j). 8.1 metres 306 metres Using the above facts, find how many yards there are in :a). f). 1.8 metres b). 27 metres g). 4.5 metres c). 72 metres h). 5.4 metres d). 108 metres i). 5 miles ≈ 8 kilometres 7). Using the above fact, find how many kilometres there are in :a). f). 8). 10 miles 2.5 miles b). g). 50 miles 7.5 miles c). h). 15 miles d). 12.5 miles i). 35 miles e). 57.5 miles j). 200 miles 575 miles 56 Km 84 Km 96 Km 840 Km Using the above fact, find how many miles there are in :a). f). Level 5 Pack 3. Page 36. 16 Km 4 Km b). g). 32 Km 12 Km c). h). 80 Km 28 Km Licensed to De La Salle College d). i). e). j). [email protected] Metric and Imperial Units. Conversion Tables. A). Below are conversion tables to change between feet (ft) and metres (m). ft 3.27 6.54 9.81 13.08 16.35 19.62 22.89 26.16 29.43 1 2 3 4 5 6 7 8 9 ft 32.7 65.4 98.1 130.8 163.5 196.2 228.9 261.6 294.3 m 0.30 0.61 0.91 1.21 1.52 1.82 2.12 2.43 2.73 m 3.03 6.07 9.10 12.13 15.17 18.20 21.23 24.27 27.30 10 20 30 40 50 60 70 80 90 ft 327 654 981 1308 1635 1962 2289 2616 2943 100 200 300 400 500 600 700 800 900 m 30.33 60.66 91.00 121.33 151.67 182.00 212.33 242.67 273.00 Example 1. Work out 452 metres in feet. 400 m 50 m + 2m 452 m = = = 1308.00 ft 163.50 ft 6.54 ft 1478.04 ft + Using the conversion tables, change the following from metres to feet. 1). 6). 11). 16). 14 m 130 m 507 m 163 m 2). 7). 12). 17). 39 m 270 m 408 m 387 m 3). 8). 13). 18). 41 m 450 m 205 m 825 m 4). 9). 14). 19). 87 m 620 m 901 m 692 m 5). 10). 15). 20). 95 m 870 m 606 m 935 m 25). 30). 35). 40). 78 ft 920 ft 703 ft 985 ft Example2. Work out 523 feet in metres. 500 ft 20 ft + 3 ft 523 ft = = = 151.67 m 6.07 m 0.91 m 158.65 m + Using the conversion tables, change the following from feet to metres. 21). 26). 31). 36). Level 5 Pack 3. Page 37. 12 ft 170 ft 104 ft 429 ft 22). 27). 32). 37). 27 ft 310 ft 608 ft 283 ft 23). 28). 33). 38). 53 ft 540 ft 304 ft 736 ft Licensed to De La Salle College 24). 29). 34). 39). 94 ft 890 ft 906 ft 185 ft [email protected] B). Below are conversion tables to change between kilometres /miles and metres/yards. Km 1.61 3.22 4.83 6.44 8.05 9.66 11.26 12.87 14.48 Miles 0.62 1.24 1.86 2.48 3.11 3.73 4.35 4.97 5.59 1 2 3 4 5 6 7 8 9 Metres 0.91 1.83 2.74 3.66 4.57 5.49 6.40 7.32 8.23 1 2 3 4 5 6 7 8 9 Yards 1.09 2.19 3.28 4.37 5.47 6.56 7.66 8.75 9.84 Example 3. Work out 24 metres in yards. 9m 9m + 6m 24 m = = = 9.84 yds 9.84 yds 6.56 yds 26.24 yds + Using the appropriate conversion table to change the following: 1). 5). 9). 13). 17). 21). C). 14 miles to Km 21 Km to miles 23 m to yards 30 yards to m 35 m to yards 45 miles to Km 2). 6). 10). 14). 18). 22). 12 Km to miles 24 m to yards 26 miles to Km 28 Km to miles 29 miles to Km 54 yards to m 3). 7). 11). 15). 19). 23). 13 m to yards 20 yards to m 25 yards to m 31 miles to Km 37 yards to m 90 m to yards 4). 8). 12). 16). 20). 24). 16 yards to m 19 miles to Km 27 Km to miles 34 m to yards 40 Km to miles 72 Km to miles. Below are conversion tables to change between Kilograms /pounds and litres/pints. Kgs 0.11 0.24 0.45 0.68 0.91 2.27 Pounds 0.25 0.55 0.50 1.10 1.00 2.20 1.50 3.31 2.00 4.41 5.00 11.02 Litres 0.14 0.28 0.57 0.85 1.14 2.84 0.25 0.50 1.00 1.50 2.00 5.00 Pints 0.44 1.32 1.76 2.64 3.52 8.80 Example 4. Work out 3.25 pints in litres. 2.00 pints 1.00 pints 0.25 pints 3.25 pints 1). 5). 9). 13). 17). 21). 3.0 pds to Kg 2). 5.25 litres to pints 6). 7.5 pints to litres 10). 9 Kgs to pds 14). 15.0 Kgs to pds 18). 16 litres to pints 22). Level 5 Pack 3. Page 38. + = = = 1.14 litres 0.57 litres 0.14 litres 1.85 litres 4.0 litres to pints 3). 7.0 pds to Kgs 7). 5.75 Kgs to pds 11). 8.5 litres to pints 15). 4.25 pints to litres19). 17.25 pds to Kgs 23). + 2.5 Kg to pds 4). 6.5 Kgs to pds 8). 6.75 litres to pints12). 12.0 pints to litres16). 14.0 pds to Kg 20). 18.75 Kgs to pds 24). Licensed to De La Salle College 6.0 pints to litres 2.25 pints to litres 8 pds to Kgs 11.0 pds to Kgs 7.25 litres to pints 23.75 pints to litres. [email protected] Time. The 24 hour clock. Change the following times from the 12 hour clock to the 24 hour clock. 1). 10.20 a.m. 2). 11.15 a.m. 3). 8.25 a.m. 5). 1.40 p.m. 6). 3.45 p.m. 7). 6.05 p.m. 9). 5.15 a.m. 10). 4.40 p.m. 11). 8.25 p.m. 13). 2.05 a.m. 14). 9.20 p.m. 15). 11.35 p.m. 17). 8.00 a.m. 18). 11.55 a.m. 19). 10.20 p.m. 21). 6.00 a.m. 22). 4.15 p.m. 23). 12.40 a.m. 25). 4.35 a.m. 26). 1.55 p.m. 27). 8.00 p.m. 29). 12.05 a.m. 30). 12.05 p.m. 31). 2.25 p.m. 33). 6.54 p.m. 34). 9.27 a.m. 35). 12.56 a.m. 37). 4.23 p.m. 38). 2.48 a.m. 39). 5.36 p.m. 4). 8). 12). 16). 20). 24). 28). 32). 36). 40). 3.55 a.m. 2.55 p.m. 3.10 a.m. 1.30 a.m. 7.45 p.m. 12.40 p.m. 2.30 a.m. 3.15 a.m. 7.18 p.m. 3.32 a.m. The 12 hour clock. Change the following times from the 24 hour clock to the 12 hour clock. 1). 11.55 2). 04.30 3). 09.15 5). 13.45 6). 20.05 7). 16.25 9). 08.30 10). 14.00 11). 22.45 13). 10.05 14). 17.45 15). 23.40 17). 21.35 18). 04.50 19). 17.50 21). 01.40 22). 19.25 23). 00.15 25). 18.30 26). 05.20 27). 14.50 29). 00.05 30). 12.45 31). 11.05 33). 19.16 34). 15.54 35). 10.34 37). 19.57 38). 00.03 39). 06.47 4). 8). 12). 16). 20). 24). 28). 32). 36). 40). 10.35 19.55 11.25 02.50 22.25 12.15 00.55 07.30 23.01 20.39 Time Differences (24 hour clock). Find the amount of time from 1). 08.15 to 11.55 2). 03.25 to 07.35 5). 07.25 to 14.50 6). 10.40 to 15.55 9). 09.05 to 18.30 10). 16.45 to 23.50 13). 14.25 to 20.15 14). 11.40 to 17.25 17). 03.45 to 15.50 18). 08.05 to 17.00 21). 20.35 to 01.50 22). 18.40 to 02.20 09.30 to 13.50 13.05 to 19.50 18.15 to 20.10 09.30 to 21.45 23.15 to 02.40 22.15 to 07.30 3). 7). 11). 15). 19). 23). 10.55 to 12.55 14.20 to 17.55 06.30 to 10.05 19.35 to 22.05 14.30 to 23.10 19.55 to 04.05 4). 8). 12). 16). 20). 24). Time Differences (12 hour clock). To help you with this question, you may want to look at the clock face at the side of this page. Find the amount of time from 1). 9.15 a.m. to 10.35 a.m. 2). 8.20 a.m. to 10.45 a.m. 3). 7.35 p.m. to 9.40 p.m. 4). 3.25 p.m. to 5.55 p.m. 5). 2.05 p.m. to 6.30 p.m. 6). 1.55 p.m. to 4.00 p.m. 7). 11.25 a.m. to 1.50 p.m. 8). 10.15 a.m. to 2.30 p.m. 9). 8.45 a.m. to 12.50 p.m. 10). 11.45 a.m. to 6. 55 p.m. 11). 8.45 a.m. to 11.10 a.m. 12). 2.35 p.m. to 5.05 p.m. 13). 4.25 p.m. to 7.15 p.m. 14). 9.15 a.m. to 11.00 a.m. 15). 11.55 a.m. to 2.05 p.m. 16). 10.50 a.m. to 2.05 p.m. 17). 11.45 a.m. to 6.30 p.m. 18). 9.55 a.m. to 11.20 p.m. 19). 8.05 a.m. to 7.50 p.m. 20). 7.50 a.m. to 9.10 p.m. 21). 11.15 p.m. to 3.35 a.m. 22). 10.30 p.m. to 6.15 a.m. 23). 7.40 p.m. to 4.25 a.m. 24). 9.55 p.m. to 11.05 a.m. Level 5 Pack 3. Page 39. Licensed to De La Salle College [email protected] Time Questions. 1). My alarm clock rings at 06.30. I have breakfast 50 minutes later. At what time do I have breakfast ? 2). Milking time at the farm starts at 07.45, it takes two and a quarter hours. What time does it finish ? 3). A train leaves London at 11.35 and travels to Manchester. The journey takes one and a half hours. At what time does it get into Manchester ? 4). A bus leaves Preston at 09.50 for Bolton. The journey takes 85 minutes. What time does the bus get into Bolton ? 5). Jenny waited for a bus from quarter to ten until ten past ten. How long was this ? 6). Bobby has to be at the airport 40 minutes before the plane is due to take off. His flight is at 11.25, at what time should he be at the airport ? 7). a). b). c). A train service runs every 40 minutes between two towns. If the first train leaves at 07.45, what time do the next three trains leave ? The journey time for this journey is 35 minutes. At what time do these first four trains of the day arrive ? The fourth train was actually delayed for 20 minutes, at what time did it arrive? 8). Beth is on holiday at Abersoch. High tide this morning is 7.35 a.m.. The next high tide is in 12 hours 23 minutes time. What is the time of the next high tide ? 9). Hazel records two programmes from television. The first lasts 1 hour 35 minutes, and the second lasts 1 hour 45 minutes. The tape she records it on is a blank 4 hour tape. How much blank time does she have left on her tape after recording ? 10). A netball team spend three and a half hours training everyday. 40 minutes is spent on skills, 70 minutes on team exercises and the rest on fitness training. How much time is spent on fitness training ? 11). On May 23rd, the sun rose at 6.50 a.m. and set at 8.26 p.m.. For how long was the sun out ? 12). A coach sets off on a journey at 18.50 and arrives at 21.15. How long did the journey last ? 13). A builder started laying some foundations at 9.30 a.m.. He finished at 2.45 p.m. after working without a break. How long did it take him to lay the foundations ? 14). Jenny leaves home at 09.25 to go to London. She takes 50 minutes to get to the railway station, where she waits 15 minutes for the train. The train journey takes 90 minutes. At what time does she arrive in London ? 15). Benny is travelling to Calais. It takes him 40 minutes to get to the train station. He waits 10 minutes for the train. The train journey takes 2 hours exactly to Dover. At Dover he waits 25 minutes for the ferry. The journey on the ferry takes three and a quarter hours. If he arrives in Calais at 5.15 p.m., what time did he start out on his journey ? Level 5 Pack 3. Page 40. Licensed to De La Salle College [email protected] Mileage Charts. Aberdeen 540 212 555 142 310 327 341 302 490 Brighton 350 166 442 241 236 210 250 53 Carlisle Exeter 345 92 115 116 144 112 296 Glasgow 440 268 234 237 290 171 210 210 242 206 390 This is a mileage chart showing how many miles there are between towns and cities in Britain. Use it to answer the questions below. Leeds Manchester 40 33 24 190 38 64 181 Sheffield 52 160 York 195 London 1). How many miles are there between a). d). g). j). m). Aberdeen and Carlisle Aberdeen and York Leeds and Carlisle London and Carlisle Brighton and York 2). A salesman has to travel to these places. Find out how far he travels. 3). 4). b). e). h). k). n). Leeds and London Exeter and Sheffield London and Exeter Glasgow and Brighton Exeter and Leeds c). f). i). l). o). York and Manchester Glasgow and London Sheffield and York Leeds and Brighton Sheffield and Exeter ? a). b). c). d). e). f). g). h). i). j). York to Leeds and back. Manchester to Brighton and back. Aberdeen to Glasgow to Leeds and back to Aberdeen. London to Leeds to Manchester and back to London. Glasgow to Exeter to Brighton and back to Glasgow. Sheffield to York to Manchester and back to Sheffield. Aberdeen to Brighton to Carlisle to York and back to Aberdeen. Exeter to Leeds to London to York and back to Exeter. Leeds to London to Exeter to Brighton to Carlisle and back to Leeds. London to Glasgow to Exeter to Abedeen to Brighton to Leeds and back to London. a). i). Which is closer to London and by how many miles ? Aberdeen or Carlisle. ii). Leeds or Sheffield. b). i). Which is closer to Manchester and by how many miles ? Sheffield or York. ii). London or Glasgow. iii). Exeter or Brighton. c). i). Which is closer to Glasgow and by how many miles ? Brighton or Exeter. ii). Leeds or Manchester. iii). Sheffield or London d). i). Which is closer to Leeds and by how many miles ? Glasgow or Carlisle. ii). Manchester or York iii). London or Exeter. e). i). Which is closer to Exeter and by how many miles ? Glasgow or Carlisle. ii). Sheffield or York. iii). London or Brighton. Which two towns are a). closest together, d). 236 miles apart, Level 5 Pack 3. Page 41. b). e). furthest apart, 268 mile apart, Licensed to De La Salle College iii). Brighton or Exeter. c). f). 206 miles apart, 64 miles apart ? [email protected] Barnstable 182 93 240 266 452 320 260 250 193 This is a mileage chart showing how many miles there are between towns and cities in Britain. Use it to answer the questions below. Birmingham 87 100 180 285 147 90 80 111 Bristol 148 187 365 225 160 160 116 Cambridge 118 326 215 175 156 54 Dover 440 322 270 254 72 Edinburgh 137 211 210 372 Kendal 72 72 250 Liverpool Manchester 35 195 181 London 5). How many miles are there between a). d). g). j). m). Kendal and London b). Barnstable and Liverpool e). Birmingham and Manchester h). Liverpool and Birmingham k). Edinburgh and Barnstable n). 6). A sales person has to travel to these places. Find out how far they travel. 7). 8). Bristol and Manchester c). Bristol and Liverpool f). Dover and Kendal i). London and Dover l). Bristol and London o). Dover and Manchester Liverpool and London Edinburgh and Barnstable Cambridge and Bristol Liverpool and Kendal ? a). b). c). d). e). f). g). h). i). j). Manchester to Barnstable and back. Manchester to London and back. Edinburgh to Kendal to Liverpool and back to Edinburgh. London to Dover to Manchester and back to London. Bristol to Cambridge to Liverpool and back to Bristol. Dover to Kendal to Manchester and back to Dover. Liverpool to Bristol to Cambridge to Manchester and back to Liverpool. Barnstable to Dover to London to Manchester and back to Barnstable. Birmingham to London to Dover to Bristol to Edinburgh and back to Birmingham. London to Kendal to Bristol to Birmingham to Bristol to Dover and back to London. a). i). Which is closer to Barnstable and by how many miles ? Bristol or Edinburgh. ii). Liverpool or Dover. iii). Kendal or London. b). i). Which is closer to Manchester and by how many miles ? Cambridge or Birmingham. ii). London or Dover. iii). Edinburgh or Bristol c). i). Which is closer to Cambridge and by how many miles ? Manchester or Birmingham. ii). Liverpool or London. iii). Bristol or Dover. d). i). Which is closer to Liverpool and by how many miles ? Birmingham or Barnstable. ii). Manchester or Bristol iii). London or Bristol e). i). Which is closer to Dover and by how many miles ? Manchester or Liverpool. ii). Birmingham or Bristol.iii). London or Kendal. Which two towns are a). closest together, d). 54 miles apart, Level 5 Pack 3. Page 42. b). e). furthest apart, 211 mile apart, Licensed to De La Salle College c). f). 187 miles apart, 116 miles apart ? [email protected]
© Copyright 2025 Paperzz