Level 5 Pack 3 3.21MB 2017-03-28 13:59:51

Welcome!
This is the third in a series of teaching aids designed by teachers for teachers at level 5.
The worksheets are designed to support the delivery of the National Curriculum in a variety of
teaching and learning styles. They are not designed to take the pedagogy away from the teacher.
The worksheets are centred around the shown level, but spiral from the level below to the level
above. Consult the National Numeracy Strategy for definitive National Curriculum levels.
They can be used by parents with the support of the on-line help facility at www.10ticks.co.uk.
Contents and Teacher Notes.
Pages 3/4.
Pages 5/6.
Pages 7/8.
Pages 9/10.
Page 11.
Page 12.
Pages 13-16.
Pages 17/18.
Pages 19/20.
Pages 21/22.
Level 5 Pack 3. Page 1.
Using a Protractor.
An excellent exercise to practice using a compass, without worrying if pupils
are positioning the protractor correctly. It gives plenty of time to check if pupils
are using the correct scales. It also uses the two notations meaning angle.
Section D is only for the accomplished protractor measurers!
Measuring Angles.
Now that pupils can use protractors we have a measuring exercise. Page 6 is
about the different ways we can measure reflex angles. The first part, extending
a straight line, measuring the small angle and adding to 180˚. The second part
measuring the unrequired angle and taking this from 360˚.
Constructions.
Using the new found protractor skills, this is an exercise in constructing
triangles.
Scale Drawing 1.
Using simple ratios to construct a scale drawing. A precursor to scale drawing
bearing work/ map skills.
Scale Drawing 2.
Using simple ratios to construct a scale drawing. A precursor to scale drawing
bearing work/ map skills.
Battleships.
A game for 2 pupils. Battleships using bearings.
Measuring Bearings 1/2.
Measure the bearings and find the actual distance from the central point.
The four maps are progressive scaling outwards from the castle.
Angle Properties 1.
Angles on a straight line, vertically opposite angles and angles at a point.
Typical consolidation exercises.
Angle Properties 2.
Angle sum of a triangle, special triangles problems involving equilateral and
isosceles triangles and interior angles of any polygon. Again, typical
consolidation exercises.
Angle Properties 3.
Angle sum of a quadrilateral. Constructions, these include perpendicular
bisector, angle bisector and drawing a line parallel to another using a ruler and
a set square.
[email protected]
Pages 23/24. Logo 1.
Introduction to logo and using the REPEAT command. A generic set of
instructions as logo appears on many different types of computer operating
systems. The specifics of how to access the program etc. have therefore been
omitted.
Pages 25/26. Logo 2.
Writing procedures. Using the repeat command inside a procedure.
Pages 27/28. Parallel Lines.
Revision of all the level 5 angle properties pupils should know. These are then
placed into parallel line diagrams before introducing any further angle
properties. Alternate angles and corresponding angles. Discovering the angle
properties and consolidation exercises.
Pages 29/30. Metric Units - lengths.
Changing between units, but now in decimal notation.
Pages 31/32. Metric Units - weight/capacity.
Changing between units, but now in decimal notation
Pages 33/34. Calculations with Metric Units.
All the level 5 skills put into context.
Page 35.
The Imperial System.
Converting between units within the imperial system. The links between the
units are given at the start.
Page 36.
Converting between Metric and Imperial Units.
Converting between metric and imperial units. The links between the units are
given at the start.
Pages 37/38. Metric and Imperial Units. Conversion Tables.
Using the given conversion tables to change between the metric and imperial
systems.
Pages 39/40. Time Questions.
Changing between the 12 hour and 24 hour systems. Finding time differences
in both systems. Putting these skills into context with worded questions.
Pages 41/42. Mileage Charts.
Taking information from a mileage chart and using it to answer the given
questions.
Copyright in Worksheets. ©Fisher Educational Ltd. 2000.
Copyright in the worksheets belongs to Fisher Educational Ltd. Each purchase of the worksheets represents a
licence to use and reproduce the worksheets as set out in the Terms and conditions shown on the 10ticks website.
'10TICKS', and '10TICKS.co.uk' and/or other 10TICKS services referenced on this web site or on the Worksheets
are trademarks of Fisher Educational Ltd in the UK and/or other countries.
Details of copyright ownership in the clip art used in these worksheets:
Copyright in the clip art used entirely in this pack is owned by Nova Development Corporation, California, USA.
Level 5 Pack 3. Page 2.
[email protected]
Using a Protractor.
A).
Angle Police Sir !!!
Misuse of a protractor
is three years minimum.
Read the measurements off the protractor below.
Y X
G
T
P
V
E
S
M
H
N
O
D
W
Q
J
L
F
I
B
A
1).
6).
11).
16).
21).
26).
31).
36).
B).
U
R
C
∠ BAG
∠ CAU
BÂF
CÂN
∠ BAO
CÂE
∠ CAI
BÂJ
2).
7).
12).
17).
22).
27).
32).
37).
∠ BAD
∠ CAL
BÂM
CÂV
∠ BAH
BÂI
∠ CAT
CÂO
∠ BAP
∠ CAY
BÂT
CÂX
∠ CAS
CÂJ
∠ BAY
BÂX
3).
8).
13).
18).
23).
28).
33).
38).
4).
9).
14).
19).
24).
29).
34).
39).
∠ BAS
∠ CAP
BÂN
CÂW
∠ BAQ
BÂE
∠ BAL
CÂM
5).
10).
15).
20).
25).
30).
35).
40).
∠ BAU
∠ CAH
BÂR
CÂF
∠ CAG
CÂR
∠ CAD
BÂV
Read the measurements off the protractor below. They are slightly harder.
So this is
about 30 ˚....
M
E
P
G
Y X
T
S
H
L
V
D
O
W
Q
N
J
F
U
I
B
1).
6).
11).
16).
21).
26).
31).
36).
Level 5 Pack 3. Page 3.
∠ BAG
∠ CAU
BÂF
CÂN
∠ BAO
CÂE
∠ CAF
BÂJ
R
C
A
2).
7).
12).
17).
22).
27).
32).
37).
∠ BAD
∠ CAL
BÂM
CÂV
∠ BAH
BÂI
∠ CAT
CÂO
3).
8).
13).
18).
23).
28).
33).
38).
∠ BAP
∠ CAY
BÂT
CÂX
∠ CAS
CÂJ
∠ BAY
BÂX
Licensed to De La Salle College
4).
9).
14).
19).
24).
29).
34).
39).
∠ BAS
∠ CAP
BÂN
CÂW
∠ BAQ
BÂE
∠ BAL
CÂM
5).
10).
15).
20).
25).
30).
35).
40).
∠ BAU
∠ CAH
BÂR
CÂI
∠ CAG
CÂR
∠ CAD
BÂV
[email protected]
C).
Read the measurements off the protractor below, this is as hard as it gets !!.
G Y X
P
T
S
E
H
M
D
L
V
O
Q
J
N
U
F
I
B
1).
6).
11).
16).
21).
26).
31).
36).
D).
∠ BAJ
BÂG
∠ CAR
BÂM
∠ BAF
CÂY
∠ CAM
CÂE
2).
7).
12).
17).
22).
27).
32).
37).
R
C
A
∠ CAN
CÂO
∠ CAG
CÂX
∠ CAL
BÂX
∠ BAO
BÂN
3).
8).
13).
18).
23).
28).
33).
38).
∠ BAD
BÂL
∠ BAY
CÂW
∠ BAS
BÂH
∠ BAE
CÂH
4).
9).
14).
19).
24).
29).
34).
39).
∠ BAP
BÂQ
∠ CAQ
BÂI
∠ CAD
CÂP
∠ CAJ
CÂF
5).
10).
15).
20).
25).
30).
35).
40).
∠ CAV
CÂT
∠ BAT
CÂU
∠ CAS
CÂI
∠ BAU
BÂR
To find the required angle, you will need to take two readings from the same scale on the
protractor. Then, take the smaller number away from the larger number.
I said, " I want a
small angle"
A-N-G-L-E.
M
E
P G
Y X
T
S
L
H
V
D
O
W
Q
N
J
F
U
R
I
A
1).
6).
11).
16).
21).
26).
31).
36).
Level 5 Pack 3. Page 4.
∠ EAD
DÂX
∠ PAD
GÂW
∠ LAR
HÂT
∠ IAL
RÂD
2).
7).
12).
17).
22).
27).
32).
37).
∠ XAS
XÂF
∠ JAH
HÂJ
∠ PAW
OÂM
∠ FAV
FÂO
3).
8).
13).
18).
23).
28).
33).
38).
∠ GAE
GÂU
∠ SAV
TÂN
∠ MAI
VÂY
∠ TAI
NÂI
Licensed to De La Salle College
4).
9).
14).
19).
24).
29).
34).
39).
∠ SAU
FÂS
∠ RAX
YÂU
∠ YAO
GÂN
∠ MAQ
QÂJ
5).
10).
15).
20).
25).
30).
35).
40).
∠ EAS
UÂD
∠ EAQ
PÂI
∠ MAJ
RÂP
∠ LAW
IÂU
[email protected]
Measuring Angles.
Measure the marked angle.
State if the angle is acute or obtuse.
(Hint : move the paper about, rather than your protractor).
3).
1).
4).
2).
7).
5).
8).
6).
9).
10).
11).
13).
12).
15).
14).
17).
16).
18).
20).
19).
22).
21).
Level 5 Pack 3. Page 5.
Licensed to De La Salle College
[email protected]
Find the marked reflex angle. The dotted/shaded lines drawn on these digrams may help you.
23).
24).
25).
26).
27).
By measuring, find the marked angle (use a method that is different from the one above).
28).
29).
30).
33).
31).
32).
34).
35).
36). Use your protractor to draw these angles, in the direction
shown in the diagram. Make both your lines 6 cm long.
a). 40˚ b). 65˚ c). 80˚ d). 35˚ e). 55˚
f). 110˚ g). 135˚ h). 160˚ i). 95˚ j). 115˚
k). 27˚ l). 62˚ m). 79˚ n). 33˚ o). 18˚
p). 106˚ q). 158˚ r). 99˚ s). 124˚ t). 171˚
u). 210˚ v). 305˚ w). 279˚ x). 327˚ y). 192˚
37). Use your protractor to draw these angles, in the direction
shown in the diagram. Make both your lines 6 cm long again.
a). 20˚ b). 55˚ c). 40˚ d). 75˚ e). 35˚
f). 140˚ g). 105˚ h). 100˚ i). 95˚ j). 165˚
k). 56˚ l). 21˚ m). 64˚ n). 39˚ o). 78˚
p). 136˚ q). 108˚ r). 93˚ s). 122˚ t). 157˚
u). 320˚ v). 205˚ w). 309˚ x). 257˚ y). 282˚
Level 5 Pack 3. Page 6.
Licensed to De La Salle College
6 cm
6 cm
6 cm
6 cm
[email protected]
Constructions (Measuring out Acute Angles).
Construct the following triangles.
Measure all the missing angles and sides and write them down.
The diagrams are not drawn to scale.
1).
A
2).
B
41˚
33˚
7 cm
4).
C
3).
E
23˚
D
45˚
6 cm
F
5).
K
H
37˚
G
45˚
8 cm
6).
I
Q
N
5 cm
26˚
J
70˚
L
7).
40˚
M
10 cm
50˚
9 cm
8).
T
S
8 cm
15˚
F
G
4 cm
O
16).
P
J
R
U
43˚
A
56˚
6.4 cm
C
D
4.2 cm
4.6 cm
22).
J
N
7.2 cm
4.8 cm
L
9.3 cm
23).
52˚
M
7.3 cm
W
T
8.2 cm
4.1 cm
42˚
27˚
Level 5 Pack 3. Page 7.
7.9 cm
R
U
O
24).
Q
P
F
7.1 cm
21).
K
I
S
7 cm
E
20).
8 cm
4 cm
8.5 cm
9 cm
5.2 cm
7.5 cm
L
9 cm
18).
H
38˚
6 cm
T
4 cm
X
C
K
B
7 cm
48˚
5.5 cm
15).
17).
19).
G
37˚
8 cm
I
10 cm
W
9.5 cm
A
6 cm
Q
5 cm
12 cm
V
B
12).
8 cm
14).
M
X
H
7 cm
N
8 cm
10 cm
11).
E
9 cm
13).
36˚
V
9 cm
D
R
7 cm
8 cm
42˚
10).
60˚
P
9).
W
7 cm
U
O
37˚
41˚
7.4 cm
Licensed to De La Salle College
S
V
6.3 cm
X
[email protected]
Constructions (Measuring out Obtuse Angles).
Construct the following triangles.
Measure all the missing angles and sides and write them down.
The diagrams are not drawn to scale.
B
1).
45 mm
F
2).
u
G
3).
37˚
105˚
128˚
17˚
C
3.5 cm
A
4).
3.3 cm
H
56˚
47˚ 3.9 cm
5).
B
6).
54 mm
S
131˚
27˚
A
46 mm
v
138˚
C
Q
8).
2.5 cm
U
U
Z
7).
T
22˚
111˚ Y
C
w
98˚
X
9).
93 mm
P
D
104˚
72 mm
19˚
S
48 mm
4.9 cm
X
E
11).
Y
5.2 cm
41 mm
12).
R
4.7 cm 53˚
152˚
J
61˚
P
6.5 cm
10).
23 mm
T
124˚ K
9.7 cm
45 mm
Q
W
T
L
13).
B
14).
8.2 cm
66 mm
Y
4.3 cm
8.3 cm
A
C
5.1 cm
4.0 cm
17).
2.8 cm
83 mm
T
X
E
G
18).
R
84 mm
3.9 cm
33 mm
6.8 cm
8.8 cm
3.6 cm
D
19).
20).
E
P
S
6.4 cm
R
G
143˚
G
47˚
23).
W
3.4 cm
6.0 cm
3.7 cm
H
A
24).
98˚ F
108˚
B
9.5 cm
24˚
R
53mm
C
21).
117˚
28 mm
22).
71 mm
F
Q
V
S
31 mm
F
16).
7.7 cm
15).
R
W
5.6 cm
X
C
74 mm
Y
63 mm
71mm
120 mm
7.8 cm
U
Level 5 Pack 3. Page 8.
E
Licensed to De La Salle College
Z
[email protected]
Scale Drawings/Ratios 1.
1).
The following lines have been drawn using a scale of 1 : 4. Write down the length of
each line, and then the real length of each line.
a).
b).
c).
d).
e).
2).
The following lines have been drawn using a scale of 1 : 2. Write down the length of
each line, and then the real length of each line.
a).
b).
c).
d).
e).
3).
The following lines have been drawn using a scale of 1 : 5. Write down the length of
each line, and then the real length of each line.
a).
b).
c).
d).
e).
4).
The following lines have been drawn using a scale of 1 : 4. Write down the length of
each line, and then the real length of each line.
a).
b).
c).
d).
e).
5).
The following lines have been drawn out using a scale of 1 : 20. Write down the length of
each line, and then the real length of each line ?
a).
b).
c).
d).
e).
6).
The following lines have been drawn using a scale of 1 : 100. Write down the length of
each line, and then the real length of each line.
a).
b).
c).
d).
e).
7).
The following lines have been drawn using a scale of 1 : 1 000. Write down the length
of each line, and then the real length of each line.
a).
b).
c).
d).
e).
Level 5 Pack 3. Page 9.
Licensed to De La Salle College
[email protected]
8).
The following lines have been drawn using a scale of 1 : 500. Write down the length of
each line, and then the real length of each line.
a).
b).
c).
d).
e).
9).
The following lines have been drawn using a scale of 1 : 10 000. Write down the length
of each line, and then the real length of each line.
a).
b).
c).
d).
e).
10). The following lines have been drawn using a scale of 1 : 20 000. Write down the length
of each line, and then the real length of each line.
a).
b).
c).
d).
e).
11). Using a scale of 1 : 2 draw out a line that represents the distance:a). 10 cm
b). 14 cm
c). 8.4 cm
d). 68 mm
e). 132 mm
Write down under the line the exact length of the line you have drawn in cm.
12). Using a scale of 1 : 4 draw a line that represents the distance:a). 20 cm
b). 32 cm
c). 44.4 cm d). 132 mm e).
Write under the line the exact length of the line you have drawn in cm.
420 mm
13). Using a scale of 1 : 20 draw a line that represents the distance:a). 100 cm
b). 280 cm
c). 210 cm
d). 1.8 m
e).
Write under the line the exact length of the line you have drawn in cm.
1.1 m
14). Using a scale of 1 : 10 draw a line that represents the distance:a). 90 cm
b). 76 cm
c). 1 m
d). 1.4 m
e).
Write under the line the exact length of the line you have drawn in cm.
1.28 m
15). Using a scale of 1 : 50 draw a line that represents the distance:a). 400 cm
b). 380 cm
c). 530 cm
d). 6.6 m
e).
Write under the line the exact length of the line you have drawn in cm.
6.45 m
16). Using a scale of 1 : 200 draw a line that represents the distance:a). 840 cm
b). 1100 cm c). 12 m
d). 14.8 m
e).
Write under the line the exact length of the line you have drawn in cm.
19.2 m
17). Using a scale of 1 : 100 draw a line that represents the distance:a). 940 cm
b). 1110 cm c). 8.7 m
d). 13.6 m
e).
Write under the line the exact length of the line you have drawn in cm.
6.4 m
18). Using a scale of 1 : 10 000 draw a line that represents the distance:a). 40 000 cm b). 98 000 cm c). 560 m
d). 830 m
e).
Write under the line the exact length of the line you have drawn in cm.
1 Km
Level 5 Pack 3. Page 10.
Licensed to De La Salle College
[email protected]
Scale Drawings/Ratios 2.
Copy out and complete the following tables.
A).
Work out the scales used, given the following information.
Real Life Scale Drawing Scale Used
Distance
Distance
5 cm
8 cm
8 cm
6 cm
13 cm
13 cm
2.3 cm
1.6 cm
6.3 cm
0.9 cm
3.2 cm
1.6 cm
1 cm
1 cm
2 cm
6 cm
10.4 cm
13.2 cm
Real Life Scale Drawing Scale Used
Distance
Distance
1).
3).
5).
7).
9).
11).
13).
15).
17).
19).
21).
23).
25).
27).
29).
31).
33).
35).
10 cm
32 cm
24 cm
60 cm
104 cm
624 cm
13.8 cm
4.8 cm
315 cm
900 cm
480 cm
3200 cm
1m
3.5 m
4m
7.5 m
13 m
660 m
2).
20 cm
4).
18 cm
6).
45 cm
8).
90 cm
10). 165 cm
12). 450 cm
14). 36.8 cm
16). 32.6 cm
18). 280 cm
20). 345 cm
22). 495 cm
24). 16000 cm
26).
5m
28).
7.3 m
30).
12 m
32).
70 m
34). 92.4 m
36). 862.5 m
B).
Work out the missing information and complete the table.
Real Life Scale Drawing Scale Used
Distance
Distance
1).
3).
5).
7).
9).
11).
13).
15).
17).
19).
21).
23).
25).
27).
29).
31).
33).
35).
6 cm
9 cm
24 cm
56 cm
480 cm
415 cm
432 cm
1875 cm
292 cm
400 cm
2m
3.5 m
4.6 m
24 m
1 Km
Level 5 Pack 3. Page 11.
16 cm
83 cm
2.9 cm
3.6 cm
1:2
1 : 20
1:6
1:7
1 : 20
1 : 125
1 : 60
1 : 150
7.3 cm
0.4 cm
1 : 100
1 : 50
1 : 40
6 cm
1.4 cm
1 cm
1 : 10000
4 cm
9 cm
9 cm
6 cm
11 cm
9 cm
4.6 cm
3.26 cm
1.4 cm
4.6 cm
2.2 cm
6.4 cm
1 cm
1 cm
4 cm
3.5 cm
15.4 cm
34.5 cm
Real Life Scale Drawing Scale Used
Distance
Distance
2).
4).
6).
40 cm
8).
80 cm
10). 360 cm
12). 408 cm
14).
16).
18). 280 cm
20). 4900 cm
22). 258 cm
24). 11800 cm
26).
3.4 m
28).
7.2 m
30).
18 m
32). 500 m
34).
36).
1 Km
Licensed to De La Salle College
7 cm
6 cm
24 cm
34 cm
4.1 cm
9.4 cm
1:5
1:8
1:8
1 : 20
1 : 200
1 : 50
1 : 100
1 : 500
8.6 cm
5.9 cm
1 : 100
1 : 200
4 cm
2.5 cm
5.6 cm
2 cm
1 : 20000
[email protected]
Battleships
F172
360 o/ 000o
045o
315o
5Km
5Km
4Km
4Km
3Km
3Km
2Km
2Km
1Km
1Km
090o
270o
1Km
1Km
2Km
2Km
3Km
3Km
4Km
4Km
5Km
5Km
225o
135o
Enemy Status Grid
360 o/ 000o
Rules
180o
Each player colours in 12 circles to represent
their fleet of ships. Do not let anyone else see these!
Take it in turns to call out the position and bearing
of a shot.
The other player must say if it is a "hit" or a "miss".
This can be recorded on the enemy status grid. 270o
The winner is the first person to destroy the other
one's fleet.
045o
315o
5Km
5Km
4Km
4Km
3Km
3Km
2Km
2Km
1Km
1Km
090o
1Km
1Km
2Km
2Km
3Km
3Km
4Km
4Km
5Km
5Km
225o
135o
180o
Level 5 Pack 3. Page 12.
Licensed to De La Salle College
[email protected]
Measuring Bearings 1.
1).
The grey horizontal line is to help you position your protractor and ruler.
Find the bearing and actual distance from the Throne Room to each of the points
around the castle. You will need to use the scale at the bottom to find the actual distance.
o).
n).
r).
e).
N
d).
a).
q).
b).
j).
h).
p).
k).
f).
i).
c).
m).
Scale: 1 cm = 10 m ( 1 : 1 000 )
l).
Level 5 Pack 3. Page 13.
g).
Licensed to De La Salle College
[email protected]
2).
m).
Find the bearing and actual distance from the castle to each of the marked points.
The distances must be measured to the nearest mm. You will need to use the scale at the
bottom to find the actual distance. This is different from the previous page.
q).
c).
N
l).
n).
f).
a).
b).
Castle
r).
o).
d).
i).
h).
p).
k).
j).
g). Scale: 1 cm = 250 m ( 1 : 25 000 )
Level 5 Pack 3. Page 14.
Licensed to De La Salle College
e).
[email protected]
Measuring Bearings 2.
1).
The grey horizontal line is to help you position your protractor and ruler.
Find the bearing and actual distance from the castle to each of the marked points.
You will need to use the scale at the bottom to find the actual distance. Be very accurate
with all of your measurements.
c).
j).
Dragon
Island
k).
l).
a).
N
r).
o).
i).
Castle
b).
q).
n).
d).
m).
h).
e).
p).
Level 5 Pack 3. Page 15.
Scale: 1 cm = 2 Km ( 1 : 200 000 )
Licensed to De La Salle College
f).
g).
[email protected]
2).
Find the bearing and actual distance from Dragon Island to each of the other marked
islands. You will need to use the scale at the bottom to find the actual distance, this is a
different scale from the previous page. Be very accurate with all of your measurements.
k).
d).
i).
h).
m).
N
g).
a).
q).
Dragon Island
b).
l).
p).
c).
o).
n).
e).
r).
j).
Scale: 1 cm = 50 Km ( 1 : 5 000 000 )
f).
Level 5 Pack 3. Page 16.
Licensed to De La Salle College
[email protected]
Angle Properties 1.
Reminder
We measure the amount of turn in degrees. One full turn is 360˚. Half a turn is 180˚.
Acute angles are less than 90˚.
Obtuse angles are greater than 90˚ and less than 180˚.
Reflex angles are greater than 180 ˚and less than 360˚.
Exterior
angle
Interior
angle
Interior angles are inside the shape.
If one side of a shape is extended outwards,
this makes an exterior angle.
Interior
angle
Exterior
angle
Angle Notation.
B
When describing a triangle the vertices are
labelled using CAPITAL letters.
c
The sides can be described using lower case
letters of the angle opposite it.
a
A
C
b
can be written as ∠ BAC or BÂC.
The angle marked
A. Angles on a Straight Line.
Angles on a straight line add up to 180˚.
E.g. From the diagram find x.
x˚ + 117˚
x˚
117˚
x˚
= 180˚ (Angles on a straight line)
= 63˚.
Find the size of the angles marked by letters in each diagram.
With each angle found, give a reason. (Diagrams not to scale).
1).
2).
3).
4).
5).
115˚
a˚
b˚
50˚
6).
140˚
7).
30˚
130˚
c˚
8).
d˚
9).
e˚
10).
i˚
f˚
35˚
g˚
105˚
h˚
65˚
47˚
j˚
28˚
11).
12).
63˚
126˚
Level 5 Pack 3. Page 17.
k˚
13).
m˚
14).
15).
158˚
n˚
72˚
Licensed to De La Salle College
97˚
p˚
q˚
[email protected]
B. Vertically Opposite Angles.
Vertically opposite angles are equal.
To show this draw out 2 lines that cross (intersect). Measure both sets of vertically opposite
angles with a protractor .Vertically opposite angles are equal.
E.g. From the diagram find x and y.
x˚ = 40˚ (Vertically opposite angles)
y˚
y˚
+
40˚
= 180˚ (Angles on a straight line)
40˚
x˚
y˚ = 140˚.
Find the size of the angles marked by letters in each diagram.
With each angle found, give a reason. (Diagrams not to scale).
1).
2).
3).
120˚
a˚
45˚
4).
e˚
25˚
135˚
b˚
5).
d˚
c˚
6).
7).
8).
h˚
130˚
37˚
9).
60˚
i˚
g˚
10).
k˚
m˚
n˚
j˚
f˚
11).
12).
p˚ 115˚
145˚
40˚
q˚
13).
14).
15).
46˚
t˚
w˚
s˚
x˚
u˚
r˚
108˚
a˚
b˚
z˚ 156˚
123˚ v˚
y˚
e˚
37˚
c˚
f˚
d˚
C. Angles at a Point.
The angles that meet at a point add up to 360˚.
E.g. From the diagram find u.
u˚ + 90˚ + 100˚ + 75˚ = 360˚ (Angles at a point)
u˚ + 265˚ = 360˚
u˚
= 95˚
75˚
u˚
100˚
Find the size of the angles marked by letters in each diagram.
With each angle found, give a reason. (Diagrams not to scale).
1).
2).
72˚
a˚
3).
117˚
6).
7).
g˚
35˚
Level 5 Pack 3. Page 18.
76˚
87˚
135˚
64˚
f˚
145˚
i˚
9).
m˚ 45˚
k˚
44˚
61˚
32˚
74˚
e˚
136˚
97˚
54˚
8).
46˚
h˚
5).
83˚ d˚
c˚
b˚
154˚
4).
j˚
66˚
82˚
Licensed to De La Salle College
10).
t˚
q˚
s˚
p˚
r˚
38˚
43˚
12˚
r˚
73˚
u˚
[email protected]
Angle Properties 2.
D. Angle Sum of a Triangle.
The interior angles of a triangle add up to 180˚.
1).
Cut out a triangle like
the one below and mark
on the dots.
2).
Fold the top vertex
to touch the base.
3).
Fold in the other two
vertices to where they all
meet.
All the angles are now on a straight line, hence they add up to 180˚.
E.g. From the diagram find s and t.
s˚ + 50˚ + 70˚ = 180˚ (Angle Sum of a Triangle)
s˚ + 120˚ = 180˚
50˚
s˚ = 60˚
60˚ + t˚ = 180˚ (Angles on straight line)
t˚
70˚
s˚
t˚ = 120˚
Find the size of the angles marked by letters in each diagram.
With each angle found, give a reason. (Diagrams not to scale).
1).
2).
3).
45˚
80˚
60˚
7).
37˚
i˚
76˚
55˚
m˚
16).
13).
81˚
64˚
17).
15).
v˚
37˚
64˚
b˚
w˚
7˚
36˚
c˚
e˚
83˚
f˚
9˚
d˚
37˚
23).
157˚
81˚
74˚
8˚
u˚
20).
a˚
22).
s˚
106˚
19).
z˚
y˚ 37˚
83˚ x˚
64˚
t˚
18).
16˚
77˚
14).
r˚
q˚
n˚
52˚
j˚
11˚
12).
p˚
10).
h˚ 29˚
87˚
11).
21).
86˚
9).
19˚
47˚
e˚
82˚
8).
g˚
78˚
55˚
20˚
52˚
d˚
6).
k˚
5).
35˚
c˚ 35˚
b˚
70˚
a˚
f˚
4).
24).
25).
j˚
i˚
84˚
k˚
h˚
g˚
42˚
83˚
Level 5 Pack 3. Page 19.
q˚
74˚
m˚
47˚
29˚
p˚
r˚
Licensed to De La Salle College
v˚
58˚
u˚
s˚ 117˚
t˚
23˚
z˚
y˚
x˚ w˚
76˚
[email protected]
E. Special Triangles.
Reminder: An Isosceles triangle that has 2 sides equal and the two base angles equal.
An Equilateral triangle has all the sides the same length and all the angles equal.
1).
2).
3).
c˚
4).
b˚
j˚
d˚
f˚
70˚
6).
7).
h˚
8).
k˚
10).
u˚
n˚
11).
o˚
63˚
12).
13).
h˚
e˚
c˚
b˚
q˚ s˚
76˚
g˚
34˚
14).
15).
31˚
m˚ 134˚
j˚ n˚
f˚
v˚
t˚
k˚
u˚
r˚
v˚
q˚ p˚
42˚
a˚
71˚
i˚
y˚
x˚ z˚
w˚
38˚
r˚
38˚
d˚
22˚
g˚
9).
p˚
m˚
i˚
80˚
47˚
a˚
5).
e˚
72˚
s˚
x˚ t˚
w˚
73˚
F. Angle Sum of Polygons.
All the polygons can be made up of triangles.
Triangle
Quadrilateral
1 triangle
interior angles
1 x 180˚ = 180˚
Pentagon
2 triangles
interior angles
2 x 180˚ =
3 triangles
Copy and complete these diagrams.
Draw the diagrams up to a decagon (10 -sided shape).
Copy and complete the table below.
Polygon
Triangle
Quadrilateral
Pentagon
Hexagon
Heptagon
Octagon
Nonagon
Decagon
Level 5 Pack 3. Page 20.
Number of sides
Number of triangles
Sum of interior angles
3
4
1
2
1 x 180˚ = 180˚
Licensed to De La Salle College
[email protected]
Angle Properties 3.
G. Angle Sum of a Quadrilateral.
The interior angles of a quadrilateral add up to 360˚.
E.g. From the diagram find p, q and r.
p˚ + 150˚ + 60˚ + 115˚ = 360˚ (Angle Sum of a Quadrilateral)
p˚ + 325˚ = 360˚
r˚
q˚
p˚ = 35˚
p˚
115˚
35˚ + q˚ = 180˚ (Angles on straight line)
q˚ = 145˚
150˚
60˚
r˚ = 115˚ (Vertically opposite angles).
Find the size of the angles marked by letters in each diagram.
With each angle found, give a reason. (Diagrams not to scale).
1).
2).
3).
b˚
75˚
4).
126˚
5).
c˚
130˚
31˚
143˚
154˚
a˚
85˚
6).
g˚
64˚
59˚
8).
97˚
123˚
i˚
9).
131˚
51˚
10).
r˚ p˚
n˚
m˚
113˚
h˚
j˚
k˚
85˚
q˚
83˚
11).
12).
78˚
13).
75˚
w˚
a˚
x˚
c˚
16).
17).
64˚
76˚ s˚
118˚ e˚
62˚
i˚
c˚
74˚
t˚
y˚
94˚
k˚
j˚
m˚
g˚
62˚
75˚
p˚
118˚
20).
18˚
a˚
64˚ u˚
w˚
x˚
67˚
19).
v˚
38˚
133˚
f˚
r˚
q˚
98˚
18).
54˚
15).
h˚
b˚
108˚
128˚ v˚
u˚
80˚
14).
d˚
67˚
s˚ 36˚
86˚
t˚
54˚
53˚
103˚
52˚
73˚
d˚ e˚
75˚
58˚
7).
69˚
65˚ f˚
a˚
44˚
b˚
b˚
e˚
d˚
c˚
d˚
f˚
e˚
35˚
g˚
h˚
126˚ i˚
j˚
H. Constructions.
The Perpendicular Bisector. This construction will bisect (cut in half) a line. The construction
is perpendicular (at right angles) to the line.
1).
Put a compass on one end
of the line. Draw an arc
above and below the line.
Level 5 Pack 3. Page 21.
2).
Keep the compass open at the
same distance. Now place it
at the other end of the line
and repeat step 1.
Licensed to De La Salle College
3).
Where these arcs cross, join
them up. This is the
perpendicular bisector
[email protected]
The Angle Bisector. This construction
1).
2).
Put a compass on the vertex
of the angle. Draw arcs that
cross both lines of the angle,
keeping the compass at the
same distance apart.
bisects (cuts exactly in half) an angle.
Now place the compass at the
points marked on each line.
Keeping the compass at the
same distance draw out arcs.
3).
Where these arcs cross, join
them up. This is the
angle bisector.
A line parallel to another. This construction creates parallel lines at a set distance apart.
ler
Ru
x
Set
Square
1).
x
The line is to pass through the
x. Place the base of the set
square along the line. Put a
ruler along the other edge.
2).
x
Move the set square up the
edge of the ruler until the base
of the set square is in line with
the x.
3).
Draw along the base of the
set square to form the parallel
line.
1).
Draw lines the following lengths. Using only compasses bisect them.
i). 6.3 cm
ii). 78 mm
iii). 104 mm iv). 12.1 cm
2).
Using a protractor measure out the following angles. Using only compasses bisect them.
i). 46˚
iii). 87˚
iii). 128˚
iv). 106˚
Construct the following shapes.
A
3).
i).
8.3 cm
Measure the length AC.
ii). Bisect ∠ BAC.
iii). Measure ∠ ACB.
65˚
C
7.4 cm
4).
i).
ii).
Measure DF.
Using only compasses
bisect DE.
iii). Mark a
132˚
21˚
E
D
point
6.5 cm
3 cm along
EF away from E. Construct a line
parallel to DE through this point.
H
5).
i).
8.0 cm
100˚
G
Level 5 Pack 3. Page 22.
5.6 cm
Measure HI.
ii). Measure ∠ GHI.
iii). Using only compasses bisect HG.
iv). Using only compasses bisect ∠ HIJ.
I
v). Mark a point 3.5 cm from I along IJ.
Construct a line parallel to HI through
5.6 cm
this point.
140˚
J
Licensed to De La Salle College
[email protected]
F
Logo 1.
We can use Logo to draw shapes and patterns on the computer.
The basic Logo commands are:
FORWARD
RIGHT
PENUP
CLEARSCREEN
FD
RT
PU
CS
BACK
SHOWTURTLE
PENDOWN
TO
BK
ST
PD
LEFT
HIDETURTLE
HOME
END
LT
HT
You can use the full command or the shortened version.
There must always be a space between commands.
Your teacher will show you how to log on to the computer and into the Logo package.
You are now ready to start entering commands.
Try this 1.
Enter the following commands.
FD 100
Remember :
Leave a space between the
LT 90
command and the number.
FD 100
LT 90
After each line press
FD 100
ENTER.
LT 90
FD 100
You should see a square slowly appear on your screen.
The FD 100 command tells the turtle to go 100 units forward.
The LT 90 command tells the turtle to turn left through 90˚.
To clear the screen type in the command CS and press ENTER.
Try this 2.
Enter the following commands.
FD 100
As you work through this try hiding the
RT 120
turtle HT followed by ENTER.
FD 100
It is difficult to follow what you are doing
RT 120
so bring it back ST followed by ENTER.
FD 100
You should see an equilateral triangle appear on your screen.
When producing shapes and patterns both the starting and finishing positions
of the turtle are important, along with the direction it is pointing.
Exercise 1.
1).
2).
Look at the first example, the square. What effect does changing
i).
the LT 90 command lines to RT 90 have ?
ii). the FD 100 command lines to FD 200 have ?
Look at the second example, the triangle. What effect does changing
i).
the RT 120 command lines to LT 120 have ?
ii). the FD 100 command lines to FD 50 have ?
Level 5 Pack 3. Page 23.
Licensed to De La Salle College
[email protected]
Exercise 2.
Use the basic Logo commands FD, LT and RT to draw these shapes on your computer.
Write down your Logo instructions as you go along. Start at .
Use distances and angles that you feel are appropriate.
1).
2).
6).
3).
7).
5).
4).
8).
9).
Try this 3.
Enter these sets of commands and write down what shapes you get.
a). FD 100
b). FD 100
c). FD 100
d). FD 100
e).
RT 45
RT 72
RT 60
RT 90
FD 100
FD 100
FD 100
FD 100
RT 45
RT 72
RT 60
RT 90
FD 100
FD 100
FD 100
FD 100
RT 45
RT 72
RT 60
RT 90
FD 100
FD 100
FD 100
FD 100
RT 45
RT 72
RT 60
RT 90
FD 100
FD 100
FD 100
RT 45
RT 72
RT 60
FD 100
FD 100
RT 45
RT 60
FD 100
RT 45
FD 100
RT 45
FD 100
RT 40
FD 100
RT 40
FD 100
RT 40
FD 100
RT 40
FD 100
RT 40
FD 100
RT 40
FD 100
RT 40
FD 100
RT 40
FD 100
RT 40
In all these examples the same instructions are repeated a number of times.
Instead of all this typing we can use a REPEAT statement.
Clear the screen CS and type in: REPEAT 3[FD 100 RT 120]
This tells the computer to work through the instructions in the bracket 3 times !
This replaces 6 lines of command, and draws out our equilateral triangle.
Exercise 3.
Using the REPEAT statement rewrite a - e above so the command is only one line long.
Check these on your computer.
Level 5 Pack 3. Page 24.
Licensed to De La Salle College
[email protected]
Logo 2.
A procedure is a set of instructions we name.
We name a set of instructions so we don't have to keep writing them out.
We name them by using a TO and END command around our instructions.
Try this 1.
Type in:
TO SQUARE
REPEAT 4[FD 50 RT 90]
END
(Press ENTER key)
(Press ENTER key)
(Press ENTER key)
(A procedure must always finish with an END statement).
The procedure should now have been defined.
To use it simply type in its name.
Type in:
SQUARE
(Press ENTER key).
Exercise 1.
Write a procedure that will draw out an equilateral triangle 50 units in length.
Name it TRIANGLE.
Try this 2.
Type in:
SQUARE
FD 50
SQUARE
(Press ENTER key)
(Press ENTER key)
(Press ENTER key)
The shape at the side should appear. If it goes off the screen use your scroll bar to centre it.
This last procedure could have been shortened using a REPEAT command.
Type in:
REPEAT 2[SQUARE FD 50]
Exercise 2.
Write down the procedure, using
similar commands to the one above,
that draws out these shapes.
1).
2).
3).
If we assign a name to these procedures we
can obtain some interesting patterns.
Try this 3.
Type in:
TO BLOCK
REPEAT 3[SQUARE FD 50]
END
(Press ENTER key)
(Press ENTER key)
Clear the screen (CS) then type in :
RT 45 BLOCK
The blocks should appear diagonally across the screen.
Exercise 3.
1).
Write down a similar procedure that
will give this shape.
Check it on your computer.
Level 5 Pack 3. Page 25.
Licensed to De La Salle College
[email protected]
2).
Use the two procedures we have already named (SQUARE and TRIANGLE) along with
the REPEAT, FD, LT and RT commands to draw the following shapes.
Write down the full set of instructions once you have checked it on your computer.
a).
b).
c).
d).
e).
f).
So far in all the procedures the size of the square and triangle have been fixed by the number
following the FD command. We can now introduce a number that can be changed (a variable)
which will allow us to draw different sizes of triangle and square. This is shown by :SIZE .
To delete all the procedures we use the command ERALL.
Try this 4.
Type in:
ERALL
TO SQUARE :SIZE
REPEAT 4[FD :SIZE RT 90]
END
( Make sure you have a space before the : )
( Make sure you have a space before the : )
The : in front of the word SIZE tells the computer that the word SIZE is a variable.
Now when you use the procedure you must say how big you want it.
Type in:
SQUARE 50
SQUARE 100
SQUARE 150
( Make sure you have a space before the 50 )
( Make sure you have a space before the 100 )
( Make sure you have a space before the 150 ).
You should have made a pattern like the one at the side.
Exercise 4.
1).
Write a procedure that will produce equilateral triangles of any size.
Name it TRIANGLE :SIZE . Check it on your computer.
2).
Using all your knowledge of logo, write out the instructions you would use to produce
these shapes. Remember to try them out on your computer first.
a).
b).
c).
d).
e).
Level 5 Pack 3. Page 26.
Licensed to De La Salle College
[email protected]
Parallel Lines.
Revision.
Find the value of the letters. Where there is more than one letter to find, find the letters in
alphabetical order. Give a reason with the answer. (Diagrams are not drawn to scale).
1).
2).
b˚
132˚
7).
11).
x˚
h˚ 38˚
g˚
y˚
16).
13).
17).
18).
129˚
r˚
q˚
t˚
14).
p˚
51˚
u˚
65˚
z˚
47˚
o˚ 57˚
n˚
49˚
1).
f˚
h˚
142˚
g˚
e˚
36˚
20).
156˚
x˚
y˚
48˚
w˚
b˚
a˚
c˚
d˚
53˚
Alternate Angles ("z" shapes).
A).
i˚
117˚
15).
19).
v˚
133˚
w˚
j˚
m˚ 142˚
56˚
78˚
x˚ 127˚
10).
n˚
m˚ k˚
73˚ l˚
18˚
81˚
34˚
63˚
122˚
9).
e˚
87˚ f˚
12).
5).
c˚
176˚
47˚
8).
134˚
153˚
a˚
46˚ 63˚
d˚
s˚
4).
p˚
34˚
6).
3).
78˚
In each diagram are two pairs of alternate angles. Identify them.
2).
a˚ b˚
c˚ d˚
3).
p˚
q˚
e˚ f˚
g˚ h˚
6).
s˚
r˚ u˚ t˚ v˚
w˚
7).
8).
e˚
s˚
o˚q˚ r˚ t˚
m˚ p˚
n˚
4).
f˚
g˚
n˚
p˚
m˚
q˚
o˚
t˚
r˚
s˚
h˚
e˚
c˚ f˚
d˚
a˚
b˚
9).
d˚
c˚
e˚
f˚ h˚
g˚
i˚
j˚
g˚
h˚ i˚ k˚
j˚
l˚
5).
s˚ t˚
u˚ v˚
w˚ x˚
y˚ z˚
10).
k˚ l˚
m˚ n˚
o˚ p˚
q˚ r˚
u˚
y˚
z˚
w˚
t˚
s˚
v˚
x˚
B). Find the value of the letters. Where there is more than one letter to find, find the missing
letters in alphabetical order. Give a reason with the answer. (Diagrams are not drawn to scale).
1).
2).
3).
5).
r˚
47˚
v˚
s˚
6).
132˚
7).
x˚
Level 5 Pack 3. Page 27.
141˚
38˚
e˚ 17˚
g˚
8).
v˚
u˚
y˚
37˚
4).
9).
a˚
48˚
b˚
Licensed to De La Salle College
146˚
10).
129˚
137˚
r˚
s˚
g˚
h˚
[email protected]
11).
12).
53˚
h˚
13).
14).
v˚
u˚
r˚ q˚
g˚
147˚
15).
17).
44˚ e˚
z˚
e˚
18).
19).
20).
u˚
f˚
g˚
y˚
d˚
131˚
16).
58˚
21˚
i˚
t˚
b˚135˚ c˚
d˚
s˚
108˚
127˚ t˚
h˚
f˚ g˚
a˚
u˚ v˚
w˚ y˚
z˚ x˚
83˚
Corresponding Angles ("F" shapes).
A).
In each diagram are four pairs of corresponding angles. Identify them.
1).
2).
3).
a˚ b˚
c˚ d˚
4).
n˚
p˚
m˚
q˚
o˚
t˚
r˚
s˚
p˚
q˚
e˚ f˚
g˚ h˚
6).
s˚
r˚ u˚ t˚ v˚
w˚
7).
8).
e˚
s˚
o˚q˚ r˚ t˚
m˚ p˚
n˚
f˚
g˚
h˚
e˚
c˚ f˚
d˚
a˚
b˚
9).
d˚
c˚
e˚
f˚ h˚
g˚
i˚
j˚
g˚
h˚ i˚ k˚
j˚
l˚
5).
s˚ t˚
u˚ v˚
w˚ x˚
y˚ z˚
10).
k˚ l˚
m˚ n˚
o˚ p˚
q˚ r˚
u˚
y˚
z˚
w˚
t˚
s˚
v˚
x˚
B). Find the value of the letters. Where there is more than one letter to find, find the values of
missing letters in alphabetical order. Give a reason with the answer. (Diagrams not to scale).
1).
2).
3).
w˚
4).
136˚
n˚
f˚
6).
7).
c˚
61˚
13).
14).
q˚
m˚ n˚
15).
129˚
v˚
x˚
d˚
u˚
p˚
51˚
17).
56˚
18).
b˚ c˚
d˚
19˚
Level 5 Pack 3. Page 28.
49˚
f˚
g˚
164˚
12).
a˚
137˚
d˚ 63˚
e˚
c˚
10).
153˚
b˚
16).
9).
d˚
j˚
37˚
c˚
8).
s˚
r˚
k˚
71˚
e˚
63˚
55˚
11).
5).
12˚
x˚
z˚
y˚
a˚
102˚
Licensed to De La Salle College
c˚ 47˚
y˚
19).
20).
f˚
e˚
g˚
d˚
119˚
c˚
t˚ s˚
x˚ y˚
u˚ 149˚
w˚ v˚
[email protected]
Metric Units -Lengths.
A).
Change the following from centimetres (cm) to millimetres (mm).
1 cm = 10 mm
1).
2).
3).
4).
5).
6).
7).
8).
2 cm
4 cm
7 cm
6 cm
1 cm
9 cm
5 cm
8 cm
9).
10).
11).
12).
13).
14).
15).
16).
15 cm
12 cm
19 cm
25 cm
17 cm
29 cm
35 cm
71 cm
17).
18).
19).
20).
21).
22).
23).
24).
4.1 cm
2.6 cm
1.9 cm
7.2 cm
2.1 cm
9.8 cm
3.4 cm
5.5 cm
25).
26).
27).
28).
29).
30).
31).
32).
0.8 cm
0.2 cm
0.7 cm
0.5 cm
0.1 cm
0.9 cm
0.4 cm
0.6 cm
33).
34).
35).
36).
37).
38).
39).
40).
3 cm
42 cm
6.2 cm
0.3 cm
14 cm
9.8 cm
12.5 cm
18.4 cm
B).
Change the following from millimetres (mm) to centimetres (cm).
7 mm
9 mm
1 mm
8 mm
4 mm
6 mm
3 mm
5 mm
33).
34).
35).
36).
37).
38).
39).
40).
60 mm
130 mm
360 mm
2 mm
17 mm
183 mm
904 mm
671 mm
1.50 m
1.5 m
1.7 m
0.3 m
7.4 m
9.6 m
7.2 m
0.1 m
9.2 m
6.1 m
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
4m
2.2 m
3.17 m
4.26 m
1.1 m
11 m
0.7 m
6.3 m
5.26 m
14 m
98 cm
56 cm
78 cm
30 cm
62 cm
40 cm
10 cm
83 cm
90 cm
61 cm
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
4000 cm
226 cm
304 cm
1420 cm
810 cm
1045 cm
26 cm
650 cm
60 cm
4720 cm
10 mm = 1 cm
9).
10).
11).
12).
13).
14).
15).
16).
100 mm
160 mm
190 mm
220 mm
460 mm
950 mm
370 mm
710 mm
17).
18).
19).
20).
21).
22).
23).
24).
49 mm
26 mm
18 mm
31 mm
21 mm
87 mm
76 mm
98 mm
25).
26).
27).
28).
29).
30).
31).
32).
1).
2).
3).
4).
5).
6).
7).
8).
70 mm
20 mm
10 mm
90 mm
50 mm
30 mm
80 mm
40 mm
C).
Change the following from metres (m) to centimetres (cm).
1 m = 100 cm
11).
12).
13).
14).
15).
16).
17).
18).
19).
20).
21).
22).
23).
24).
25).
26).
27).
28).
29).
30).
2.53 m
2.42 m
1.31 m
0.49 m
4.37 m
3.21 m
0.35 m
1.25 m
2.93 m
4.92 m
6.04 m
6.40 m
6.4 m
7.01 m
7.10 m
7.1 m
6.03 m
6.30 m
6.3 m
1.05 m
31).
32).
33).
34).
35).
36).
37).
38).
39).
40).
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
2m
3m
6m
1m
7m
10 m
9m
5m
12 m
15 m
D).
Change the following from centimetres (cm) to metres (m).
100 cm = 1 m
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
200 cm
700 cm
900 cm
100 cm
300 cm
1200 cm
1900 cm
800 cm
1500 cm
2400 cm
Level 5 Pack 3. Page 29.
11).
12).
13).
14).
15).
16).
17).
18).
19).
20).
124 cm
257 cm
462 cm
971 cm
352 cm
713 cm
498 cm
2683 cm
1823 cm
3198 cm
21).
22).
23).
24).
25).
26).
27).
28).
29).
30).
206 cm
260 cm
703 cm
730 cm
901 cm
910 cm
720 cm
702 cm
2690 cm
2609 cm
Licensed to De La Salle College
31).
32).
33).
34).
35).
36).
37).
38).
39).
40).
[email protected]
S.I. Units (Système International d'Unités)
E).
Change the following from kilometres (Km) to metres (m).
1 Km = 1000 m
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
F).
31).
4 Km
11). 2.573 Km
21). 4.92 Km
3 Km
12). 3.428 Km
22). 6.44 Km
32).
6 Km
13). 1.381 Km
23). 1.34 Km
33).
2 Km
24). 0.67 Km
34).
14). 0.493 Km
25). 5.04 Km
35).
7 Km
15). 6.357 Km
14 Km
16). 3.211 Km
26). 0.26 Km
36).
18 Km
17). 0.135 Km
27). 7.90 Km
37).
5 Km
18). 1.057 Km
28). 3.06 Km
38).
21 Km
29). 0.08 Km
39).
19). 2.903 Km
19 Km
30). 2.80 Km
40).
20). 4.920 Km
Change the following from metres (m) to kilometres (Km).
2.8 Km
1.4 Km
3.7 Km
0.5 Km
6.0 Km
9.6 Km
7.2 Km
0.8 Km
1.2 Km
6.1 Km
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
15 Km
2.02 Km
3.179 Km
4.2 Km
1.98 Km
0.056 Km
3.6 Km
8 Km
5.266 Km
4.06 Km
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
5000 m
2267 m
3004 m
120 m
817 m
45 m
2689 m
5m
6052 m
472 m
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
5m
2.2 m
3.157 m
4.006 m
1.01 m
31 m
0.07 m
6.3 m
5.206 m
0.008 m
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
4000 mm
2206 mm
34 mm
1420 mm
81 mm
5 mm
2006 mm
6150 mm
603 mm
4020 mm
1000 m = 1 Km
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
G).
11). 1924 m
21). 476 m
31). 398 m
2000 m
22). 269 m
32). 56 m
7000 m
12). 5257 m
33). 18 m
4000 m
13). 8462 m
23). 753 m
1000 m
14). 7971 m
24). 73 m
34). 3 m
15). 2352 m
25). 981 m
35). 12 m
13000 m
26). 912 m
36). 9 m
15000 m
16). 4713 m
37). 4 m
17). 6298 m
27). 725 m
19000 m
28). 32 m
38). 83 m
8000 m
18). 2083 m
39). 92 m
24000 m
19). 1803 m
29). 26 m
40). 6 m
45000 m
20). 3490 m
30). 169 m
Change the following from metres (m) to millimetres (mm).
1 m = 1000 mm
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
H).
21). 2.87 m
31). 1.5 m
7m
11). 1.523 m
32). 3.6 m
4m
12). 2.472 m
22). 1.49 m
8m
23). 5.44 m
33). 2.1 m
13). 1.301 m
3m
14). 0.549 m
24). 7.81 m
34). 0.6 m
35). 7.4 m
9m
15). 2.317 m
25). 0.84 m
26). 7.19 m
36). 9.0 m
14 m
16). 3.291 m
10 m
17). 0.305 m
27). 6.03 m
37). 0.2 m
19 m
28). 0.72 m
38). 0.9 m
18). 1.295 m
22 m
19). 2.973 m
29). 8.30 m
39). 9.2 m
30). 1.50 m
40). 4.1 m
35 m
20). 2.870 m
Change the following from millimetres (mm) to metres (m).
1000 mm = 1 m
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
2000 mm
7000 mm
9000 mm
1000 mm
3000 mm
12000 mm
19000 mm
8000 mm
15000 mm
24000 mm
Level 5 Pack 3. Page 30.
11).
12).
13).
14).
15).
16).
17).
18).
19).
20).
1274 mm
4257 mm
4062 mm
9701 mm
8252 mm
7213 mm
4098 mm
5683 mm
1823 mm
3190 mm
21).
22).
23).
24).
25).
26).
27).
28).
29).
30).
296 mm
468 mm
103 mm
73 mm
961 mm
919 mm
16 mm
702 mm
26 mm
299 mm
Licensed to De La Salle College
31).
32).
33).
34).
35).
36).
37).
38).
39).
40).
598 mm
56 mm
78 mm
3 mm
612 mm
40 mm
17 mm
8 mm
95 mm
6 mm
[email protected]
Metric Units -Weight. (S.I. Units only)
A).
Change the following from kilograms (Kg) to grams (g).
1 Kg = 1000 g
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
3 Kg
5 Kg
9 Kg
2 Kg
10 Kg
14 Kg
7 Kg
20 Kg
21 Kg
54 Kg
B).
Change the following from grams (g) to kilograms (Kg).
11).
12).
13).
14).
15).
16).
17).
18).
19).
20).
1.583 Kg
3.828 Kg
4.281 Kg
0.513 Kg
6.381 Kg
2.218 Kg
0.185 Kg
1.089 Kg
0.053 Kg
1.520 Kg
21).
22).
23).
24).
25).
26).
27).
28).
29).
30).
1.52 Kg
2.66 Kg
1.72 Kg
0.34 Kg
2.04 Kg
0.96 Kg
7.23 Kg
3.60 Kg
0.04 Kg
6.70 Kg
31).
32).
33).
34).
35).
36).
37).
38).
39).
40).
6.7 Kg
1.9 Kg
2.7 Kg
0.3 Kg
5.0 Kg
7.6 Kg
3.9 Kg
0.8 Kg
1.9 Kg
5.1 Kg
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
19 Kg
4.09 Kg
2.519 Kg
4.9 Kg
1.06 Kg
0.026 Kg
7.1 Kg
8 Kg
5.736 Kg
0.003 Kg
390 g
16 g
38 g
8g
12 g
5g
1g
73 g
92 g
6g
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
8000 g
2927 g
6004 g
720 g
117 g
55 g
2089 g
7g
8052 g
342 g
8.1 g
0.5 g
2.3 g
7.2 g
17).
18).
19).
20).
16 g
4.005 g
2.3 g
0.007g
11 mg
9 mg
17 mg
2 mg
17).
18).
19).
20).
1700 mg
1295 mg
3 mg
420 mg
1000 g = 1 Kg
11).
12).
13).
14).
15).
16).
17).
18).
19).
20).
21).
22).
23).
24).
25).
26).
27).
28).
29).
30).
5724 g
1427 g
8782 g
1971 g
9352 g
2715 g
5298 g
4028 g
8803 g
3560 g
672 g
159 g
633 g
53 g
921 g
712 g
805 g
42 g
21 g
109 g
31).
32).
33).
34).
35).
36).
37).
38).
39).
40).
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
5000 g
2000 g
7000 g
1000 g
14000 g
11000 g
23000 g
9000 g
28000 g
36000 g
C).
Change the following from grams (g) to milligrams (mg).
1 g = 1000 mg
1).
2).
3).
4).
6g
14 g
22 g
53 g
5).
6).
7).
8).
3.682 g
1.405 g
0.156 g
4.190 g
9).
10).
11).
12).
2.45 g
3.85 g
0.53 g
0.02 g
13).
14).
15).
16).
D).
Change the following from milligrams (mg) to grams (g).
1000 mg = 1g
1).
2).
3).
4).
4000 mg
13000 mg
37000 mg
6000 mg
Level 5 Pack 3. Page 31.
5).
6).
7).
8).
3659 mg
1384 mg
8210 mg
6019 mg
9).
10).
11).
12).
722 mg
45 mg
523 mg
72 mg
Licensed to De La Salle College
13).
14).
15).
16).
[email protected]
E).
Change the following from tonnes (t) to Kilograms (Kg).
1 t = 1000 Kg
1).
2).
3).
4).
3t
9t
18 t
37 t
5).
6).
7).
8).
9.524 t
1.894 t
0.810 t
7.949 t
9).
10).
11).
12).
2.82 t
3.95 t
1.03 t
0.02 t
13).
14).
15).
16).
F).
Change the following from Kilograms (Kg) to tonnes (t).
1.3 t
0.5 t
2.3 t
8.2 t
17).
18).
19).
20).
5t
1.005 t
0.9 t
5.004 t
31 Kg
549 Kg
17 Kg
9 Kg
17).
18).
19).
20).
305 Kg
1295 Kg
2973 Kg
26 Kg
1000 Kg = 1 t
1).
2).
3).
4).
2000 Kg
43000 Kg
17000 Kg
7000 Kg
5).
6).
7).
8).
9205 Kg
1480 Kg
3093 Kg
6952 Kg
9).
10).
11).
12).
272 Kg
435 Kg
23 Kg
572 Kg
13).
14).
15).
16).
Metric Units -Capacity. (S.I. Units only)
A).
Change the following from litres (l) to millilitres (ml).
1 l = 1000 ml
4l
9l
2l
6l
18 l
24 l
37 l
5l
51 l
98 l
B).
Change the following from millilitres (ml) to litres (l).
11).
12).
13).
14).
15).
16).
17).
18).
19).
20).
1.343 l
4.878 l
5.81 l
0.833 l
3.381 l
2.898 l
0.285 l
3.019 l
0.043 l
2.560 l
2.56 l
3.76 l
4.72 l
0.38 l
1.04 l
0.56 l
6.23 l
5.30 l
0.08 l
6.40 l
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
21).
22).
23).
24).
25).
26).
27).
28).
29).
30).
31).
32).
33).
34).
35).
36).
37).
38).
39).
40).
6.4 l
1.8 l
5.1 l
0.4 l
2.0 l
7.5 l
2.9 l
0.6 l
1.9 l
2.1 l
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
13 l
1.07 l
2.539 l
1.9 l
3.02 l
0.016 l
5.1 l
8l
5.932 l
0.001 l
31).
32).
33).
34).
35).
36).
37).
38).
39).
40).
290 ml
26 ml
68 ml
4 ml
15 ml
5 ml
1 ml
33 ml
98 ml
6 ml
41).
42).
43).
44).
45).
46).
47).
48).
49).
50).
8000 ml
2717 ml
5004 ml
220 ml
107 ml
35 ml
2079 ml
7 ml
8092 ml
942 ml
1000 ml = 1 l
1).
2).
3).
4).
5).
6).
7).
8).
9).
10).
7000 ml
4000 ml
6000 ml
12000 ml
34000 ml
11000 ml
3000 ml
9000 ml
48000 ml
86000 ml
Level 5 Pack 3. Page 32.
11).
12).
13).
14).
15).
16).
17).
18).
19).
20).
4224 ml
1027 ml
6482 ml
1954 ml
8752 ml
2305 ml
7098 ml
4028 ml
2803 ml
9560 ml
21).
22).
23).
24).
25).
26).
27).
28).
29).
30).
472 ml
259 ml
733 ml
24 ml
525 ml
212 ml
705 ml
34 ml
61 ml
103 ml
Licensed to De La Salle College
[email protected]
Calculations with Metric Units.
A). The Four Rules.
1).
4).
7).
10).
13).
16).
19).
22).
4.6 Km + 2.17 Km
10.5 m + 7.74 m
6.54 Kg - 3.26 Kg
2.8 m - 0.93 m
12.45 m x 4
7.038 l x 3
51.6 m ÷ 8
47.6 ml ÷ 7
2).
5).
8).
11).
14).
17).
20).
23).
7.32 m + 2.5 m
6 Kg + 0.74 Kg
6.45 m - 2.7 m
4.8 l - 2.457 l
2.052 Km x 6
3.67 cm x 9
40.5 mm ÷ 9
7.854 Kg ÷ 6
3).
6).
9).
12).
15).
18).
21).
24).
5.83 Kg + 3.4 Kg
4.567 l + 0.87 l + 5 l
8.563 l - 7.4 l
9.32 Kg - 5.602 Kg
9.6 mm x 8
0.746 Kg x 5
12.436 l ÷ 4
55.2 cm ÷ 12
B). Mixed Units.
Leave answers in the units you see first. e.g. Number 1 will be left in Km.
1).
4).
7).
10).
13).
16).
19).
22).
25).
28).
4.65 Km + 700 m
5420 mg + 3.2 g
12.4 cm + 37 mm
7400 mm + 3.4 m
9.5 m + 174 cm
2.04 g + 3246 mg
3045 mm + 1.204 m
260 mg + 4.2 g
4904 g + 7.56 Kg
840 mm + 0.3 m
2).
5).
8).
11).
14).
17).
20).
23).
26).
29).
2.32 m + 85 cm
95 cm + 2.86 m
950 g + 1.72 Kg
6.8 Kg + 2374 g
3200 m + 1.453 Km
3.16 m + 1200 mm
2403 ml + 1.57 l
6.03 Km + 845 m
3.6 cm + 84 mm
1.5 Kg + 20 g
3).
6).
9).
12).
15).
18).
21).
24).
27).
30).
1.73 Kg + 370 g
0.767 l + 2487 ml
850 ml + 3.24 l
455 cm + 8.4 m
1.78 t + 921 Kg
2457 Kg + 5.6 t
98 cm + 3.9 m
0.8 t + 750 Kg
0.06 l + 6408 ml
5 cm + 2.7 m
31).
34).
37).
40).
43).
46).
49).
52).
55).
58).
1.654 Km - 500 m
4578 mg - 2.3 g
9.4 cm - 37 mm
4400 mm - 1.5 m
8.5 m - 374 cm
2.04 g - 1246 mg
5045 mm - 1.04 m
7260 mg - 4.2 g
4904 g - 1.56 Kg
840 mm - 0.19 m
32).
35).
38).
41).
44).
47).
50).
53).
56).
59).
4.32 m - 25 cm
210 cm - 1.09 m
1240 g - 0.43 Kg
4.8 Kg - 2374 g
3270 m - 1.453 Km
4.06 m - 1200 mm
2603 ml - 1.37 l
6.03 Km - 845 m
11.6 cm - 89 mm
1.2 Kg - 20 g
33).
36).
39).
42).
45).
48).
51).
54).
57).
60).
2.734 Kg - 613 g
2.767 l - 486 ml
6850 ml - 3.94 l
450 cm - 2.4 m
2.38 t - 826 Kg
5457 Kg - 2.6 t
98 cm - 0.45 m
0.8 t - 257 Kg
4.06 l - 608 ml
455 cm - 0.77 m
C). Worded Questions.
1).
A runner jogs 4.6 Km on day 1, 8.26 Km on day 2 and 7.362 Km on day 3.
How far has the runner jogged altogether?
2).
A plank of wood is 3.6 metres long. A piece, 185 cm long, is sawn off. What is the length
of the remaining piece of wood, in metres ?
3).
A Bungalow is 3.7 metres tall. It is to have an upstairs built on. The upstairs is 2.45 m tall.
How high will the new building be ?
4).
Five friends measure their heights. John is 1.6 metres, Jenny is 138 centimetres, Gemma is
162 centimetres, Jilly is 1.09 metres and Jim is 1.8 metres. What is their total height ?
5).
Claire walks along Hadrian's Wall. The first day she walks 6.1 Km, the second day she
walks 12.45 Km and the third day she walks 5025 m. How far has she walked, in metres?
Level 5 Pack 3. Page 33.
Licensed to De La Salle College
[email protected]
6).
Charles goes on a diet. He weighed 82.5 Kg and now weighs 64.956 Kg.
How much weight did he lose ?
7).
A Fir tree, 5.2 metres tall, is casting too much shadow in a garden. Ben decides
to cut 1.36 metres off it. How tall is the tree going to be ?
8).
Five friends know their weights.
Tim is 72.67 Kg, Jill is 47.4 Kg, Eve is 55.3 Kg , Ron is 64.3 Kg and Jim is 58.734 Kg.
They get into a lift that has a maximum weight capacity of 295 Kg.
a). Will the lift be able to carry all the people ?
b). By what weight, over or under the maximum lift capacity, are they ?
9).
Here is a shopping list.
2 Kg of sugar ; 3 tins of Tuna Chunks (185 g per tin); 700g of bacon and 0.5 Kg of apples.
Item
Weight (grams)
Weight (Kg)
Sugar
Tuna
Bacon
700
2
Apples
Total
0.5
Fill in the table above for this information.
10). In the Great North Black-Pudding Eating Championship the weight of Black-Pudding
eaten determines the winner. Here are the weights of Black-Pudding eaten by the four
finely tuned contenders.
Hamish
Billy
Zeeshan
David
a).
b).
2.2 Kg
1320 g
2.071 Kg
1.03 Kg
672 g
0.21 Kg
460 g
2.5 Kg
0.012 Kg
1.2 Kg
482 g
36 g
805 g
Work out the weights of Black-Pudding eaten by each competitor.
Find the final positions in the competition.
11). Jenny lays block paving. Here is the distance she covers in 6 days.
Monday 41.4 m
Thursday 21.93 m
a).
b).
Tuesday
Friday
42.05 m
38.4 m
Wednesday
Saturday
56.62 m
22 m
Work out the total length of block paving Jenny has put down this week.
The drive she is block paving is 300 metres long. How much has she now got to do ?
12). Here is a shopping list.
3 litres of cola ; 4 bottles of wine (750ml per bottle); 600 ml of Olive Oil and 6 bottles of
beer (0.33 l per bottle).
Item
Capacity (ml)
Capacity (l)
Cola
Wine
Olive Oil
600
Beer
Total
3
Fill in the table above for this information.
Level 5 Pack 3. Page 34.
Licensed to De La Salle College
[email protected]
The Imperial System
16 ounces = 1 pound
14 pounds = 1 stone
8 stone = 1 hundredweight
20 hundredweight = 1 ton
12 inches = 1 foot
3 feet = 1 yard
1760 yards = 1 mile
20 fluid ounces = 1 pint
8 pints = 1 gallon
Use the above information to solve the following questions.
1).
4).
7).
10).
13).
16).
19).
22).
25).
28).
31).
34).
37).
40).
43).
46).
49).
52).
55).
58).
2 feet = __ inches
5 yards = __feet
7 gallons = __ pints
9 miles = __ yards
10 stone = __ pounds
10 miles = __ yards
16 yards = __ feet
1 stone = __ pounds
2
1 stone = __ pounds
7
3 pound = __ ounces
8
1 yard = __ inches
1 mile = __ feet
1 mile = __ inches
96 inches = __ feet
15 feet = __ yards
72 pints = __ gallons
7040 yards = __ miles
196 pounds = __ stone
4 pints = __ gallon
18 inches = __ feet
Level 5 Pack 3. Page 35.
2).
5).
8).
11).
14).
17).
20).
23).
26).
29).
32).
35).
38).
41).
44).
47).
50).
53).
56).
59).
3 pounds = __ ounces
4 tons = __ hundredweight
2 miles = __ yards
9 hundredweight = __ stone
14 gallons = __ pints
14 tons = __ hundredweight
9 stone = __ pounds
1 hundredweight = __ stone
4
1 foot = __ inches
3
3 mile = __ yards
4
1 stone = __ ounces
1 hundredweight = _ pounds
1 ton = __ pounds
48 ounces = __ pounds
100 hundredweight = _ tons
240 fluid ounces = __ pints
36 feet = __ yards
460 hundredweight = _ tons
15840 yards = __ miles
40 ounces = __ pounds
Licensed to De La Salle College
3).
6).
9).
12).
15).
18).
21).
24).
27).
30).
33).
36).
39).
42).
45).
48).
51).
54).
57).
60).
4 pints = __ fluid ounces
5 stone = __ pounds
12 gallons = __ pints
12 pints = __ fluid ounces
9 pounds = __ ounces
12 pounds = __ ounces
25 yards = __ feet
1 pint = __ fluid ounces
2
3 ton = __ hundredweight
4
3 pint = __ fluid ounces
5
1 gallon = __ fluid ounces
1 ton = __ stone
1 ton = __ ounces
60 fluid ounces = __ pints
84 pounds = __ stone
84 inches = __ feet
120 pints = __ gallons
176 ounces = __ pounds
7 pounds = __ stone
52 ounces = __ pounds
[email protected]
90 cm
is about
1 yard
Converting between Metric and Imperial Units.
1 gallon
is about
4.5 litres
4.5 litres ≈ 1 gallon or 45 litres ≈ 10 gallons
1).
Using the above facts, find how many litres there are in :a).
f).
2).
5 gallons b).
20 gallons g).
15 gallons c).
40 gallons h).
45 gallons d).
70 gallons i).
75 gallons e).
30 gallons j).
750 gallons
120 gallons
Using the above facts, find how many gallons there are in :a).
f).
45 litres
9 litres
b).
g).
90 litres c).
22.5 litres h).
180 litres d).
67.5 litres i).
360 litres e).
292.5 litres j).
495 litres
2925 litres
2.2 pounds ≈ 1 Kilogram or 22 pounds ≈ 10 kilograms
3).
Using the above facts, find how many pounds there are in :a).
f).
4).
5 Kg
70 Kg
b).
g).
8 Kg
110 Kg
c).
h).
6 Kg
200 Kg
d).
i).
9 Kg
160 Kg
e).
j).
12 Kg
500 Kg
e).
j).
26.4 lbs
880 lbs
Using the above facts, find how many kilograms there are in :a).
f).
4.4 lbs
88 lbs
b).
g).
6.6 lbs
110 lbs
c).
h).
13.2 lbs
220 lbs
d).
i).
17.6 lbs
660 lbs
0.9 metres ≈ 1 yard or 9 metres ≈ 10 yards
5).
Using the above facts, find how many metres there are in :a).
f).
6).
6 yards
30 yards
b).
g).
9 yards
70 yards
c).
h).
12 yards d).
140 yards i).
15 yards e).
210 yards j).
19 yards
330 yards
6.3 metres e).
180 metres j).
8.1 metres
306 metres
Using the above facts, find how many yards there are in :a).
f).
1.8 metres b).
27 metres g).
4.5 metres c).
72 metres h).
5.4 metres d).
108 metres i).
5 miles ≈ 8 kilometres
7).
Using the above fact, find how many kilometres there are in :a).
f).
8).
10 miles
2.5 miles
b).
g).
50 miles
7.5 miles
c).
h).
15 miles d).
12.5 miles i).
35 miles e).
57.5 miles j).
200 miles
575 miles
56 Km
84 Km
96 Km
840 Km
Using the above fact, find how many miles there are in :a).
f).
Level 5 Pack 3. Page 36.
16 Km
4 Km
b).
g).
32 Km
12 Km
c).
h).
80 Km
28 Km
Licensed to De La Salle College
d).
i).
e).
j).
[email protected]
Metric and Imperial Units. Conversion Tables.
A).
Below are conversion tables to change between feet (ft) and metres (m).
ft
3.27
6.54
9.81
13.08
16.35
19.62
22.89
26.16
29.43
1
2
3
4
5
6
7
8
9
ft
32.7
65.4
98.1
130.8
163.5
196.2
228.9
261.6
294.3
m
0.30
0.61
0.91
1.21
1.52
1.82
2.12
2.43
2.73
m
3.03
6.07
9.10
12.13
15.17
18.20
21.23
24.27
27.30
10
20
30
40
50
60
70
80
90
ft
327
654
981
1308
1635
1962
2289
2616
2943
100
200
300
400
500
600
700
800
900
m
30.33
60.66
91.00
121.33
151.67
182.00
212.33
242.67
273.00
Example 1.
Work out 452 metres in feet.
400 m
50 m +
2m
452 m
=
=
=
1308.00 ft
163.50 ft
6.54 ft
1478.04 ft
+
Using the conversion tables, change the following from metres to feet.
1).
6).
11).
16).
14 m
130 m
507 m
163 m
2).
7).
12).
17).
39 m
270 m
408 m
387 m
3).
8).
13).
18).
41 m
450 m
205 m
825 m
4).
9).
14).
19).
87 m
620 m
901 m
692 m
5).
10).
15).
20).
95 m
870 m
606 m
935 m
25).
30).
35).
40).
78 ft
920 ft
703 ft
985 ft
Example2.
Work out 523 feet in metres.
500 ft
20 ft +
3 ft
523 ft
=
=
=
151.67 m
6.07 m
0.91 m
158.65 m
+
Using the conversion tables, change the following from feet to metres.
21).
26).
31).
36).
Level 5 Pack 3. Page 37.
12 ft
170 ft
104 ft
429 ft
22).
27).
32).
37).
27 ft
310 ft
608 ft
283 ft
23).
28).
33).
38).
53 ft
540 ft
304 ft
736 ft
Licensed to De La Salle College
24).
29).
34).
39).
94 ft
890 ft
906 ft
185 ft
[email protected]
B).
Below are conversion tables to change between kilometres /miles and metres/yards.
Km
1.61
3.22
4.83
6.44
8.05
9.66
11.26
12.87
14.48
Miles
0.62
1.24
1.86
2.48
3.11
3.73
4.35
4.97
5.59
1
2
3
4
5
6
7
8
9
Metres
0.91
1.83
2.74
3.66
4.57
5.49
6.40
7.32
8.23
1
2
3
4
5
6
7
8
9
Yards
1.09
2.19
3.28
4.37
5.47
6.56
7.66
8.75
9.84
Example 3.
Work out 24 metres in yards.
9m
9m +
6m
24 m
=
=
=
9.84 yds
9.84 yds
6.56 yds
26.24 yds
+
Using the appropriate conversion table to change the following:
1).
5).
9).
13).
17).
21).
C).
14 miles to Km
21 Km to miles
23 m to yards
30 yards to m
35 m to yards
45 miles to Km
2).
6).
10).
14).
18).
22).
12 Km to miles
24 m to yards
26 miles to Km
28 Km to miles
29 miles to Km
54 yards to m
3).
7).
11).
15).
19).
23).
13 m to yards
20 yards to m
25 yards to m
31 miles to Km
37 yards to m
90 m to yards
4).
8).
12).
16).
20).
24).
16 yards to m
19 miles to Km
27 Km to miles
34 m to yards
40 Km to miles
72 Km to miles.
Below are conversion tables to change between Kilograms /pounds and litres/pints.
Kgs
0.11
0.24
0.45
0.68
0.91
2.27
Pounds
0.25 0.55
0.50 1.10
1.00 2.20
1.50 3.31
2.00 4.41
5.00 11.02
Litres
0.14
0.28
0.57
0.85
1.14
2.84
0.25
0.50
1.00
1.50
2.00
5.00
Pints
0.44
1.32
1.76
2.64
3.52
8.80
Example 4.
Work out 3.25 pints in litres.
2.00 pints
1.00 pints
0.25 pints
3.25 pints
1).
5).
9).
13).
17).
21).
3.0 pds to Kg
2).
5.25 litres to pints 6).
7.5 pints to litres 10).
9 Kgs to pds
14).
15.0 Kgs to pds 18).
16 litres to pints 22).
Level 5 Pack 3. Page 38.
+
=
=
=
1.14 litres
0.57 litres
0.14 litres
1.85 litres
4.0 litres to pints 3).
7.0 pds to Kgs 7).
5.75 Kgs to pds 11).
8.5 litres to pints 15).
4.25 pints to litres19).
17.25 pds to Kgs 23).
+
2.5 Kg to pds
4).
6.5 Kgs to pds
8).
6.75 litres to pints12).
12.0 pints to litres16).
14.0 pds to Kg 20).
18.75 Kgs to pds 24).
Licensed to De La Salle College
6.0 pints to litres
2.25 pints to litres
8 pds to Kgs
11.0 pds to Kgs
7.25 litres to pints
23.75 pints to litres.
[email protected]
Time.
The 24 hour clock.
Change the following times from the 12 hour clock to the 24 hour clock.
1). 10.20 a.m.
2). 11.15 a.m.
3). 8.25 a.m.
5). 1.40 p.m.
6). 3.45 p.m.
7). 6.05 p.m.
9). 5.15 a.m.
10). 4.40 p.m.
11). 8.25 p.m.
13). 2.05 a.m.
14). 9.20 p.m.
15). 11.35 p.m.
17). 8.00 a.m.
18). 11.55 a.m.
19). 10.20 p.m.
21). 6.00 a.m.
22). 4.15 p.m.
23). 12.40 a.m.
25). 4.35 a.m.
26). 1.55 p.m.
27). 8.00 p.m.
29). 12.05 a.m.
30). 12.05 p.m.
31). 2.25 p.m.
33). 6.54 p.m.
34). 9.27 a.m.
35). 12.56 a.m.
37). 4.23 p.m.
38). 2.48 a.m.
39). 5.36 p.m.
4).
8).
12).
16).
20).
24).
28).
32).
36).
40).
3.55 a.m.
2.55 p.m.
3.10 a.m.
1.30 a.m.
7.45 p.m.
12.40 p.m.
2.30 a.m.
3.15 a.m.
7.18 p.m.
3.32 a.m.
The 12 hour clock.
Change the following times from the 24 hour clock to the 12 hour clock.
1). 11.55
2). 04.30
3). 09.15
5). 13.45
6). 20.05
7). 16.25
9). 08.30
10). 14.00
11). 22.45
13). 10.05
14). 17.45
15). 23.40
17). 21.35
18). 04.50
19). 17.50
21). 01.40
22). 19.25
23). 00.15
25). 18.30
26). 05.20
27). 14.50
29). 00.05
30). 12.45
31). 11.05
33). 19.16
34). 15.54
35). 10.34
37). 19.57
38). 00.03
39). 06.47
4).
8).
12).
16).
20).
24).
28).
32).
36).
40).
10.35
19.55
11.25
02.50
22.25
12.15
00.55
07.30
23.01
20.39
Time Differences (24 hour clock).
Find the amount of time from
1). 08.15 to 11.55 2). 03.25 to 07.35
5). 07.25 to 14.50 6). 10.40 to 15.55
9). 09.05 to 18.30 10). 16.45 to 23.50
13). 14.25 to 20.15 14). 11.40 to 17.25
17). 03.45 to 15.50 18). 08.05 to 17.00
21). 20.35 to 01.50 22). 18.40 to 02.20
09.30 to 13.50
13.05 to 19.50
18.15 to 20.10
09.30 to 21.45
23.15 to 02.40
22.15 to 07.30
3).
7).
11).
15).
19).
23).
10.55 to 12.55
14.20 to 17.55
06.30 to 10.05
19.35 to 22.05
14.30 to 23.10
19.55 to 04.05
4).
8).
12).
16).
20).
24).
Time Differences (12 hour clock).
To help you with this question, you may want to look at the clock face at the side
of this page. Find the amount of time from
1). 9.15 a.m. to 10.35 a.m.
2). 8.20 a.m. to 10.45 a.m.
3). 7.35 p.m. to 9.40 p.m.
4). 3.25 p.m. to 5.55 p.m.
5). 2.05 p.m. to 6.30 p.m.
6). 1.55 p.m. to 4.00 p.m.
7). 11.25 a.m. to 1.50 p.m.
8). 10.15 a.m. to 2.30 p.m.
9). 8.45 a.m. to 12.50 p.m.
10). 11.45 a.m. to 6. 55 p.m.
11). 8.45 a.m. to 11.10 a.m.
12). 2.35 p.m. to 5.05 p.m.
13). 4.25 p.m. to 7.15 p.m.
14). 9.15 a.m. to 11.00 a.m.
15). 11.55 a.m. to 2.05 p.m.
16). 10.50 a.m. to 2.05 p.m.
17). 11.45 a.m. to 6.30 p.m.
18). 9.55 a.m. to 11.20 p.m.
19). 8.05 a.m. to 7.50 p.m.
20). 7.50 a.m. to 9.10 p.m.
21). 11.15 p.m. to 3.35 a.m.
22). 10.30 p.m. to 6.15 a.m.
23). 7.40 p.m. to 4.25 a.m.
24). 9.55 p.m. to 11.05 a.m.
Level 5 Pack 3. Page 39.
Licensed to De La Salle College
[email protected]
Time Questions.
1).
My alarm clock rings at 06.30. I have breakfast 50 minutes later.
At what time do I have breakfast ?
2).
Milking time at the farm starts at 07.45, it takes two and a quarter hours. What time does it
finish ?
3).
A train leaves London at 11.35 and travels to Manchester. The journey takes one and a half
hours. At what time does it get into Manchester ?
4).
A bus leaves Preston at 09.50 for Bolton. The journey takes 85 minutes. What time does
the bus get into Bolton ?
5).
Jenny waited for a bus from quarter to ten until ten past ten. How long was this ?
6).
Bobby has to be at the airport 40 minutes before the plane is due to take off. His flight is at
11.25, at what time should he be at the airport ?
7).
a).
b).
c).
A train service runs every 40 minutes between two towns. If the first train
leaves at 07.45, what time do the next three trains leave ?
The journey time for this journey is 35 minutes. At what time
do these first four trains of the day arrive ?
The fourth train was actually delayed for 20 minutes, at what time did it arrive?
8).
Beth is on holiday at Abersoch. High tide this morning is 7.35 a.m.. The next high tide is
in 12 hours 23 minutes time. What is the time of the next high tide ?
9).
Hazel records two programmes from television. The first lasts 1 hour 35 minutes, and the
second lasts 1 hour 45 minutes. The tape she records it on is a blank 4 hour tape.
How much blank time does she have left on her tape after recording ?
10). A netball team spend three and a half hours training everyday. 40 minutes is spent on
skills, 70 minutes on team exercises and the rest on fitness training. How much time is
spent on fitness training ?
11). On May 23rd, the sun rose at 6.50 a.m. and set at 8.26 p.m.. For how long was the sun out ?
12). A coach sets off on a journey at 18.50 and arrives at 21.15. How long did the journey last ?
13). A builder started laying some foundations at 9.30 a.m.. He finished at 2.45 p.m. after
working without a break. How long did it take him to lay the foundations ?
14). Jenny leaves home at 09.25 to go to London. She takes 50 minutes to get to the railway
station, where she waits 15 minutes for the train. The train journey takes 90 minutes.
At what time does she arrive in London ?
15). Benny is travelling to Calais. It takes him 40 minutes to get to the train station. He
waits 10 minutes for the train. The train journey takes 2 hours exactly to Dover. At Dover
he waits 25 minutes for the ferry. The journey on the ferry takes three and a quarter hours.
If he arrives in Calais at 5.15 p.m., what time did he start out on his journey ?
Level 5 Pack 3. Page 40.
Licensed to De La Salle College
[email protected]
Mileage Charts.
Aberdeen
540
212
555
142
310
327
341
302
490
Brighton
350
166
442
241
236
210
250
53
Carlisle
Exeter
345
92
115
116
144
112
296
Glasgow
440
268
234
237
290
171
210
210
242
206
390
This is a mileage chart showing how many miles
there are between towns and cities in
Britain. Use it to answer the questions
below.
Leeds
Manchester
40
33
24
190
38
64
181
Sheffield
52
160
York
195
London
1).
How many miles are there between
a).
d).
g).
j).
m).
Aberdeen and Carlisle
Aberdeen and York
Leeds and Carlisle
London and Carlisle
Brighton and York
2).
A salesman has to travel to these places. Find out how far he travels.
3).
4).
b).
e).
h).
k).
n).
Leeds and London
Exeter and Sheffield
London and Exeter
Glasgow and Brighton
Exeter and Leeds
c).
f).
i).
l).
o).
York and Manchester
Glasgow and London
Sheffield and York
Leeds and Brighton
Sheffield and Exeter ?
a).
b).
c).
d).
e).
f).
g).
h).
i).
j).
York to Leeds and back.
Manchester to Brighton and back.
Aberdeen to Glasgow to Leeds and back to Aberdeen.
London to Leeds to Manchester and back to London.
Glasgow to Exeter to Brighton and back to Glasgow.
Sheffield to York to Manchester and back to Sheffield.
Aberdeen to Brighton to Carlisle to York and back to Aberdeen.
Exeter to Leeds to London to York and back to Exeter.
Leeds to London to Exeter to Brighton to Carlisle and back to Leeds.
London to Glasgow to Exeter to Abedeen to Brighton to Leeds and back to London.
a).
i).
Which is closer to London and by how many miles ?
Aberdeen or Carlisle.
ii). Leeds or Sheffield.
b).
i).
Which is closer to Manchester and by how many miles ?
Sheffield or York.
ii). London or Glasgow. iii). Exeter or Brighton.
c).
i).
Which is closer to Glasgow and by how many miles ?
Brighton or Exeter.
ii). Leeds or Manchester. iii). Sheffield or London
d).
i).
Which is closer to Leeds and by how many miles ?
Glasgow or Carlisle.
ii). Manchester or York
iii). London or Exeter.
e).
i).
Which is closer to Exeter and by how many miles ?
Glasgow or Carlisle.
ii). Sheffield or York.
iii). London or Brighton.
Which two towns are
a). closest together,
d). 236 miles apart,
Level 5 Pack 3. Page 41.
b).
e).
furthest apart,
268 mile apart,
Licensed to De La Salle College
iii). Brighton or Exeter.
c).
f).
206 miles apart,
64 miles apart ?
[email protected]
Barnstable
182
93
240
266
452
320
260
250
193
This is a mileage chart showing how many miles
there are between towns and cities in
Britain. Use it to answer the questions
below.
Birmingham
87
100
180
285
147
90
80
111
Bristol
148
187
365
225
160
160
116
Cambridge
118
326
215
175
156
54
Dover
440
322
270
254
72
Edinburgh
137
211
210
372
Kendal
72
72
250
Liverpool
Manchester
35
195
181
London
5).
How many miles are there between
a).
d).
g).
j).
m).
Kendal and London
b).
Barnstable and Liverpool
e).
Birmingham and Manchester h).
Liverpool and Birmingham k).
Edinburgh and Barnstable n).
6).
A sales person has to travel to these places. Find out how far they travel.
7).
8).
Bristol and Manchester c).
Bristol and Liverpool f).
Dover and Kendal
i).
London and Dover
l).
Bristol and London
o).
Dover and Manchester
Liverpool and London
Edinburgh and Barnstable
Cambridge and Bristol
Liverpool and Kendal ?
a).
b).
c).
d).
e).
f).
g).
h).
i).
j).
Manchester to Barnstable and back.
Manchester to London and back.
Edinburgh to Kendal to Liverpool and back to Edinburgh.
London to Dover to Manchester and back to London.
Bristol to Cambridge to Liverpool and back to Bristol.
Dover to Kendal to Manchester and back to Dover.
Liverpool to Bristol to Cambridge to Manchester and back to Liverpool.
Barnstable to Dover to London to Manchester and back to Barnstable.
Birmingham to London to Dover to Bristol to Edinburgh and back to Birmingham.
London to Kendal to Bristol to Birmingham to Bristol to Dover and back to London.
a).
i).
Which is closer to Barnstable and by how many miles ?
Bristol or Edinburgh.
ii). Liverpool or Dover. iii). Kendal or London.
b).
i).
Which is closer to Manchester and by how many miles ?
Cambridge or Birmingham. ii). London or Dover.
iii). Edinburgh or Bristol
c).
i).
Which is closer to Cambridge and by how many miles ?
Manchester or Birmingham. ii). Liverpool or London. iii). Bristol or Dover.
d).
i).
Which is closer to Liverpool and by how many miles ?
Birmingham or Barnstable. ii). Manchester or Bristol iii). London or Bristol
e).
i).
Which is closer to Dover and by how many miles ?
Manchester or Liverpool.
ii). Birmingham or Bristol.iii). London or Kendal.
Which two towns are
a). closest together,
d). 54 miles apart,
Level 5 Pack 3. Page 42.
b).
e).
furthest apart,
211 mile apart,
Licensed to De La Salle College
c).
f).
187 miles apart,
116 miles apart ?
[email protected]