Rebound surface hardness

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS
Department of Construction Materials and Engineering Geology
Rebound surface hardness
and related properties of concrete
PhD THESIS
Katalin Szilágyi
MSc (CE)
Supervisor
István Zsigovics
PhD, MSc (CE)
Budapest, 2013
Contents
Summary
V
Notations
VI
Glossary
VIII
1. Introduction
1.1 Scientific background
1.2 Research significance
1.3 Objectives
1
4
4
2. Literature review
2.1 Historical overview
2.2 Contact mechanical interpretation of hardness
2.3. Types of rebound hammers
2.3.1 Leeb hardness tester
2.3.2 Rebound hammers
2.4 Operating principle of the rebound hammer
2.5 Impact phenomena of the rebound hammer test
2.5.1 Theoretical considerations
2.5.2 Experimental results for the stress wave propagation
2.6 Parameters influencing the rebound index
2.6.1 Effects by the device
2.6.2 Effects by the concrete structure
2.7 Variability parameters of rebound surface hardness
2.8 Number of repetition of rebound index readings
2.9 Outputs of rebound hardness test – establishing the strength relationships
2.10 Regression analysis of compressive strength and rebound hardness
2.11 Standardization of in-situ strength estimation by the rebound method
2.11.1 Improvement of the reliability of the strength estimation
2.11.2 U.S. practice
2.11.3 European practice
2.11.4 Hungarian practice
2.11.5 Conclusions on standardization
5
9
10
11
12
12
14
14
17
18
18
19
21
23
24
25
28
28
29
29
30
35
3. Research methodology
3.1 Statistical analysis
3.1.1 Normality tests
3.1.2 Calculation of repeatability parameters
3.1.3 Goodness of fit tests
3.1.4 Influences on the repeatability parameters
37
37
38
38
39
I
3.2 Modelling
3.2.1 Development of the phenomenological model
3.2.2 Robustness study by parametric simulation
3.2.3 Model verification with laboratory tests
3.3 Targeted experiments
3.3.1 Scope of study
3.3.2 Test parameters
3.3.3 Test methods
39
39
39
40
41
41
41
41
4. Results and discussion
4.1 Statistical findings
4.1.1 Observational error
4.1.2 Normality of test data
4.1.3 Repeatability parameters
4.1.4 Distribution of repeatability parameters
4.1.5 Influences on the repeatability parameters
4.1.6 Discussion on statistical findings
4.2 Modelling of rebound hardness
4.2.1 Existing proposals for prediction of compressive strength by
rebound number
4.2.2 Graphical representation of R(t) - fc(t) data
4.2.3 Gaede’s model
4.2.4 Introduction of the phenomenological model
4.2.4.1 Composition of the model
4.2.4.2 Parametric simulation for the model
4.2.4.3 Experimental verification of model
4.2.5 Discussion on the phenomenological model
4.3 Targeted experimental results
4.3.1 Role of strength and stiffness in surface hardness
4.3.2 Role of water-cement ratio in time dependent behaviour
4.3.3 Discussion on targeted experimental results
43
44
50
53
55
60
63
64
64
67
68
69
70
72
75
77
78
78
80
82
5. Conclusion and future work
5.1 Hypotheses and new scientific results
5.1.1 On the statistical analysis
5.1.2 On the modelling
5.1.3 On the targeted experiments
5.2 Theoretical and practical benefits
5.3 Outlook and future work
II
85
85
88
90
91
92
List of publications
i
Acknowledgements
iii
References
v
Appendices
Appendix A – Numerical input for the statistical analysis together with the
resulted repeatability parameters
Appendix B – Results of the goodness of fit tests of the repeatability
parameters
Appendix C – Results of the model verification experiments
Appendix D – Results of the targeted experiments
A1-A170
B1-B128
C1-C18
D1-D2
III
IV
Summary
The author of present thesis has devoted her research time to investigate the rebound hardness and its
relationship to compressive strength from several aspects during the last decade. The result of the
extensive literature survey and the statistical analysis of available in-situ and experimental test data, as well
as the theoretical considerations and own laboratory research are all rendering a salutation to Ernst
Schmidt after six decades he had invented the original rebound hammer.
The detailed statistical study was made on a large database of 60 years laboratory and in-situ experience,
covered several thousands of test areas providing more than eighty thousand individual rebound index
readings for analysis. It was demonstrated that several gaps are found in this field both in current technical
literature and standardisation. The PhD study succeeded in providing general statistical characteristics for
rebound surface hardness of concrete. Based on a comprehensive statistical analysis it was demonstrated
that the within-test variation (repeatability) parameters of the rebound hardness method have similar
tendency to that of the within-test variation parameters of concrete strength; i.e. no clear tendency is found
in the standard deviation over the average and a clear decreasing tendency can be observed in the
coefficient of variation by the increasing average. The probability distribution of the within-test standard
deviation and the coefficient of variation of the rebound index, as well as of the rebound index ranges of
individual test areas were not found to follow the normal distribution, but all the three parameters have a
strong positive skewness.
Based on a comprehensive literature review it was realized that despite the numerous proposals neither
general theory nor empirical function has been developed in the last 60 years that could describe the
relationship between the measured surface hardness values and the compressive strength of concrete. Only
one semi-empirical derivation for such a relationship was attempted by the designer of the original rebound
hammer, but the model covered also the Brinell hardness of concrete. As a consequence, that model can not
be generally used since very limited data have been published for the Brinell hardness of cementitious
materials. Present PhD research has revealed the most pronounced influencing parameters for the rebound
surface hardness of concrete and a phenomenological model was developed that can describe the time
dependent behaviour of the rebound index vs. strength relationship and the unambiguous influence of the
water-cement ratio. An extensive experimental verification of the model clearly demonstrated its reasonable
application possibilities for different cements on a wide range of water-cement ratios and ages of concrete at
testing. Based on a parametric simulation it was also realized that the model is robust and gives realistic
formulation for the time dependent behaviour of the rebound surface hardness of concrete.
Results of targeted experiments demonstrated that the rebound index is a material property which is sensitive
to the impact energy of the device and the strength and stiffness of concrete. It was found experimentally that
the lower the impact energy of a dynamic hardness tester is, the more likely the hardness value can be
related to the Young’s modulus, particularly in case of small water-cement ratios; and the higher the impact
energy of the dynamic hardness tester is, the more likely the hardness value can be related to the
compressive strength, particularly in case of high water-cement ratios.
Results of present research were welcome in the technical literature.
V
Notations
a
b
c
d
fc,28
fck
fcm
fcm,150,cube
fcm,200,cube
fcm,28d
fcm,7d
fcm,core
fcm,cyl
h0
hr
k
L0
m[x]
n
neven
ni
nodd
ns
p
r
rR
s
sR
sRm,even
sRm,odd
t
v0
v95[x]
w/c
x0
xr
B
CR
Df
E[x]
E0
VI
shape parameter of probability distribution functions
shape parameter of probability distribution functions
scale parameter of probability distribution functions
location parameter of probability distribution functions
compressive strength at the age of 28 days
characteristic compressive strength
mean compressive strength of concrete
mean compressive strength of concrete tested on cube specimen of 150×150 mm
mean compressive strength of concrete tested on cube specimen of 200×200 mm
mean compressive strength of concrete at the age of 28 days
mean compressive strength of concrete at the age of 7 days
mean compressive strength of concrete tested on drilled core specimen
mean compressive strength of concrete tested on cylinder specimen
the height from an impacting ball is falling
rebound height of an impacting ball
margin parameter (e.g. percentage point of the standardized range)
initial length of the plunger
median value of a random variable
total number of rebound index readings
number of rebound index readings of even numbers
number of test repetitions corresponding to in-situ test
number of rebound index readings of odd numbers
number of test repetitions corresponding to strength test
acceptable error for the evaluation of average value of concrete strength
range
range of rebound index
corrected sample standard deviation
within-test corrected sample standard deviation of rebound index
within-test corrected sample standard deviation of the even rebound index readings
within-test corrected sample standard deviation of the odd rebound index readings
time, age of concrete
velocity reached by the impact body/hammer mass before impact
95% percentile value of a random variable
the ratio of the mass of water and the mass of cement in 1 m3 compacted fresh concrete
path driven by hammer mass before impact
path driven by hammer mass after impact
beta function
coefficient of restitution
domain of a function
mean value of a random variable
kinetic energy of the hammer mass just before the impact
Ec
Ecm
Ecm,28d
Ecm,7d
Er
HL
Mo[x]
N (,)
P
Q
R28
RL
RL,7d
Rm
Rm,even
Rm,odd
RN
RN,7d
V
VH
Vi
vr
VR
Vs
W

αt
s
γt
r

c
p
s

R
λ



2

χ2


Δ Young’s modulus of concrete
mean Young’s modulus of concrete
mean Young’s modulus of concrete at the age of 28 days
mean Young’s modulus of concrete at the age of 7 days
kinetic energy of the hammer mass right after the impact
Leeb hardness
mode (modus) value of a random variable
normal probability distribution
preset probability
notation of coefficient of restitution provided by the Silver Schmidt hammer
rebound index at the age of 28 days
rebound index provided by L-type rebound hammer
rebound index of concrete provided by L-type rebound hammer at the age of 7 days
mean rebound index
average of the even rebound index readings
average of the odd rebound index readings
rebound index provided by N-type rebound hammer
rebound index of concrete provided by N-type rebound hammer at the age of 7 days
coefficient of variation
within-test coefficient of variation of the indirect measure
coefficient of variation corresponding to in-situ test
velocity reached by the impact body/hammer mass after impact
within-test coefficient of variation of rebound index
coefficient of variation corresponding to strength test
statistic of the Shapiro-Wilk normality test
diameter of the tip of the Wolpert Leeb hardness tester
multiplier for taking carbonation into account
skewness of a probability distribution of the standard deviation of rebound index
multiplier for taking strength development and type of cement into account
skewness of a probability distribution of the range of rebound index
logarithm decrement
elastic deformation of concrete
local crushing (pseudo-plastic deformation) of concrete
elastic deformation of the plunger
studentized range
studentized range of rebound index
transformation parameter
mean value
degree of freedom
real standard deviation
real variance
phase shift
chi-squared goodness of fit test
standardized range
gamma function
empirical additive parameter
VII
Glossary
Accuracy: closeness of computations or estimates to the exact or true values that the statistics were
intended to measure (OECD, 2008).
Batch-to-batch variation: reproducibility (ACI, 2003).
Bias: an effect which deprives a statistical result of representativeness by systematically distorting it, as
distinct from a random error which may distort on any one occasion but balances out on the average
(OECD, 2008).
Frequency: the number of occurrences of a given type of event or the number of observations falling
into a specified class (ISO 3534-1).
GOF: goodness of fit test = statistical test for assessing whether a given distribution is suited to a data-set
Kurtosis: a term used to describe the extent to which an unimodal frequency curve is “peaked”; that is to
say, the extent of the relative steepness of ascent in the neighbourhood of the mode. The term was
introduced by Karl Pearson in 1906 (OECD, 2008).
Modus: the Latin name for mode; the value that appears most often in a set of data (OECD, 2008).
Observational error: operator error in the use of original Schmidt rebound hammer due to the inaccurate
reading of the index rider scale.
Performance error: operator error in the use of original Schmidt rebound hammer due to the inaccurate
inclination of the device (i.e. not precisely perpendicular to the tested surface) during impact.
Phenomenological theory: a theory that expresses mathematically the results of observed phenomena
without paying detailed attention to their fundamental significance (Thewlis, 1973).
Precision: the property of the set of measurements of being very reproducible or of an estimate of
having small random error of estimation (OECD, 2008).
Random error: an error, that is to say, a deviation of an observed from a true value, which behaves like
a variate in the sense that any particular value occurs as though chosen at random from a probability
distribution of such errors (OECD, 2008).
Repeatability: precision under conditions where independent test results are obtained with the same
method on identical test items in the same laboratory by the same operator using the same equipment
within short intervals of time (ISO 3534-1).
Reproducibility: precision under conditions where test results are obtained with the same method on
identical test items in different laboratories with operators using different equipment (ISO 3534-1).
Skewness: a term for asymmetry, in relation to a frequency distribution; a measure of that asymmetry
(OECD, 2008).
Standardized range: =r/.
Studentized range: =r/s, the difference between the largest and smallest data in a sample measured in
units of sample standard deviations (Harter, 1960).
Within-test variation: repeatability (ACI, 2003).
VIII
CHAPTER 1
introduction
First chapter of present thesis introduces the scientific
background of the research topic. The significance of hardness
testing of materials is outlined as a non-destructive test method.
Based on a comprehensive literature review and own experiences
the concerns and contradictions about the rebound surface
hardness of concrete are highlighted. Objectives are defined in
conformity with the findings introduced as research significance.
1.1 Scientific background
Concrete is a construction material that has the most widespread use in civil engineering and that is the
manmade material produced in the largest quantity.
Compressive strength of concrete is the most important input data for engineering calculations during
the design of reinforced concrete structures. Compressive strength of concrete can be determined by
testing of moulded specimens or by core specimens drilled from existing structures.
In testing, the specimens are loaded up to failure to find compressive strength, usually under
standardized laboratory testing conditions.
Moulded specimens, however, do not always represent the actual condition of structural concrete and
drilling of core specimens from certain structural members is not always possible (because of risk of the
loss of structural stability or bad accessibility of the structural element to be examined).
With non-destructive testing (NDT) devices the measurements can be performed directly on the
structural concrete and the strength of concrete can be estimated from the measured results with
limited reliability.
Several different non-destructive testing (NDT) methods were developed to estimate the strength of
concrete in structures. The most successful strength estimation methods involve principles, which make
the direct or indirect consequences of the compressive strength determining factors measurable or (in
some cases) provide strength estimation by moderately destructive in-situ measurements.
One of these methods is the subject of present research: a classic NDT method based on the surface
hardness testing of concrete which became popular in the construction industry during the 1950’s.
Surface hardness testing is a long established NDT method for the strength estimation of materials.
Hardness testing was the first material testing practice from the 1600’s in geology and engineering by
the scratching hardness testing methods (Barba, 1640; Réaumur, 1722; Haüy, 1801; Mohs, 1812);
appearing much earlier than the systematic material testing that is considered to be started in 1857
when David Kirkaldy, Scottish engineer set up the first material testing laboratory in London, Southwark
(Timoshenko, 1951). The theoretical hardness research was initialized by the pioneering work of
1
Heinrich Hertz in the 1880’s (Hertz, 1881). Hertz’s proposal formed also the basis of the indentation
hardness testing methods by Brinell, 1900; Rockwell, 1920; Vickers, 1924 and Knoop, 1934 (FisherCripps, 2000).
Researchers adopted the Brinell method to cement mortar and concrete to find correlations between
surface hardness and strength of concrete during the four decades following that Brinell introduced his
ball indentation method for hardness testing of metals.
As further developments, dynamic surface hardness testing devices also appeared (Durometer by Albert
F. Shore, 1920; Duroskop by Rational GmbH, 1930; spring hammer by Gaede, 1934; pendulum
hammer by Einbeck, 1944).
In Switzerland Ernst Schmidt developed a spring impact hammer of which handling were found to be
superior to its predecessors (Schmidt, 1950) and became very popular in the in-situ material testing due
to the inexpensive testing device and its relatively simple use.
Nowadays, the Schmidt rebound hammer is still the surface hardness testing device of the most
widespread use for concrete rather than devices of plastic indentation hardness testing. Rebound
hammer can be used very easily and the measure of hardness (i.e. the rebound index) can be read
directly on the display of the testing device.
In the rebound hammer (Fig. 1.1) a spring (1) accelerated mass (2) is sliding along a guide bar (3) and
impacts one end (a) of a steel plunger (4) of which far end (b) is compressed against the concrete surface.
The impact energy is constant and independent of the operator, since the tensioning of the spring during
operation is automatically released at a maximum position causing the hammer mass to impinge with
the stored elastic energy of the tensioned spring. The hammer mass rebounds from the plunger and
makes an index rider (5) moving before returning to zero position. Original Schmidt rebound hammers
record the rebound index (R): the ratio of paths driven by the hammer mass during rebound and before
impact.
( 4)
(b)
(3)
(1)
( 2)
( 5)
(a)
Fig. 1.1 Structure of the rebound hammer.
The dissipation of the impact energy by the local crushing of concrete under the tip of the plunger
makes the device suitable for strength estimation.
The study of hardness is a research topic frequently appearing in the technical literature of physics and
material science, nevertheless, the theory of contact mechanics still has several gaps. The topic
sometimes induces even a philosophical question: Is hardness a material property at all?
It should be mentioned here that scientific consensus does not exist for the term ‘hardness’ even for the
definition of the word (Fisher-Cripps, 2000).
Aim of rebound hammer tests is usually to find a relationship between surface hardness and
compressive strength to be able to estimate the strength of concrete with an acceptable error.
The existence of only empirical relationships was already considered in the earliest publications
(Anderson et al, 1955; Kolek, 1958) and also recently (Bungey et al, 2006).
2
The uncertainty of the estimated compressive strength, therefore, depends both on the variability of the
in-situ measurements and the uncertainty of the relationship between hardness and strength.
To find a reliable method for strength estimation one should study all the influencing factors that can
have any effect on the hardness measurement, and also that can have any effect on the variability of the
strength of the concrete structure examined. The estimation should be based on an extensive study with
the number of test results high enough to provide an acceptable reliability level. The estimation should
take care of the rules of mathematical statistics.
Numerous empirical relationships between compressive strength and surface hardness of concrete can be
found in the technical literature, but usually based on very simple laboratory tests, i.e. mainly univariate
regression curves are available. Only a few extensive studies can be found that consider multiple influencing
parameters together with detailed parameter analysis.
The following future trends should be considered affecting surface hardness of concrete.
Rapid development of concrete technology can be realized in recent decades. New types of concretes
became available for concrete construction in terms of High Strength Concrete (HSC), Fibre Reinforced
Concrete (FRC), Reactive Powder Concrete (UHPC), Self Compacting Concrete (SCC) and Lightweight
Concrete (LC). The strength development of concretes in the 20th century is schematically represented
in Fig. 1.2a (after Bentur, 2002). Technical literature considering rebound hammer test on special
concretes is very limited (e.g. Pascale et al., 2003; Nehme, 2004; Gyömbér, 2004; KTI, 2005).
Considerable development is expected in this field in the future.
Environmental impact on concrete structures also tends to be changed recently. For example, the rate
of carbonation is expected to be increased due to the increasing CO2 concentration of air in urban areas
as a result of the accelerated increase of CO2 emission worldwide. CO2 concentration in the atmosphere
is increasing by 0.5% per year on a global scale (Yoon et al, 2007). Development of CO2 concentration
in the atmospheric layer has been considerably increased in the last 50 years, as shown in Fig. 1.2b.
Carbonation of concrete results an increase in the surface hardness without any change in the
compressive strength. In the future, extensive studies are needed in this field to be able to develop
relationships for the rate of carbonation considering special concretes available recently.
300
300
compressive strength, N/mm2
CO 2 concentration, ppm
360
250
250
2000’s
340
200
200
320
150
150
1990’s
300
100
100
1970’s
1950’s
280
50
50
00
260
0.1
0,1 0.2
0,2
0.3
0,3
0.4
0,4
0.5
0,5
0.6
0,6
0.7
0,7
0.8
0,8
w/c ratio, –
1750
1800
1850
1900
1950
2000
year
Fig. 1.2 a) Development of concrete strengths in the last 60 years (Bentur, 2002), shaded region indicates the
validity of use for the original rebound hammer; b) Increase of CO2 concentration in the atmosphere in the last 250
years (Yoon et al, 2007).
3
1.2 Research significance
Based on a comprehensive literature review it was realized that several publications are available in the
technical literature concerning experimental results and analyses, however:
– The assessment of statistical parameters based on a considerable collection of rebound index data
is missing from the technical literature. Even the current standards and recommendations contain
statistical parameters that are obtained by datasets of limited size.
– For the rebound method neither a general theory nor a general empirical formula was developed that can
describe the relationship between measured hardness values and compressive strength. Nevertheless, it
is deemed in some technical papers that the behaviour is commonly understood.
– As a result of the diversity of the numerous empirical proposals that can be found in the technical
literature some researchers even state that the method is suitable only for assessing the uniformity of
strength of concrete.
– Rebound hardness can be related to compressive strength only if a sufficient amount of energy can
dissipate in the concrete during the impact. The inventor of the original rebound hammer fitted the
impact energy of the hammer to concrete compressive strengths available in the 1950’s. The concrete
construction technology, however, nowadays uses concretes of higher compressive strengths.
– Due to the lack of scientific consensus the rebound hammer is continuously loosing its role to estimate
compressive strength of concrete by itself. E.g. current International and European standards exclude
the use of the rebound method for strength estimation on its own due to the limited reliability reported.
Testing of drilled cores together with the rebound method is suggested for an acceptable reliability.
Above findings highlighted the need of detailed theoretical and laboratory research.
1.3 Objectives
Present PhD research intended to investigate the reasons of the concerns about the strength estimation of
concrete with the rebound method and provide a comprehensive analysis of the rebound method for a
better understanding of the hardness of concrete and its relation to compressive strength.
Three general objectives were aimed to achieve within the framework of present PhD research:
1) Based on an extensive literature survey and statistical analysis of available in-situ and laboratory test
data it was intended to ascertain whether the tendency and the distribution of variability parameters of
rebound hardness are similar to that of the compressive strength. Precision statements of the available
recommendations were intended to be monitored.
2) Based on an extensive literature survey and theoretical considerations the main governing parameters of
the rebound hardness were intended to be identified considering exclusively properly prepared concretes.
After studying general laws related to the rebound index and compressive strength of concrete and
detecting their interrelationships a phenomenological model was intended to be formulated. For the
validation of the developed model parametric simulations, as well as laboratory verification tests were
intended to be carried out.
3) Based on targeted laboratory experimental studies it was intended to demonstrate which mechanical
property can be related to the measured rebound hardness value by comparison of the development of
the tested properties with time and how the water-cement ratio of concrete and the impact energy of the
hardness tester device influence the rebound index.
4
CHAPTER 2
literature review
Present chapter gives a historical overview on the development
of hardness testing of materials. Rebound hardness tester
devices and their operating principle – including the impact
phenomena – are introduced. Influencing parameters of the
rebound index are interpreted. Considerations about variability
parameters of rebound hardness and minimum number of
repetition of rebound index reading are presented. The main aim
of the rebound hammer test is introduced and regression
techniques are described for the relationship between the
rebound index and compressive strength of concrete. As a
closing subchapter an overview is given about the international
and Hungarian standardization practice.
2.1 Historical overview
Hardness can be considered to be one of the oldest technical terms in languages, however, in common
language the meaning of hardness, rigidity, stiffness, strength, toughness and durability are mixed up. In
the earliest human written scripts these meanings were usually covered by the same term and only the
context helped the reader to sense the real meaning. As several thousand years old examples, the
Egyptian word āḥā-t (its hieroglyph is: ) with the mixed meaning of stiff and hard or the Sumerian
word nam-kalag-ga (its cuneiform script is:
) with the mixed meaning of hardness and strength
can be mentioned here. The word isikku of Sumerian origin was used for the hardness of potter’s clay.
Technical literature (Walley, 2012) calls the attention to one of the earliest written references to
hardness of materials with a similar meaning to that of today in the books of Hebrew prophets in the
Bible (e.g. Ezekiel 3:9 “Like emery harder than flint have I made your forehead”; English Standard
Version translation, 2001).
In-situ surface hardness testing of materials is a long established method for performance control,
mostly with the explicit or hidden aim of strength estimation. First appearance of the concept of
hardness testing in a written report goes back to 1640 when Alvaro Alonso Barba came with the
proposal of file scratch testing of minerals in one of his manuals prepared for the Spanish royal court on
ore mining and metallurgy (Barba, 1640). In 1690 Christian Huyghens published his study on light (Traité
de la lumière) in which the scratching resistance of Iceland Spar by knife cut was described at two
different angles to the sliding direction (Huyghens, 1690). In 1722 René Antoine Ferchault de Réaumur
published his study on metallurgy (L’Art de convertir le fer forgé en acier) in which scratching and special
contact hardness testing of metals were introduced (Réaumur, 1722). In 1729 Pieter van
Musschenbroek addressed a chapter to hardness testing in his thesis (Physicae Experimentales et
5
Geometricae Dissertations) in which a chisel instrumented pendulum hammer was introduced for the
dynamic hardness testing of woods and metals (Musschenbroek, 1729).
The scratching hardness test was refined by Friedrich Mohs in 1812 in its present form of the 10minerals scratching hardness scale used worldwide in mineralogy after several decades of development
by others (Mohs, 1812). First proposal of a scratching hardness scale of different minerals can be
credited to Wallerius (1747) and further ideas came from Kvist (1768), Werner (1774), Bergman (1780)
and Haüy (1801) (Todhunter, 1893).
The conception of relative hardness based upon the power of one body to scratch another is evidently
very unscientific. Huyghens had shown a century earlier that the hardness of a material varies with
direction, and its power to scratch varies also with the nature of the edge and face (Todhunter, 1893).
The pioneering theoretical studies of Heinrich Hertz in the 1880’s on mathematical modelling of linear
elastic contact has shifted the experimental hardness testing towards the indentation methods
(Hertz, 1881). The first static indentation hardness testing laboratory device was developed by Johan
August Brinell and was introduced to the public at the 1900 Paris Exposition Universelle (Brinell, 1901).
Hertz’s proposal formed also the basis of the later indentation hardness testing methods (Rockwell,
(1920), Vickers (1924) and Knoop (1934) (Fischer-Cripps, 2000). These conventional methods involve in
different ways the measurement of the size of a residual plastic deformation impression in the tested
specimen as a function of the indenter load.
In-situ testing of concrete structures was started in the 1930’s. The testing methods at that time
covered chisel blow tests, drilling tests, revolver or special design gun shooting tests, splitting tests,
pull-out tests, strain measurements from loading tests (Skramtajew, 1938).
Researchers adopted the Brinell method to cement mortar and concrete to find correlations between
surface hardness and strength of concrete in the four decades following that Brinell introduced his ball
indentation method for hardness testing of steel (Crepps, Mills, 1923; Dutron, 1927; Vandone, 1933;
Sestini, 1934; Steinwede, 1937).
As a further development, dynamic surface hardness testing devices also appeared (Durometer by
Albert F. Shore, 1920; Duroskop by Rational GmbH, 1930).
The first NDT device for in-place testing of the hardness of concrete was introduced in Germany in 1934
which also adopted the ball indentation hardness testing method, however, dynamic load was applied
with a spring impact hammer (Gaede, 1934).
The operating principle of the spring impact hammers (known as Frank hammer and Zorn hammer) was
similar to that of the later Schmidt hammers (Fig. 2.1): the impact was performed by a hammer mass
that is accelerated by a tensioned spring. The impact energy was adjustable to 1250 Nmm and 5000
Nmm. The impact ball was exchangeable to different diameters. It was possible to reach with these
parameters that the residual indentation diameter on the concrete surface became 0.3 to 0.7-times of
the diameter of the impact ball. The strength assessment was based on empirical relationships between
the indentation diameter and the compressive strength of concrete (Gaede, 1952).
Similar device was developed in the UK in by Williams, 1936. The hardness tester had the shape similar
to a handgun with a mass of 0.9 kg and a tensioned spring provided the impact energy for an impact
ball to test the hardness of concrete surfaces. The impact energy was reported to be relatively small:
the indentation depth of the ball in case of concretes of about 7 N/mm2 was found to be about 1.5 mm.
The inventor suggested a strength estimation relationship based on 200 empirical data points.
The indentation testing technique was found to be the most popular in the European testing practice for
decades according to its relatively simple and fast operation (Gaede, 1934; Williams, 1936).
6
Fig. 2.1 Frank hammer and Williams hammer.
Later several other NDT instruments were introduced adopting the same method, e.g. pendulum
hammer by Einbeck (1944) or different methods, e.g. pull-out testing and firearm bullet penetration
testing by Skramtajew (1938); drilling method by Forslind (1944); ultrasound pulse velocity method by
Long et al. (1945).
Fig. 2.2 indicates the sketch of the Einbeck pendulum hammer. Its operating principle is similar to the
later Schmidt pendulum hammers. The device was suitable to test vertical concrete surfaces with a
hammer of 2.26 kg of which head was ended in a ball indenter. The strength assessment was based on
empirical relationships between the indentation diameter and the compressive strength of concrete. The
Einbeck pendulum hammer was operated in full impact energy (run at 180° path) and half impact energy
(run at 90° path) (Gaede, 1952).
Fig. 2.2 Einbeck pendulum hammer.
Further hardness testing devices can be also found in the technical literature. One of the most
comprehensive surveys is found in the book of Skramtajew and Leshchinsky (1964) that is a good example
for the outstanding innovation capacity of the former Soviet engineers: the book introduces more that 15
different surface hardness testing devices; most of them was Soviet development.
Nowadays the most widespread method for the surface hardness testing of concrete is the rebound
hammer method that is appeared in the 1950’s by the Schmidt rebound hammer (also known as Swiss
hammer) (Schmidt, 1950).
In Switzerland Ernst Schmidt developed a spring impact hammer of which handling were found to be
superior to the ball penetration tester devices (Schmidt, 1950). The hardness testing method of Shore
(1911) was adopted in the device developed by Schmidt, and the measure of surface hardness is the
rebound index rather than the ball penetration. With this development the hardness measurement became
much easier, as the rebound index can be read directly on the scale of the device and no measurements
on the concrete surface are needed (Schmidt, 1951).
7
The original idea and design of the device (Fig. 2.3) was further developed in 1952 (using one impact
spring instead of two) resulted in simpler use (Fig. 2.4) (Greene, 1954; Anderson et al, 1955). Several
hundred thousands of Schmidt rebound hammers are in use worldwide (Baumann, 2006). In 1954 Proceq
SA was founded and has been producing the original Schmidt rebound hammers since then, without any
significant change in the operation of the device (Fig. 2.5) (Proceq, 2005).
One of the latest developments of the device was finalized in November 2007, since the Silver Schmidt
hammers (Fig. 2.6) are available (Proceq, 2008a). The digitally recording Silver Schmidt hammers can also
measure coefficient of restitution, CR (or Leeb hardness; see Leeb, 1986) of concrete not only the original
Schmidt rebound index. From 2011, the Silver Schmidt hammers are no more instrumented to record the
original Schmidt rebound index, only the coefficient of restitution is measurable (referred as Q-value).
With this change the direct relationship between the two hardness values can not be studied, moreover the
long-term experience with the original rebound hammer, thus the considerable amount of rebound index
data can not be used anymore, that is a drawback from a scientific point of view.
Fig. 2.3 Original rebound hammer with two impact springs as of 1950.
Fig. 2.4 Original rebound hammer with one impact spring as of 1952.
8
Fig. 2.5 Original rebound hammer with one impact spring as of today.
Fig. 2.6 Silver Schmidt hammer.
The interested readers can find detailed information about further NDT methods for concrete in the
technical literature (ACI, 1998; Balázs, Tóth, 1997; Borján, 1981; Bungey, Millard, Grantham, 2006;
Carino, 1994; Diem, 1985; Malhotra, 1976; Malhotra, Carino, 2004; Skramtajew, Leshchinsky, 1964).
2.2 Contact mechanical interpretation of hardness
The scientific definition of hardness has been of considerable interest from the very beginning of hardness
testing, however, still today – more than 100 years after Hertz’s original proposal – no absolute definition
of hardness is available in material sciences.
According to Hertz, hardness is the least value of pressure beneath a spherical indenter necessary to produce a
permanent set at the centre of the area of contact. As Hertz’s criterion has some practical difficulties, the
hardness values defined by the practical methods usually indicate different relationships between the indenter
load and the tested specimen’s resistance to penetration or permanent deformation.
The intention to understand and explain hardness or determine a material property that can be estimated
from hardness measurements sometimes induces even philosophical questions: Is hardness a material
property at all? Does compressive strength exist?
If one accepts the practical conclusion that a hard material is one that is unyielding to the touch, it can be
evident that steel is harder than rubber (O’Neill, 1967). If, however, hardness is considered as the resistance
of a material against permanent deformation then a material such as rubber would appear to be ‘harder’ than
most of the metals: the range over which rubber can deform elastically is very much larger than that of
metals. If one focuses on hardness testing, it can be realized that properties influencing the elastic behaviour
play a very important part in the assessment of hardness for rubber-like materials, however, for metals the
deformation is predominantly outside the elastic range and involves mostly plastic properties (although the
elastic moduli are large, but the range over which metals deform elastically is relatively small).
9
Plastic deformation is normally associated with ductile materials (e.g. metals). Brittle materials (e.g.
concrete) generally exhibit elastic behaviour, and fracture occurs at high level of loads rather than
plastic yielding. Pseudo-plastic deformation is observed in brittle materials beneath the point of an
indenter, but it is a result of densification, where the material undergoes a phase change as a result of
the high value of compressive stress in a restrained deformation field beneath the indenter.
The softening fashion of the pseudo-plastic material response with increasing volume of the material is
considerably different from that can happen to metals during plastic deformation (where the volume of
the material is unchanged during yielding) (Tabor, 1951). It can be realized during indentation hardness
testing that the residual plastic deformation impression is a result of a three-dimensional, constrained
deformation field that is strongly affected by the testing method itself (e.g. the indenter can be a sphere,
cone, pyramid, diamond etc.). In case of ductile materials plastic deformation exists beneath the surface
constrained by the surrounding elastically strained material. With further loading the plastic deformation
extends to the surface of the specimen. The value of the mean contact pressure, which does not
increase with increasing indenter load, is related to the hardness number. For hardness methods that
employ the projected area, the hardness number is given directly by the mean pressure.
Cone cracks are forming at the contact surface in the case of elastic-brittle materials, however, plastic
deformations can also be realized due to the local densification through phase change of the material as
a result of high compressive stresses (this deformation is considerably different in nature from the
plastic yield of ductile materials) (Fischer-Cripps, 2000).
Nevertheless, the theoretical approaches of contact mechanics and hence that of hardness has several
gaps, the hardness (even in-situ) testing of materials offers the potential of strength estimation by means
of a much simpler test than the direct compressive or tensile strength testing. This is the reason why
several different hardness testers became available for material testing and the research on hardness of
materials has been very dynamic from the beginning up to present day.
In some cases, particularly on dynamic hardness measurements, the elastic properties may be as
important as the inelastic properties of the material.
Amongst several different indenter geometries the spherical indenters can be used for testing both
ductile materials (e.g. metals) and brittle materials (e.g. ceramics). The response of materials to the
indentation test includes elastic (reversible) and plastic (irreversible) deformations as well as forming of
cone cracks in brittle materials; therefore, the definition of the term ‘hardness’ is not evident.
2.3. Types of rebound hammers
The concrete rebound hammers use the scleroscope method introduced by Shore in 1911 (Shore, 1911).
Scleroscope devices are impact testers in which spring accelerated or gravity accelerated hammer
masses impinge against the tested surface and the hardness index is defined as a measure of the impact
rebound. Two types of hardness index are defined usually: 1) the ratio of the paths driven by the hammer
mass after and before impact (R-value), and 2) the ratio of the velocities of the hammer mass after and
before impact (Q-value). Both types of hardness index are used for metal as well as for concrete hardness
testing (see Table 2.1).
10
Table 2.1 Scleroscope hardness testing methods.
Hardness index based on
hammer mass rebound:
R-value
Hardness index based on
hammer mass velocity:
Q-value or CR-value
for concretes
The original design of
Schmidt rebound hammer
The 2008 design of Silver
Schmidt rebound hammer
for metals
SKL scleroscope
Duroskop tester
Leeb tester
2.3.1 Leeb hardness tester
The measurement mechanism of the Wolpert Leeb hardness tester is different from that of the concrete
rebound hammers (Wolpert, 2006). A mass is accelerated by a spring toward the surface of a test
object and impinges on it at a defined velocity, i.e. kinetic energy. The principle of the measurement is
implemented by means of an impact body which has a spherical tungsten-carbide tip. The velocities
before and after the impact are both measured in a non-contact mode by a small permanent magnet
within the impact body which generates an induction voltage during its passage through a coil. The
voltage recorded is proportional to the velocity of the impact body (Fig. 2.7). The Leeb Hardness, HL is
defined as the multiple of the coefficient of restitution, Eq. (2.1):
HL  CR  1000 
vr
 1000
v0
Eq. (2.1)
In Eq. (2.1) v0 indicates the velocity reached by the impact body before impact, while vr indicates the
velocity reached by the impact body after impact, respectively.
The D-type impact device of the Wolpert Leeb hardness tester has much smaller weight (m = 5.5 g)
compared to the hammer mass of the concrete rebound hammers as well as the tip of the device
( = 3 mm) provides much smaller contact area during impact, therefore, the within-test variation of the
measured values may be increased by the effect inhomogeneity of the concrete surface tested. It can
be also highlighted that the coefficient of restitution is a material property of which value strongly
depends on the severity of the impact itself. The impact energy of the device is 11 Nmm.
velocity of the impact body
v0
before impact
time
HL 
vr
v0
 1000
vr
after impact
Fig. 2.7 The definition of Leeb Hardness, HL (Frank et al, 1986).
11
2.3.2 Rebound hammers
Concrete rebound hammers can be spring hammers or pendulum hammers. The original N-type rebound
hammer is used for normal strength concrete. The suggested compressive strength range of the tested
concretes is 10-70 N/mm2. The impact energy of the device is 2207 Nmm (Fig. 2.4, Fig. 2.7).
For completeness, the other types of rebound hammers are also listed here which are used for special
cases, but these are not discussed in details within the scope of present thesis.
Fig. 2.8 N-, M- and P-type rebound hammers.
The NR-type rebound hammer can be used for the same purposes and in the same manner as the N-type
rebound hammer, which records the rebound indices on paper. The DIGI-Schmidt hammer was also
designed for normal strength concretes but it records the rebound indices digitally. The L-type rebound
hammer was developed for testing of small or thin walled (<100 mm) concrete members or natural stone
structural elements. The impact energy of the L-type device is one-third of the N-type device: 735 Nmm.
The LB-type hammer has the same impact energy as that of the L-type has and can be used for ceramic
structural elements (e.g. brick). The only difference is the shape and size of the tip of the plunger of the
device. The impact energy (29430 Nmm) and the size of the M-type rebound hammer are much higher but
its structure is identical with the structure of the smaller devices. It was mainly designed for high strength
concrete pavements (Fig. 2.8). A pendulum type (P-type) rebound hammer is also manufactured. It is
suggested to be applied on surfaces of low strength construction materials (stones, ceramics, mortars,
lightweight concretes and normal strength concretes at early age). Its impact energy is 883 Nmm, the tip
of the pendulum is enlarged (Fig. 2.8).
Present PhD study focuses exclusively on spring hammers that are indicated as N-type or L-type rebound
hammers by the original design of Ernst Schmidt.
Rebound hammers are devices that are calibrated by the operator therefore operators should have a
calibration anvil (EN 12504-2:2012). Before and after testing, but at least after every 1000 rebound it should
be checked whether the mechanical parts of the device are functioning as intended, i.e the device is suitable
for the test (the accepted rebound index by the N-type rebound hammer on the anvil is 81±2). If the rebound
hammer is used on a metal surface different from the calibration anvil the curved surface of the plunger can
be damaged, therefore it is not allowed (Proceq, 2004). Rebound hammers are allowed to be used only within
the temperature limits –10°C and +60°C according to the recommendations of the instruction manuals. The
EN 12504-2:2012 standard is stricter in this respect: the allowed temperature range is +10°C to +35°C.
12
2.4 Operating principle of the rebound hammer
In the rebound hammer (as can be studied in Fig. 1.1) a spring (1) accelerated mass (2) is sliding along
a guide bar (3) and impacts one end of a steel plunger (4) of which far end is compressed against the
concrete surface.
The impact energy is constant and independent from the operator, since the tensioning of the spring
during operation is automatically released at a maximum position causing the hammer mass to impinge
with the stored elastic energy of the tensioned spring. The hammer mass rebounds from the plunger
and moves an index rider before returning to zero position. Original Schmidt rebound hammers record
the rebound index (R): the ratio of paths driven by the hammer mass during rebound and before impact;
see Eq. (2.2). Silver Schmidt hammers can record also the square of the coefficient of restitution
(referred as Q-value): the ratio of kinetic energies of the hammer mass right after and just before the
impact (E0 and Er, respectively); see Eq. (2.3).
In Eqs. (2.2) and (2.3) x0 and v0 indicate path driven and velocity reached by hammer mass before
impact, while xr and vr indicate path driven and velocity reached by hammer mass after impact,
respectively.
R
xr
 100
x0
Eq. (2.2)
Q
Er
v2
 100  2r  100  C 2R  100
E0
v0
Eq. (2.3)
The phases of the rebound hammer test can be seen in Fig. 2.9. When the hammer mass impinges on
the plunger, a compression stress wave starts to propagate toward the concrete within the plunger. The
plunger deforms elastically during the stress wave propagation.
When the compression stress wave reaches the fixed end of the plunger (i.e. the concrete), part of the
energy is absorbed in the concrete and the rest of the stress wave is reflected back in the plunger. The
reflected compression wave returns to the free end of the plunger and accelerates the hammer mass to
rebound. The absorbed energy at the fixed end results both elastic and pseudo-plastic deformations (local
crushing) of the concrete. When the acceleration of the plunger is brought to rest the elastic deformation
of the concrete recovers, however, a residual set is formed in the concrete under the tip of the plunger.
For detailed theoretical analysis the stress wave attenuation behaviour and structural damping capacity
of cementitious materials should be also studied. The relationship between rebound index and concrete
strength depends on the damping capacity of concrete in the vicinity of the tip of the plunger of the
rebound hammer. Damping capacity can be described by several parameters (damping ratio; damping
coefficient; logarithm decrement; Q factor; decay constant etc.), but measurements are very sensitive to
the heterogeneity of the concrete.
Swamy and Rigby (1971) have found the logarithm decrement of cement mortar and concrete to be
dependent on the water-cement ratio, aggregate content and moisture condition. However, limited data
are available in this field in the technical literature.
13
s s +  c L0
L0 – s L0 – s 2)
3)
L0
p c+ p 4)
L0
L0 – s L 0 – s c 1)
 p s + p s +c + p 5)
6)
7)
Fig. 2.9 Phases of the rebound hammer test,
1) Collision of the hammer mass to the plunger 2) Elastic deformation of the plunger 3) Elastic deformation of
concrete 4) Local crushing of concrete 5) Release of elastic deformation of concrete 6) Release of elastic
deformation of the plunger 7) Rebound of the hammer mass (Notations: L0 – initial length of the plunger, s – elastic
deformation of the plunger, c – elastic deformation of concrete, p – local crushing (pseudo-plastic deformation) of
concrete).
Based on experiments with polymer bodies Calvit (1967) has demonstrated that a simple relationship
can be derived between the rebound height (hr) of an impacting ball (falling from height h0) and the
damping capacity of a homogeneous, isotropic, viscoelastic semi-infinite solid body. Assuming that the
impact is a half cycle of a sinusoidal vibration then the ratio of the energy dissipated (Ed) to the energy
stored and recovered (Er) in the half a cycle is equal to π·tan, where  is the phase shift (Ferry, 1961).
The term π·tanθ is equal to the logarithm decrement (), therefore (Kolek, 1970a):
E d h 0  hr
h
1

   tan , from which: r 
Er
hr
h0 1  
Eq. (2.4)
Of course, it is not possible to derive such a simplified relationship for concrete due to the inelastic
deformations in the concrete and stress wave attenuation in the plunger and in the concrete. Damping
capacity of concrete is not studied in present PhD research.
2.5 Impact phenomena during the rebound hammer test
2.5.1 Theoretical considerations
The technical literature gives detailed information about the impact of elastic solids and the stress wave
propagation in elastic media (Timoshenko, Goodier, 1951; Kolsky, 1953; Goldsmith, 1960; Johnson,
1972; Graff, 1975; Zukas et al, 1982; Johnson, 1985). Present chapter gives a simplified overview of
the impact analysis of the Schmidt rebound hammer test without the aim of providing a complete study.
Basics of the theory of elasticity as well as of stress wave propagation are considered to be known,
therefore, omitted to be detailed here. Selection of references is given above for further reading.
14
For the analysis of impact phenomena connected to the Schmidt rebound hammer test one can apply a
simple model for the plunger and the hammer mass of the device as a longitudinal impact of a rigid
mass on one end of a long, elastic, uniform bar perfectly fixed at its far end, as the most simple
approximation (Fig. 2.10).
v0
fixed end
m1
m2, , E, A, I, L
0
(t)
x
c·t
Fig. 2.10 Simplified model of the hammer mass and the plunger of the rebound hammer as a long elastic uniform
bar perfectly fixed at its one end.
Let us consider that the moving hammer mass collides with the plunger (elastic bar with one fixed end)
at its distal end. Let m1 be the hammer mass (m1 = 0.38 kg for the N-type original Schmidt hammer)
and v0 is the impact velocity of the hammer mass (v0 = 2.4 m/s according to Granzer, 1970). The
equation of motion can be written generally as:
A
 2u
 2u

dx
AE
dx
t 2
x 2
or
2
 2u
2  u

c
t 2
x 2
where
c
E

Eq. (2.5)
The velocity of wave propagation (c) should be distinguished from the velocity (v0) introduced to the
material particles of the plunger in the compressed zone by the compressive force of the impact as well as
from the velocity (v) of the material particles of the plunger gained by the impact at the distal end. The
velocity of wave propagation (c) can be expressed from the equation of momentum and, therefore, the
velocity (v) of the material particles of the plunger can be given as a function of the uniform compressive
stress () acting on the distal end of the plunger during impact (Timoshenko, Goodier, 1951):
v

E
Eq. (2.6)
Considering the hammer mass to be absolutely rigid, the velocity of material particles at the distal end
of the plunger at the instant of impact (t = 0) become v0 and the initial compressive stress is:
0  v 0 E
Eq. (2.7)
Due to the inherent resistance of the plunger the velocity of the hammer mass and, therefore, the
pressure on the plunger will gradually decrease and a compression wave is formed with a decreasing
compressive stress travelling along the length of the plunger (Fig. 2.10). The change in stress with time
can be obtained from the equation of motion of the hammer mass:
m1
dv
  A(t )
dt
Eq. (2.8)
15
where m1 is the hammer mass, v is the variable velocity of the hammer mass, A is the cross sectional
area of the plunger and (t) is the variable compressive stress at the distal end of the plunger.
Integration and rearrangement results:
v  v0  e

tA E
m1

and
( t )   0  e
tA E
m1
Eq. (2.9)
These equations are valid as long as t < 2L/c. At t = 2L/c the compressive wave with the front stress of
0 returns to the distal end of the plunger which is in contact with the hammer mass still moving. The
velocity of the hammer mass can not change suddenly, therefore, the stress wave is reflected back
similarly to that at the fixed end and the compressive stress at the surface of contact suddenly
increases by 20. This sudden increase of stress occurs at the end of every interval of time T = 2L/c,
therefore, separate expression of (t) for each intervals should be obtained. The general expression for
any interval of nT < t < (n+1)T is given as (Timoshenko, Goodier, 1951):
 ( t )  s n ( t )  s n 1 ( t  T )
Eq. (2.10)
If  = m2/m1 accounts for the ratio of the plunger and the hammer mass then the individual stress
functions are formed as (Timoshenko, Goodier, 1951):

2 t
T
0<t<T
s0  0  e
T < t < 2T
s1  s0  0  e
2T < t < 3
T s2  s1  0  e
3T < t < 4
T s3  s2   0  e
Eq. (2.11)
t

 2   1
T 

t 

 1  41  
T 


Eq. (2.12)
t

 2   2 
T

2

t
t 


 1  8 2    82  2   
T
T  




t
 2   3 

T
2
3

t 
t
32 3 
t


  3    Eq. (2.14)
 1  12 3    24 2  3   
T  
T
3
T




Eq. (2.13)
The instant when (t) becomes equal to zero indicates the end of the impact and the separation of the
plunger and the hammer mass. The duration of the impact increases when  decreases. Taking into
account the hammer mass of m1 = 0.38 kg and the plunger of m2 = 0.099 kg one can obtain t =
106.74 μs for the time of impact in the case of the N-type original Schmidt hammer that is 2t/T = 5.79
based on T = 2L/c = 36.85 μs with the assumption of c = 5047.5 m/s for the plunger made of steel.
Fig. 2.11 indicates the normalized compressive stresses ((t)/0) at the distal end and at the fixed end
of the plunger based on the above simplifications.
16
44
σ ( t) /σ0
a)
33
2.922
2.594
11
00
1
22
2t/T
33
44
2.655
2
1.188
1
1
0.922
00
-1
-1
b)
3.188
2
2
1
0.594
σ ( t) /σ0
3
3
end of
impact
22
4
5
6
0.655
0
0
77
-1
00
1
1
2
2
33
44
55
2t/T
6
6
77
Fig. 2.11 Theoretical compressive stresses with time for the distal end (a) and the fixed end (b) of the plunger of an
N-type Schmidt rebound hammer based on elastic numerical analysis (Remark: T = 36.85 μs is the calculated value
of stress wave propagation time through the plunger in one direction).
The initial peak of the compression stress wave is calculated to be 0 = 95.1 N/mm2, therefore the
maximum peak of the compression stress wave at the fixed end of the plunger becomes max =
3.188×95.1 = 303.2 N/mm2. If the transmission coefficient at the steel-concrete interface is assumed to
be Ct ≈ 0.4 then the compressive stress in the concrete is assumed to be c = 121.3 N/mm2. It can be
also found in Fig. 2.11 that the time of the impact (i.e. the time needed for the hammer mass to be
separated and rebound back) is t = 106.74 μs (based on the calculated value of stress wave propagation
time through the plunger in one direction being T = 36.85 μs).
It can be also realized that no plastic deformation occurs within the plunger during the impact as the
velocity of the hammer mass at the instant of the impact v0 = 2.4 m/s is much lower than the velocity
would be needed to initiate plastic stress waves being vcrit = fy /c0 = 12.2 m/s (where the yield stress of
the steel plunger is fy = 500 N/mm2; density of steel is  = 7850 kg/m3; velocity of wave propagation is c0
= 5200 m/s) (Johnson, 1985).
The linear elastic analysis presented above has several limits of application. Firstly, the support of the
plunger can not be assumed to be perfectly fixed by the concrete surface. If one assumes a more realistic
viscoelastic support then the original boundary conditions of u(L,t) = 0 and ∂u(L,t)/∂x = 0 are no more
maintained and rather a damped harmonic oscillation takes place at the support of the plunger with the
∂u(L,t)/∂x = k·u(L,t) + b·∂u(L,t)/∂t condition, where k is the spring constant and b is the coefficient of
damping. Secondly, the plunger itself is not a uniform cylindrical bar with a constant cross sectional area
over its length, therefore, momentum traps are formed at the changes of the cross sections and further
reflections of the stress waves occur. Thirdly, the hammer mass can not be considered to be absolutely rigid.
If the real boundary conditions and energy dissipations could be properly modelled then the time of impact
would be dependent on the strength and stiffness of concrete; the more energy dissipation would be
formed in the concrete during impact, the longer time of impact would be realized.
A more detailed analysis of the impact phenomena and the wave propagation within the plunger of the
Schmidt rebound hammer is outside the scope of present PhD thesis.
2.5.2 Experimental results for the stress wave propagation
Gaede, Schmidt (1964) and Akashi, Amasaki (1984) have studied the stress waves in the plunger of the
rebound hammer during impact by strain gauge instrumentation. Gaede, Schmidt (1964) used the original
plunger while Akashi, Amasaki (1984) have had a special design of the plunger with the length of 180 mm.
17
Both studies demonstrated that the stress wave propagation is sensitive to the boundary conditions
provided by different strengths of concretes. The oscillograms recorded by Gaede, Schmidt (1964)
followed clearly the theoretical stress wave propagation tendencies indicated in Fig. 2.12 performing
several travels of the peak compressive wave before the separation of the hammer mass and the plunger.
As it was expected, the time of impact was found to be longer than that was calculated above (being in the
range of 250 μs to 400 μs) and was found to depend on the actual strength of the concrete tested. For
lower strength concretes longer times of impact were recorded. One representative result is indicated in
Fig. 2.12. Due to the extended length of the plunger in the tests of Akashi, Amasaki (1984) the
oscillograms were different from that of Gaede, Schmidt (1964) and of the expected shape outlined by the
theoretical analysis, however, the clear influence of the concrete strength on the stress wave propagation
was demonstrated.
Fig. 2.12 Experimental demonstration of the stress wave propagation within the plunger of the rebound hammer
during impact recorded by oscilloscope.
2.6 Parameters influencing the rebound index
2.6.1 Effects by the device
In the rebound hammer mechanical parts (i.e. springs, sliding hammer mass, etc.) provide the impact
load and mechanical (Original Schmidt hammer) or digital (DIGI-Schmidt hammer, Silver Schmidt
hammer) parts are responsible for readings. The value of the rebound index depends on energy losses
due to friction during acceleration and rebound of the hammer mass and that of the index rider, energy
losses due to dissipation by reflections and attenuation of mechanical waves inside the steel plunger;
and of course, energy losses due to dissipation by concrete crushing under the tip of the plunger. The
value of the coefficient of restitution depends on energy losses due to dissipation by reflections and
attenuation of mechanical waves inside the steel plunger and energy losses due to dissipation by
concrete crushing under the tip of the plunger. This latter loss of energy makes the rebound hammer
suitable for strength estimation of concrete. The energy dissipated in the concrete during local crushing
initiated by the impact depends both on concrete compressive strength and Young’s modulus; therefore,
depends on the stress-strain (σ-ε) response of the concrete tested.
The value of the rebound index depends also on the direction of the hit by the hammer related to the
direction of gravity force. The reading should be corrected accordingly (Proceq, 2006). The value of the
coefficient of restitution can be considered to be independent from the direction of the hit by the
hammer related to the direction of gravity force (Proceq, 2008b).
18
2.6.2 Effects by the concrete structure
The rebound hammers give information about the elastic and damping properties of the surface layer of
concrete that can not be necessarily related directly to the strength of concrete.
The energy dissipated in the concrete during local crushing initiated by the impact depends on the
properties of the concrete in the very vicinity of the tip of the plunger. Therefore, the measurement is
sensitive to the scatter of local strength of concrete due to its inner heterogeneity. For example, an air void
or a bigger hard aggregate particle close to the surface is resulted in a much lower or a much higher local
rebound value than is representative for the concrete structure globally (Herzig, 1951).
The amount of energy dissipated in the concrete can be higher for a concrete of lower strength/lower
stiffness compared to lower energy dissipation in a concrete of higher strength/higher stiffness. As it is
possible to prepare concretes of the same strength but having different Young’s moduli, it is also possible
to measure the same rebound index for different concrete strengths or to measure different rebound
indices for the same concrete strengths. Young’s modulus of the aggregate has considerable influence on
the rebound index.
The most significant influence on strength of concrete was found to be the water-cement ratio (w/c) of the
cement paste. Rebound hammer test results available for hardened cement pastes of different watercement ratios are represented in Fig. 2.13 (Kolek, 1970b). Results indicate that the change of the rebound
index due to the change of the water-cement ratio is similar in nature to the relationships found between
concrete compressive strength and water-cement ratio, however, less pronounced. Even the compaction
problems for low water-cement ratios can be realized.
It can be found that measuring the surface hardness of concrete by rebound method could provide suitable
result for strength estimation. However, it should be also noted that the water-cement ratio of the cement
paste is only one influencing parameter for the strength of concrete and several further influencing
parameters should be taken into consideration in the strength estimation procedure (Granzer, 1970).
50
50
rebound index, R, –
40
40
30
30
28 days
days
28
11 days
days
11
20
20
days
77 days
10
10
0.20
0,2
0.25
0,25
0.30
0,3
0.35
0,35
0.40
0,4
0.45
0,45
w/c ratio, –
Fig. 2.13 Rebound hammer test results on cement pastes.
Additional important influencing parameters are:
 the concrete mixture: type of cement, amount of cement, type of aggregate, amount of aggregate;
19
 the concrete structure: compaction of structural concrete, method of curing, quality of concrete
surface, age of concrete, carbonation depth in the concrete, moisture content of concrete, mass
of the structural element, temperature and stress state.
Differences in the rebound index due to the application of different types and/or amounts of cement can
reach 50 percent (IAEA, 2002). On the other hand, the influence of variation in fineness of cement is not
considered to be significant, resulting in a scatter of about 10 percent (Bungey et al, 2006).
Type and grading of the aggregate have significant influence on the rebound index. The most considerable
influence is attributed to the Young’s modulus of the aggregate. For example, the rebound index is always
found to be higher for quartz aggregate than for limestone aggregate, both corresponding to the same
concrete compressive strength (Grieb, 1958; IAEA, 2002; Neville, 1981).
Moisture content of the concrete influences the rebound index (Jones, 1962; Samarin, 2004; Victor, 1963;
Zoldners, 1957). Increasing the moisture content of concrete from air dry condition up to water saturated
condition can result a decrease of 20 percent in the rebound index (RILEM, 1977). The situation is similar
for water saturated surface dry condition, too.
Influence of the age of concrete can be realized most significantly in the effect of carbonation of
concrete (i.e. the forming of limestone from the hydrated lime due to carbon-dioxide ingress from
ambient air). The surface hardness of concrete and thus the rebound index increases due to
carbonation. Not taking this influence into account results unsafe strength estimation. The error can be
more than 50 percent (Gaede, Schmidt, 1964; Pohl, 1966; RILEM, 1977; Wesche, 1967). However, the
use of a reduction parameter that is a function only of the age of concrete should be avoided. Age of
concrete can be rather taken into consideration as the developed depth of carbonation thus with a
parameter that takes into account porosity of concrete (the schematic relationship between porosity (i.e.
compressive strength class) and depth of carbonation is represented in Fig. 2.14a, after Bindseil,
2005). Such a parameter is introduced in Chinese Standard JGJ/T23-2001 that is adopted into the
guidelines of Proceq SA (Proceq, 2003). Schematic representation is given in Fig. 2.14b.
depth of carbonation, mm
correction factor,
1.0
15
C12/15
0.9
12
C20/25
9
0.8
R = 20
C30/37
6
0.7
3
0.6
C35/45
R = 50
0
0.5
0
5
10
15
20
age of concrete, years
0
1
2
3
4
5
6
7
8
depth of carbonation, mm
Fig. 2.14 a) Schematic representation of depth of carbonation in time as a function of strength class (porosity) of
concrete, b) correction factor considering the depth of carbonation according to Chinese Standard JGJ/T23-2001
(Proceq, 2003).
20
2.7 Variability parameters of rebound surface hardness
During the design of reinforced concrete structures the designer specifies the strength class of concrete
that is taken into account in the design. The same is carried out if the performance of the concrete is
determined by in-situ testing, e.g. surface hardness testing for strength estimation. The designer’s
assumption should recognise the variability of concrete as a structural material and the designer specifies
the design strength of the concrete based on its characteristic compressive strength that covers the
variability of the strength of concrete. The characteristic strength is based on reliability concepts and
usually means a limit value of strength below which no more than 5% of test results from a chosen
concrete mix or structure falls. This concept is illustrated in Fig. 2.15a which sketches a histogram of
concrete strengths that can correspond to a particular series of test and how the test results could be
approximated by e.g a propability density function of normal distribution. Fig. 2.15b shows the idealized
propability density function of normal distribution that is usually assumed in design and in quality control
based on statistical methods. The lower limit indicated on the diagram is the characteristic strength (fck)
below which no more than 5% of the strength tests values shall fall. The characteristic strength is usually
given as a function of the mean strength, the standard deviation of strength and a chosen margin
parameter that covers the type of the probability distribution of strength (that is not necessarily always
normal distribution), the level of the quantile (that is not necessarily always 5%) and the reliability of the
strength approximation (that is depending on the available number of test results) in the following form: fck
= fcm – k×s; where fcm = mean strength, k = margin parameter and s = standard deviation of strength. The
same can be formulated if one introduces the coefficient of variation for the strength as: fck = fcm/(1– k×V);
where V = coefficient of variation for the strength and the further parameters are the same as before.
12
b)
a)
10
8
6
4
k×s
2
0
fc,min
fc,max
-3
f-2ck
-1
0
fcm
1
2
3
Fig. 2.15 a) Histogram with probability density function of normal distribution and b) idealized normal probability
density function of concrete strength.
Reliability analysis techniques mostly concentrate on the use of the coefficient of variation for taking the
variability of different material characteristics into account, rather than the standard deviation. Whether the
standard deviation or the coefficient of variation is the appropriate measure for the dispersion of concrete
strength depends on which of the two measures is more nearly constant over the range of strength (ACI, 2002).
Present PhD thesis does not intend to analyze mathematical statistical parameters of concrete strength
in general. Only a short reference is given to the coefficient of variation due to the scatter of in-place
21
compressive strength in concrete structures that was found to be V = 7 to 14 percent, depending on the
type of structure and quality control (ACI, 2002; ACI, 2003a). The other source of variation in strength is
the within-test coefficient of variation, as the measure of repeatability of strength tests. It was found
experimentally that the within-test coefficient of variation is about V = 3% for moulded specimens and
V = 5% for drilled cores (ASTM, 2004; ASTM, 2005). It was also demonstrated that the distribution of
the within-test coefficient of variation is asymmetrical; the coefficient of variation of concrete strength is
not constant with varying strength (Leshchinsky et al, 1990).
It should be mentioned that in the European practice usually the standard deviation is the measure for
the variability of concrete strength, rather than the coefficient of variation (Rüsch, 1964; CEB-CIB-FIPRILEM, 1974). It was found, however, that the coefficient of variation is less affected by the magnitude
of the strength level, and is therefore more useful than the standard deviation in comparing the degree
of control for a wide range of compressive strengths (ACI, 2002).
If the quality control is good during concreting, then the probability density function (PDF) of strength is
expected to be of normal distribution and the test results tend to cluster near to the average strength;
the histogram of Fig. 2.15a is expected to be tall and narrow. For normal distribution the average
strength and the mean strength coincides. If the test results are not symmetrical about the mean
strength (i.e. skewness exists) then a statistical analysis that presumes normal distribution is misleading.
The statistical analysis is the simplest if normal distribution for the strength is acceptable, as normal
distribution can be fully defined mathematically by two statistical parameters: the mean strength (=
average strength) and the standard deviation of the strength.
A sufficient number of tests is needed to accurately find the variation in concrete strength and to be able
to use statistical procedures for interpreting the test results. If only a small number of test results are
available, the estimates of the standard deviation and coefficient of variation become less reliable
(Carino, 1993).
The magnitude of variations in the strength of concrete is a result of the level of quality control over the
concrete production, the transportation, the compacting and curing procedures, the specimen
preparation and the laboratory testing of specimens. However, for a selected set of constituent
materials, the strength of concrete is basically governed by the water-cement (w/c) ratio. Therefore, the
most important criterion for producing concrete of low variability in strength is to keep a strict quality
control over the applied w/c-ratio. In present PhD study, the type of cement, the water-cement (w/c)
ratio and the degree of hydration considered as the most important governing parameters over the
strength of concrete (quartz sand and gravel aggregates are considered).
Surface hardness test of concrete is typically performed in-situ on structural concrete members. The
most important characteristic of the test is that the properties of the concrete in a structure are
measured. It is not common in usual practice that hardness tests are performed on moulded specimens
as well, made from the concrete used in the structure; it can be the case for pilot projects or structural
research only. For material research and testing device development the most common situation is the
exclusive use of moulded specimens tested under strictly controlled laboratory conditions.
During in-situ testing, the most significant characteristic of the non-destructive tests is that they do not
directly measure the compressive strength of the concrete in a structure.
The uncertainty of the average value of the reading (either R or Q) depends on three influences: 1) the
variability of the strength of concrete in the structure; 2) the repeatability of the rebound hammer test;
3) the number of individual readings.
The term repeatability considers the inherent scatter associated with the NDT method and is often called
within-test variation. For the characterization of repeatability either the standard deviation (s) or the
coefficient of variation (V) of repeated tests by the same operator on the same material can be suitable.
22
2.8 Number of repetition of rebound index readings
Important question is that how many test repetitions are needed to be able to estimate concrete
strength with acceptable error. Smaller number of repetitions affects the uncertainty of the average
reading as it was indicated earlier. Generally, the number of repetitions depends on three influences: 1)
the repeatability of the testing method (also called within-test variation); 2) the acceptable error between
the sample average and the true average; 3) the desired confidence level that the acceptable error is
not to be exceeded. The number of repetitions can be established from statistical principles or can be
based upon usual practice.
The former RILEM Task Group suggested a minimum repetition number of 25 rebound indices for an
acceptable representative value (RILEM, 1977). Borján (1968) proposed a minimum repetition number of
100 rebound indices for accuracy. The sufficiency of the collected data can be studied by an analysis of
mathematical statistical parameters (average value, standard deviation, skewness and kurtosis).
Asymptotic behaviour can be realized whenever the number of data is sufficient (Borján, 1968).
Fig. 2.16 gives results for a concrete wall indicating the asymptotic behaviour for standard deviation and
kurtosis: after reaching a certain number of test repetitions the reliability of the sample size can not be
increased further and the statistical parameters are found to be remaining constant.
0,16
0.16
4,5
4.5
kurtosis
0,14
0.14
4,0
4.0
stand. dev.
3,5
3.5
3,0
3.0
0
100
100
200
200
300
300
400
400
0,12
0.12
kurtosis
standard deviation
5,0
5.0
0,1
0.10
500
500
number of test repetition
Fig. 2.16 Standard deviation and kurtosis of rebound index by increasing sample size (own test results on a
reinforced concrete wall).
Arni (1972) has demonstrated that the number of tests required to detect a strength difference of 200
psi (≈ 1.4 N/mm2) with a 90% confidence level is 8 for the number of standard cylinders and is 120 for
rebound test readings. The technical literature demonstrates that if the total number of readings (n)
taken at a test area is not less than 10, then the accuracy of the mean rebound index is likely to be
within  15 n % with a 95% confidence level (Bungey et al, 2006).
ACI suggests using a number of repetitions such that the average values of the NDT results provide
comparable precision to the average compressive strength (Carino, 1993). If the coefficients of variation
of the compressive strength test and that of the NDT method are available, the ratio of the number of
test repetitions can be given as:
n i  Vi

n s  Vs




2
Eq. (2.15)
23
In Eq. (2.15) ni and Vi refer to the number of test repetitions and coefficient of variation corresponding to
the NDT (i.e. in-situ test), while ns and Vs refer to the number of test repetitions and coefficient of
variation corresponding to the strength test. The user can decide which uncertainty is tolerated during
rebound hammer testing since the increase of the number of test repetitions does not have considerable
economic impact but is resulted in more reliable strength estimation.
Leshchinsky et al (1990) introduced a formula for the suggested number of NDT repetitions at a
measuring location that is based on the use of empirical regression relationship from experiments as
follows:
n  t 2 Vf2 / p 2
Vf 
1 (H)
VH
r H
Eq. (2.16)
Eq. (2.17)
In Eqs. (2.16) and (2.17) Vf is the within-test coefficient of variation of the estimated concrete strength; p
is the acceptable error for the evaluation of average value of concrete strength (with the preset
probability P); t depends on P and the number of individual NDT repetitions; f=(H) is the equation of the
test measure vs. concrete strength correlation relationship; f is the concrete strength; H is the indirect
measure (e.g. rebound index); r is the correlation coefficient of the correlation relationship; VH is the
within-test coefficient of variation of the indirect measure.
The exact confidence interval can be also given to any number of test repetitions using a suitable
reliability analysis (ACI, 2003b; Leshchinsky et al, 1990).
2.9 Outputs of rebound hardness test - establishing the strength relationships
The surface hardness tests of concrete can provide additional data to core tests if limited number of
cores can be obtained from a structure. In several cases the designer needs strength values that can be
reliably used to specify the strength class of concrete rather than non-destructive measures alone, e.g.
surface hardness test results. So, the aim of rebound hammer tests of concrete is usually to find a
relationship between surface hardness and compressive strength with an acceptable error.
The strength of concrete is usually estimated from a previously established relationship between the
measured hardness and strength. The uncertainty of the estimated compressive strength, therefore,
depends both on the variability of the in-situ measurements and the uncertainty of the relationship
between hardness and strength.
To arrive at an acceptable estimate of the compressive strength of a concrete structure by using surface
hardness tests methods, one must account for three primary sources of uncertainty (ACI, 2003): 1) the
uncertainty of the surface hardness test results; 2) the uncertainty of the relationship between concrete
strength and the measure of surface hardness; 3) the variability of the concrete strength in the structure.
The first source of uncertainty is associated with the inherent variability (repeatability) of the test method.
It should be emphasized that the concrete construction practice needs in-place NDT equipment provided
together with simple, easy-to-use, generalized relationships (in the form of equations, graphs or tables)
which express the measured value (e.g. rebound index) as a value of the concrete compressive strength of
standard specimens. Such generalized relationships, however, usually could not accurately characterize
the concrete in the structure being tested.
24
Generalized relationships are allowed to be used only if their validity has been established by tests
carried out on concrete similar to that being investigated and with the same type of testing device that is
intended to be used in the investigation.
2.10 Regression analysis of compressive strength and hardness
The rebound index vs. strength relationship can be determined if the experimental data are available. The
usual practice is to consider the average values of the replicate compressive strength and NDT results as
one data pair at each strength level. The data pairs are usually presented using the NDT value as the
independent variable (along the X axis) and the compressive strength as the dependent variable (along the
Y axis). Regression analysis is performed as a conventional least-squares analysis on the data pairs to
obtain the best-fit estimate for the strength relationship. The technical literature calls the attention that the
boundary conditions of the conventional least-squares analysis are violated in the case of rebound index vs.
strength relationships (Carino, 1993), therefore it is not recommended because the uncertainty in the
strength relationship would be underestimated.
The two most important limitations of the conventional least-squares analysis are: 1) no error (variability) is
considered to be existing in the X variable (here: the rebound index); 2) the error (i.e. standard deviation) is
constant in the Y variable (here: the compressive strength) over all values of Y. The first assumption can be
violated by the uncertainty of the NDT method – characterized by its within-test coefficient of variation
(which may have a larger variability than that of the strength tests); and the second assumption can be
violated because standard deviation may change by the compressive strength both for strength testing
and NDT.
Mathematical statistics considers a data plot scatter to be heteroscedastic, when the error (i.e. standard
deviation) is not constant in the Y variable; the variation in Y differs depending on the value of X (Tóth,
2007). Regression analysis of heteroscedastic data needs performing a Y variable transformation to
achieve homoscedasticity (constant standard deviation in the Y variable). Conventional least-squares
analysis regression can be used only if the data are homoscedastic. A suitable Y variable transformation is
the Box-Cox Normality Plot (NIST, 2009) which is defined by a λ transformation parameter as:
T( Y)  ( Y   1) / 
Eq. (2.18)
For λ = 0, the natural logarithm of the data is taken; this is the most common estimation in the case of
rebound index (R) vs. strength (f) relationships. If a linear relationship is used, it is formed as follows:
ln (f) = a + B·ln (R) → f = ea ·RB = A·RB
Eq. (2.19)
In Eq. (2.19) the exponent B determines the degree of nonlinearity of the power function. If B = 1, the
strength relationship is a straight line passing through the origin with a slope of A. If B ≠ 1, the relationship
is nonlinear.
Regarding the problem of error in the X variable the regression procedure proposed by Mandel is
suggested instead of the conventional least-squares analysis regression (Carino, 1993; ACI, 2003b). The
most important difference to the conventional least-squares analysis is that Mandel’s method minimizes the
sum of squares of the deviations from the regression line in both X and Y directions, on the contrary to the
conventional least-squares analysis which minimizes only the deviations from the regression line in Y
direction.
25
Graphical representation of the surface hardness vs. compressive strength relationships usually indicates
heteroscedastic behaviour; i.e. increasing standard deviation in strength (Y variable) for increasing rebound
index (X variable). Even the manufacturer of the original rebound hammers suggests increasing standard
deviations to be taken into account for increasing rebound indices (Pascale et al, 2003). Examples for the
heteroscedastic behaviour are indicated in Fig. 2.17a, b and c (Greene, 1954; Zoldners, 1957; Schmidt,
1951).
It should be highlighted that researchers usually do not separate the experimental data of the
corresponding rebound index vs. compressive strength results by different influencing parameters in the
graphical representations – and the situation has not changed during the last 60 years. Therefore,
exclusively the univariate regression curves are available in the technical literature.
f c,28, ×102 psi
fc,28, ×102 ps i
50
50
60
60
40
40
40
40
f cm
f cm
20
20
f cm – 15%
30
30
fcm – s
20
20
fcm + s
0
f cm + 15%
10
10
15
15
20
20
25
25
30
30
35
35
40
45
45
50
50
15
20
25
25
30
30
50
50
35
35
40
40
rebound index, R28 , –
rebound index, R28, –
f c,28, N/mm2
40
40
30
30
f cm – s
20
20
f cm
fcm + s
10
10
0
10
10
20
20
30
30
40
40
50
50
rebound index, R28, –
Fig. 2.17 Heteroscadastic behaviour of the rebound hardness vs. compressive strength relationship (1 psi =
6.894×10-3 N/mm2, a) Greene, 1954; b) Zoldners, 1957; c) Schmidt, 1951).
Surface hardness and compressive strength of concrete, however, are depending on several parameters
(e.g. type of cement, amount of cement, type of aggregate, amount of aggregate, compaction of
structural concrete, type of formwork, method of curing, quality of concrete surface, age of concrete,
carbonation depth in the concrete, moisture content of concrete, mass of the structural element,
temperature and state of stress) of which influences may be represented when a multivariate regression
analysis is carried out.
26
The most significant influencing parameters for the compressive strength of normal weight concretes are
the water-cement ratio, the type of cement and the age of the concrete. The amount of cement, the
amount of aggregate, the storing method and further concrete technology parameters have only
secondary influences. The type and amount of aggregate can have significant influence in the case of
lightweight aggregate concretes.
It is shown here as an example that non-separation of experimental data can lead to completely misleading
trends of the analysis and the separation of experimental data can clearly uncover the real material
behaviour and, therefore, gives the only way to understand the mechanisms of the rebound surface
hardness testing of concrete. Two from the earliest publications are referred as example, i.e. papers by
Schmidt (1951) and Herzig (1951). Both papers are based on detailed laboratory tests carried out at
EMPA Laboratories, Switzerland.
Schmidt analysed in his paper the experimental results of 550 cube specimens tested both for rebound
surface hardness and compressive strength. The non-separated results are adopted in Fig. 2.17c where
the univariate regression curve power function is represented together with the lower and upper bound
curves based on the reported deviations from the mean values. It can be realized that an apparent
heteroscedastic behaviour appears when the compressive strength of concrete is represented as a
dependent variable of the rebound index. Herzig was the only researcher who presented the experimental
results from the same tests but the data were reasonably separated by the amount of cement, the storing
method and the age of concrete at testing (water content or water-cement ratio is not given in his paper).
As a primary influence, the separation by the age of concrete provides high-contrast differences. Three
typical representative curves are selected from his several separate curves (Fig. 2.18a).
40
40
a)
f cm, N/mm2
air, 300 kg/m
5d
30
30
wet, 300 kg/m
5d
air, 200 kg/m3
5d
3d
2d
10
10
20
20
20
2d
3d
10
10
b)
3
28d
20
20
fcm, N/mm 2
30
30
30
28d
3d
00
3
40
40
40
10
10
10
28d
2d
00
20
20
30
30
40
40
rebound index, R, –
10
10
20
20
30
30
40
40
rebound index, R, –
Fig. 2.18 Influences of data separation on the rebound index vs. compressive strength relationship (after Herzig, 1951).
Herzig’s results are adopted in Fig. 2.18b also as one population of data to highlight the possibility to
find a false empirical regression curve corresponding to rebound index vs. compressive strength
responses as non-separated data.
It can be observed that a strong correlation of a power function can be resulted. Here, the heteroscedastic
behaviour is not pronounced as the data covers only 56 data pairs and not the complete test result of the
550 cubes. It can be realized from Herzig’s original, separated data analysis that further primary influences
could come into play besides the age of concrete (e.g. water-cement ratio) not mentioned in his analysis.
27
2.11 Standardization of in-situ strength estimation by the rebound method
The test method, the statistical characteristics of test results, the implementation of in-situ testing and
interpretation of test results are described in ACI 228.1R-03, in ASTM C805/C805M-08, in EN 125042:2012 and in ISO 1920-7:2004. Details of standards are not intended to be given here, however, the
introduction and discussion of the particular aspects of the method is covered in the related chapters of
the thesis. Present chapter focuses on the current in-situ strength estimation techniques derived from
the rebound method suggested by ACI 228.1R-03 Standard, EN 13791:2007 and ÚT 2-2.204:1999
(Hungarian Technical Specification for Roads).
2.11.1 Improvement of the reliability of the strength estimation
In particular cases the actual compressive strength of the structural concrete can be considerably lower or
considerably higher than the estimated value. Therefore, the NDT with the rebound hammer can be applied
only as a rough estimate, if no other characteristics of the tested concrete are known or the rebound
hardness test is not supplemented with additional NDT or destructive tests.
If compressive strength of the structural concrete is intended to be estimated by acceptable reliability of
the estimation together with economic use, the rebound hammer test is reasonable to be completed with:
1) simultaneous strength testing of drilled cores, or
2) the strength testing of specimens that were prepared from the same concrete parallel with the
concreting of the structure, or
3) simultaneous application of additional NDT procedures, or
4) the use of empirical parameters in the evaluation process, which can characterize the composition
and performance of the structural concrete.
The above alternatives are listed in descending order of their reliability, i.e. increasing order of the
uncertainty resulted by their use.
The suggested method to complete the rebound hardness test is the simultaneous strength testing of
drilled cores due to the large number of the parameters that are influencing the test results. The proposal
is consistent with the principles of the EN 13791:2007 standard.
One should be careful in case of the testing of specimens prepared from the same concrete as the
concrete placed in the structure since the way of the preparation and curing of the specimens can be
considerably different from that of the structure. Even the earliest technical papers called the attention to
the significance of this observation (pl. Skramtajew, 1938).
The reliability of the estimation may be improved with the simultaneous application of other NDT methods
as well, however, in these cases a high level of professional expertise and great experience of the person
performing the test and the evaluation are essential requirements. The technical literature of the combined
application of NDT methods is beyond the limits of the literature review of present PhD research.
The use of the empirical parameters involved in the evaluation process can be considered by a user (who
is usually not a professional) as the simplest and most cost-effective method. However, these methods
carry such high level of uncertainty that can result unsafe estimations by the unprofessional use. Therefore,
some details of the topic are given later (in Chapter 2.11.4).
28
2.11.2 U.S. practice
In-situ tests can be used in two ways for the performance evaluation according to ACI 228.1R-03. First,
they can be used qualitatively to distinguish those locations of the structure where the concrete appears
to be different from other locations. In this case, the in-situ tests can be used without a strength
relationship for the concrete in the structure. The main purpose of the in-situ testing is to find where the
drilled cores should be taken for strength testing. The rebound method is widely used for this purpose.
Second, in-situ methods can be used for a quantitative assessment of the strength. In this case, a
strength relationship must be established for the concrete in the structure. The relationship can be
developed by performing in-situ tests at selected test areas and taking corresponding drilled cores for
strength testing. Thus, the use of in-situ testing does not eliminate the need for coring, but it can reduce
the amount of coring.
To develop the strength relationship, it is generally necessary to correlate the in-situ test parameter with
the compressive strength of cores obtained from the structure. Six to nine different test areas should be
selected for coring and measurement of the in-situ test parameter. At each test area, a minimum of two
cores should be obtained to establish the in-situ compressive strength. The number of replicate in-situ
tests at each test area depends on economic considerations. Because at least 12 cores are
recommended to develop an adequate strength relationship, the use of in-situ testing may only be
economical if a large volume of concrete is to be evaluated. After the averages and standard deviations
of the in-situ test parameter and core strength are determined at each test area, the strength
relationship can be developed. The data pairs are plotted using the in-situ test value as the independent
value (or X variable) and the compressive strength as the dependent value (or Y variable). Regression
analysis is performed on the data pairs to obtain the best-fit estimate of the strength relationship.
Regression analysis should be performed using the natural logarithms of the test results to establish the
strength relationship. Using a straight line to represent the relationship between logarithm values is
equivalent to assuming a power function strength relationship. Ordinary least squares (OLS) analysis is
claimed to be acceptable in a general case (ACI, 2003).
2.11.3 European practice
The European Standard practice (EN 13791:2007) gives methods and procedures for the assessment
of the in-situ compressive strength of concrete in structures by coring and provides guidance for the
assessment of the in-situ concrete compressive strength in structures by indirect methods.
Principles and guidance for establishing the relationships between test results from indirect test
methods (e.g. rebound method) and the in-situ core strength are provided. The indirect tests are
considered as supplement data obtained from a limited number of cores but they are allowed to be used
after calibration with core tests.
Two alternative methods for assessment of in-situ compressive strength are suggested:
- direct correlation with cores,
- calibration with cores for a limited strength range using an established relationship.
Alternative 1 is applicable to indirect test methods for assessment of in-situ compressive strength when a
specific relationship for the in-situ concrete is established by means of core tests. To establish a specific
relationship between the in-situ compressive strength and the test result by the indirect method, a
29
comprehensive testing programme shall be carried out. The relationship shall be based on at least 18
pairs of results, 18 core test results and 18 indirect test results, covering the range of interest.
Rebound hammer tests may be used for the assessment of in-situ compressive strength after developing a
basic curve and shifting it to the appropriate level determined by core tests.
Alternative 2 – the use of a relationship determined from a limited number of cores and a standard basic
curve – is a technique applies to normal concrete made with the same set of materials and manufacturing
process. A test region is selected from the population and at least 9 pairs of test results (core test results
and indirect test results from the same test area), are used to obtain the value of the shift by which the
basic curve needs to be shifted to establish the relationship between indirect measurements and in-situ
compressive strength (Fig. 2.19).
It is claimed in the standard that the basic curve has been set at an artificially low position so that the shift
is always positive.
compressive
strength of cores
best fit
final 10th
percentile
indirect measurements
calibrated by
drilled cores
f, shift
f R, N/mm2
60
50
40
fi
basic
curve
30
20
rebound index
10
0
20
25
30
35
40
45
50
55
R, -
Fig. 2.19 Principle for obtaining the relationship between in-situ compressive strength and indirect test data and
Fig. 2.20 Basic curve for rebound hammer test.
For the purpose of numerical calculations mathematical functions of the bilinear basic curves are as
follows (Fig. 2.20):
fR = 1.25×R – 23
20 ≤ R ≤ 24
Eq. (2.20)
fR = 1.73×R – 34.5
24 ≤ R ≤ 50
Eq. (2.21)
2.11.4 Hungarian practice
Numerous Hungarian studies can be found in the non-destructive testing of concrete by the rebound
method for a long time. Large number of technical and scientific papers, technical specifications, as well
as standard proposals and standards have been published in the past decades. It can be mentioned
here that the non-destructive testing of concrete is still a research field of high interest at the
Department of Construction Materials and Engineering Geology at Budapest University of Technology
and Economics (BME).
30
Two remarkable earlier results are introduced here:
 the proposal by György Roknich (Roknich, 1966; 1967; 1968), that was published also as a
recommendation of the Hungarian Standards Institution (Szalai, 1982), and it was adapted by the
Hungarian Transportation Industry Standard (MSZ-07-3318-1991), and
 the proposal by József Borján (Borján, 1981; Talabér, Borján, Józsa, 1979) that is included in the
proposed methods of current Technical Specifications of the Hungarian Society of Roads (ÚT 22.204:1999 and e-UT 09.04.11).
Proposal by György Roknich
During the 1960’s extensive laboratory tests were conducted in the Hungarian Road Research Institute
including the field of non-destructive testing with rebound hammer that were the bases of the draft of
earlier Hungarian standards (Roknich, 1966). The result of the research was a relationship between the
rebound index obtained by the N-type original Schmidt hammer and the compressive strength of concrete.
It was formulated including particular parameters related to concrete technology (type and amount of
cement, composition of the aggregate), and a parameter that takes the age of concrete into account. The
general form of the relationship (the fraction on the right side was deducted by Gaede and Schmidt (1964)
based on theoretical considerations) was:
fcm,200,cube 
9099.18
R 2  0.067  R

2 510c   3.178  0.65  i 0.773  R 2  0.067  R




(kp/cm2)
Eq. (2.22)
In Eq. (2.22) R indicate the rebound index, c is a parameter corresponding to cement content,  is the ratio
of the mass of sand and gravel aggregate to crushed aggregate, and i is a parameter taking time into
account. In Fig. 2.21 it can be studied how the rebound index - compressive strength relationship changes in
case of a concrete of constant aggregate composition and age of 28 days, horizontal impact direction, when
the amount of the cement is 250, 350, 450, 550 kg/m3, respectively. For comparison, also the B-Proceq
curve is indicated in the figure (Proceq, 2003; 2004).
It can be observed that the proposed function is very sensitive to changes of cement content as a result of
the structure of the formula. The difference between estimated compressive strengths corresponding to the
lowest and the highest cement content varies between 9 and 73 N/mm2. This difference is unreasonably high
in the range of high rebound indices. It can be also observed that the curve of 350 kg/m3 cement content
follows rather well the „B-Proceq” curve, so it can be actually accepted as the mean curve of the method. The
intersection of the two curves is close to the rebound index R = 40. At the rebound index R = 40 the
difference between compressive strengths corresponding to the lowest and the highest cement content is
40.2 N/mm2, which would result a difference that is equal to more than six concrete compressive strength
classes during classification. The change in the cement content itself cannot result such a difference. Since
the method is based on cement types used in the 1960’s, the adaptation of it to today concretes is not
possible without laboratory tests.
It can be mentioned that Roknich further refined his method in the 1970’s and developed recommendations
to improve the reliability of the strength estimation using particular technological data of the tested concrete
(KTI, 1978). The parameters taken into consideration were the followings: the compressive strength of the
cubes cut out from the structure, the ratio of the aggregate content and cement content, the body density
of concrete, the free water content of the concrete, the amount of cement, the water-cement ratio.
31
100
100
fcm,200,cube, N/mm2
80
80
60
60
40
40
c = 550
c=550
c = 450
c=450
c = 350
c=350
20
20
c = 250
c=250
B-Proceq
00
20
20
30
30
40
40
50
50
R, -
Fig. 2.21 Rebound index – compressive strength relationships of concretes with different cement content by
Roknich (1968).
Proposal by József Borján
Extensive laboratory studies were carried out during the 1970’s at the Department of Construction
Materials at Budapest University of Technology (BME) in the field of non-destructive strength estimation
(Talabér, Borján, Józsa, 1979).
One of the specialties of the studies was – with a pioneer view in the field – that the researchers conducted a
so-called complete experiment of nine factors. The tested experimental parameters (factors) were the type
of cement, the maximum size of aggregate, the modulus of fineness of aggregate, the water-cement ratio,
the cement paste content, the degree of compaction of specimens, the method of curing, the age of
concrete at testing and the moisture content of concrete at testing. The experimental study covered the
combination of 48 different concrete mixes and 24 different types of treatment that resulted a series of
experiments consisting of 1152 specimens. The experiment was an attempt without repetition: the 1152
specimens were all designed with different factor combinations, i.e. no two perfectly identical specimens
were prepared. It is remarkable that the researchers took the effort to carry out a series of experiments –
even if it was realized without repetitions – during the period of time before personal computers became
widely used. The possible factor combinations of the nine-factor experiment are nearly five hundred (when
assessing the combined interaction of several factors) that require the analysis of several thousand cases,
and results several hundreds of different functions. The corresponding rebound index and compressive
strength test results are represented in one diagram (Fig 2.22) (Talabér, Borján, Józsa, 1979).
A further speciality of the experiment was that the researchers did not study the real corresponding data
pairs of rebound index and compressive strength results in their analyses but the so-called quantile
points were created for this from the test results. The general idea of the analysis was actually the
adaptation of the Quantile function developed by Prof. J. Reimann, Hungarian mathematician. Quantile
function can provide an estimate of the relationship of two random variables which are in a stochastic
relationship (i.e. they are not independent, but one can not exactly define the other) (Reimann, 1975).
Quantile functions are used in hydrology for flood analyses (Reimann, V. Nagy, 1984).
32
fcm,200,cube, N/mm2
50
40
30
20
10
0
10
20
30
40
R, -
Fig. 2.22 Experimental rebound index - compressive strength data pairs by Talabér et al. (1979).
Coordinates of a Quantile function can be generated easily: if the cumulative distribution functions (CDF)
of X and Y random variables (being in a stochastic relationship) are known and they are denoted as F(x)
and G(y), respectively, then the values of the variables which have the same probability of occurrences
F(xα) = G(yα) = α can be plotted as data pairs (xα , yα) forming the Quantile function (Reimann, 1975). Use
of Quantile functions was found to be advantageous in the regression analysis of rebound index vs.
strength relationships because this abstraction minimizes the deviations from the regression line in both
X and Y directions, eliminating the problems of the conventional least-squares analysis (Borján, 1981).
Scheme of generating a Quantile function is shown in Fig. 2.23.
It should be noted that the abstraction of the Quantile function is resulted in fictitious data pairs and
omits the use of data pairs of corresponding rebound index vs. strength measured in reality. On the
other hand, it should be also noted that if Quantile functions are separated for different influencing
parameters then they can represent the differences in a much noticeable way as compared to
conventional least-squares analysis.
Therefore, the use of Quantile functions in the analysis of influencing parameters may be reasonable.
Unfortunately, the results by the Hungarian researchers were limited to a relatively small series of tests
(1152 cube specimens) and the idea was not further developed.
The researchers have fit a polynomial function of second degree to the quantile points represented in
double logarithmic coordinate system (Talabér, Borján, Józsa, 1979). The mean curve of the strength
estimation function was:
lg fcm,200,cube  1.055  1.805  lg R  0.345  lg R
2
(N/mm2)
Eq. (2.23)
33
F(x)
100%
G(y)
100%
G(yα) = α
F(xα) = α
y
x
xα
yα
y
y = Φ(x)
(xα , yα)
x
Fig. 2.23 Scheme of generating a quantile function.
The researchers introduced empirical parameters to improve reliability of the strength estimation which
take the composition and characteristics of concrete into account. The empirical parameters (due to
their additive nature) can shift the mean curve represented in the double logarithmic coordinate system
upwards parallel to itself, into the direction of higher compressive strengths. Thus, with the improvement
of the reliability of the strength estimation higher compressive strength values are obtained than that
provided by the use of the mean curve.
The researchers found that “the interaction of the parameters is sometimes strong and can accumulate".
Therefore, they strongly emphasized that the influence of the parameters is allowed to be taken into
account with this type of correction only to a limited extent.
The current Technical Specifications of the Hungarian Society of Roads (ÚT 2-2.204:1999 and e-UT
09.04.11) adapted the above strength estimation procedure with some additions in the following form:
lg fcm,200,cube  2.159    1.805  lg R  0.345  lg R
2
(N/mm2)
Eq. (2.24)
 the form of the function is unchanged; a polynomial function of second degree is introduced in
double logarithmic coordinate system,
 instead of the mean curve a 5% quantile function is suggested, so the value of the parameter
determining the location of the curve is -2.159, instead of -1.055,
 the domain of the function is R = 15…40,
 the additive empirical parameter (ΣΔ) can be generated as the sum of not more than three individual
parameters (Δ), which range is usually Δ = 0…0.07, so the additive empirical parameter can be
ΣΔ = 0…0.19,
 to take into account the carbonation of concrete, a multiplier is defined αt = 0.6…1.0 depending on
the age of concrete (not covered in Eq. (2.24)),
 to take into account the strength development and type of cement, a γt multiplier is defined (not
covered in Eq. (2.24)).
It is shown in Fig. 2.24 how the relationship between the rebound index and compressive strength
changes when the additive parameter is set to 0 –0.06 – 0.12 – 0.18. For the comparison, the “BProceq” curve is also indicated in the figure.
34
100
100
fcm,200,cube, N/mm2
80
80
60
60
40
40
ΣΔ
= 0.18

ΣΔ
= 0.12

ΣΔ
= 0.06

ΣΔ
=0

B-Proceq
B-Proceq
20
20
00
20
20
30
30
40
40
50
50
R, -
Fig. 2.24 Rebound index – compressive strength relationships of concretes with different additive parameters by
Talabér et al. (1979).
It can be observed that the suggested function is sensitive to the change of the ΣΔ additive parameter.
The difference between the lowest and highest estimated compressive strength varies between
3 and 21 N/mm2 (at R=20 and at R=40, respectively) within the domain of the function. With a simple
extrapolation of the function by extending the domain of the function to R = 50 (to the domain of the “BProceq” curve) the difference is now 41 N/mm2, which is unreasonably high. It can be observed that the
curves differ from the “B-Proceq” curve at the unsafe side, especially in the range of the higher rebound
indices, so the shape of the function cannot be considered as optimal. The intersection of the curve of
ΣΔ = 0 and “B-Proceq” curve is close to R = 40. In this section the estimated compressive strength
difference corresponding to the additive parameter ΣΔ = 0.18 is 21.3 N/mm2 that would result a
difference of four concrete compressive strength classes during classification.
These concerning observation can be partly understood by the fact that majority of the specimens had
low strength in the background experimental programme (see Fig. 2.22).
2.11.5 Conclusions on standardization
Both U.S and European standards exclude the use of the rebound surface hardness test for strength
estimation on its own due to the limited reliability available. Testing of drilled cores together with the
rebound surface hardness tests is suggested for an acceptable reliability. The EN 12504-2 European
Standard specifies the method for determining the rebound index and the EN 13791 European Standard
summarises guidance for the assessment of the in-situ concrete compressive strength in structures
(CEN 2007; 2012). It is generally stated that the rebound hardness tests of concrete is not intended as an
alternative to the compressive strength testing, but with suitable correlation, it can provide an estimate of
the in-situ strength. Therefore, it can be supposed that the rebound hardness tests may provide alternative
to drilled core tests for assessing the compressive strength of concrete in a structure only if core tests
results can be obtained in limited number.
35
Two alternative strength assessment procedures are described in EN 13791; both by the formulation of
specific relationships between the in-situ compressive strength and the rebound values. One alternative
suggests the establishment of a relationship based on 18 drilled core strength results, while the other
suggests the use of a basic curve, together with a shift of the basic curve, established by means of 9
drilled core strength results detailed in the standard. It is claimed that the basic curve has been set at an
artificially low position so that the shift is always positive. Strength estimation without the direct calibration
to drilled core strength results is not supported by the basic text of EN 13791.
The idea of EN 13791 with the calibration of the rebound hardness method to drilled core strength tests is
a practical and undeniable method to overcome the concerns of strength assessment, however, it
eliminates the advantages of the non-destructive nature of the rebound method and technically turns back
to the destructive testing. The main driver of the calibration is the relationship between the rebound index
and the in-situ compressive strength obtained by drilled cores. It can be demonstrated (Carino, 1993) that
the development of a relationship based on 18 drilled cores and the corresponding rebound indices can
result an acceptable confidence level for the strength assessment of concrete of a given composition.
Based on the above discussion of the Hungarian ÚT 2-2.204:1999 Roads Technical Specifications the
following limitations can be summarized:
The suggested function and the values of the corresponding additive parameters are based on concretes
made out of cements manufactured in the 1970’s, without any admixtures, so the unchanged use of them
for today’s concretes requires caution.
The person who performs the evaluation has great freedom in the selection of the additive parameters,
resulting considerable uncertainty. It basically contradicts the statement of the researchers who suggested
the method. They stated that the influencing parameters and their interaction are not known in case of a
real structure. Unfortunately, the additive parameter ΣΔ, which would be used to increase the reliability of
the strength estimation – and its application between boundaries was found to be scientifically sound – can
achieve exactly the opposite result: in a condition when the safety of the structure is severely endangered
one can make it seem as it would be in a safe condition.
For completeness it is mentioned here that the ÚT 2-2.204:1999 Roads Technical Specifications allows
not only the use of the ΣΔ additive parameter for the improvement of the reliability of the strength
estimation but also gives an alternative application of control strength test on cube specimens. As it was
mentioned before, the way of the preparation and curing of the specimen can be considerably different
from that of the structure. Hence, this possibility does not improve the reliability and safety in most cases.
36
CHAPTER 3
research methodology
Present chapter focuses on the detailed introduction and
specification of the research methods used in present studies.
The chapter is structured in accordance with the research significance and the three main objectives introduced in Chapter 1.
A detailed statistical analysis was performed to study the
variability parameters of rebound hardness. A phenomenological
model was formulated between the rebound index and the
compressive strength of concrete to characterize the relationship
of the two time dependent properties. Laboratory verification
tests as well as parametric simulation were carried out for the
validation of the model. Targeted experiments were designed
and conducted to study the relationships between the rebound
index and the mechanical properties of concrete.
3.1 Statistical analysis
3.1.1 Normality tests
In mathematical statistics, normality tests are used to determine whether a data set can be modelled by
normal distribution or not. The importance of the normality tests concerning the rebound hardness method
can be understood since normality is an underlying assumption of many statistical procedures. There are
about 40 normality tests available in the technical literature (Dufour et al, 1998), however, the most common
normality test procedures of statistical software are the Shapiro-Wilk test, the Kolmogorov-Smirnov test, the
Anderson-Darling test and the Lilliefors test. It is demonstrated in the technical literature that the Shapiro-Wilk
test is the most powerful normality test from the above four (Razali, Wah, 2011). The analyses provided by
present thesis focused on the Shapiro-Wilk normality test. To see if the probability distribution of the rebound
index reading set of an individual test area can be described by normal distribution or not, the Shapiro-Wilk
normality test was run. From 24 different sources, 4555 test areas were selected (from which 3447 of
laboratory testing and 1108 of in-situ testing) where 10 individual rebound index readings were recorded at
each test area by N-type original Schmidt rebound hammer.
Considering the rebound hardness method, one can assume that the rebound index reading sets of separate
test areas are independent and identically distributed (i.i.d.) random variables since it can be accepted that
the probability distribution of the rebound index does not change by test area within a concrete structure and
the separate test areas can be considered to be mutually independent. Based on these assumptions, the
central limit theorem applies for the rebound hardness method; i.e. the probability distribution of the sum (or
37
average) of the rebound index reading sets of separate test areas (each with finite mean and finite variance)
approaches a normal distribution if sufficiently large number of i.i.d. random variables are available.
Testing of the central limit theorem for the rebound index reading sets of individual test areas may be a good
indicator of the precision of the rebound hammer devices.
The practical application of the central limit theorem was the running of the Shapiro-Wilk test for multiple
rebound index reading sets combined. The expected behaviour is the value of the W statistic approaching
unity by the increasing number of test areas combined.
3.1.2 Calculation of repeatability parameters
An extended repeatability analysis was made on 8955 data-pairs (own measurements: 2699 laboratory
data-pairs, 578 in-situ data-pairs, total 3277 data-pairs) of corresponding average rebound indices and
standard deviations of rebound indices that were collected from 48 different sources (in which the
number of in-situ test areas was 4785 and the number of laboratory test areas was 4170; resulting
more than eighty thousand individual rebound index readings). Range of the studied concrete strengths
was fcm = 3.3 MPa to 105.7 MPa, and the range of the individual rebound indices was R = 10 to 63. The
averages and the standard deviations were calculated by 10 to 20 replicate rebound index readings on
the same surface of a concrete specimen during laboratory tests, or at the same test area in the case
of in-situ testing. The data were analysed to see the general repeatability (within-test variation) behaviour
of the rebound method. Analysis of reproducibility (batch-to-batch variation) was not the aim of the
studies. Standard deviation and coefficient of variation was calculated and analysed. The range of the
analysed data is from Rm,min = 12.2 to Rm,max = 59.0 for the averages and from sR,min = 0.23 to sR,max = 7.80 for the
standard deviations. Coefficient of variation range was found to be as from VR,min = 0.43% to VR,max = 31.12%.
3.1.3 Goodness of fit tests
An extended statistical analysis has been made on the previously detailed database (8955 test areas) to
ascertain the probability distribution of the statistical parameters of the rebound index (i.e. standard
deviation, coefficient of variation, range, studentized range).
The goodness of fit (GOF) tests were used to compare test data to the theoretical probability distribution
functions. Three tests were run to get the best goodness of fit out of more than 60 different types of
distribution functions: Kolmogorov-Smirnov test, Anderson-Darling test and χ2 test.
The goodness of fit tests measure the compatibility of a random sample with a theoretical probability
distribution function. In other words, these tests show how well the selected distribution fits to the data.
The general procedure consists of defining a test statistic, which is a function of the data measuring the
distance between the hypothesis and the data, and then calculating the probability of obtaining data
which have a still larger value of this test statistic than the value observed, assuming the hypothesis is
true.
In present analyses 60 different probability distributions were studied by GOF to find the best fit to the
experimental data.
38
3.1.4 Influences on the repeatability parameters
The governing parameters over the changes of the standard deviation, coefficient of variation, range,
and studentized range were analysed based on the available database, with the selection of the following
possible influencing parameters: the w/c-ratios of the concretes, the age of the concretes, the cement
types used for the concretes, the testing conditions of the concretes (dry/wet), the carbonation depths
of the concretes and the impact energy of the rebound hammers (N-type original Schmidt hammer with
impact energy of 2207 Nmm or L-type original Schmidt hammer with impact energy of 735 Nmm).
3.2 Modelling
3.2.1. Development of the phenomenological model
The development of the model was induced by the extensive literature survey of the rebound method
after the analysis of more than 150 technical publications of the last 60 years.
Deductive principles were followed in the theoretical research. The ideas were based on theoretical
considerations, where it was appropriate, while in other cases empirical relationships were considered.
General experimental observations and limitedly available theoretical models were studied for the
compressive strength and rebound index. Models were preferred where the degree of hydration was
found to be the primary driver of phenomena.
Since the mathematical modelling and experimental determination of the degree of hydration do not
satisfy the principle of “intended simplicity for practical use”, therefore, a simplification was applied; the
degree of hydration was characterized by three variables: type of cement, water-cement ratio (w/c) and
age of concrete. The randomness of the phenomena were not taken into consideration during the
theoretical research by focusing mostly on general laws, that is, the particular influencing parameters
were not considered as random variables. Revealing of the possible interrelationships has lead to the
hypothesis of a phenomenological model for the compressive strength and rebound index of concrete
which was able to generate data points of compressive strength and rebound index for concretes made
from a given type of cement, with a given water-cement ratio, at a given age, by means of five general
relationships. The generator functions are (all of them can be validated empirically): relationship between
the water-cement ratio and compressive strength of concrete at the age of 28 days; development of
compressive strength in time; relationship between compressive strength and rebound index of concrete
at the age of 28 days; development of carbonation depth in time; relationship between carbonation
depth and rebound index of concrete.
3.2.2 Robustness study by parametric simulation
The applicability of the model was tested by parametric simulation; by the preliminary selection of
arbitrary function parameters. Series of functions were generated to simulate results that are similar to
real experimental observations. Empirical formulations were selected from the technical literature for the
generator functions of the model for the parametric simulation.
39
3.2.3 Model verification with laboratory tests
The intention of the experimental part of the research connected to modelling was to verify the
applicability of the developed phenomenological model. Inductive principles were followed, i.e. laboratory
tests were carried out under strictly controlled experimental conditions, with the introduction of
sufficiently large number of test parameters changed on a wide range, on a large number of specimens.
The general performance of the developed phenomenological model was studied by the appropriate
graphical representation of the particular observations.
The experimental verification study was carried out at the Budapest University of Technology and
Economics (BME), Department of Construction Materials and Engineering Geology. The tested 72
concrete mixes were prepared in accordance with present concrete construction needs during the
experiments, i.e. slightly over-saturated mixes with different admixtures were designed. Consistency of
the tested concrete mixes was constant: 500±20 mm flow provided by superplasticizer admixture.
Design air content of the compacted fresh concrete for the tested concrete mixes was 1.0 V%. The
specimens were stored in water tank for 7 days as curing. After 7 days the specimens were stored at
laboratory condition.
Test parameters were:
Water-cement ratio:
0.38 – 0.41 – 0.43 – 0.45 – 0.47 – 0.50 – 0.51 – 0.55 – 0.60
Cement type:
CEM I 42.5 N – CEM III/B 32.5 N
Cement content (kg/m3):
300 – 350 – 400
Mixing water content (kg/m3):
180 – 165 – 150
Cement paste content (litres/m3):
247 – 263 – 278 – 293 – 294 – 309
Aggregate-cement ratio:
4.5 – 4.6 – 4.7 – 5.3 – 5.4 – 5.5 – 6.3 – 6.5 – 6.6
Admixture type:
accelerator admixtures (3 types)
Age of concrete at testing (days):
7 – 14 – 28 – 56 – 90 – 180
The 72 (9 watercement ratio × 2 cement types × (3 admixture types + 1 reference mix)) mixes tested at 6 different ages
with double repetitions (total number of 864 cube specimens of 150 mm) needed more than 3 cubic metres
of concrete prepared and tested in the laboratory exclusively for the verification study. Surface hardness
tests were carried out by the N-type Schmidt rebound hammer. Altogether twenty individual readings were
recorded with the rebound hammers used in horizontal direction on two parallel vertical sides of the 150 mm
cube specimens restrained by 40 kN force into a hydraulic compressive strength tester just before the
compressive strength tests (according to EN 12390-3) were carried out. Carbonation depth of concrete
specimens was measured by phenolphthalein solution.
(Some additional verification experiments were also conducted for further types of cements but not on a wide
range of water-cement ratios, see Appendix C.)
40
3.3 Targeted experiments
3.3.1 Scope of study
In addition to the model verification experimental study detailed previously, another experimental programme
was completed on wide range of compressive strength (water-cement ratio) and age of normal weight
concretes in the laboratory of Budapest University of Technology and Economics (BME), Department of
Construction Materials and Engineering Geology, to study the effect of the impact energy of the rebound
hardness testing devices on the rebound hardness and related mechanical properties of concrete.
3.3.2 Test parameters
Concrete was mixed from Danube sand and gravel using CEM I 42.5 N cement. Cement paste volume
was kept constant (304 litres/m3) to be able to study the neat effect of the water-cement ratio, within
the same aggregate skeleton, i.e. the stiffness of concrete is influenced only by the different stiffness of
the cement pastes of different water-cement ratio.
Consistency of the tested concrete mixes was 500±20 mm flow provided by superplasticizer admixture.
Design air content of the compacted fresh concretes was 1.0 V%.
The specimens were cast into steel moulds and the compaction of concrete was carried out by a vibrating
table. The specimens were stored under water for 7 days as curing. After 7 days the specimens were
stored at laboratory condition. 150 mm cube specimens and 120×120×360 mm prism specimens were
prepared for the experiments.
Test parameters were:
Water-cement ratio:
0.40 – 0.50 – 0.65
Cement content (kg/m3):
315 – 375 – 425
Mixing water content (kg/m3):
170 – 185 – 205
Aggregate-cement ratio:
4.25 – 4.85 – 5.75
Age of concrete at testing (days):
3 – 7 – 14 – 28 – 56 – 90 – 240 – 1100
For the 3 mixes tested at 8 different ages with double repetitions (total number of 48 cube specimens and
48 prism specimens) 500 litres of concrete was prepared and tested in the laboratory exclusively for
present experimental study.
3.3.3 Test methods
Surface hardness tests were carried out by the original Schmidt rebound hammers of L-type and N-type as
well as with a D-type Wolpert Leeb hardness tester of low impact energy as an alternative control impact
device. The three devices have the same operating principle, i.e. an impact mass is accelerated by a
41
spring toward the surface of the test object and impinges on it at a defined kinetic energy. The masses of
the used impact bodies were 380 g for the N-type Schmidt rebound hammer, 125 g for the L-type Schmidt
rebound hammer, and 5.5 g for the Wolpert Leeb hardness tester that resulted 2207 Nmm, 735 Nmm and
11 Nmm impact energy, respectively. Altogether twenty individual readings were recorded with the
Schmidt rebound hammers used in horizontal direction on two parallel vertical sides of the 150 mm cube
specimens restrained by 40 kN force into a hydraulic compressive strength tester just before the
compressive strength tests (according to the EN 12390-3 standard) were carried out. Leeb hardness tests
were carried out on the 120×120×360 mm prism specimens, right after the completion of the Young’s
modulus measurements (according to ISO 6784). Altogether 120 Leeb hardness readings were taken on
the moulded side surfaces of each prism specimen.
42
CHAPTER 4
results and discussion
Present chapter introduces the scientific findings and results
of the research. The chapter is sectioned in accordance with
the objectives of present studies. Results of extensive statistical
analysis of rebound index and its variability parameters are
presented. The development and composition, as well as the
experimental validation and parametric simulation of the
phenomenological model describing the relationship between
rebound index and compressive strength of concrete is
introduced. The influence of the water-cement ratio of concrete
and impact energy of the rebound hardness tester device on
rebound index is demonstrated by the results of the targeted
time-dependent laboratory tests. Each subchapter is closed
with a discussion section analyzing the results.
4.1 Statistical findings
Non-destructive testing methods for concrete structures require the statistical validation of the model
parameters. In particular cases the formulation of the model is directly related to the statistical
characteristics of the parameters considered. Laboratory and in-situ experiences have demonstrated
that several material characteristics, which are connected to the degree of hydration of hardened
cement paste as well as of hardened concrete (i.e. modulus of elasticity, tensile and compressive
strengths and surface hardness properties), may be modelled as random variables of normal probability
distribution. There are, however, material properties for which the validity of the assumption of normal
distribution can not be demonstrated or even no any indication is found in the technical literature
considering an appropriate probability distribution. Numerical modelling or numerical simulations of
concrete hardness behaviour need acceptable simplifications of the real behaviour.
Chapter 2.11 has summarised the current status of the international standardisation connected to the
strength estimation techniques with rebound method. It can be realized and also present chapter
outlines in details that still several gaps can be found in the recommendations in terms of either the
limitations of the proposed methods or the missing statistical verification of the indicated numerical
values. In the followings, these topics are analysed, however, without the aim of providing a complete
solution for the discussions. As an opening issue influencing the statistical parameters of the rebound
index an error is demonstrated related to the reading of the rebound index on the scale of the device.
43
4.1.1 Observational error
For the bias of the rebound surface hardness method no evaluation is given in the ASTM C 805 standard
(ASTM, 2008). It is indicated that the rebound index can only be determined in terms of this test method,
therefore, the bias can not be evaluated. This statement, however should be restricted to the Digi-Schmidt
and the Silver-Schmidt type rebound hammers as only these models provide the rebound index readings
digitally. The original Schmidt hammers have a sliding marker for the indication of the rebound index that
shows the measured value over a scale on which only even numbers are indicated. The operator decides
the reading based on his own judgement whether the reading is an odd or an even number. This sampling
does not, therefore, exclude the possibility of existence of an observer error or an observer bias.
The within-test standard deviation covers several influences including the inherent variability of the hardness
in the tested area, the inherent variability of the rebound method itself and the random errors attributed to
the operator in terms of observational error and performance error (due to inadequate use). Observational
error applies exclusively for the original Schmidt hammers. The Digi-Schmidt and the Silver-Schmidt type
rebound hammer models provide the rebound index readings digitally, therefore, only performance error
can be interpreted.
The accuracy of statistical information is the degree to which the information correctly describes the
phenomena that was intended to be measured (OECD, 2008). It is usually characterized in terms of error in
statistical estimates and is traditionally composed by bias (systematic error) and variance (random error)
components. A statistical analysis can be considered to be biased if it is performed in such a way that is
systematically different from the population parameter of interest. In statistics, sampling bias/sampling
error is a deviated sampling during which sample is collected in such a way that some members of the
population are less likely to be included than others. Problems with sampling are expected when data
collection is entrusted to subjective judgement on the part of human being (OECD, 2008). A biased sample
causes problems because any statistical analysis based on that sample has the potential to be consistently
erroneous. The bias can lead to an over- or underrepresentation of the corresponding parameter in the
population. In statistics, inherent bias is a bias which is due to the nature of the situation and cannot, for
example, be removed by increasing the sample size (OECD, 2008). An example of inherent bias is the
systematic error of an observer.
Systematic errors can lead to significant difference of the observed mean value from the true mean value
of the measured attribute. Systematic errors can be either constant, or be related (proportional) to the
measured quantity. Systematic errors are very difficult to deal with, because their effects are only
observable if they can be removed. Such errors cannot, however, be removed by repeated measurements
or averaging large numbers of results. A simple method to avoid systematic errors is the correct
calibration: the use of the calibration anvil for the rebound hammers.
Random errors lead to inconsistent data. They have zero expected value (scattered about the true value)
and tend to have zero arithmetic mean when a measurement is repeated. Random errors can be attributed
either to the testing device or to the operator.
The observational error in the case of the rebound hardness test is due to the design of the scale of the
device (Fig. 4.1). Its speciality that no odd values are indicated on the scale. Therefore, the observer
should decide during reading how the rounding of the read value is to be carried out. As the repetition of
the readings is very fast in a practical situation, it is expected that the observer adds an inherent
observational error to the readings of the rebound index, in favour of the even numbers.
44
Fig. 4.1 Scale of the original rebound hammer.
The existence of the phenomena was earlier indicated in particular publications for natural stones (Kolaiti,
1993) and concrete (Talabér et al, 1979) but was not analysed thoroughly.
Fig. 4.2 illustrates the internal parts of the rebound hammer showing the index rider that is driven by the
hammer mass sliding along the hammer guide bar during testing. Before impact (Fig. 4.2a) the index
rider is at zero position, the impact spring is tensioned by pressing the device housing against the
tested surface and the impact mass starts to impinge when the trip screw tilts the pawl of the guide disk
out from the flange of the hammer mass. After impact (Fig. 4.2b) the shoulder of the hammer mass
contacts the index rider during rebound and slides it along the scale to show the rebound index. The
reader can study the scale of the device in a magnified view in Fig. 4.1.
Fig. 4.2 a) Operating principle of the rebound hammer before impact and b) after impact.
To see the magnitude and the influence of such an error on the reading of the rebound index, a
comprehensive data survey was carried out. A total number of 45650 rebound index readings were
collected from 28 different published sources. The data are based on both laboratory research and insitu measurements. The rebound hammers were N-type original Schmidt hammers in each case.
Table 4.1 summarizes the statistical characteristics of the rebound index data in terms of counting the
even and odd number readings.
It can be realized that the observational error may be significant. Over the complete field of the 45650
data points one can find 57.3% probability of even number readings and 42.7% probability of odd
number readings.
It should be noted here that the 45650 data points are the result of several different operators,
therefore, no general statement can be taken about operator precision or measurement uncertainty. The
unbiasedness of the data collection is highly dependent on the operator. It is also noted that present
analysis does not have the aim to study in details if there is any bias attributed to the presented inherent
observational error.
Fig. 4.3 gives a general view of the observational error in present statistical analysis considering the
rebound index. Fig. 4.3 represents the frequency histogram of the 45650 readings. The reader can clearly
see how remarkable the difference is between the frequencies of adjacent even and odd number rebound
index readings. As one extreme test area, the vicinity of the rebound index of 40 can be highlighted: the
difference between the relative frequencies of reading 40 and reading 41 exceeds 60% of the relative
frequency corresponding to the reading 41.
45
Table 4.1 Statistical characteristics of the rebound index data in terms of counting the even or odd number readings.
Total
readings,
n
Readings of
even numbers,
neven
Readings of
odd numbers,
nodd
Relative error,
(neven – nodd)/n,
%
Source
of data
2160
1088
1072
+0.74%
lab
2
270
133
137
–1.48%
lab
3
120
62
58
+3.33%
in-situ
in-situ
1
4
120
63
57
+5.0%
5
1179
621
558
+5.34%
lab
6
1120
603
517
+7.68%
in-situ
7
7640
4189
3451
+9.66%
lab
8
510
284
226
+11.37%
in-situ
9
140
62
78
–11.43%
in-situ
10
1000
561
439
+12.20%
in-situ
11
2880
1623
1257
+12.71%
lab
12
5310
2999
2311
+12.96%
in-situ
13
200
113
87
+13.00%
in-situ
14
200
113
87
+13.00%
in-situ
15
3760
2151
1609
+14.41%
lab
16
990
570
420
+15.15%
in-situ
17
7560
4380
3180
+15.87%
lab
18
800
464
336
+16.00%
lab
19
70
41
29
+17.14%
in-situ
20
451
183
268
–18.85%
in-situ
21
460
276
184
+20.00%
in-situ
22
1070
644
426
+20.37%
lab
23
210
129
81
+22.86%
in-situ
24
1440
905
535
+25.69%
lab
25
2980
1873
1107
+25.70%
lab
26
1670
1102
568
+31.98%
lab
27
250
84
166
–32.80%
in-situ
28
1140
880
260
+54.39%
lab
3000
3000
2500
2500
frequency, -


2000
2000
34
36
even
odd
40
38
32
48
46
4244
50
1500
1500
30
52
1000
1000
28
500
500
26
24
2022
18
16
54
56
58
60
00
30 35 40
40 45 50
50 55 60
60
10 15 20 25 30
R i, Fig. 4.3 Observational error of the rebound index.
46
From the practical point of view of material testing – and not from that of the requirements of analytical
accuracy of probability theory – one may ask that how much is the influence of such an observational
error on the reliability of concrete strength estimation based on the rebound hammer test, as it is the
most important aim in most of the cases when the rebound hammers are used.
Strength estimation usually means the estimation of the mean compressive strength based on the mean
rebound index (mean can indicate here either in practical sample analysis the average or from
theoretical point of view the median value of the rebound index) and random errors are usually expected
to have an influence on kurtosis rather than the mean value.
The influence on the averages can be demonstrated as a simplification by supposing a triangular probability
density function for the rebound index readings over an acceptable range as shown in the followings. Let
us suppose having strictly increasing rebound index values as sets of 7 individual readings all of either
even or odd numbers in the range of 12 units (suggested by ASTM C 805 as acceptable precision range).
Let the lower limit of the tested range be R = 10 and let the upper limit of the tested range be R = 60, for
the rebound index. If one calculates the averages of the consecutive sets of the 7 readings within a range
of 12 units over the total range (from R = 10 to R = 60) and determines the ratio of the adjacent averages
then a decreasing impact of the error (i.e. deviation from unity for the ratios) can be demonstrated
corresponding to the increasing average value of the rebound index sets (Fig. 4.4). If the range is extended
over the values applicable for rebound hammer testing, it can be demonstrated that the error diminishes
when the set average approaches infinity. According to Fig. 4.4, the theoretically worst cases for the
observational error in the rebound index readings are in the range of 2 to 6%. In a real situation, however
much different influences can be realized.
0.99
0,99
0.98
0,98
Rm,i / Rm,i+1
0.97
0,97
0.96
0,96
0.95
0,95
0,94
0.94
0,93
0.93
0
10
10
20
30
30
40
40
50
50
60
Rmin,i, -
Fig. 4.4 Decreasing effect of the observational error corresponding to the increasing average value of artificial
rebound index sets.
The mostly erroneous dataset listed in Table 4.1 at the 28th position is selected for this demonstration of
such a real unfavourable performance. The dataset can be found in the technical literature (no reference is
given here for the right of privacy of the original authors as the example is inferior). The test results were
actually collected for a diploma thesis and the operator was the candidate undergraduate student (not at
BME). The 1140 rebound index readings are the result of a test series conducted on 5 different concrete
mixes where 20 replicate readings were recorded at 57 individual test areas. The statistical parameters of
the strength measurements for the 5 mixes can be studied in Table 4.2. Variability parameters indicate a
very low level of quality control during the tests. The overall statistical parameters of the rebound hardness
measurements for the 5 mixes are introduced in Table 4.3. The resulted range of 31 shall not be criticised
in the view of ASTM C 805, as these readings are not of the same concrete.
47
Table 4.2 Statistical parameters of the strength measurements of the most erroneous dataset.
fcm, MPa
s, MPa
V, %
Mix 1)
45.8
7.48
16.3
Mix 2)
48.3
8.81
18.3
Mix 3)
46.9
1.03
2.2
Mix 4)
34.3
1.73
5.1
Mix 5)
29.4
2.38
8.1
Table 4.3 Statistical parameters of the rebound hardness measurements of the most erroneous dataset.
Overall range
Rmax - Rmin = 51-20 = 31
Overall average rebound index
Rm = 32.34
Overall standard deviation
sRm = 3.95
Average of the 880 even readings
Rm,even = 32.38
Average of the 260 odd readings
Rm,odd = 32.18
Standard deviation of the 880 even readings
sRm,even = 3.80
Standard deviation of the 260 odd readings
sRm,odd = 4.42
On the first look, the differences between the statistical parameters related to even and odd readings
can be considered to be negligible. If one takes a look at a more detailed statistical parameter check
then more reliable decisions can be taken.
The reader can refer first to Fig. 4.5 where the 57 individual test areas are illustrated as Rm–fcm
(Fig. 4.5a), as Rm–sR (Fig. 4.5b), and as Rm–VR (Fig. 4.5c) responses.
It can be realized that the dataset indeed covers values that confirm the above statement about the low
level of quality control (the reader can compare Fig. 4.5b and Fig. 4.5c with Fig. 4.8, Fig. 4.9 and Fig. 4.12).
Further statistical considerations are illustrated in Fig. 4.6.
The rebound index ranges of individual test areas are shown in Fig. 4.6a, indicating with black tone the
test areas where the limit of 12 units suggested by ASTM C 805 is violated.
The observational error is given in Fig. 4.6b, which diagram shows the differences (in percents) between
the only-even-number and only-odd-number averages calculated to each test area. The deviation has a
positive sign if the only-even-number average is higher and has a negative sign if the only-odd-number
average is higher. It can be seen that the error can reach the magnitude of 20% at specific test areas.
The diagram indicates with a striped tone those test areas where zero number of odd reading was
recorded and therefore the specific observational error is 100%. It can be realized by the comparison of
the two diagrams that the observational error and the inherent variance of concrete hardness are
independent parameters, therefore, they can be separated and determined individually in theoretical
analyses.
It can be summarized as a conclusion that the observational error can be considerable in particular
cases, therefore, future statistical analyses are needed to make clear the real influences. At the present
stage of the research, it is not yet demonstrated if the observational error may result bias of the
rebound index data. It is suggested, however, that a simple development of the testing device may
eliminate the operator observational error: a scale of the index rider would be needed that indicates both
even and odd values rather than only even values as it is the case for the original design.
48
f cm, N/mm2
55
s R, -
b)
a)
60
60
4
50
50
3
40
40
2
30
30
20
20
1
25
25
30
30
35
35
18
18
40
R m, -
25
25
30
30
35
35
40
40
R m, -
V R, %
sR = 4
sR = 3
sR = 2
16
16
14
14
c)
12
12
10
10
88
66
44
22
25
25
30
30
35
35
40
R m, -
Fig. 4.5 Relationship between average rebound index and a) average compressive strength, b) within-test standard
deviation, c) within-test coefficient of variation of the mostly erroneous dataset (57 individual test areas).
range (rR = R max - R min), 20
a)
15
10
5
0
1 33
5
77
9 11
11 13 15 17
23 25
25 27 29
29 31 33
51 53 55
55 57
17 19
19 21 23
33 35 37 39
39 41 43 45 47
47 49 51
test areas
20
20
specific observational error, %
b)
10
10
00
-10
-10
-20
-20
1
33
5 77
99 11
11 13 15 17
31 33
33 35
35 37 39
39 41
41 43
43 45
45 47
47 49
49 51
51 53
53 55
55 57
57
17 19
19 21 23 25 27 29 31
test areas
Fig. 4.6 a) Range of rebound index, b) specific observational error of rebound index,
(corresponding to results of Table 1, 28th line).
49
The currently available experimental results also demonstrate that the digital data collection of the
coefficient of restitution (see e.g. the Silver-Schmidt hammer) instead of the operator’s eye sensory
reading of the conventional rebound index (see e.g. the original Schmidt hammer) do not improve the
accuracy of the readings (Viles et al, 2010).
On the contrary: it has been shown on 10 different natural stones that the necessary sample size to
arrive at the same confidence level of the estimation of the sample mean is considerably higher for the
Silver-Schmidt hammer than is needed for the original Schmidt hammer, regardless the magnitude of the
operator observational error (Viles et al, 2010). It calls the attention to further future analyses before a
proper possible improving development of the original Schmidt hammers; which devices are far the
most tried non-destructive testing tools for the in-situ surface hardness testing of concrete as well as of
natural stones.
4.1.2 Normality of test data
If the quality control is good during concreting and curing, then the probability density function (PDF) of
strength is expected to be of normal distribution and the test results tend to cluster near to the average
strength. For normal distribution the average strength and the mean strength coincides if n  ∞. If the test
results are not symmetrical about the mean strength (i.e. skewness exists) then a statistical analysis that
presumes normal distribution is misleading (Fig. 4.7). The statistical analysis is the simplest if normal
distribution is acceptable, as the normal distribution can be fully defined mathematically by two statistical
parameters: the mean value (= average value) and the standard deviation.
a) negatively skewed
f(x)
b) normal
f(x)
mode
c) positively skewed
mean
median
mode
f(x) mode
median
median
mean
mean
x
x
x
Fig. 4.7 Probability density function of normal and skewed distributions.
To see if the probability distribution of the rebound index reading set of an individual test area can be
described by normal distribution or not, the Shapiro-Wilk normality test can be run. From 24 different
sources, 4555 test areas were selected (from which 3447 of laboratory testing and 1108 of in-situ
testing) where 10 individual rebound index readings were recorded at each test area by N-type original
Schmidt rebound hammer. The Shapiro-Wilk test was run to all data sets and the values for the W statistic
was found to be in a wide range of Wmin = 0.510 (p → 0) to Wmax = 0.988 (p > 0.99) with a mean value of
Wm = 0.885 (p = 0.145). Values of the W statistic follow the Beta probability distribution with strong
negative skewness. It can be basically concluded that the hypothesis of normality can be accepted at very
low levels of probabilities for individual test areas.
50
From the analysis it can be realized that the hypothesis of normality can be accepted at 50% or lower
probability in 87% of the cases. In 10% and 5% of the cases the hypothesis of normality can be accepted
at 64% and 80% probability, respectively. The hypothesis of normality can be accepted at 95% or higher
probability only in less than 2% of the cases. It is not the aim of the thesis to suggest if a triangular or a
rectangular (uniform) probability density function could be a better estimate for the rebound index reading
set of an individual test area. Future work may be needed in this field.
The practical application of the central limit theorem for the rebound index reading sets of individual test
areas, however, may be a good indicator of the precision of the rebound hammer devices. Two comparisons
have been made in this sense. During the first one, literature data was analysed in which 36 individual
concrete cubes of 150 mm and of the same composition were tested by N-type original Schmidt hammer
(with average compressive strength of fcm = 29.6 MPa); recording 10 rebound indices on each cube
(BME, 1981).
Test results are considered to be rather accurate with an average rebound index of Rm = 36.9, with a
standard deviation of the rebound index of sR = 2.2 and a coefficient of variation of the rebound index of
VR = 5.9%.
The practical application of the central limit theorem was the running of the Shapiro-Wilk test for
1, 2, 3,…, 36 rebound index reading sets combined. The expected behaviour is the value of the W statistic
approaching unity by the increasing number of test areas combined. Fig. 4.8 summarizes the values of the
W statistic as a function of increasing number of specimens (i.e. test areas) included in the analysis. The value
of the W statistic is realized to approach to unity very fast, as it was expected. For 10 specimens the
hypothesis of normality for the rebound index can be accepted at 90% probability. At the range of 15 to
30 specimens the acceptance level increases to 95%. Over 30 specimens the acceptance level is over 99%.
1,00
1.00
W, -
0,95
0.95
0,90
0.90
0,85
0.85
0
10
10
20
30
40
40
number of specimens, -
Fig. 4.8 W statistic of rebound index as a function of increasing number of specimens.
During the second comparison, four different rebound indices were compared by the laboratory testing of
11 individual, identical concrete cubes of 150 mm (with average compressive strength of fcm = 64.7 MPa).
The testing devices were an L-type original Schmidt hammer, an N-type original Schmidt hammer and a
first generation Silver-Schmidt hammer capable to record both R-values (conventional rebound index) and
Q-values (square of the coefficient of restitution) (it should be noted here that the recently available second
generation Silver-Schmidt hammers are no more capable to record the R-values). Table 4.4 summarizes
test results. 20 rebound index recordings were taken by each device on each specimen.
51
It can be seen that the highest precision corresponds to the N-type original Schmidt hammer (highest
precision means here the lowest range and the lowest standard deviation for the measured value at
individual test areas). Lower precision of the L-type original Schmidt hammer and of the Silver-Schmidt
hammer is due to the lighter hammer masses impacting within both devices and the inferior sensitivity of
the electro-optical recording (Silver-Schmidt hammer).
The Shapiro-Wilk test was run in a similar way as of the first comparison. Fig. 4.9 summarizes the values
of the W statistic as a function of increasing number of specimens combined. One can realize that values
of W statistic approaches the fastest to unity for the N-type original Schmidt hammer due to its superior
precision. For 10 specimens the hypothesis of normality for the rebound index can be accepted over 99%
probability. In the case of the L-type original Schmidt hammer the hypothesis of normality for the rebound
index corresponding to 10 specimens can be accepted at a much lower probability level, at about 78%
(W = 0.961). In the case of the Silver-Schmidt hammer results are controversial. Tendency of the values
for the W statistic seem to decrease rather than increase, which contradicts probability theory and
apparently indicates that the central limit theorem does not apply.
Table 4.4 Statistical parameters of rebound indices obtained by different types of Schmidt rebound hammers.
specimen
1
2
3
4
5
6
7
8
9
10
11
R-value (L original) mean
45.2
43.4
41.6
45.3
46.4
44.8
44.3
43.1
47.4
47.0
45.2
stand. dev.
range
4.7
4.6
4.4
4.6
4.2
5.6
5.0
6.2
3.6
4.4
4.3
15
19
18
15
15
17
14
26
14
13
17
R-value (N original) mean
47.0
45.6
41.9
46.6
46.3
41.8
45.0
42.1
43.0
46.7
42.2
stand. dev.
range
3.0
2.9
4.0
3.4
3.1
3.8
2.0
3.7
2.8
3.7
3.1
11
10
16
12
10
13
7
12
10
14
12
mean
stand. dev.
range
46.8
41.3
41.5
41.9
42.8
42.9
45.1
41.6
42.0
40.4
40.9
6.4
5.1
3.2
4.8
3.0
5.3
5.1
4.4
4.1
3.8
4.3
22
21
12
17
12
20
21
18
18
13
17
mean
stand. dev.
range
50.5
48.1
46.2
47.4
45.3
48.3
47.4
47.5
46.6
52.3
48.5
3.1
4.0
3.5
3.5
3.0
2.9
3.8
4.1
3.7
4.6
3.8
11
18
13
13
11
11
17
17
15
16
15
R-value (Silver)
Q-value (Silver)
1,00
1.00
W, -
0,98
0.98
0,96
0.96
0.94
0,94
NR
– Original N-type
Silver N-type
SR
R – Silver N-type
LR – Original L-type
0.92
0,92
SQ
Q–
0,90
0.90
0.88
0,88
0
22
44
66
8
10
10
12
12
number of specimens, -
Fig. 4.9 W statistic of rebound index provided by different rebound hammers as a function of increasing number of
specimens.
52
The observed behaviour highlights the disadvantages of the electro-optical data collection of the Silver Schmidt
hammer and confirm the long term advantageous experiences with the N-type original Schmidt hammers
(see e.g. Viles et al, 2010) and further appreciate – after more than 60 years – the original robust design of the
device by Ernst Schmidt that provides superior precision compared to its competitors in use today.
4.1.3 Repeatability parameters - measures of statistical dispersion
According to the ISO 3534-1 International Standard the repeatability is the precision under conditions
where independent test results are obtained with the same method on identical test items in the same
laboratory by the same operator using the same equipment within short intervals of time (ISO, 2006).
Reproducibility means the precision under conditions where test results are obtained with the same
method on identical test items in different laboratories with operators using different equipment (ISO,
2006). In the nomenclature of ACI 228.1R-03 Committee Report repeatability is referred as within-test
variation and reproducibility is referred as batch-to-batch variation (ACI, 2003).
American Concrete Institute Committee 228 reapproved in 2003 the ACI 228.1R-03 Committee Report
that covered implications on the statistical characteristics of the rebound surface hardness method; as
an extension of ACI 228.1R-89 (ACI, 1989; 2003). No update has been made since then up today. The
Report illustrated – on a basis of three literature references from the 1980’s – that the within-test
standard deviation of the rebound index shows an increasing tendency with increasing average and the
within-test coefficient of variation has an apparently constant value of about 10% (Fig. 4.10). Particular
literature data contradicted the above findings (e.g. Leshchinsky et al, 1990). The reader can realize
that the information given in Fig. 4.10 is rather limited as well as apparently contradicts to an expected
behaviour that can be postulated as a similar trend that is shown in Fig. 4.11 for concrete strength.
Number of data points indicated in Fig. 4.10 is only 55 and the range of the analysed rebound index is
narrow and restricted to low values; all fall below rebound index of 35.
77
V R, %
s R, a)
Adatsor3
Keiller (1982)
Adatsor1
Yun et al (1988)
Adatsor2
Carette, Malhotra (1984)
66
55
b)
Adatsor3
Keiller (1982)
Adatsor1
Yun et al (1988)
Adatsor2
Carette, Malhotra (1984)
25
25
20
20
44
15
15
33
10
22
5
11
0
0
00
10
15
15
20
20
25
25
30
30
35
35
40
40
R m, -
10
10
15
15
20
25
30
30
35
35
40
40
R m, -
Fig. 4.10 a) Within-test standard deviation and b) coefficient of variation of rebound index (ACI, 2003).
As a conclusion, according to the ACI 228.1R-03 Committee Report, the within-test standard deviation of
the rebound index at a test area* shows an increasing tendency with increasing average of the rebound
index and the within-test coefficient of variation has an apparently constant value of about 10% (ACI, 2003).
53
(*test area: a concrete surface area that is not larger than 10×10 cm where 10 repeated rebound tests
are performed by the same operator, with the same device in such a way that no reading is recorded on
the same test point more than once).
According to the available technical literature, standard deviation of the compressive strength of
concrete does not depend on the average value of the compressive strength, only depends on the
quality of the concrete production (Fig. 4.11a and b) (fib, 1999).
12
12
sf, N /mm 2
45,00
45
a)
10
10
V f, %
b)
40,00
40
35,00
35
s = 8 N /mm 2
s = 4 N /mm 2
s = 2 N /mm 2
30,00
30
8
25,00
25
6
20,00
20
15,00
15
4
10,00
10
2
5,00
5
0,00
0
0
20
20
30
30
40
40
50
50
60
60
70
70
fcm , N /mm 2
20
20
30
40
40
50
50
60
70
70
f cm , N /mm 2
Fig. 4.11 a) Standard deviation and b) coefficient of variation of concrete compressive strength (fib, 1999).
An extended repeatability analysis has been made on 8955 data-pairs (own measurements: 2699 laboratory
data-pairs, 578 in-situ data-pairs, total 3277 data-pairs) of corresponding average rebound indexes and
standard deviations of rebound indexes that were collected from 48 different sources (in which the number of
in-situ test areas was 4785 and the number of laboratory test areas was 4170; resulting more than eighty
thousand individual rebound index readings). Range of the studied concrete strengths was fcm = 3.3 MPa
to 105.7 MPa, and the range of the individual rebound indices was R = 10 to 63. The data are based on
both laboratory research and in-situ measurements on existing buildings. The rebound hammers were Ntype original Schmidt hammers in all cases. The data is provided either by technical literature or from
the data archives of the accredited testing laboratory of the BME Department of Construction Materials
and Engineering Geology. The averages and the standard deviations were calculated by 10 to 20
replicate rebound index readings on the same surface of a concrete specimen during laboratory tests,
or at the same test area in the case of in-situ testing. The data were analysed to see the general
repeatability (within-test variation) behaviour of the rebound hammer testing. Analysis of reproducibility
(batch-to-batch variation) was not the aim of the study. The range of the analysed data is from
Rm,min = 12.2 to Rm,max = 59.0 for the averages and from sR,min = 0.23 to sR,max = 7.80 for the standard
deviations. Coefficient of variation was also calculated and analysed. Range was found to be as from
VR,min = 0.43% to VR,max = 31.12%.
Surface hardness and compressive strength of concrete are interrelated material properties. It is more
likely during the production of higher strength concretes that rigorous quality control is performed,
therefore, the standard deviation of strength is not expected to increase, but rather to decrease with
increasing strength. Therefore, the within-test standard deviation of rebound index is not expected to
increase with the average value of the rebound index.
54
Fig. 4.12a shows the graphical representation of the statistical analysis considering the within-test variation
of the rebound method as the standard deviation of the rebound index over the average, while Fig. 4.12b
indicates the same but considering the within-test variation of the rebound method as the coefficient of
variation of the rebound index over the average. It can be clearly realized that these parameters have the
same tendency as the within-test variation of concrete strength has, as it was demonstrated by Fig. 4.11;
i.e. no clear tendency is found in the standard deviation over the average and a clear decreasing tendency
can be observed in the coefficient of variation by the increasing average. Hence the implications given by
the ACI 228.1R-03 Committee Report are suggested to be reconsidered.
s R, -
25
25
V R, %
b)
a)
6
sR = 4
sR = 3
sR = 2
sR = 1
20
20
5
4
15
15
3
10
10
2
5
1
0
0
10
10
20
20
30
30
40
40
50
50
60
60
R m, -
10
10
20
20
30
30
40
40
50
50
60
60
R m, -
Fig. 4.12 a) Standard deviation and b) coefficient of variation of rebound index over the average.
It can be concluded by the analysis of 8955 test areas (from which 4170 are laboratory and 4785 are
in-situ test areas, with total number of individual rebound index readings exceeding eighty thousand) that
the within-test standard deviation of the rebound index does not depend on the average value of the
rebound index and the within-test coefficient of variation of the rebound index is inversely proportional to
the average value of the rebound index (Domain: R = 10 – 63, codomain: 3.3 MPa – 105.7 MPa);
implications given in some technical literature (ACI, 2003) do not fit to empirical findings.
4.1.4 Distribution of repeatability parameters
The ASTM C 805 International Standard contains precision statements for the rebound index of the
rebound hammers (ASTM, 2008). It is given for the precision that the within-test standard deviation of
the rebound index is 2.5 units, as “single-specimen, single-operator, machine, day standard deviation”.
Therefore, the range of ten readings should not exceed 12 units (taking into account a k = 4.5 multiplier
given in ASTM C 670). The multiplier is actually the one digit round value of the p=0.95 probability level
critical value (k = 4.474124) for the standardized range statistic of a N(,1) normal distribution
population at n = 10 according to Harter, 1960. Dependence of the within-test standard deviation on the
average rebound index is not indicated. Particular literature data support the ASTM C 805 suggestions
(e.g. Mommens, 1977).
Based on the ASTM C 805 implications it can be summarized that the probability distribution for the range
(rR) of ten rebound index readings is supposed to follow a normal probability distribution, where rR = 12 at a
55
p = 0.95 probability level if n = 10; and the within-test standard deviation of the rebound index can be
supposed to be mean value of an undetermined probability distribution and sR = 2.5 if n = 10.
There are two underlying assumptions in the precision statements of the rebound index given in the
ASTM C 805 International Standard: (1) the within-test standard deviation of the rebound index has a
constant value independently of the properties of the actual concrete and of the actual operator error,
and (2) the percentage points of the standardized ranges of N (,1) normal probability distribution
populations can be applied for the determination of the acceptable range of rebound index readings at
test areas. No indication is given in the ASTM C 805 either about the probability distribution of the withintest standard deviation of the rebound index or its percentile level for which the value is given in the
standard. In the absence of the above information one may assume – as a first estimate – that the
within-test standard deviation of the rebound index has a normal probability distribution and the value
sR = 2.5 is its mean value.
An extended statistical analysis has been made on the previously detailed 8955 data-pairs of corresponding
average rebound indices and standard deviations of rebound indices that were collected from 48 different
sources (in which the number of in-situ test areas was 4785 and the number of laboratory test areas was
4170). It can be realized in Fig. 4.13a that the distribution of the within-test standard deviation of the rebound
index has a strong positive skewness ( = 1.7064), therefore, the assumption of the normal probability
distribution should be rejected. Fit of distributions resulted that a three-parameter Dagum distribution
(also referred in the literature as generalized logistic-Burr or inverse Burr distribution) gives the best
goodness of fit out of more than 60 different types of distributions. Goodness of fit analysis was
performed by running the Kolmogorov-Smirnov test, the Anderson-Darling test and the χ2-test.
The parameters of the distribution function are as follows:
b 1
f(sR; a, b, c) 
s 
ab R 
c
b

s  
c1   R  

 c  

(Df: sR = 0.23 to 7.80)
a 1
Eq. (4.1)
where: a = 1.7958, b = 3.7311, c = 1.2171
f (sR), -
f (s R), -
a)
0,16
ƒ ( sR;a,b,c) 
0,14
0.12 0,1
0.08 -
 s 
c1   R 
  c

0.16 0,16
0,14
b




a 1
0.12 0,12
0,1
0.08 0,08
0,08
0,06
0,06
0.04 -
0.04 -
0,04
s R = 2.5 (p=0.885)
0,04
0,02
3
x
4
5
6
7
s R, -
0
0,8
1
1,6
2
2,4
3
4
3,2
4
x
4,8
5
5,6
6
6,4
-
7,2
-
6,4
-
5,6
-
4,8
-
4
-
-
-
3,2
-
2
2,4
-
1
1,6
-
-
0,8
0 -
-
0,02
0
-
f(x)
0,12
b 1
f(x)
s 
ab R 
c 
0.16 -
0-
b)
0,18
0,18
7,2
7
s R, -
Fig. 4.13 a) Relative frequency histogram of the standard deviation of the rebound index together with the best
goodness of fit probability density function (PDF), b) with the indication of sR = 2.5.
56
It can be realized that the sR = 2.5 value does not coincide either with the modus (= mode), or the
median (= 50th percentile), or the mean value, but rather corresponds to a p = 88.5% probability level (Fig.
13b). If one would estimate the probability distribution with a N (1.667, 0.75) normal distribution (for which
the goodness of fit is considerably weaker than that of the Dagum distribution) then the sR = 2.5 value would
correspond to a p = 86.7% probability level. The mean value is E[sR] = 1.667; the median value is m[sR] =
1.5; the mode value is Mo[sR] = 1.45; the 95% percentile value is v95[sR] = 3.1526; for the analysed range of
sR = 0.23 to 7.80. Value of sR = 2.5 exceeds the experimental values in 88.5% of the cases.
Next check is the analysis of the rebound index ranges (rR = Rmax – Rmin) at 8342 test areas in the case of real
measurements (in which the number of in-situ test areas was 4785 and the number of laboratory test areas
was 3557). (Note that the analysis of the standard deviation of the rebound index in the previous paragraphs
is based on more test areas (8955) than that of the range of the rebound index (for that only 8342 test areas
were available). In the technical literature several references include only the average rebound index and the
standard deviation of the rebound index, without the publication of the individual rebound index readings. That
is the reason of the difference between the sizes of the examined database.) Fig. 4.14 indicates the empirical
probability histogram together with the best goodness of fit four-parameter Burr distribution corresponding to
the 8342 test areas. The parameters of the distribution function are as follows:
f(rR; a, b, c, d) 
r d
ab R

 c 
ab 1
  r  d b 
c1   R
 
  c  


(Df: rR = 1 to 24)
a 1
Eq. (4.2)
where: a = 0.89001, b = 4.0809, c = 3.755, d = 0.41591
One can again realize a strong positive skewness ( = 1.9432), and the median (= 50th percentile) for the
rebound index ranges at the test areas is found to be m[rR] = 4. The mean value is E[rR] = 4.8068 and the
mode value is Mo[rR] = 3.75. Considering the value of rR = 12 as of the ASTM C 805 proposal, a p = 98.7%
probability level can be determined. The rebound index range at a test area corresponding to the p = 95%
probability level as of the ASTM C 805 target is found to be v95[rR] = 9. The mean value is E[rR] = 4.8068; the
mode value is Mo[rR] = 3.75 for the analysed range of rR = 1 to 24.
b)
f (r R), 0,3
r d
ab R

 c 
0.28 0,28
0,26
0.24 -
ƒ (rR;a,b,c,d) 
0,24
0,22
0.20 0,2
0,18
f(x)
0.16 0,16
ab 1
  r  d b 
c1   R
 
  c  


a 1
0,14
0.12 0,12
0,1
0.08 0,08
0,06
0.04 0,04
16
18
20
22
-
14
-
12
-
10
-
8
-
6
-
6
-
-
4
-
4
2
-
2
-
0
-
0,02
0-
24
8 10 12x 14 16 18 20 22 24
r R, -
Fig. 4.14 Relative frequency histogram of the range of rebound index readings together with the best goodness of
fit probability density function (PDF).
57
It can be concluded that the supposition of having normal probability distribution for both rR and sR should
be rejected; implications given in ASTM C 805 do not fit to empirical findings.
After the above statistical analyses that are only partly confirming the assumptions of ASTM C 805, the
next check can be the analysis of the assumption of ASTM C 670 that actually suggests the application of
the theory of standardized ranges ( = r/) for N(,1) normal probability distribution populations for the
determination of the multiplier applied to the maximum acceptable range (ASTM, 2003). One may realize
for the rebound hardness method (if 10 replicate readings are considered at each test area) that the
suggested value of the multiplier is k = 4.5 according to ASTM C 670, which is the one-digit round value of
the percentage point of the standardized range () for a sample of n = 10 from a N(,1) normal
probability distribution population corresponding to a cumulative probability of p = 95% ( = 4.474124;
see e.g Harter, 1960). The standardized ranges usually can not be applied for actual measurements as the
real standard deviation () is not known. Therefore, the studentized ranges ( = r/s) can be introduced for
N(,2) normal probability distribution populations for the selection of the multiplier applied to the
maximum acceptable range. Based on the number of the measured results an appropriate degree of
freedom () for the independent estimate s2 of 2 should be selected. For large samples (→∞) the
percentage point of the studentized range () approaches to the percentage point of the standardized
range (). Fig. 4.15 indicates the cumulative distribution function of the calculated studentized ranges
(R = rR/sR) corresponding to the 8342 test areas together with the percentage points of the standardized
ranges for n = 10 of N(,1) for cumulative probabilities of p = 0.01 % to 99.99% (based on Harter, 1960).
It is assumed for the present analysis that the comparison of the empirical studentized ranges (R) with the
standardized ranges () is acceptable due to the unusually large number of measured data. It can be
realized that the median (= 50th percentile) values are almost equal; for the empirical values of the
studentized ranges m[R] = 2.991 and for the standardized ranges by Harter (1960) m[] = 3.024202. It
is demonstrated in the technical literature that the probability distribution of the standardized ranges ()
has a positive skewness ( = 0.3975), therefore the mean value E[] does not equal to the median value,
but E[] = 3.077505 (Harter, 1960). The probability distribution of the empirical studentized ranges (R)
corresponding to the 8342 test areas, however, has a negative skewness ( = –0.26501), and the mean
value is E[R] = 2.9794. Fit of distributions resulted that a four-parameter Pearson VI distribution (also
referred in the literature as beta prime or inverse beta distribution) gives the best goodness of fit out of
more than 60 different types of distributions.
The parameters of the distribution function are as follows:
f(R; a, b, c, d) = 
where B(a,b) 
 R  d 
 c 


a 1
    d 
c  B(a, b)  1   R
 
  c 
a b
(Df: R = 0.555 to 4.786)
Eq. (4.3)
(a)(b)
is the Euler Beta function,
(a  b)
and a = 41399.0, b = 27867.0, c = 35.186, d = –49.297
Fig. 4.15 clearly indicates the difference in the probability distributions of the percentage points of the
standardized ranges () by Harter (1960) and that of the empirical studentized ranges (R) corresponding
to the 8342 test areas. One can realize that at the cumulative probability level of p = 95% the difference is
considerable; v95[] = 4.474124 and v95[R] = 3.635.
58
As the selection of the analysed 8342 test areas was free of any filtering, it is assumed that a further
increase in the number of the data points would not result a better fit between the probability distributions
of the percentage points of the standardized ranges () and that of the empirical studentized ranges (R).
Based on the present comprehensive statistical analysis, the application of Table 1 of ASTM C 670 for the
rebound hardness method is suggested to be reconsidered.
F(θR), F(ω)
1,0
1.0
θR 0,8
0.8
ω 0,6
0.6
0.4
0,4
0.2
0,2
0
0,0
0
11
2
3
44
55
66
77
θR, ω, Fig. 4.15 Cumulative probability distribution function (CDF) of the calculated studentized ranges (R = rR/sR)
corresponding to the 8342 test areas together with the standardized ranges for n = 10 of N (,1) for cumulative
probabilities of p = 0.01% to 99.99%.
The relative frequency histograms are constructed for the coefficient of variation of rebound index readings
based on the analysis of 8955 test areas (from which 4170 are laboratory and 4785 are in-situ test areas,
with total number of individual rebound index readings exceeding eighty thousand), as well. A strong
positive skewness is realized over the analyzed range ( = 2.2472 for the coefficient of variation) (Fig. 4.16).
The findings confirm that experimental data are available for the repeatability parameters of concrete
strength (Soroka, 1971; Shimizu et al, 2000). It was demonstrated in the literature – based on an
extensive analysis of 10788 drilled core samples taken from 1130 existing reinforced concrete buildings –
that the coefficient of variation of concrete strength had a lognormal probability distribution with strong
positive skewness, while normal probability distribution was found for the compressive strength itself
(conventional concretes were studied with compressive strength lower than 50 MPa; Shimizu et al, 2000).
Similar observation can be made considering the distributions of the standard deviation and the coefficient
of variation of concrete strength indicated earlier in Fig. 4.11.
Surface hardness and compressive strength of concrete are interrelated material properties, therefore, it
is expected that the probability distribution of the coefficient of variation of rebound index readings has a
positive skewness.
Goodness of fit analysis of sixty different probability distributions has demonstrated that the probability
distribution of the coefficient of variation (VR) of rebound index readings follows a three parameter Dagum
distribution (a = 2.2255; b = 3.1919; c = 2.7573), of which mean value is E[VR] = 4.4021%; the median
value is m[VR] = 3.8%; the mode value is Mo[VR] = 3.125%; the 95% percentile value is v95[VR] = 9.2132%;
for the analysed range of VR = 0.43% to 31.12% (Fig. 4.16). The parameters of the distribution function
are as follows:
59
f(VR; a, b, c) 
V
ab R
 c
 V
c1   R
  c




ab 1



b




(Df: VR = 0.43% to 31.12%)
a 1
Eq. (4.4)
where: a = 2.2255, b = 3.1919, c = 2.7573
f (VR), 0.28
0,28
0,26
s 
ab R 
 c 
0.24 0,24
0,22
ƒ ( VR;a,b,c) 
0.20 0,2
0,18
0.16 f(x)
0,16
0,14
0.12 0,12
b 1
  s b 
c1   R  
  c  


a 1
0,1
0.08 0,08
0,06
0.04 0,04
15
-
-
-
5
5
-
0
-
0,02
0-
10
15x
20
25
30
10
20
25
30
V R, Fig. 4.16 Relative frequency histogram of the coefficient variation of rebound index readings together with the best
goodness of fit probability density function (PDF).
4.1.5 Influences on the repeatability parameters
Reliability analysis techniques mostly concentrate on the use of the coefficient of variation for taking into
account the variability of different material characteristics, rather than the standard deviation.
From a reliability analysis point of view one may practically select the coefficient of variation as the
parameter of repeatability for the rebound hammer test. For this purpose, however, the governing
parameters over the changes of the coefficient of variation are needed to be known.
The available database was analysed in this sense as well, with the selection of the following possible
influencing parameters: the water-cement ratios of the concretes, the age of the concretes, the cement
types used for the concretes, the testing conditions of the concretes (dry/wet), the carbonation depths
of the concretes and the impact energy of the rebound hammers (N-type original Schmidt hammer with
impact energy of 2207 Nmm or L-type original Schmidt hammer with impact energy of 735 Nmm).
For the analysis of the influence of the age of the concretes, 102 different concrete mixes were selected
mostly from own laboratory measurements, for which the development of the coefficient of variation was
possible to be followed in time. The age of the tested concretes was between 1 day and 240 days. The
measuring device was N-type original Schmidt hammer. The behaviour was found to be typically
independent from the concrete compositions, it was reasonable, therefore, to prepare a smeared, unified
response for all the 102 concrete mixes (Fig. 4.17).
60
77
VR, %
77
V R, %
Adatsor4
CEM III /B 32.5 N-S
66
66
Adatsor3
CEM I 42.5 N
55
55
44
44
33
22
33
00
50
50
100
100
150
150
200
200
250
250
t, days
0
50
50
100
100
150
150
200
200
t, days
Fig. 4.17 Influence of the age of concrete on the coefficient of variation of rebound index and
Fig. 4.18 Influence of the type of cement on the coefficient of variation of rebound index in time.
The following observations can be made. In the first 14 days a rapid decrease in the coefficient of variation
is measured (from ~6 %) that is attributed to the fast hydration process and the gradual drying of the
tested surfaces. A minimum is reached in the coefficient of variation (at ~4 %) at the age of 28 to 56
days. The reason is the decrease of the rate of hydration. Over 56 days of age a gradual increase is
observed in the coefficient of variation (to ~5 %) attributed to the more and more pronounced influence
of carbonation. The direct relationship between the depth of carbonation and the within-test coefficient of
variation of the rebound index is discussed later in this chapter.
The 102 concrete mixes selected for the above analysis made possible to analyse the influence of the
cement type on the repeatability parameters, as well. Nine cement types were studied (in accordance
with the designations used in EN 197-1 European Standard and MSZ 4737-1 Hungarian Standard): CEM I
32.5; CEM I 42.5 N; CEM I 42.5 N-S; CEM I 52.5; CEM II/A-S 42.5; CEM II/A-V 42.5 N; CEM II/B-M (V-L)
32.5 N; CEM III/A 32.5 N-MS; CEM III/B 32.5 N-S. The influence of the applied cements was visible and
robust (Fig. 4.18). It was found experimentally that the lowest coefficient of variation can be reached for
the rebound index with the use of CEM I type Portland cements (~ 3.5 %) over the studied period of
time. The coefficient of variation is increasing with decreasing the strength class of CEM I type Portland
cements (not illustrated in Fig. 4.18). The use of blended cements (CEM II) or slag cements (CEM III)
always resulted in higher coefficient of variation (~ 5.0 %) over the studied period of time, when
compared to reference mixes made with Portland cements (CEM I). Differentiation between the influences
of different hydraulic additives (fly ash to slag) for the blended cements (CEM II) or between the amount of
slag applied for the slag cements (CEM III) was not possible due to the limited data available. Future
research is needed in this field.
The influence of the water-cement ratio was possible to be studied for six types of cements by the
analysis of the results of 93 different concrete mixes. The range of the studied water-cement ratios was
w/c = 0.35 to w/c = 0.65. It was realized, that the coefficient of variation of the rebound index
becomes lower if the water-cement ratio is decreased while all other concrete technology parameters
(including compacting) are kept constant (Fig. 4.19). 1-10 % differences can be realized between the
coefficients of variation of rebound index corresponding to different water-cement ratios, depending on
the age of concrete and impact energy of the device.
61
18
18
V R, %
18
18
a)
16
16
12
12
b)
16
16
w/c = 0.65
Adatsor1
w/c = 0.50
Adatsor2
Adatsor3
w/c = 0.40
14
14
VR, %
Adatsor2
w/c = 0.65
Adatsor1
w/c = 0.50
Adatsor3
w/c = 0.40
14
14
12
12
10
10
10
10
88
88
66
66
44
44
22
22
00
00
0
50
50
100
100
150
150
200
250
250
0
0
50
50
100
100
150
150
t, days
200
200
250
250
t, days
Fig. 4.19 Influence of the water-cement ratio and the impact energy a) 735 Nmm, b) 2207 Nmm on the coefficient of
variation of rebound index in time.
As mentioned above, the carbonation was found to have a more pronounced influence on the repeatability of
the rebound hammer tests on mature concretes, therefore, a targeted analysis was performed on mature
concrete specimens the age of which was 2 to 5 years during testing. 30 different mixes of concretes were
selected for the analysis with the range of compressive strength of 42.6 MPa to 91.7 MPa. It was
demonstrated that the coefficient of variation of the rebound index is higher for higher depths of carbonation
(Fig. 4.20). The measured depths of carbonation were found to be between 2.2 mm to 22.8 mm, and the
corresponding coefficients of variation of rebound index readings were ~3 % and ~8 %, respectively.
12
12
VR, %
10
10
88
66
44
22
00
00
55
10
10
15
15
20
20
25
25
x c, mm
Fig. 4.20 Coefficient of variation of rebound index vs. average depth of carbonation.
It was found during earlier in-situ testing experiences on clay masonry structures that the within-test
standard deviation and the within-test coefficient of variation of the rebound index is very sensitive to the
impact energy, therefore, a comparative study was performed on concretes using L-type and N-type
original Schmidt hammers to reveal the existence of this influence for concretes as well. CEM 42.5 N
62
type cement was selected and w/c = 0.40 – 0.50 – 0.65 water-cement ratios were applied for the
same aggregate mix. In the concretes both the cement paste content and the consistency was set to be
constant. The age of the test specimens was 3 to 240 days. It was demonstrated also for concretes
that both the standard deviation and the coefficient of variation of the rebound index is very sensitive to
the applied impact energy before the age of 56 days. The scatter of results is greater corresponding to
the lower impact energy (can reach up to 12 %). Experiments showed that the differences become more
balanced and seem to disappear at ages over 56 days (Fig. 4.19a and b).
4.1.6 Discussion on statistical findings
An extensive statistical analysis of the variability of concrete rebound hardness parameters has been
made based on a large database of 60 years laboratory and in-situ experience. The following
observations can be highlighted.
It was demonstrated that an observational reading error exists in the rebound index readings due to the
design of the scale of the device. The observational error can be considerable in particular cases. It is
not demonstrated yet if the observational error may result bias of the rebound index data. It is
suggested that a simple development of the testing device may eliminate the operator observational
error: a scale of the index rider would be needed that indicates both even and odd values rather than
only even values as it is the case for the original design.
It was demonstrated by normality tests that the precision of the original N-type Schimdt hammer is
superior to original L-type or Silver-Schmidt N-type hammers for concrete. Lower precision of the L-type
original Schmidt hammer and of the Silver-Schmidt hammer is due to the lighter hammer masses
impacting within both devices and the inferior sensitivity of to the electro-optical recording (SilverSchmidt hammer).
It was demonstrated that the within-test variation (repeatability) parameters of the rebound hardness
method have similar tendency to that of the within-test variation parameters of concrete strength; i.e. no
clear tendency is found in the standard deviation over the average and a clear decreasing tendency can
be observed in the coefficient of variation by the increasing average. ACI 228.1R-03 Committee Report
implications contradict to these results, therefore, the within-test variation statements in ACI 228.1R-03
are suggested to be reconsidered.
It was demonstrated that the probability distribution of the within-test standard deviation of the rebound
index as well as of the rebound index ranges of individual test areas do not follow the normal
distribution, but both has a strong positive skewness. ASTM C 805 implications can not fit to these
findings, therefore the statements in ASTM C 805 about the values of the standard deviation and the
range of rebound indices are suggested to be reconsidered.
It was demonstrated for the rebound indices that the probability distribution of the standardized ranges
and that of the empirical studentized ranges are different and their values are about to be equal only at
their mean value levels. At 95% probability level the difference is unacceptably high, therefore, the
application of Table 1 of ASTM C 670 for the rebound hardness method is suggested to be reconsidered.
It was demonstrated that the within-test coefficient of variation of the rebound index is influenced by the
water-cement ratio of the concrete, the age of the concrete, the cement type used for the concrete, the
carbonation depth of the concrete and the impact energy of the rebound hammer.
63
4.2 Modelling of rebound hardness
The hardness testing devices have been developed for in-situ testing of concrete based on the observation
that the surface hardness of concrete can be related to the compressive strength of concrete.
Aim of rebound hammer tests is usually to find a relationship between surface hardness and compressive
strength of concrete with an acceptable error. The existence of only empirical relationships was
considered in the earliest publications (Anderson et al, 1955; Kolek, 1958) and also recently (Bungey et al,
2006; Kausay, 2013).
4.2.1 Existing proposals for prediction of compressive strength by rebound index
In the followings a survey is given regarding the empirical relationships found by several researchers for
concrete strength estimation in the last 60 years.
The available proposals are results of simple, univariate regression analyses of rebound surface hardness
vs. compressive strength relationship of concrete.
Due to space limitations only 40 of the formulae is summarized in Table 4.5, however, more than 60 can
be found in the technical literature. Formulae are usually given in their original form but the notation is
unified. Data is given in a graphical representation in Fig. 4.21 with a correction to provide results for
150 mm standard cubes. For the sake of better visualization results are separated by their relation to
the “B-Proceq” estimation curve (that is recommended by Proceq SA for the original Schmidt rebound
hammers of N-type; Proceq, 2003) as follows:
 Proposal curves running continuously above the curve “B-Proceq” (Fig. 4.21a),
 Proposal curves running continuously below the curve “B-Proceq” (Fig. 4.21b),
 Proposal curves intersecting the curve “B-Proceq” coming from below (Fig. 4.21c),
 Proposal curves intersecting the curve “B-Proceq” coming from above (Fig. 4.21d).
Composition of the proposed empirical relationships can be summarized as follows (in which fcm is the
estimated mean compressive strength; R is the rebound index; a…n are empirical values):
 linear relationships:
fcm = a + b·R,
 power function relationships:
fcm = a + b·Rc,
 polynomial relationships:
fcm = a + b·R + c·R2 + … + n·Rm,
 exponential relationships:
fcm = a + b·ec·R,
 logarithm relationships:
loga(fcm) = b + loga(R),
 nonlinear relationships:
fcm = (R).
Results summarized are published for 28 to 365 days of age, conventional, normal-weight concretes
stored under air dry moisture condition.
64
Table 4.5 Rebound surface hardness vs. compressive strength relationships.
1)
fcm,200,cube  0.0003  R 3  0.0399  R 2  0.1525  R  3.9976
2)
fcm,200,cube  0,0477  R
3)
fcm,cyl  0.1134  R
4)
fcm,cyl  0.4594  R 3  37.879  R 2  1175.7  R  10021
5)
(N/mm2)
1.7796
Schmidt (1950)
2
1.4927
(N/mm )
Chefdeville (1953)
(N/mm2)
Greene (1954)
(psi)
Zoldners (1957)
2
fcm,150,cube  0.056  R  0.022  1.57
(lb/in 10 ) Kolek (1958)
6)
fcm,200,cube  0.019  R
2.59
(N/mm2)
7)
fcm,200,cube  10  R  50
(kg/cm )
Victor (1963)
8)
fcm,200,cube  0.06  R
(N/mm2)
Facaoaru (1964)
9)
fcm,200,cube  0,001  R 3  0,1222  R 2  2,9185  R  27,894
(N/mm2)
Gaede, Schmidt (1964)
10)
fcm,200,cube  0,515  R  19,951  R  258,06
2
3
2
2.42
2
2
9099.18
R  0.067  R


5 10c 
2
 3.178  0.65α  i 0.773  R 2  0.067  R
2
11)
fcm,200,cube 
12)
fcm,200,cube  0,53  R 2  21  R  276
13)
fcm,200,cube  0.0051  R
14)
fcm,150,cube  2.0098  R  21.749
15)
lg fcm,200,cube  1.055  1.805  lg R  0.345  lg R
16)
fcm,cyl  54.1  lnR  148.4
17)
lg fcm,200,cube  2.159  1.805  lg R  0.345  lg R
18)
fcm,150,cube  0.00883  R
19)
fcm,150,cube  0.00186  R 2  2.0449  R  46.426



2.3956

(kp/cm )
ÉMI (1965)
(kp/cm2)
Roknich (1968)
(kp/cm2)
Vadász (1970)
2
MSZ 4715 (1972)
2
Cianfrone, Facaoaru (1979)
2
Talabér et al (1979)
2
Malhotra, Carette (1980)
2
(N/mm )
Borján (1981)
(N/mm2)
Di Leo et al (1984)
(N/mm2)
Knaze, Beno (1984)
(N/mm )
(N/mm )
2
(N/mm )
(N/mm )
2
2.27
0,08R
Brunarski (1963)
20)
fcm,100,cube  7,25  e
21)
ln fcm,200,cube  4,69  1,79  ln R  0,152  ln R
22)
fcm,150,cube  2.50  R  18.4
(N/mm )
Mikulic et al (1992)
23)
fcm,150,cube  1.0407  R
(N/mm2)
Almeida (1993)
24)
fcm,7070,core  1.73  R  34.3
(N/mm2)
Gonçalves (1995)
25)
fcm,150,cube  0.403  R1.2083
(N/mm2)
Kheder (1999)
26)
fcm,150,cube  1.47  R  16.85
27)
fcm,cyl  0.0501  R
28)
fcm,150,cube  2.2415  R  30.762
29)
fcm,150,cube  0.000135  R
30)
fcm,150,cube  1.353  R  17.393
31)
fcm,150,cube  0.0244  R
32)
fcm,150,cube  0.0002392  R 3.299
33)
fcm,150,cube  0.0117  R  0.8973  R  13.213
34)
fcm,150,cube  0.0005  R 3
35)
fcm,150,cube  2.68  e
36)
fcm,150,cube  0.00752  R
2
Ravindrajah (1988)
2
MI 15011 (1988)
2
(N/mm )
2
(N/mm )
1.155
2
Soshiroda (1999)
2
Lima, Silva (2000)
2
Nyim (2000)
2
Pascale et al (2000)
2
(N/mm )
Qasrawi (2000)
(N/mm2)
CPWD (2002)
(N/mm2)
Pascale et al (2003)
(N/mm2)
Proceq SA (2003)
(N/mm2)
Nehme (2004)
(N/mm )
1.8428
(N/mm )
(N/mm )
3.4424
(N/mm )
1.9898
2
0.06R
(„B-Proceq”)
2
Nehme (2004)
2
Fabbrocino et al (2005)
(N/mm )
2.359
(N/mm )
65
37)
fcm,150,cube  0.788  R1.03
38)
fcm,150,cube  2.1683  R  27.747
39)
fcm,cyl  1.623  R  20.547
40)
fcm,core  1.25  R  23.0
(20  R  24)
fcm,core  1.73  R  34.5
(24  R  50)
(N/mm2)
20)
Soshiroda et al (2006)
2
EN 13791 (2007)
(N/mm )
(N/mm )
2
(N/mm )
14)
23)
a)
5)
50
50
39)
33) - B-Proceq (2003)
2) - Chefdeville (1953)
30) - Qasrawi (2000)
31) - CPWD (2002)
24) - Gonçalves (1995)
19) - Knaze (1984)
35) - Nehme (2004)
12) - Vadász (1970)
10) - ÉMI (1965)
50
50
40
40
27)
20) - Ravindrajah (1988)
23) - Almeida (1993)
5) - Kolek (1958)
14) - Cianfrone (1979)
39) - Soshiroda (2006)
27) - Lima (2000)
9) - Gaede (1964)
33) - B-Proceq (2003)
30
30
20
20
10
10
b)
fcm,150,cube (N/mm2)
60
60
9)
40
40
Hobbs, Kebir (2006)
2
(N/mm )
fcm,150,cube (N/mm2)
60
60
Nash’t et al (2005)
2
30
30
2)
30)
31)
35)
10)
20
20
12)
10
10
24)
00
19)
00
20
20
30
30
40
40
50
50
20
20
30
30
40
40
rebound index
fcm,150,cube (N/mm2)
15) - Talabér (1979)
32) - Pascale (2003)
29) - Pascale (2000)
17) - Borján (1981)
21) - MI 15011 (1988)
11) - Roknich (1968)
13) - MSZ 4715 (1972)
34) - Nehme (2004)
33) - B-Proceq (2003)
60
60
50
50
40
40
30
30
21)
15) 32)
c)
11)
d)
fcm,150,cube (N/mm2)
60
60
1) - Schmidt (1950)
26) - Soshiroda (1999)
37) - Nash’t (2005)
25) - Kheder (1999)
3) - Greene (1954)
33) - B-Proceq (2003)
50
50
40
40
34)
50
50
rebound index
26)
3)
37)
1)
30
30
13)
20
20
20
20
10
10
10
10
00
00
20
20
30
30
40
40
50
50
rebound index
20
20
30
30
40
40
50
50
rebound index
Fig. 4.21 Rebound surface hardness vs. compressive strength relationships according to Table 4.5.
Based on the published Rm - fcm relationships the following observations can be made:
 Numerous empirical relationships between compressive strength and surface hardness of concrete are
available in the technical literature, but usually based on very simple laboratory tests, i.e. mainly univariate
regression curves are available. Only a few extensive studies can be found that consider multiple
influencing parameters together with detailed parameter analysis.
 The most accepted function form is the power function.
 It is also worth mentioning that several linear estimations can be found among the proposals. This result
contradicts the considerations introduced in Chapter 2.10 and calls the attention to the fact that linear
estimation can provide the best-fit regression if the strength range is chosen to be narrow in the experiments.
Rigorous experiments were always resulted in nonlinear relationships since the very begin-ing of tests by
the rebound hammer (Schmidt, 1951; Gaede, 1952; Greene, 1954; Chefdeville, 1955; Zoldners, 1957;
Kolek, 1958; Brunarski, 1963; Gaede, Schmidt, 1964; Granzer, 1970; Talabér, Józsa, Borján, 1979 etc.).
66
 Concrete strength estimation for a given rebound index is found to be published in a ±40 to 60 N/mm2
wide range, i.e. it is possible to find estimated strengths for different concretes with 40 to 60 N/mm2
strength differences corresponding to the same rebound index (Fig. 4.22).
 Results clearly demonstrate that the validity of a particular proposal should be restricted to the testing
conditions and the extension of the validity to different types of concretes or testing circumstances is
impossible.
 The Rm - fcm basic curve suggested by the current European Standard testing practice (EN 13791:2007)
does not always give a conservative estimation, in certain cases a negative shift of 6-8 N/mm2 would be
needed (which cannot occur according to the standard).
The diversity of the numerous empirical proposals (Fig. 4.22) that can be found in the technical literature
needs to be explained and implies the need of the two- or more variable regression techniques to reveal
the most important influences on the hardness behaviour.
fcm (t), N/mm2
fcm (t), N/mm2
100
100
100
100
80
80
80
80
60
60
60
60
40
40
40
40
20
20
20
20
B-Proceq
EN 13791
0
20
20
25
25
30
30
35
35
40
40
45
45
50
50
0
20
20
R (t), -
25
25
30
30
35
35
40
40
45
45
50
50
R (t), -
Fig. 4.22 Overall range of the available rebound surface hardness vs. compressive strength relationships.
It can be concluded based on an extensive literature review – after studying the results of more than
150 literature references – as well as on own laboratory and in-situ test results that it is not possible to
find – and during the last more than 60 years it did not happen – a single univariate function between the
compressive strength and rebound index that would provide an Rm - fcm or an fcm - Rm relationship with a
confidence interval suitable for engineering applications.
4.2.2 Graphical representation of R(t) – fc(t) data
It can be observed in the technical literature that the assumed direct relationship between compressive
strength and rebound index is tend to be given as the regression curve of a heteroscedastic (i.e.
increasing standard deviation in strength (Y variable) for increasing rebound index (X variable)) data set as it
was introduced in Chapter 2.10. In many cases, these functions are developed by linear regression, while
the linear regression should be strictly applied only for homoscedastic data fields (i.e. constant standard
deviation of the dependent variable). Such way of representation of the relationship between compressive
strength and rebound index is questionable in many aspects, as no causal connection exists between the
independent and the dependent variable. Both properties are results of the same influencing parameters.
67
f c (t), N/mm 2
nyomószilárdság,
fc (t), N/mm2
90
90
90
70
70
70
50
50
50
30
30
30
10
10
10
20
20
20
visszapattanási érték, R(t), 25
25
25
30
30
30
35
35
35
40
40
40
45
45
45
50
50
50
55
55
55
R (t), –
Fig. 4.23 Apparent heteroscedastic relationship of fc(t) – R(t).
It is empirical evidence that the standard deviation of the concrete compressive strength depends on the
quality of the concreting work, and does not depend on the average compressive strength (see Fig. 4.11).
That is, the magnitude of standard deviation of strength for concretes of different compressive strengths
which are manufactured with the same care, is expected to be equal.
If a direct relationship is assumed between compressive strength and rebound index, the observation of
the heteroscedastic data set can not be accounted for the standard deviation of the strength. If it is also
taken into consideration that in practice the quality control during the manufacturing of higher strength
concretes is typically stricter than that of the lower strength concretes, then an observation would be
expected that the standard deviation of the strength is not increasing, but on the contrary, decreasing.
It is also empirical evidence that there is a relationship between the surface hardness and carbonation
depth (the depth up to which the CO2 content of the air diffuses into the capillary pores of concrete and
turns part of the portlandite into limestone causing a decrease of the pH value to 8.3) of concrete: the
development of the carbonation results higher surface hardness. The gas permeability of the lower
strength concretes is higher (greater carbonation depth) while the gas permeability of the higher
strength concretes is lower (smaller carbonation depth), during the same period of time.
Considering the above, the representation of the measured values as data points of the same population
would logically predict the formation of a data field which has an opposite appearance to the
heteroscedastic one (indicated in Fig. 4.23). The apparent heteroscedastic scatter of R(t) – fc(t) data
fields frequently found in the technical literature needs more analyses.
4.2.3 Gaede’s model
Gaede and Schmidt (1964) have studied the performance of the rebound hammer in details and derived
a model that provided estimation with acceptable accuracy and was fit to experimental data in a
practical way. Unfortunately, the model did not provide the general theory since the Brinell hardness of
concrete was covered in the parameters applied to the model. For the Brinell hardness of cementitious
materials very limited data have been published and neither acceptable relationships with strength nor
accurate theory for the indentation hardness of porous solids is available in the technical literature.
Future work is needed in this field.
68
4.2.4 Introduction of the phenomenological model
Surface hardness and compressive strength of concrete are depending on several parameters (e.g. type
of cement, amount of cement, type of aggregate, amount of aggregate, compaction of structural concrete,
method of curing, quality of concrete surface, age of concrete, carbonation depth in the concrete, moisture
content of concrete, mass of the structural element, temperature and state of stress) therefore, univariate
regression between hardness and strength may lead to completely misleading results and can hide the real
driver of the relationship.
The primary factor that governs the characteristics of cementitious materials is porosity. It was found
experimentally that the evolution of porosity in concrete can be described reasonably well by the gel-space
ratio (Powers, Brownyard, 1947). It is necessary to know the degree of hydration in the hardened cement
paste by working with gel-space ratio, therefore, the water-cement ratio (w/c) is a much more practical
measure for the porosity of concrete (Neville, 1995). For practical purposes it can be accepted that the
water-cement ratio (w/c) determines the capillary porosity of a properly compacted concrete at any degree
of hydration (Mindess, Young, 1981). As a consequence, strength and related properties of concrete can
be accepted to depend primarily on the water-cement ratio as it was realized more than 100 years ago
(Feret, 1892; Abrams, 1918). Surface hardness of concrete is also considerably influenced by the watercement ratio in addition to the modulus of elasticity of the aggregate particles (which is usually considered
to be constant in time). Hydration of clinker minerals in the hardened cement paste makes the per se
heterogeneous concrete to be a material with time dependent properties. Based on this general
behavioural scheme, a phenomenological model can be formulated for the surface hardness of concrete
being a time dependent material property.
The following observations can be summarised for hardened concrete in view of the water-cement ratio
and the age of concrete according to own experimental results as well as technical literature data:
 average compressive strength of concretes of 28 days of age can be formulated for different
cement types as exponential functions of the water-cement ratio (e.g. Ujhelyi, 2005),
 average compressive strength of concretes at any age can be formulated in a simplified way
(i.e. independently of the water-cement ratio) for different cement types as exponential functions
of the average compressive strength of concretes at 28 days of age (e.g. CEB-FIP Model Code
1990); in fact, the strength development of concretes depends on the water-cement ratio (e.g.
Washa et al, 1975),
 carbonation depth of concretes at any age can be formulated in a simplified way as functions of
age, water-cement ratio and type of cement (e.g. Papadakis et al, 1992),
 rebound hardness development in time for identical composition concretes stored under
identical conditions can be formulated (e.g. Kim et al, 2009),
 relationships between the rebound hardness and the depth of carbonation of concretes can be
formulated (e.g. JGJ, 2001),
 relationships between the rebound hardness and the compressive strength of concretes can be
formulated for concretes of the same age that are prepared with identical cements and stored
under identical conditions.
The existence of a series of multivariate functions can be hypothesized based on the above findings
which functions can give an explicit relationship between the average rebound index Rm(t) and average
compressive strength fcm(t) of concrete of arbitrary age. The independent variables of the functions are
the degree of hydration for the cement paste (that is determined by the water-cement ratio, the age, the
69
type of cement and the curing/environmental conditions), and variables accounting for the amount of the
cement and the aggregate, the degree of compaction and the testing conditions.
Next chapters demonstrate that a series of multivariate functions can be constructed which give an
explicit relationship between the average rebound index Rm(t) and the average compressive strength of
concrete fcm(t). It is demonstrated that a simplified version can be a series of bivariate functions with two
independent variables: the water-cement ratio and the age of concrete. It is demonstrated by a
parametric simulation that the model is robust and suitable to describe experimental results. The
verification of the model is shown by a laboratory test of 864 concrete cubes made of two cement types
(CEM I 42.5 N and CEM III/B 32.5 N), with a range of water-cement ratio of 0.38 to 0.60 and age of
concrete at testing of t = 7 to 180 days.
4.2.4.1 Composition of the model
The model covers the empirical material laws of the relationship between water-cement ratio and
compressive strength at the age of 28 days; the development of compressive strength in time; the
relationship between compressive strength and the rebound index at the age of 28 days; the development
of carbonation depth of concrete in time; the influence of carbonation depth of concrete on the rebound
index.
The generation scheme of the model as well as the symbolic shapes of the individual functions given by
Eq. (4.5) to Eq. (4.9) can be studied in Fig. 4.24.
fc,28
C)
fc,28
fc (t) /fc,28
A)
Eq. (4.5)
Eq. (4.7)
R 28
Eq. (4.6)
w /c
E)
t
28d
starting point
xc
B)
ti
D)
xc
ti
Eq. (4.9)
Eq. (4.8)
R (t) /R28
w /c
Fig. 4.24 The generation scheme of the phenomenological model.
The formulation of the model includes the following experimental relationships:
A) The compressive strength of concrete at the age of 28 days can be described by an exponential
function of the water-cement ratio (Eq. 4.5).
70
fc,28  a1  exp a 2  ( w / c) a3
Eq. (4.5)
with
a1 > 1
a2 < 0
0 < a3 < 1
B) The development of the compressive strength of concrete with time can be followed by an
exponential function of time (Eq. 4.6).
fc t  fc,28  exp a 4  (1  (28 / t ) a5
Eq. (4.6)
with
0 < a4 < 1
0 < a5 < 1
and both parameter a4 and a5 is a function of w/c
C) An empirical relationship of a power function can be assumed between the strength of concrete and
the rebound index at the age of 28 days (Eq. 4.7).
fc,28  a 6  R 28 a7
Eq. (4.7)
with
a6 > 0
a7 ≥ 1
D) The development of the carbonation depth in concrete with time can be described by models based
on Fick’s law of diffusion (Eq. 4.8).
x c  a 8  ( w / c)  a 9   t a10
Eq. (4.8)
with
0 < a8 < 1
0 < a9 < 1
0 < a10 < 1
E) Carbonation of concrete results an increase in the surface hardness that can be assumed to be
modelled by a power function of the carbonation depth (Eq. 4.9).
Rt  R 28 
1
1  a11  x c a12
Eq. (4.9)
with
a11 < 0
a12 > 0
71
The model can provide corresponding compressive strength, fc(t) and rebound index, R(t) values for any
water-cement ratio at any age of concrete (t).
A typical fc(t) vs. R(t) relationship is represented in Fig. 4.25. The output of the model is a set of curves
corresponding to different water-cement ratios at different ages of the concrete. It should be noted that the
shape and curvature of the individual curves are depending on the actual values of the twelve empirical
constants a1 to a12 covered in Eqs. (4.5) to (4.9) and Fig. 4.25 indicates a possible general case.
f c (t)
(w/c ) 1 > (w/c ) 2 > (w/c ) 3
t4
t 1 < t 2 < t 3 < t4
t3
t2
(w/c ) 3
t1
(w/c ) 2
(w/c ) 1
R (t)
Fig. 4.25 Typical schematic fc(t) vs. R(t) response as an output of the model: a set of curves corresponding to
different water-cement ratios at different ages of the concrete.
It can be realized that the developed phenomenological model provides a reasonable depiction of the
surface hardness of concrete as a time dependent material property, based on known concrete
technological data. It should be also noted that the model gives a clear explanation for the experimental
findings about the apparent heteroscedastic behaviour of the rebound index vs. compressive strength
data pairs. The model calls the attention that the graphical representation of these results should not be
carried out by the simplifying assumption that concretes of different water-cement ratios and different
ages provide data being in the same population. It can be clearly seen that the simplification could result
misleading representation and the influencing parameters should be separated in the graphical
visualization as it is suggested by the model.
4.2.4.2 Parametric simulation for the model
The present chapter gives a parametric simulation for the model. Empirical formulations are selected
from the technical literature for the generating functions of the model as follows.
The simplest exponential formulation of the compressive strength of concrete as a function of the watercement ratio was suggested by Abrams (1918) in the form of:
fc,28  A  exp B  ( w / c)
[N/mm2] Eq. (4.10)
It can be demonstrated that the formula given by Eq. (4.10) can not be fitted to the experimental data
available for different cement types, therefore an improvement of the formulation was suggested; see
Eq. (4.10) (Ujhelyi, Popovics, 2006).
72
For present parametric simulation the empirical formula of Ujhelyi (2005) is applied to the exponential
function between the compressive strength of concrete at the age of 28 days vs. the water-cement ratio
for CEM I 42.5 N and Eq. (4.10) is rewritten as:
fc,28  406  exp  3.30  ( w/c) 0.63
[N/mm2] Eq. (4.11)
Development of the compressive strength in time depends on the type of cement and the water-cement
ratio (Washa, 1975; Wood, 1991). Models available usually neglect the influence of the water-cement
ratio. For the parametric simulation the proposal of the CEB-FIP Model Code 1990 (CEB, 1993) is
selected for the development of compressive strength in time, neglecting the influence of the watercement ratio:
fc t  fc,28  exp 0.25  (1  (28 / t ) 0.50
Eq. (4.12)
Rebound index vs. compressive strength relationships at the age of 28 days are generally non-linear. For
the parametric simulation the proposal of Proceq SA (manufacturer of the original Schmidt rebound
hammers) (Proceq, 2003) is selected for the rebound index vs. compressive strength relationships at
the age of 28 days:
fc,28  3.07  10 -2  R 28
1.952
[N/mm2] Eq. (4.13)
The hardened cement paste in concrete reacts chemically with carbon dioxide (CO2). The amount of CO2
present in the atmosphere is sufficient to cause considerable reaction with the hardened cement paste
over a long period of time. The chemical reaction is referred as carbonation, whenever the hydrated lime
content of the hardened cement paste turns to limestone by the chemical reaction with CO2. Rate of
carbonation depends on the relative humidity and was found to be greatest around 50% RH (Neville, 1995).
Development of the depth of carbonation in concrete with time can be described reasonably well by
models based on Fick’s law of diffusion. For the parametric simulation the model of Papadakis et al (1992)
is selected for the carbonation depth of concrete. Its generalized form for the development of the
carbonation depth in time is:




w c  0.30
23.8 6 
x c  0.35 c
f (RH)   1  c w c  c a c CCO2
10 t


c
a
1000
44




1
wc
1000
0.50
[mm]
Eq. (4.14)
In Eq. (9) the parameter f (RH) can be taken according to the results of Matoušek (1977). If one accepts
f (65% RH) = 0.45, CCO2 = 800 mg/m3, ρc = 3150 kg/m3 and ρa = 2650 kg/m3 then Eq. (4.14) can be
simplifed and rearranged and can be rewritten as:
x c  0.50  ( w/c)  0.14   t
[mm]
Eq. (4.15)
Limits of use of application for Eq. (4.15) are 0.35 < w/c < 0.65 and 4.50 < a/c < 6.50. It means that
cement content c = 290 kg/m3 to 420 kg/m3 is to be assumed. For different relative humidity (RH ≠ 65%)
and CO2 concentrations Eq. (4.14) applies.
73
Surface hardness of concrete can be considerably changed by carbonation (Kim et al, 2009). Therefore, the
influence of carbonation should be taken into account in the evaluation of rebound surface hardness tests. For
the parametric simulation the proposal of the Chinese Standard JGJ/T23-2001 is selected for the influence of
carbonation depth on rebound index (JGJ, 2001):
Rt  R 28 
1
1  0.067  x c
Eq. (4.16)
1.0
The limit of use to apply Eq. (4.16) is xc < 6.0 mm.
A result of the present parametric simulation can be studied in Fig. 4.26. For one point on the series of
curves (indicated with dashed lines in Fig. 4.26) the following details are given as an example. Starting
value for water-cement ratio is w/c = 0.50 and age of concrete is t = 180 days. Based on formulae
covered by Eq. (4.11) to (4.16) the numerical results can be calculated as follows.
By Eq. (4.11):
By Eq. (4.12):
By Eq. (4.13):
By Eq. (4.15):
By Eq. (4.16):
fc,28 = 406·exp–3.30·0.500.63 = 48.13 N/mm2
fc(180) = 48.13·exp0.25·(1 – (28/180)0.50 = 56.0 N/mm2
R28 = 5.96·48.130.512 = 43.35
xc(180) = (0.50·0.50 – 0.14) · 180 = 1.48 mm
R(180) = 43.35/(1 – 0.067·1.48) = 48.11
90
90
fc (t), N /mm2
80
80
70
70
w /c
60 56.0
60
0.35
0.35
0.40
0.40
0.50
0.50
0.60
0.60
0.70
0.70
50
50
40
40
30
30
56d 90d
28d
180d
365d
48.1
20
20
35
35
40
40
45
45
50
50
55
55
60
60
R (t), –
Fig 4.26 Parametric simulation by the model.
It can be realized that the model gives a realistic formulation for the time dependent behaviour of the rebound
surface hardness of concrete. It can be clearly observed that the consideration of the data points as one
group of data would not be acceptable; however, an appropriate selection of the parameters can generate a
transparent and reliable series of curves that follow the actual material response.
Fig. 4.27 demonstrates the practical application of the model for the experimental data introduced in
Chapter 4.3. In the representation only those average data points are covered which correspond to 14 - 28 56 - 90 - 240 days of age at testing, because the test specimens (150 mm cubes) were stored under water
for 7 days, therefore, the carbonation was possible only when the specimens contacted the air during storing
at laboratory conditions.
74
The curve fitting resulted in the following empirical responses instead of Eqs. (4.11) to (4.16). Details of the
experimental verification of the model are given in next chapter.
fc,28  225  exp  2.60  ( w/c)1.0
[N/mm2] Eq. (4.11*)
fc t  fc,28  exp 0.075  (1  (28 / t ) 1.0
fc,28  11.04  10 -2  R 28
Eq. (4.12*)
1.739
[N/mm2] Eq. (4.13*)
x c  1.32  ( w/c)  0.14   t - 7
Rt  R 28 
[mm]
1
1  n  x Nc
Eq. (4.15*)
Eq. (4.16*)
where
n  3.68( w c) 5.07
Eq. (4.16a*)
N  0.025( w c) 4.73
Eq. (4.16b*)
90
90
f c(t), N/mm2
80
80
70
70
w/c
Adatsor3
0.40
Adatsor2
0.50
Adatsor1
0.65
model
Adatsor4
60
60
50
50
56d
90d 240d
28d
40
40
14d
30
30
25
25
30
30
35
35
40
40
45
45
50
50
55
55
R(t), –
Fig 4.27 Experimental results together with the parameter-fitted model.
4.2.4.3 Experimental verification of the model
The experimental programme (see Chapter 3.3) made possible a detailed verification study to be carried out
on a wide range of compressive strengths and ages of concrete at testing. Typical results are introduced in
Fig. 4.28 corresponding to concrete specimens prepared with CEM I 42.5 N cement. Fig. 4.28 represents
test results for only 104 specimens. The following observations can be emphasized:
1) An apparently coherent population of data is resulted if one does not differentiate water-cement ratios and
ages of concrete in the graphical representation of test data (Fig. 4.28a). A completely misleading trend of
results is realized and an apparent power function or exponential function relationship can be the output of a
regression analysis (usually with considerably good correlation coefficients that may further ratify the
misleading direction of the analysis).
75
In Fig. 4.28a 52 data points are indicated as the pair-averages of the 104 specimens (covering
9 different water-cement ratios and 6 different ages of concrete at testing). Regression curve of an
exponential function is also indicated. The correlation coefficient was found to be r2 = 0.84 for this false
relationship.
2) A heteroscedastic behaviour of the rebound index vs. compressive strength data pairs is realized if one
does not differentiate water-cement ratios and ages of concrete in the graphical representation of test data
(Fig. 4.28a). It can be studied in Fig. 4.28a that the distance between the lower and upper limit curves
corresponding to the increasing rebound index values is increasing with the increase of R(t) that can result
the heteroscedasticity (i.e. increasing standard deviation in strength for increasing rebound index).
3) The real performance appears only if one separates the rebound index vs. compressive strength data
pairs by the water-cement ratio (Fig. 4.28b). For the sake of better visualisation only 4 curves are
represented in Fig. 4.28b from the 9 different water-cement ratios studied. It can be realized that the
apparently coherent population of data comes loose to separate monotonic curves for the different
water-cement ratios.
4) It can be seen in the real performance that rebound index vs. compressive strength relationships are
sensitive (but not uniformly) to the water-cement ratio applied (Fig. 4.28b). The gradients and directions
of the responses clearly indicate the influence of the capillary pores of different water-cement ratios on
the strength development and carbonation depth development differences. It can be postulated that the
water-cement ratio dependent strength development and carbonation depth development behaviour of
concretes gives the complete explanation of the observed results. Results of the verification study
confirmed that the most significant influencing parameters are the water-cement ratio, the type of
cement and the age of the concrete. The cement content, the aggregate content, the cement paste
content and further parameters have much less pronounced influences; as it was presumed.
5) The application of the model is reasonable for the rebound index vs. compressive strength data
(Fig. 4.28c). A suitable fit of the empirical parameters of the model can result an acceptable numerical
reproduction of any experimental data. The detailed verification study demonstrated the applicability of
the model for CEM I 42.5 N and CEM III/B 32.5 N on a wide range of water-cement ratios and ages of
concrete at testing (additional cement types were also studied, but not on a wide range of water-cement
ratio, see Appendix C).
fc (t), N /mm2
fc (t), N /mm2
fc (t), N /mm2
100
100
100
100
100
100
90
90
90
90
80
80
80
80
70
70
70
70
70
70
60
60
60
60
60
60
50
50
50
50
50
50
w /c
0.38
0.38
0.41
0.41
0.55
0.55
0.60
0.60
80
80
40
40
40
40
40
40
34
34
38
38
42
42
46
46
50
50
54
54
R (t), -
w /c
0.38
0.41
0.55
0.60
90
90
34
34
38
38
42
42
46
46
50
50
54
54
R (t), -
34
34
38
38
42
42
46
46
50
50
54
54
R (t), -
Fig. 4.28 Experimental verification of the model on concrete cube specimens prepared with CEM I 42.5 N cement
a) data in non-separated representation, b) data separated by the applied water-cement ratios, c) data represented
together with the fitted model.
76
The model also provides a clear understanding of the rebound surface hardness of concrete as a time
dependent material property.
In Fig. 4.29a satisfying correlation can be realized between the experimentally measured compressive
strength values and the calculated compressive strength values, as well as the experimentally measured
rebound index values and the calculated rebound index values provided by the model. The parameters of
the model are fitted to the parameters of the experiments.
110
110
a)
f c,model (t), N/mm2
55
55
Rc,model (t ), -
b)
100
100
50
50
90
90
80
80
45
45
70
70
60
60
40
40
50
50
40
40
40
40
35
35
50
50
60
60
70
70
80
80
90
90
f c,measured (t), N/mm
90
90
35
35
100 110
110
100
f c,model (t), N/mm2
40
40
45
45
50
50
c)
55
55
Rc,measured(t), -
2
55
55
80
80
50
50
70
70
45
45
60
60
40
40
50
50
35
35
40
40
30
30
Rc,model (t ), -
d)
25
25
30
30
30
30
40
40
50
50
60
60
70
70
80
80
90
90
25
25
f c,measured (t), N/mm2
30
30
35
35
40
40
45
45
50
50
55
55
Rc measured(t), -
Fig. 4.29 Correlation between the measured compressive strength values and rebound indices and the calculated
strength values and rebound indices,
a) and b) with the results of the verification tests, cement type: CEM I 42.5
c) and d) with results of the targeted experiments (see. next chapter), cement type: CEM I 42.5.
4.2.5 Discussion on the phenomenological model
The composition of the introduced phenomenological model made visible the hidden governing parameters
of the relationship between hardness and strength. Beyond strength and related properties the surface
hardness of concrete was also found to be primarily governed by the water-cement ratio. It was also
77
confirmed that the excessive carbonation of low strength concretes has a considerable influence on the
measured rebound index.
The graphical representation of the relationship between surface hardness and strength provided by the
model is a series of curves which initial tangents are increasing with decreasing water-cement ratio.
The rebound surface hardness behaviour of concrete can be understood based on the model, if curves
at extreme positions are studied. The curve of a very low strength concrete tends to be an almost
constant function (with very small tangent), in turn, a high strength concrete results a function with an
almost infinite tangent. The relationship with a small tangent would indicate increasing hardness with
limited increase of strength in time. A very steep relationship related to the high strength concrete shows
strength increment while no increase of hardness can be observed (some experimental results on highstrength concrete demonstrated almost a vertical relationship). This latter relationship implies that the
strength estimation of high strength concrete by the rebound hammer is of concern. This observation
supports the findings of the targeted time dependent experiments related to the high strength concrete
as it is shown in Chapter 4.3.1.
To explain the change in the tangents of the curves according to the water-cement ratio needs further
research and analyses, as well as the twelve empirical constants should be fine-tuned to describe the
realistic rebound surface hardness behaviour. However, it can be postulated at this point that the impact
energy could be fitted to a range of one or two strength classes to ensure a necessary amount of inelastic
energy absorption under the tip of the testing device. A curve of an intermediate tangent would indicate a
proportional increase of strength with rebound surface hardness implying that the strength estimation is
possible. The spring accelerated hammer mass of the original design rebound hammers was adjusted to
provide adequate impact energy to result inelastic deformation in the tested concrete of which strength
was much lower at the time of its development than the strength of concretes nowadays used in concrete
construction.
4.3 Targeted experiments
The technical literature indicates that elastic properties play a very important role in the assessment of
hardness for rubber-like materials, however, for metals the deformation is predominantly outside the elastic
range and involves mostly plastic properties (Fischer-Cripps, 2007).
Plastic deformation is normally associated with ductile materials (e.g. metals). Brittle materials (e.g.
concrete) generally exhibit elastic behaviour, and fracture occurs at higher deformations rather than plastic
yielding. Pseudo-plastic deformation is observed in brittle materials beneath the point of an indenter, but it
is a result of densification, where the material undergoes a phase change as a result of the high value of
compressive stress in a restrained deformation field beneath the indenter (Swain, Hagan, 1976). The
softening fashion of the pseudo-plastic material response with increasing volume of the material is
considerably different from that can happen to metals during plastic deformation (where the volume of the
material is unchanged during yielding) (Tabor, 1951).
During dynamic hardness measurements the inelastic properties of concrete may be as important as the
elastic properties due to the softening fashion of the material response.
The value of the rebound index depends on energy losses due to friction during acceleration and rebound
of the hammer mass and that of the index rider, energy losses due to dissipation by reflections and
attenuation of mechanical waves inside the steel plunger; and of course, energy losses due to dissipation
by concrete crushing under the tip of the plunger.
The experimental programme of the targeted experiments was detailed in Chapter 3.3.
78
4.3.1 Role of strength and stiffness in surface hardness
Comparison of the relative values of the rebound hardness and related mechanical properties
(compressive strength and Young’s modulus) of concrete (represented as values related to a value of a
particular age) may promote to find a relationship between the rebound hardness and a particular
mechanical property. A close correlation can be supposed between two material properties if the
development in time of their relative values is identical or very similar. The measures of the rebound
hardness testing devices are supposed to be sensitive not only to the strength but also to the stiffness of
the concrete and influenced by the impact energy of the device.
In Fig. 4.29 the relative values (referring to the values obtained at the age of 7 days) of all tested parameters
are represented in time. Variation of a hardness parameter in time and time dependency of compressive
strength and Young’s modulus can be compared.
Results demonstrated that all studied properties seem to depend on the water-cement ratio if they are
represented in time.
relative values
relative values
a) w /c = 0.65
2,1
2.1
b) w /c = 0.50
1,6
1.6
fcf c
RL
RL
RN
RN
Leeb
HL
EE c
1,8
1.8
1,5
1.5
1,4
1.4
1,2
1.2
1,2
1.2
1.01
0,9
0.9
0,8
0.8
0.6
0,6
fcf c
RN
RN
RL
RL
EE c
Leeb
HL
0.6
0,6
0
50
50
100
100
150
150
200
200
250
250
0
50
50
100
100
150
150
t, days
rela tive va lues
200
250
200
250
t, days
c) w /c = 0.40
1,4
1.4
1,2
1.2
fcf c
EE c
Leeb
HL
RN
RN
RL
RL
1.01
0,8
0.8
0.6
0,6
00
50
50
100
100
150
150
200
250
200
250
t, days
Fig 4.29 Relative values of the tested parameters in the function of time.
79
It was demonstrated that the development of the relative value of rebound indices of L- and N-type Schmidt
rebound hammers in time approach the development of the relative value of compressive strength in time
for high water-cement ratio (w/c = 0.65), and approach the development of Young’s modulus in time for
low water-cement ratio (w/c = 0.40), independently of the age of concrete at testing. For medium watercement ratio (w/c = 0.50) an intermediate trend is observed.
It was demonstrated that the development of the Leeb hardness in time coincide the development of
Young’s modulus of concrete in time (related to the value of either 7 or 28 days of age), over the complete
range of the tested water-cement ratios (w/c = 0.40 – 0.65), independently of the age of concrete at
testing.
Fig. 4.29 clearly shows that the different surface hardness methods result different material responses,
therefore, different material properties can be estimated by their surface hardness measures. In the case
of the Leeb Hardness, HL measurements very low impact energy is introduced to the tested surface and
the material response mostly governed by the elastic properties of the tested material. Indeed, it can be
realized in the graphical representation that the Leeb Hardness, HL values in time coincides exactly with
the Young’s modulus of concrete in time, on a wide range of compressive strength, and independently of
the applied water-cement ratio or age at testing.
The Schmidt rebound hammers apply much higher impact energy (both the L-type and the N-type devices)
than the Wolpert Leeb hardness tester, therefore, the material response can be inelastic in a much more
pronounced way; highly depending on both the actual strength and stiffness of the concrete. Present
results clearly demonstrated that the impact energy of the Schmidt rebound hammers can result a pseudoplastic response in the case of high water-cement ratio (i.e. low concrete compressive strength). One can
realize in Fig. 4.29a that the represented RL and RN rebound index developments in time both coincide
exactly with the compressive strength development in time, independently of the age at testing. Present
results also revealed that the impact energy of the Schmidt rebound hammers can result a mostly elastic
material response in the case of low water-cement ratio (i.e. high concrete compressive strength). It can
be realized in Fig. 4.29c that the represented RL and RN rebound index developments in time both coincide
rather well with the Young’s modulus development in time, independently of the age at testing. For the
medium strength concretes an intermediate behaviour can be seen in Fig. 4.29b.
4.3.2 Role of water-cement ratio in time dependent behaviour
In the technical literature the role of cement type in the development of compressive strength (i.e. compressive
strength values at a certain age related to the value obtained at 28 days of age) is highlighted and widely
accepted (e.g. CEB, 1993).
It is not fundamental evidence, however, that the development of compressive strength of concretes depends
on the water-cement ratio. Researchers generally do not focus on the possible influence of the water-cement
ratio and do not evaluate compressive strength results in this sense. In short-term (<3 years) studies the results
corresponding to concrete mixes of different water-cement ratios are usually not clear. The effect of watercement ratio is not obvious and can not be declared. Although some influence is visible, but it is not significant
(the differences between the curves corresponding to different water-cement ratios are within the scatter of the
compressive strength results) and even not consequent.
After studying the compressive strength values available in my own database (Fig. 4.30) and in the technical
literature it was realized that they are usually results of short-term experimental programmes. It encouraged me
to investigate what could be observed if long-term results are available.
80
f cm ( t ) / fcm ,28d
a)
1,6
1.6
f cm ( t ) / fcm ,28d
b)
1,4
1.4
1,4
1.4
1,2
1.2
1.2
1,2
w/c
0.66
0,66
0.60
0,61
0,54
0.54
0,49
0.49
0,46
0.46
1,0
1.0
0,8
0.8
0,6
0.6
0,4
0.4
w/c
0,6
0.60
0,55
0.55
0,5
0.50
0,45
0.45
0,4125
0.41
0,375
0.38
1,0
1.0
0,8
0.8
0,6
0.6
0.2
0,2
0
0,0
0,4
0.4
0
30
30
60
60
90
90
120
120
150
150
180
180
0
30
30
60
60
90
90
120
120
150
150
t, days
180
180
t, days
Fig 4.30 Compressive strength of concrete in time related to the values obtained at 28 days of age,
type of cement is a) CEM I 42.5 and b) CEM III/B 32.5 (own short-term results).
It was possible to find some references that are based on long-term (20 to 50 years) laboratory tests and the
expected behaviour was able to be studied.
It is demonstrated by the analysis of long-term (20 to 50 years) laboratory tests found in the technical literature
(Washa, Wendt, 1975; Wood, 1991) that the development of the relative compressive strength of concretes
depends both on the applied cement type and the water-cement ratio. The effect of water-cement ratio can be
clearly observed in Fig. 4.31 and Fig. 4.32. The suggestions of CEB-FIP Model Code 1990 (CEB, 1993) – which
neglect the effect of water-cement ratio – are also indicated in Fig. 4.32 for two types of cements. The effect of
the water-cement ratio is more remarkable when compressive strength values are related to the value of 7 days
of age (Fig. 4.31) than that is related to the value of 28 days (Fig. 4.32).
It was supposed, therefore, that the development of rebound hardness with time depends on the water-cement
ratio, as well.
77
f cm ( t ) / fcm ,7d
a)
77
66
w/c
66
55
0,69
0.69
0,54
0.54
0.41
0,41
55
44
f cm ( t ) / fcm ,7d
b)
44
33
33
22
22
11
11
w/c
0,69
0.69
0.54
0,54
0.41
0,41
00
00
00
180
180
360
360
540
540
720
720
900
900
1080
1080
t, days
0
3650
10
7300
20
10950
30
14600
40
18250
50
t, years
Fig 4.31 Compressive strength in time according to (Washa, Wendt, 1975),
related to the values obtained at 7 days of age; a) short-term representation, b) long-term representation.
81
3,5
3.5
f cm ( t ) / fcm ,28d
a)
0,69
w/c = 0.69
0,54
w/c = 0.54
w/c = 0.41
0,41
MC90
MC90 slow
MC90 rapid
MC90
3,0
3.0
2,5
2.5
f cm ( t ) / fcm ,28d
3,5
3.5
b)
3,0
3.0
2,5
2.5
2,0
2.0
2.0
2,0
1,5
1.5
1,5
1.5
1,0
1.0
1,0
1.0
0,5
0.5
0,5
0.5
w/c = 0.69
0,69
w/c = 0.54
0,54
w/c = 0.41
0,41
MC90 slow
MC90
MC90 rapid
MC90
0,0
0
0,0
0
0
180
180
360
360
540
540
720
720
900
900
1080
1080
0
3650
10
7300
20
10950
30
14600
40
18250
50
t, years
t, days
Fig 4.32 Compressive strength in time according to (Washa, Wendt, 1975) together with the suggestion of (CEB,
1993), related to the values obtained at 28 days of age; a) short-term representation, b) long-term representation.
Fig. 4.33 represents the measured relative rebound index values for both L-type and N-type original Schmidt
hammers separated by water-cement ratios. It is demonstrated that the relative values of the rebound index
(related to the value of 28 days of age) are also dependent on the water-cement ratio, and the influence is more
pronounced with the increase of the maturity of concrete due to the effect of carbonation, particularly in case of
high water-cement ratios.
It was also possible to be demonstrated by present medium-term (~3 years) experimental study that the
compressive strength and the Young’s modulus of concrete seem to be dependent on the water-cement ratio.
R L ( t ) / R L ,28d
R N ( t ) / R N ,28d
a)
1,6
1.6
1,6
1.6
1,4
1.4
1,4
1,2
1.2
1,2
1.4
b)
1
1.01
w/c
0,65
0.65
0.50
0,50
0.40
0,40
0,8
0.8
0.6
0,6
w/c
0,65
0.65
0,50
0,40
0.50
0,8
1.2
0,6
0,4
1.0
0,4
0.4
00
180
180
360
360
540
540
720
720
900 1080
1080
900
0
t, days
180
180
360
540
720
720
900 1080
1080
900
t, days
Fig 4.33 Water-cement ratio dependency of the rebound index in time, a) results provided by L-type rebound
hammer; a) results provided by N-type rebound hammer.
4.3.3 Discussion on targeted experimental results
Based on the above results it can be concluded that the lower the impact energy of a dynamic hardness
tester is, the more likely the hardness value can be related to the Young’s modulus (the deformation of
concrete is rather elastic), particularly in case of low water-cement ratios. I.e. the higher the impact energy
82
of the dynamic hardness tester is, the more likely the hardness value can be related to the compressive
strength (during the test larger portion of the strain energy dissipates), particularly in case of high watercement ratios.
Results demonstrated that the rebound hammers provide hardness information connected to both elastic
and inelastic behaviour of the surface layer of concrete that can not always be related directly to the
compressive strength of concrete. For relatively low strength concretes the devices could provide a
hardness value that can be correlated to the compressive strength of concrete, thus the strength
estimation is theoretically possible. This conclusion is also a tribute before the genius of Ernst Schmidt, the
inventor of the concrete rebound hammers, who has fit the impact energy of the hammers to the purpose
of concrete strength estimation through inelastic energy absorption under the tip of the testing device
suitable for concrete compressive strengths available in the 1950’s.
On the other hand, the concrete construction technology nowadays uses concretes of higher and higher
compressive strengths (just as one example: a sufficiently performing self compacting concrete provides
automatically higher compressive strength than a conventional concrete of the same water-cement ratio).
For high strength concretes the Schmidt rebound hammers provide a hardness value connected to the
Young’s modulus of concrete rather than the compressive strength of the concrete and, therefore, the
strength estimation is questionable. Let us refer here to the Young’s modulus development in time that is
considerably different from that of the compressive strength (Fig. 4.34). According to the CEB-FIP Model
Code 1990 an empirical power function between strength and Young’s modulus can be taken into account
with a power of 0.3 that can be put into the exponential formula considering time dependency of the
properties. Fig. 4.34 indicates the functions suggested by the CEB-FIP Model Code 1990. One can realize
that compressive strength prediction based on Young’s modulus is unreliable for mature concrete.
Present studies also confirmed this conclusion by the very steep rebound index vs. compressive strength
response available from the developed phenomenological model for high strength concretes.
Users should consider that Schmidt rebound hammers provide rebound index connected to the Young’s
modulus for high strength concretes and compressive strength prediction based on Young’s modulus is
unreliable for mature concrete.
1,3
1.3
fcm (t )

fcm,28d
1.2
1,2
  28 0.5 
k 1 
 
  t  
e
0.3
E cm  A  fcm
1,1
1.1
1.0
1,0
E cm (t )
e
E cm,28d
0,9
0.9
  28 
0.3 k 1 

t 
 
0.5 


0,8
0.8
0.7
0,7
0
100
200
300
300
400
400
500
500
time, days
Fig 4.34 Compressive strength and Young’s modulus in time (CEB, 1993).
83
84
CHAPTER 5
conclusions and future work
Closing chapter of present thesis lists the hypotheses and new
scientific results as a summary of the research results detailed in
Chapter 4, and an overview about the train of thought and the
systematization of the research. Theoretical and practical benefits of
the research are demonstrated, as well as the possible directions
of future work are outlined.
5.1 Hypotheses and new scientific results
5.1.1 On the statistical analysis
According to the ACI 228.1R-03 Committee Report, the within-test standard deviation of the rebound
index at a test area* shows an increasing tendency with increasing average of the rebound index and
the within-test coefficient of variation has an apparently constant value of about 10% (ACI, 2003) (*test
area: a concrete surface area that is not larger than 10×10 cm where 10 repeated rebound tests are
performed by the same operator, with the same device in such a way that no reading is recorded on the
same test point more than once). According to the available technical literature, standard deviation of
the compressive strength of concrete does not depend on the average value of the compressive
strength, only depends on the quality of the concrete production (fib, 1999).
H1.1
Surface hardness and compressive strength of concrete are interrelated material properties. It is more
likely during the production of higher strength concretes that rigorous quality control is performed,
therefore, the standard deviation of strength is not expected to increase, but rather to decrease with
increasing strength. Therefore, the within-test standard deviation of rebound index is not expected to
increase with the average value of the rebound index.
T1.1
I have demonstrated by the analysis of 8955 test areas (from which 4170 are laboratory and 4785 are insitu test areas, with total number of individual rebound index readings exceeding eighty thousand) that the
within-test standard deviation of the rebound index does not depend on the average value of the rebound
index and the within-test coefficient of variation of the rebound index is inversely proportional to the
average value of the rebound index (Domain: R = 10 – 63, codomain: 3.3 MPa – 105.7 MPa); implications
given in some technical literature (ACI, 2003) do not fit to empirical findings [3, 11].
85
The ASTM C 805 International Standard contains precision statements for the rebound index of the
rebound hammers (ASTM, 2008). There are two underlying assumptions: (1) the within-test standard
deviation of the rebound index has a constant value independently of the properties of the actual
concrete and of the actual operator error, and (2) the percentage points of the standardized ranges of
N(μ,1) normal probability distribution populations can be applied for the determination of the acceptable
range of rebound index readings at test areas. It is given for the precision that the within-test standard
deviation of the rebound index is 2.5 units, as “single-specimen, single-operator, machine, day standard
deviation”. Therefore, the range of ten readings should not exceed 12 units (taking into account a
k = 4.5 multiplier given in ASTM C 670 (ASTM, 2003). The multiplier is actually the one digit round value
of the p = 0.95 probability level critical value (k = 4.474124) for the standardized range statistic of a
N(μ,1) normal distribution population at n = 10 according to Harter, 1960. Dependence of the within-test
standard deviation on the average rebound index is not indicated in the standard and no indication is
given either about the probability distribution of the within-test standard deviation of the rebound index or
its percentile level for which the value is given.
H 1.2
The probability distribution of the range (rR) of ten (n=10) rebound index readings is supposed to follow a
normal probability distribution, where rR = 12 at a p = 0.95 probability level if n = 10.
The within-test standard deviation of the rebound index can be supposed to have a normal probability
distribution with a mean value of sR = 2.5 is for n = 10.
However, it is demonstrated in the technical literature that the probability distribution of the coefficient of
variation of concrete strength follows the log-normal probability distribution and the probability distribution of
the concrete strength follows the normal probability distribution (Shimizu et al, 2000). Surface hardness and
compressive strength of concrete are interrelated material properties. Therefore, it can be supposed that the
probability distribution of the coefficient of variation of the rebound index readings has a positive skewness.
T1.2
I have demonstrated by the analysis of 8955 test areas (from which 4170 are laboratory and 4785 are insitu test areas, with total number of individual rebound index readings exceeding eighty thousand) that the
probability distribution of

the range (rR) of rebound index readings (based on 8342 test areas) and

the standard deviation (sR) of rebound index readings (based on 8955 test areas)
the coefficient of variation (VR) of rebound index readings (based on 8955 test areas)

has a positive skewness (γr = 1.9432; γs = 1.7064; γV = 2.2472), therefore, the supposition of having
normal probability distribution should be rejected. Implications given in ASTM C 805 do not fit to empirical
findings, but the assumption of the positive skewness of the coefficient of variation of rebound index is
confirmed [3, 11].
Goodness of fit (GOF) analysis of sixty different probability distributions has demonstrated that:
 the probability distribution of the range (rR) of rebound index readings follows a four parameter
Burr distribution (a=0.89001; b=4.0809; c=3.755; d=0.41591), of which mean value is
E[rR] = 4.8068; the median value is m[rR] = 4; the mode value is Mo[rR] = 3.75; the 95%
percentile value is v95[rR] = 9; for the analysed range of rR = 1 to 24. Value of rR = 12 exceeds
the experimental values in 98.7% of the cases.
 the probability distribution of the standard deviation (sR) of rebound index readings follows a
three parameter Dagum (also referred in the literature as generalized logistic-Burr or inverse
86

Burr) distribution (a=1.7958; b=3.7311; c=1.2171), of which mean value is E[sR] = 1.667; the
median value is m[sR] = 1.5; the mode value is Mo[sR] = 1.45; the 95% percentile value is
v95[sR] = 3.1526; for the analysed range of sR = 0.23 to 7.80. Value of sR = 2.5 exceeds the
experimental values in 88.5% of the cases.
the probability distribution of the coefficient of variation (VR) of rebound index readings follows a
three parameter Dagum distribution (a=2.2255; b=3.1919; c=2.7573), of which mean value is
E[VR] = 4.4021%; the median value is m[VR] = 3.8%; the mode value is Mo[VR] = 3.125%; the
95% percentile value is v95[VR] = 9.2132%; for the analysed range of VR = 0.43% to 31.12%.
Reliability analysis techniques mostly concentrate on the use of the coefficient of variation for taking into
account the variability of different material characteristics, rather than the standard deviation. One may
practically select in this view the coefficient of variation as the repeatability parameter for the rebound
method, as well. For this purpose, however, the governing parameters over the changes of the
coefficient of variation are needed to be known.
T 1.3
I have demonstrated by laboratory and in-situ tests that the magnitude of the within-test coefficient of
variation of rebound index readings (VR) is influenced by the type of cement, the water-cement ratio, the
age of concrete, the depth of carbonation and the impact energy of the rebound hammer [3, 11].





I have demonstrated on 9 different cement types and 102 different concrete mixes that the average
coefficient of variation of rebound index (VR) on concretes prepared by CEM I is lower (~ 3.5 %) than
those of prepared by CEM II or CEM III (~ 5.0 %). I have demonstrated for CEM I cements that the
average coefficient of variation of rebound index (VR) is decreasing by increasing the strength class of
the cement. Studied cement types: CEM I 32.5; CEM I 42.5 N; CEM I 42.5 N-S; CEM I 52.5; CEM II/AS 42.5; CEM II/A-V 42.5 N; CEM II/B-M (V-L) 32.5 N; CEM III/A 32.5 N-MS; CEM III/B 32.5 N-S.
I have demonstrated on 6 different cement types and 93 different concrete mixes that the average
coefficient of variation of rebound index (VR) is decreasing by decreasing the water-cement ratio. 1-10 %
differences can be realized between the coefficients of variation of rebound index corresponding to
different water-cement ratios, depending on the age of concrete and impact energy of the device.
Analysed range of the water-cement ratio: w/c = 0.35 to 0.65.
I have demonstrated on 9 different cement types and 102 different concrete mixes that the average
coefficient of variation of rebound index (VR) considerably decreases in the first 14 days (from ~6 %),
reaches a minimum (at ~4 %) at the age of 28 to 56 days and gradually increases afterwards (to ~5 %).
Analysed range: 1 to 1100 days of age.
I have demonstrated on 30 different concrete mixes that the coefficient of variation of rebound index (VR) is
increasing by an increasing carbonation depth of concrete. Analysed range of carbonation depth: xc = 2.2
to 22.8 mm, and the corresponding coefficients of variation of rebound index were found to be ~3 % and
~8 %, respectively. Analysed range of compressive strength of concrete: fcm = 42.6 to 91.7 MPa.
I have demonstrated for CEM I cement type that the coefficient of variation of rebound index (VR) is
higher for the lower impact energy when concretes tested before the age of 56 days (can reach up to
14-17 %). After 56 days of age the differences gradually disappear in time. Analysed range of the watercement ratio: w/c = 0.40 to 0.65. Analysed range of age: 3 – 1100 days. Analysed range of impact
energy: 735 Nmm and 2207 Nmm.
87
5.1.2 On the modelling
Aim of Schmidt rebound hammer tests is usually to find a relationship between surface hardness and
compressive strength of concrete with an acceptable error. The hardness testing devices have been
developed for in-situ testing of concrete based on the observation that the surface hardness of concrete can
be related to the compressive strength of concrete.
The existence of only empirical relationships was considered in the earliest publications (Anderson et al,
1955; Kolek, 1958) and also recently (Bungey at al, 2006; Kausay, 2013).
For the rebound method no general theory was developed that can describe the relationship between
measured hardness values and compressive strength.
It should be also highlighted that researchers usually do not separate the experimental data by different
influencing parameters in the graphical representations of the corresponding rebound index vs. compressive
strength results – that was typically experienced over the last 60 years.
Numerous empirical relationships between compressive strength and surface hardness of concrete are
available in the technical literature, but usually based on very simple laboratory tests, i.e. mainly univariate
regression curves are available. Only a few extensive studies can be found that consider multiple influencing
parameters together with detailed parameter analysis (Herzig, 1951; Borján, 1981; Tanigawa et al, 1984).
H 2.1
Compressive strength and surface hardness of concrete are only partially determined by the same
physical characteristics or chemical processes and these can vary over time in particular cases. It is not
expected that a single univariate function exists between the compressive strength and the rebound
index (either in an Rm-fcm or an fcm-Rm coordinate system) with a confidence interval that is suitable for
engineering applications.
T 2.1
I have demonstrated based on an extensive literature review – after studying the results of more than
150 literature references – as well as on own laboratory and in-situ test results that it is not possible to
find – and during the last more than 60 years it did not happen – a single univariate function between the
compressive strength and rebound index that would provide an Rm-fcm or an fcm-Rm relationship with a
confidence interval suitable for engineering applications [2, 11, 12].
Based on the published Rm - fcm relationships the following conclusions can be drawn:
 The most accepted function form is the power function.
 Concrete strength estimation for a given rebound index is found to be published in a ±40 to 60 N/mm2
wide range, i.e. it is possible to find estimated strengths for different concretes with 40 to 60 N/mm2
strength differences corresponding to the same rebound index.
 The validity of a literature proposal should be restricted to the testing conditions and the extension of the
validity to different types of concretes or testing circumstances is impossible.
 The Rm-fcm basic curve suggested by the current European Standard testing practice (EN 13791:2007)
does not always give a conservative estimation, in certain cases a negative shift of 6-8 N/mm2 would be
needed (which cannot occur according to the standard) (Fig. 10).
88
The remarkable diversity of the proposed curves implies the need of the two- or more variable regression
techniques to reveal the most important influences on the hardness behaviour.
Surface hardness and compressive strength of concrete are depending on several parameters (e.g.
type of cement, amount of cement, type of aggregate, amount of aggregate, compaction of structural
concrete, method of curing, quality of concrete surface, age of concrete, carbonation depth in the
concrete, moisture content of concrete, mass of the structural element, temperature and state of
stress) therefore, univariate regression between hardness and strength may lead to completely
misleading results and can hide the real driver of the relationship.
H 2.2
The following observations can be summarised for hardened concrete in view of the water-cement ratio
and the age of concrete according to own experimental results as well as technical literature data:
average compressive strength of concretes of 28 days of age can be formulated for different

cement types as exponential functions of the water-cement ratio (e.g. Ujhelyi, 2005),
average compressive strength of concretes at any age can be formulated in a simplified way (i.e.

independently of the water-cement ratio) for different cement types as exponential functions of the
average compressive strength of concretes at 28 days of age (e.g. CEB-FIP Model Code 1990); in fact,
the strength development of concretes depends on the water-cement ratio (e.g. Washa et al, 1975),

carbonation depth of concretes at any age can be formulated in a simplified way as functions of
age, water-cement ratio and type of cement (e.g. Papadakis et al, 1992),
rebound hardness development in time for identical composition concretes stored under identical

conditions can be formulated (e.g. Kim et al, 2009),

relationships between the rebound hardness and the depth of carbonation of concretes can be
formulated (e.g. JGJ, 2001),
relationships between the rebound hardness and the compressive strength of concretes can be

formulated for concretes of the same age that are prepared with identical cements and stored
under identical conditions.
The existence of a series of multivariate functions can be hypothesized based on the above findings
which functions can give an explicit relationship between the average rebound index Rm(t) and average
compressive strength fcm(t) of concrete of arbitrary age. The independent variables of the functions are
the degree of hydration for the cement paste (that is determined by the water-cement ratio, the age, the
type of cement and the curing/environmental conditions), and variables accounting for the amount of the
cement and the aggregate, the degree of compaction and the testing conditions.
T 2.2
I have demonstrated that a series of multivariate functions can be constructed which give an explicit
relationship between the average rebound index Rm(t) and the average compressive strength of concrete
fcm(t). It was demonstrated that a simplified version can be a series of bivariate functions with two
independent variables: the water-cement ratio and the age of concrete. It was demonstrated by a
parametric simulation that the simplified model is robust and suitable to describe experimental results.
The model was verified by a laboratory test of 864 concrete cube specimens of 150 mm made of two
cement types (CEM I 42.5 N and CEM III/B 32.5 N), with a range of water-cement ratio of 0.38 to 0.60
and age of concrete at testing of t = 7 to 180 days [2, 6, 9].
89
5.1.2 On the targeted experiments
During static indentation hardness tests plastic deformation is normally associated with ductile materials
(e.g. metals). Brittle materials (e.g. concrete) generally exhibit elastic behaviour, and fracture occurs at
higher deformations rather than plastic yielding. Pseudo-plastic deformation is observed in brittle materials
beneath the point of an indenter, but it is a result of densification, where the material undergoes a phase
change as a result of the high value of compressive stress in a restrained deformation field beneath the
indenter (Swain, Hagan, 1976). The softening fashion of the pseudo-plastic material response with
increasing volume of the material is considerably different from that can happen to metals during plastic
deformation (where the volume of the material is unchanged during yielding) (Tabor, 1951).
During dynamic hardness measurements the inelastic properties of concrete may be as important as the
elastic properties due to the softening fashion of the material response. The value of the rebound index
depends on energy losses due to friction during acceleration and rebound of the hammer mass and that of
the index rider, energy losses due to dissipation by reflections and attenuation of mechanical waves inside
the steel plunger; and energy losses due to dissipation by concrete crushing under the tip of the plunger.
H 3.1
Comparison of the relative values of the rebound hardness and mechanical properties (compressive
strength and Young’s modulus) of concrete (represented as values related to a value of a particular age)
may promote to find a relationship between the rebound hardness and a particular mechanical property.
The measures of the rebound hardness testing devices are supposed to be sensitive not only to the
strength but also to the stiffness of the concrete and influenced by the impact energy of the device.
T3.1
I have demonstrated by laboratory tests that the impact energy of the device determines – through the
obtained hardness characteristic – the mechanical property which can be associated with the hardness
value. The measures of the rebound hardness testing devices are sensitive not only to the strength but
also to the stiffness of the concrete and influenced by the impact energy of the device. It means that the
lower the impact energy of a dynamic hardness tester is, the more likely the hardness value can be related
to the Young’s modulus (the deformation of concrete is rather elastic), particularly in case of small watercement ratios; and the higher the impact energy of the dynamic hardness tester is, the more likely the
hardness value can be related to the compressive strength (during the test larger portion of the strain
energy dissipates), particularly in case of high water-cement ratios [2, 4, 7].
Laboratory test results indicated that the development of the relative value of rebound indices of L- and Ntype Schmidt rebound hammers in time approach the development of the relative value of compressive
strength in time for high water-cement ratio (w/c = 0.65), and approach the development of Young’s
modulus in time for low water-cement ratio (w/c = 0.40), independently of the age of concrete at testing.
For medium water-cement ratio (w/c = 0.50) an intermediate trend is observed. The development of the
Leeb hardness in time coincide the development of Young’s modulus of concrete in time (related to the
value of either 7 or 28 days of age), over the complete range of the tested water-cement ratios
(w/c = 0.40 – 0.65), independently of the age of concrete at testing.
Very low impact energy is introduced to the tested surface in the case of the Leeb hardness tests and the
material response is mostly governed by the elastic properties of the tested material. The Schmidt
rebound hammers apply much higher impact energy (both the L-type and the N-type devices), therefore,
90
the material response was found to be inelastic in a much more pronounced way; highly depending on both
the actual strength and stiffness of the concrete.
The impact energy of the Schmidt rebound hammers can result considerable plastic deformations in the
case of high water-cement ratio (i.e. low concrete compressive strength) and a predominantly elastic
material response in the case of low water-cement ratio (i.e. high concrete compressive strength). As a
conclusion it can be noted that the Schmidt rebound hammers apparently provide rebound index that could
be correlated to the compressive strength if the water-cement ratio is high, thus the strength estimation is
theoretically possible for relatively low strength concretes. On the other hand, for high strength concretes
the Schmidt rebound hammers apparently provide rebound index that can be correlated to the Young’s
modulus of concrete, thus the strength estimation is of concern.
In the technical literature the role of cement type in the development of the relative compressive strength
(i.e. compressive strength values at a certain age related to the value obtained at 28 days of age) is
highlighted and widely accepted (e.g. CEB, 1993). It is not fundamental evidence, however, that the
development of compressive strength of concretes also depends on the water-cement ratio. The
suggestion of CEB-FIP Model Code 1990 (CEB, 1993) neglects the effect of water-cement ratio.
H 3.2
After analysing the available technical literature data it is demonstrated by long-term laboratory tests (20
to 50 years) (e.g. Washa et al, 1975; Wood, 1991) that the development of the relative compressive
strength of concrete in time depends on the water-cement ratio, in addition to the applied cement type.
It can be supposed that the development of the relative rebound hardness in time also depends on the
water-cement ratio.
T3.2
I have demonstrated by laboratory tests that the development of the relative values of the rebound
hardness of concrete (related to the value of 28 days of age) are influenced by the water-cement ratio.
The influence is more pronounced with the increase of the maturity of concrete due to the effect of
carbonation in case of high water-cement ratios [2, 4, 7].
5.2 Theoretical and practical benefits
Hardness testing of concrete exclusively applies nowadays the Schmidt rebound hammers due to their
advantages, i.e. they can be used very easily and the rebound index can be read directly on the display
of the testing devices.
According to both International and European standards the use of the rebound method for strength
estimation on its own is not suggested. The concept of e.g. EN 13791 considers that mechanical
properties determined indirectly by non-destructive methods are influenced by large number of parameters
therefore the compressive strength of structural concrete can be estimated with the maximum possible
reliability only by the standard approach, at the moment. However, it should be added that testing of
structures are excluded where at least 9 cores are not possible to be drilled. This relatively large number of
cores restrain the practical use of the rebound method.
91
Findings of present PhD study may help to take some steps toward a better fundamental understanding
of the rebound hardness of concrete and its relationship with the compressive strength, as well as to
point out both future application possibilities and practical limits.
- It is needed to be declared that a relationship exists between the rebound hardness and the
compressive strength of concrete as it was expected, but univariate relationship does not exist.
- The introduced phenomenological model consisting of a series of curves governed by the degree of
hydration can reasonably describe the relationship. The transparency of the model offers further
promising development, however, provides also in its present form the long time missing fill to the
gap of knowledge appeared in the last 60 years. The shape and variable tangent of the series of
curves in the graphical representation of the developed model can also explain the large scatter of
the numerous proposals found in the technical literature.
- Variability parameters of the rebound index have similar tendency over the average rebound index as
that of the compressive strength, which observation can be a demonstration of the existence of a
relationship between the two properties.
- The development of the relative values of the rebound index in time is similar to that of the
compressive strength, however, users should consider that rebound hammers provide rebound index
connected to the Young’s modulus for high strength concretes and the Young’s modulus could not
predict compressive strength for mature concrete.
- Both experimental results and model analyses imply that more reliable strength estimation could be
accomplished if the impact energy could be tuned to produce sufficient inelastic deformation of the
concrete that needs further future research.
Results were published in international referred journals in 2011-2013, and were welcome. In 2012 author
of present study received an invitation to join the RILEM Technical Committee ISC (Non destructive in situ
strength assessment of concrete) from its chair, Prof. Denys Breysse. He considered the contribution
beneficial for the TC based on the developed model.
5.3 Outlook and future work
The theoretical considerations covered in the development of the phenomenological model were confirmed
by the extensive experimental verification. The model provides a clear and transparent explanation to the
rebound surface hardness of concrete in its introduced form. The observations predict that the general
scheme of the model allows an extension of the model also for concretes older than 180 days. It was
found that the predictions made by the model are far more accurate than that was available earlier by
simple regression analyses.
However, further studies are needed for the ratification of the model for practical applications. The number
of the empirical constants included in the model may result a challenging parameter fitting work before any
practical application.
Further types of concretes should be studied in the future to be able to find simplification possibilities.
Typical form of generating functions should be clarified and the limits of the practical application should be
determined. It is to be highlighted, however, that the main purpose of the development of the model was to
provide a better understanding of the rebound surface hardness of concrete and to explain the
experimental findings. The direct practical application of the model is not started yet. Author is working on
further developments and hope that the model can be successfully used in practice in the future.
Future aim of the research is to extend the model towards a reliability engineering direction by the
application of random variables in the model to become more useable for the practice.
92
List of publications
[1]
Szilágyi K. – Borosnyói A. – Gyurkó Z. (2013) „Static hardness testing of porous building
materials”, Építőanyag (Journal of Ceramics and Composite Materials), Vol. 65:(1-2), 2013. ISSN
0013-970x (accepted for publication)
[2]
Szilágyi K. – Borosnyói A. – Zsigovics I. (2013) „Understanding the rebound surface hardness of
concrete”, Journal of Civil Engineering and Management, Manuscript ID SCEM-2012-0173.R3,
IF: 2.171 (in press)
[3]
Szilágyi, K. – Borosnyói A. – Zsigovics I. (2013) „Variability of concrete surface hardness
measurement parameters”, Concrete Structures, Vol. 14, 2013, pp. 24-30. HU ISSN 2062 7904
[4]
Szilágyi K. (2012) „Hardness studies on porous solids”, Conference of Junior Researchers in Civil
Engineering, Budapest, 2012.06.19-2012.06.20. pp. 240-247.
[5]
Szilágyi K. – Borosnyói A. – Gyurkó Z. (2012) „Static hardness testing of porous materials (Kőszerű
anyagok statikus keménységvizsgálata)”, Mérnökgeológia-Kőzetmechanika Konferencia 2011,
Budapest, 2012.01.26. pp. 297-312. (in Hungarian)
[6]
Szilágyi K. – Borosnyói A. – Zsigovics I. (2011) „Rebound surface hardness of concrete:
Introduction of an empirical constitutive model”, Construction and Building Materials, Vol. 25:(5),
May 2011, pp. 2480-2487. doi:10.1016/j.conbuildmat.2010.11.070, IF: 1.834
[7]
Szilágyi, K. – Borosnyói A. – Zsigovics I. (2011) „Surface hardness and related properties of
concrete”, Concrete Structures, Vol. 12, 2010, pp. 51-57. ISSN 2062 7904
[8]
Szilágyi, K. – Borosnyói A. – Dobó K. (2011) „Static indentation hardness testing of concrete: a long
established method revived”, Építőanyag, Vol. 63:(1-2), 2011, pp. 2-8. ISSN 00 13-970x
[9]
Szilágyi, K. – Borosnyói A. – Zsigovics I. (2010) „Introduction of a constitutive model for the rebound
surface hardness of concrete”, Concrete Structures, Vol. 11, 2010, pp. 46-52. ISSN 1419 6441
[10] Borosnyói A. – Szilágyi K. (2010) „About the Hungarian standards of the rebound method (A hazai
Schmidt-kalapácsos betonvizsgálati szabályozásról)”, Beton, Vol. 18:(1), 2010/1, pp. 14-16.
ISSN 1218 4837 (in Hungarian)
[11] Szilágyi, K. – Borosnyói A. (2009) „50 years of experience with the Schmidt rebound hammer”,
Concrete Structures, Vol. 10, 2009, pp. 46-56. ISSN 1419 6441
[12] Szilágyi K. – Borosnyói A. (2008) „ The 50 years of the rebound hammer: Past, present, future.
1. part: Methods and literature review (A Schmidt-kalapács 50 éve: Múlt, jelen, jövő. 1. rész:
Módszerek és szakirodalmi összefoglalás)”, Vasbetonépítés, Vol. 10:(1), 2008/1, pp. 10-17. ISSN
1419 6441 (in Hungarian)
i
[13] Szilágyi K. – Borosnyói A. (2008) „The 50 years of the rebound hammer: Past, present, future.
2. part: European standards and its Hungarian importance (A Schmidt-kalapács 50 éve: Múlt,
jelen, jövő. 2. rész: Az európai szabványosítás és annak hazai jelentősége)”, Vasbetonépítés, Vol.
10:(2), 2008/2, pp. 48-54. ISSN 1419 6441 (in Hungarian)
[14] Szilágyi K. – Borosnyói A. (2008) „The 50 years of the rebound hammer: Past, present, future.
3. part: Scientific considerations and outlook (A Schmidt-kalapács 50 éve: Múlt, jelen, jövő. 3.
rész: Tudományos megfontolások és kitekintés)”, Vasbetonépítés, Vol. 10:(3), 2008/3, pp. 7382. ISSN 1419 6441 (in Hungarian)
[15] Szilágyi K. (2008) „Nondestuctive strength estimation of concrete (Beton roncsolásmentes
szilárdság-vizsgálata)”, BME Építőmérnöki PhD Szimpózium, Budapest, 2008.11.28. (in
Hungarian)
ii
Acknowledgements
I am grateful to my supervisor, Dr. István Zsigovics (BME) for his continuous enthusiastic encouragement
and prospective intuitions that helped to mark the directions of my PhD study based on his extensive
earlier experiences. He taught me the importance of the laboratory research work and showed how to
carry out tests with high competence on my own. His professional potential made possible me to get
involved in several in-situ and laboratory projects that became the basis of my PhD research.
I would like to record my deep gratitude to Assoc. Prof. Adorján Borosnyói (BME) for his valuable
assistance in conducting the literature survey and preparing reference collection including also some
hidden sources that were difficult to access. His insightful comments and constructive criticisms at
different stages of my research were thought-provoking and they helped me focus my ideas. I am
grateful to him for holding me to a high research standard.
My special acknowledgement is to Prof. György L. Balázs, Head of the BME Department of Construction
Materials and Engineering Geology who provided me with the research place and its facilities. He has
continuously been keeping his eyes on my research work and following its progress and showing how to
take responsibility for the civil engineer society at an international level by making the new scientific
results available and utilize them in research committees.
I am also grateful to Assoc. Prof. Zsuzsanna Józsa (BME) for sharing her experiences with me and her
assistance in finding the valuable Hungarian references.
I must express many thanks to Mr. Gábor Földvári, Mr. Tamás Póka, Mr. Kristóf Dobó, Mr. Gábor Kovács,
Mr. Zoltán Gyurkó and Mr. Tamás Mikó for their contribution in laboratory tests.
Many thanks to Mr. Krisztián Takács for his excited research in historical linguistics related to the ancient
and medieval written records for the word ’hardness’.
I am also thankful to the former and current staff at BME Department of Construction Materials and
Engineering Geology who each gave me either unique assistance or motivation.
I also wish to acknowledge the respectful activity by Prof. János Józsa, DSc, Chairman of the BME Pál
Vásárhelyi Doctoral School in Civil Engineering and Earth Sciences. He set examples by his persistent
commitment to teaching and research of high standard, his caring behaviour to every PhD student, and his
sincere and passionate love toward the ideal of the institute of BME. Special thanks to him for his
contribution in getting involved in the project „Talent care and cultivation in the scientific workshops of
BME” and for his recommendation letters when I applied for different grants.
iii
My special thanks are directed to Assoc. Prof. Rita Kiss, DSc, Dr. habil (BME) who has been giving me
inspiration by her remarkable scientific progress, by her exceptional responsibility and impetuous attitude
to teaching and by research of very high standard, as well as by showing example by her tireless care for
graduate students and PhD students.
I would like to extend my appreciation to Prof. Gintaris Kaklauskas (VGTU) for his kind interest in my
research progress and trust in my research topic. He has been playing an exemplary role in my
research activity with his remarkable scientific performance, with his simultaneous admirable lifestyle
and respectful human values in every area of life.
I am also grateful to Dr. Lars Eckeldt (TU Braunschweig) for drawing my attention to particular statistical
issues that I could adapted to my results and for his interest in my research findings.
I am especially grateful to Prof. Andor Windisch (BME) for his pioneering and stimulating thoughts that
fuelled my research every time I met him. He made a deep impression on me by his unique way of
scientific thinking, his exceptional attitude to research and his positively provocative phrases. It is a great
honour that I had the opportunity to make conversations with him about my research topic.
Finally, I am thankful for the financial support of the Hungarian Ministry of Education that enabled me to
start my PhD research and provided a scholarship for three years, as well as the research scholarship of
the Dr. Gallus Rehm Foundation.
Parts of present PhD research work has been developed in the framework of the project "Development of
quality-oriented and harmonized R+D+I strategy and functional model at BME", supported by the New
Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002) and that of the project "Talent care
and cultivation in the scientific workshops of BME" supported by the grant TÁMOP-4.2.2.B-10/1-20100009. Last year of my PhD research was completed in the framework of the Jedlik Ányos PhD Candidate
Scholarship supported by the European Union and the State of Hungary, co-financed by the European
Social Fund in the framework of TÁMOP 4.2.4. A/1-11-1-2012-0001 ‘National Excellence Program’.
iv
References
Abrams D. A. (1918) „Effect of Time of Mixing on the Strength and Wear of Concrete”, ACI Journal Proceedings, Vol. 14,
Issue 6, pp. 22-92.
ACI (1977) „Building Code Requirements for Reinforced Concrete”, ACI 318-77, American Concrete Institute, Detroit, Michigan
ACI (1989) „Nondestructive Test Methods for Evaluation of Concrete in Structures”, ACI 228.2R-89, American Concrete Institute,
Farmington Hills, Michigan
ACI (2002) „Evaluation of Strength Test Results of Concrete”, ACI 214R-02, American Concrete Institute, Farmington Hills,
Michigan
ACI (2003) „In-Place Methods to Estimate Concrete Strength”, ACI 228.1R-03, American Concrete Institute, Farmington Hills,
Michigan
ACI (2003a) „Guide for Obtaining Cores and Interpreting Compressive Strength Results”, ACI 214.4R-03, American
Concrete Institute, Farmington Hills, Michigan
Akashi T. (1979) „The non-destructive testing of concrete (I.)”, Review, The Society of Materials Science, pp. 919-927.
Akashi T. (1979) „The non-destructive testing of concrete (II.)”, Review, The Society of Materials Science, pp. 1079-1090.
Akashi T, Amasaki S. (1984) „Study of the Stress Waves in the Plunger of a Rebound Hammer at the Time of Impact”, ACI
Publication SP-82 In Situ/Nondestructive Testing of Concrete, Malhotra, V. M. (Editor), American Concrete Institute,
Detroit, Michigan, 1984, pp. 17-34.
Aliabdo A. A. E, Elmoaty A. E. M. A. (2012) „Reliability of using nondestructive tests to estimate compressive strength of
building stones and bricks”, Alexandria Engineering Journal, (in press)
Almeida I. R. (1993) „Emprego do esclerômetro e do ultra-som para efeito da avaliação qualitativa dos concretos de alto
desempenho”, Professoral Thesis, Universidade Federal Fluminese, Niterãi, Brasil, 124 p.
Al-Owaisy S. R. A, Kheder G. F, Abbas A. A. (2010) „Use of combined nondestructive test methods to predict concrete
compressive strength cast with aggregate obtained from southern parts of Iraq”, Al-Qadisiya Journal For Engineering
Sciences, Vol. 3., No. 3,
Amaral P. M, Guerra R. L, Cruz F. J. (1999) „Determination of Schmidt rebound hardness consistency in granite”, International
Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 36, No. 6, pp. 833-837.
Anderson, A. R, Bloem, D. L, Howard, E. L, Klieger, P, Schlintz, H. (1955) „Discussion of a paper by Greene, G. W.: Test Hammer
Provides New Method of Evaluating Hardened Concrete”, Journal of the American Concrete Institute, December 1955, Vol.
27, No. 4, Part 2 (Disc. 51-11), pp. 256-1…256-20.
Arioğlu E, Arioğlu N, Girgin C. (2001) „A discussion of the paper ‘‘Concrete strength by combined non-destructive methods
simply and reliably predicted’’ by H.Y. Qasrawi”, Cement and Concrete Research, Vol. 31, pp. 1239-1240.
Arni H. T. (1972) „Impact and Penetration Tests of Portland Cement Concrete”, Highway Research Record 378, Highway
Research Board, Washington D.C, pp. 55-67.
ASTM (2000) „Standard Test Method for Determination of Rock Hardness by Rebound Hammer Method”, ASTM D 5873 –
00, ASTM International, West Conshohocken, Philadelphia
ASTM (2003) „Standard Practice for Preparing Precision and Bias Statements for Test Methods for Construction
Materials”, ASTM C 670 – 08, ASTM International, West Conshohocken, Philadelphia
ASTM (2004) „Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete”, ASTM
C42/C42M-04, ASTM International, C09.61 Subcommittee, p. 6.
ASTM (2005) „Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, ASTM C39/C39M-05e1,
ASTM International, C09.61 Subcommittee, p. 7.
ASTM (2008) „Standard Test Method for Rebound Number of Hardened Concrete”, ASTM C 805/C 805M – 08, ASTM
International, West Conshohocken, Philadelphia
Atici U. (2011) „Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an
artificial neural network”, Expert Systems with Applications, Vol. 38, pp. 9609–9618.
v
Aydin F, Saribiyik M. (2010), „Correlation between Schmidt Hammer and destructive compressions testing for concretes in
existing buildings”, Scientific Research and Essays, Vol. 5, No. 13, pp. 1644-1648.
Baksa A. (2005) „Numerical analysis of contact tasks (Numerical analysis of contact problems)”, Sályi István Gépészeti
Tudományok Doktori Iskola, Gépészmérnöki Kar, Miskolci Egyetem, Miskolc, 2005
Balázs Gy, Tóth E. (1997) „Diagnostics of concrete- and reinforced concrete structures, Vol. 1. (Beton- és
vasbetonszerkezetek diagnosztikája I.)”, M űegyetemi Kiadó, 396 p. (in Hungarian)
Barba A. A. (1640) “The art of metals (Arte de los metales)”, Reprint, Lima, 1817 (in Spanish)
Baumann K. (2006) personal communication (Scwerzenbach, Switzerland)
Bentur A. (2002) „Cementitious Materials – Nine Millenia and a New Century: Past, Present and Future”, ASCE Journal of
Materials in Civil Engineering, Vol 14, Issue 1, February 2002, pp. 2-22.
Bernhardt E. C. (1949) „A history of hardness tests based on scratch resistance measurements”, ASTM Bulletin, March
1949, pp. 49-53.
Bindseil P. (2005) „On-site inspection of concrete structures: state-of-the-art and practical applications”, Department of Civil
Engineering, University of Applied Sciences Kaiserslautern, www.fh-kl.de/~bindseil
Bobji M. S, Shivakumar K, Alehossein H, Venkateshwarlu V, Biswas S.K. (1999) „Influence of surface roughness on the scatter
in hardness measurements - a numerical study”, International Journal of Rock Mechanics and Mining Sciences, Vol. 36, No.
3, pp. 399-404.
Bollo F. M. (1958) „Dynamic auscultation of concrete on site (La auscultacion dinamica del hormigon en obra)”, Revista De
Obras Publicas, Vol. 106, No. 2918, pp. 331-335.
Borján J. (1968) „Mathematical statistical analysis of nondestructive testing of concrete (Roncsolásmentes betonvizsgálatok
értékelése matematikai statisztikai módszerrel)”, Mélyépítéstudományi Szemle, XVIII. évf, 7. sz, pp. 294-297. (in
Hungarian)
Borján J. (1971) „Estimation of the parameters of regression functions by graphical method (Regressziós függvények
paramétereinek becslése grafikus módszerrel)”, Mélyépítéstudományi Szemle, Vol. 21, No. 1, pp. 32-38. (in Hungarian)
Borján J. (1974) „Multiple regression analysis by graphical method (Többszörös regressziós elemzés grafikus
módszerrel)”, Mélyépítéstudományi Szemle, Vol. 24, No. 6, pp. 274-280. (in Hungarian)
Borján J. (1975) „Comparison of nondestructive and destructive compressive strength test of concretes (Betonok roncsolásmentes és törővizsgálatának összehasonlítása)”, Mélyépítéstudományi Szemle, Vol. 30, No. 5, pp. 207-213. (in Hungarian)
Borján J. (1981) „Nondestructive testing of concrete (Roncsolásmentes betonvizsgálatok)”, M űszaki Könyvkiadó, 204 p. (in Hungarian)
Borosnyói A. (2006) „Some diagnostic devices of reinforced concrete structures (Vasbeton szerkezetek egyes
diagnosztikai eszközei”, Épületfelújítási kézikönyv, 2006. november, Verlag Dashöfer Szakkiadó (in Hungarian)
Boundy C. A. P, Hondros G. (1964) „Rapid field assessment of strength of concrete by accelerated curing and Schmidt
rebound hammer”, Journal of the American Concrete Institute, January 1964, pp. 77-83.
Brandes C, Lay S, Rucker P. (2007) „Conversion curves for the new generation of concrete test hammers”, Proceq,
Schwerzenbach, Switzerland
Brandestini M. (2006) „From the idea to product - the SilverSchmidt Hammer (Von der Idee zum Produkt - der SilverSchmidt
Beton Prüfhammer)”, Vortrag 13, Fachtagung Bauwerksdiagnose, 18. - 19. Februar 2010, Berlin (in German)
Breysse D. (2012) „Nondestructive evaluation of concrete strength: An historical review and a new perspective by
combining NDT methods”, Construction and Building Materials, Vol. 33, pp. 139-163.”
Breysse D, Klysz G, Dérobert X, Sirieix C, Lataste J.F. (2008) „How to combine several non-destructive techniques for a better
assessment of concrete structures”, Cement and Concrete Research, Vol. 38, No. 6, pp. 783–793.
Brinell J.-A. (1901) „Steel ball test report (Mémoire sur les épreuves à bille en acier)”, Communications presentés devant le
congrés international des méthodes d’essai des matériaux de construction, Vol. 2, 1901, pp. 83-94. (in French)
Brožovský J, Procházka D, Beneš D. (2009) „Determination of high performance concrete strength by means of impact hammer”,
Proceedings of the 10th International Conference of the Slovenian Society for Non-Destructive Testing – Application of
Contemporary Non-Destructive Testing in Engineering, September 1-3, 2009, Ljubljana, Slovenia, pp. 233-241.
Brozovsky J, Zach J, Brozovsky J. Jr. (2008) „Determining the strength of solid burnt bricks in historical structures”,
Proceedings of the 9th International Conference on NDT of Art, Jerusalem Israel, 25-30 May 2008
Brunarski L. (1963) „Combined use of non-destructive testing methods in quality control of concrete (Gleichzeitige Anwendung
verschiedener zerstörungsfreier Prüfmetoden zur Gütekontrolle des Betons)”, Wissenschaftliche Zeitschrift der Hochschule
für Bauwesen Leipzig, Sonderdruck, 1963 (in German)
Bungey J. H, Millard J. H, Grantham M. G. (2006) „Testing of Concrete in Structures”, Taylor and Francis, New York, 352 p.
vi
Buyuksagis I. S, Goktan R. M. (2007) „The effect of Schmidt hammer type on uniaxial compressivestrength prediction of rock”,
International Journal of Rock Mechanics and Mining Sciences, Vol. 44, No. 2, pp.299-307.
Calvit H. H. (1967) „Experiments on rebound of steel balls from blocks of polymers”, Journal of the Mechanics and Physics of
Solids, V.15, No. 3, May 1967, Pergamon Press Ltd., Oxford, pp. 140-150.
Carette G. G, Malhotra V. M. (1984) „In Situ Tests: Variability and Strength Prediction at Early Ages”, ACI Publication SP-82
In Situ/Nondestructive Testing of Concrete, Malhotra V. M. (Editor), American Concrete Institute, Detroit, Michigan,
1984, pp. 111-141.
Carino (1994) „Nondestructive Testing of Concrete: History and Challenges”, ACI SP-44, Concrete Technology – Past, Present and
Future, Ed. Mehta P. K, American Concrete Institute, 1994, pp. 623-678.
Carino N. J. (1993) „Statistical Methods to Evaluate In-Place Test Results”, New Concrete Technology: Robert E. Philleo
Symposium, ACI SP-141, T. C. Liu and G. C. Hoff, eds., American Concrete Institute, Farmington Hills, Michigan, pp. 39-64.
CEB (1993) „CEB-FIP Model Code 1990 – Design Code”, Comité Euro-International du Béton, Thomas Telford, London,
1993 (CEB Bulletin d’Information No. 213/214.)
CEB-CIB-FIP-RILEM (1974) „Recommended principles for the control of quality and the judgement of acceptability of
concrete”, Materials and Structures, V. 8, No. 47, RILEM, 1974, pp. 387-403.
Centre National d’Etudes et de Recherches Intégrées du Bâtiment (2004) „Control of concrete by nondestructive testing
(Controle du beton par des essais non destructifs)”, Cycle de formation 2004
Chandler H. (1999) „Hardness testing”, ASM International, Materials Park, Ohio
Chefdeville J. (1953) „Application of the method toward estimating the quality of concrete”, RILEM Bulletin, No. 15, Special
Issue – Vibration Testing of Concrete, Part 2, RILEM, Paris, 1953
Chefdeville J. (1955) „Nondestructive testing of concrete. Part 2. Compressive strength of concrete and its measurement by the
Schmidt rebound hammer (Les essais non destructifs du béton. II. La résistance à la compression du béton. Sa mesure par le
scléromètre Schmidt)”, Annales de l’Institut Technique du Batiment et des Travaux Publics, Huitième année, No. 95.,
Novembre 1955, pp. 1137-1182. (in French)
Cianfrone F, Facaoaru I. (1979) „Study on the introduction into Italy on the combined non-destructive method, for the
determination of in situ concrete strength”, Matériaux et Constructions, Vol. 12, No. 71, pp. 413-424.
Cortes C, Mohri M, Riley M, Rostamizadeh A. (2008), “Sample Selection Bias Correction Theory”, Proceedings of the 19th international conference on Algorithmic Learning Theory, Springer-Verlag Berlin, Heidelberg, ISBN 978-3-540-87986-2, pp. 38-53.
CPWD (2002) „Handbook on repair and rehabilitation of RCC buildings”, Central Public Works Department, Government of
India, India Press, Mayapuri, New Delhi, pp. 498.
Crepps R. B., Mills R. E. (1923) „Ball Test Applied to Cement Mortar and Concrete”, Bulletin No. 12., Engineering
Experiment Station, Purdue University, LaFayette, Indiana, May 1923, 32 p.
Crooks G. E. (2012) „Survey of Simple, Continuous, Univariate Probability Distributions”, 2010-2012, Gavin E. Crooks
Publication
d'Elia M. P. (1956) „Study on testing of cement concrete by rebound hammer (Enquête sur l'essai des bétons de ciment au
scléromètre)”, Bulletin Rechnique de la Suisse Romande, Vol. 82, No. 14, pp. 224-226. (in French)
Demirdag S, Yavuz H, Altindag R. (2009) „The effect of sample size on Schmidt rebound hardness value of rocks”,
International Journal of Rock Mechanics & Mining Sciences, Vol. 46, No. 4, pp. 725-730.
Di Leo A, Pascale G, Viola E. (1984) „Core Sampling Size in Nondestructive Testing of Concrete Structures”, ACI
Publication SP-82 In Situ/Nondestructive Testing of Concrete, Malhotra V. M. (Editor), American Concrete Institute,
Detroit, Michigan, 1984, pp. 459-478.
Domingo R, Hirose S. (2009) „Correlation Between Concrete Strength and Combined Nondestructive Tests for Concrete
Using High-Early Strength Cement”, Proceedings of the 6th Regional Symp. on Infrastructure Development (RSID-6),
CD-ROM RSID6-STR2, Jan. 2009.
Dufour J. M, Farhat A, Gardiol L, Khalaf L. (1998) „Simulation-based Finite Sample Normality Tests in Linear Regressions”,
Econometrics Journal, Vol. 1, pp. 154-173.
Dutron R. (1927) „Ball tests for the determination of compressive strength of neat cement mortars (Essais à la bille pour la
determination de la résistance à la compression des pates de ciment pur)”, Brochure - Le laboratoire Groupement
Professionnel des Fabricants de Ciment Portland artificial de Belgique, Bruxelles, Belgium, 1927 (in French)
Egerer F, Kertész P. (1993): „Introduction to the rock mechanics (Bevezetés a kőzetfizikába)”, Akadémiai Kiadó, Budapest,
1993, 424 p. (in Hungarian)
Einbeck C. (1944) „Simple method to determine concrete quality in structures (Einfaches Verfahren zur Feststellung der
Betongüte im Bauwerk”, Bauwelt, Vol. 35, 1944, p. 131 (in German)
vii
ÉMI (1965) „Concrete strength evaluation by N-type Schmidt rebound hammer (A beton szilárdságának vizsgálata N-típusú
Schmidt-féle rugós kalapáccsal)”, Épít őipari Min őségvizsgáló Intézet private standard, HSz 201-65, Prepared by János
Vadász, 1 Dec 1965 (in Hungarian)
EN 12504-1 (2000) „Testing concrete in structures – Part 1: Cored specimens – Taking, examining and testing in
compression”, European Standard
EN 12504-2 (2012) „Testing concrete in structures – Part 2: Non-destructive testing – Determination of rebound number”,
European Standard
EN 13791 (2007) „Assessment of in-situ compressive strength in structures and precast concrete components”, European
Standard
Euramet cg-16, Technical Committee for Mass and Related Quantities (2011) „Guidelines on the Estimation of Uncertainty
in Hardness Measurements”, Euramet e.V., Braunschweig, Germany
Fabbrocino G, Di Fusco A. A, Manfredi G. (2005) „In situ evaluation of concrete strength for existing constructions: critical
issues and perspectives of NDT methods“,Proceedings of the fib Symposium Keep Concrete Attractive 2005
Budapest, Balázs G. L. and Borosnyói A. (Editors), Műegyetemi Kiadó, Budapest, 2005. pp. 811-816.
Facaoaru I. (1964) „L’expérience de l’application des normes roumaines provisoires pour la déterminition de la résistance
du béton à l’aide du scléromètre Schmidt“, RILEM Publication – Non-destructive testing of concrete, Meeting in
Bucharest, 1964
Fener M, Kahraman S, Bilgil A, Gunaydin O. (2005) „Technical Note – A Comparative Evaluation of Indirect Methods to
Estimate the Compressive Strength of Rocks”, Rock Mechanics and Rock Engineering, Vol. 38, No. 4, pp. 329-343.
Feret R. (1892) „The compaction of hydraulic mortars (Sur la compacité des mortiers hydrauliques)”, Annales des Ponts et
Chaussees, Mem Doc, Serie 7, 4, 1892, pp. 5-164. (in French)
Ferry J. D. (1961) „Viscoelastic properties of polymers”, John Wiley and Sons Inc., New York, 1961, 482 p.
FHWA (1997) „Guide to Nondestructive Testing of Concrete”, FHWA Publication SA-97-105, U.S. Department of
Transportation, Federal Highway Administration, September 1997, 60 p.
Filho J. O. V. (2007) „Evaluation of compressive strength of concrete trough core: contribution to the estimative of the
coefficiente of correction due to damage of drilling (Avaliação da resistência à compressão do concreto através de
testemunhos extraídos: contribuição à estimativa do coeficiente de correção devido aos efeitos do broqueamento”,
Thesis for Doctor of Civil Engineering, Escola Politécnica da Universidade de São Paulo, São Paulo 2007
Fischer-Cripps A. C, Collins R. E. (1994) „The probability of hertzian fracture”, Journal of Materials Science, Vol. 29, pp.
2216-2230.
Fischer-Cripps A. C. (1997) „Elastic–plastic behaviour in materials loaded with a spherical indenter”, Journal of Materials
Science, Vol. 32, pp. 727-736.
Fischer-Cripps A. C. (1997) „Predicting Hertzian fracture”, Journal of Materials Science, Vol. 32, pp. 1277-1285.
Fischer-Cripps A. C. (1999) „The Hertzian contact surface”, Journal of Materials Science, Vol. 34, pp. 129-137.
Fischer-Cripps A. C. (2000) „Introduction to Contact Mechanics”, Springer, New York, 2000, 243 p.
Forslind E. (1944) „Determination of Concrete Strength by Means of Shock and Drill Tests (Hållfast-hetsbestämnig hos
betong medelst slag- och borrprov)”, Meddelanden (Bulletins) No. 2, Swedish Cement and Concrete Research Institute,
Stockholm, 1944, 20 p. (in Swedish)
Frank F. C, Lawn B. R. (1967) „On the theory of Hertzian fracture”, Proc. of the Royal Society of London, Series A,
Mathematical and Physical Sciences, Vol. 299, No. 1458, Jul. 11, 1967, pp. 291-306.
Frank S, Sommer J. (1986) „Standardization of the Leeb hardness testing method”, Krautkrämer GmbH, Hürth, Germany
Gaede K. (1934) „A new method of strength testing of concrete in structures (Ein neues Verfahren zur Festigkeitsprüfung
des Betons im Bauwerk)“, Bauingenieur, 1934/15, Vol. 35-36, pp. 356-357. (in German)
Gaede K. (1952) „Impact ball tests for concrete (Die Kugelschlagprüfung von Beton)“, Deutscher Ausschuss für Stahlbeton,
1952, Heft 107, Ernst & Sohn, Berlin, p. 73. (in German)
Gaede K, Schmidt E. (1964) „Rebound testing of hardened concrete (Rückprallprüfung von Beton mit dichtem Gefüge)”,
Deutscher Ausschuss für Stahlbeton, Heft 158, p. 37. (in German)
Gallo-Curcio A, Morelli G. (1985) „Statistical parametric analysis of the strength-to-rebound index relationship: an attempt to
define the class of concrete (Recherche statistique paramétrique du rapport résistance-indice sclérométrique: essai de
définition de la classe des bétons)”, Materials and Structures, Vol. 18, No. 1, pp. 67-73.
Gillemot L. (1967) Material science and testing (Anyagszerkezettan és anyagvizsgálat), Tankönyvkiadó, Budapest, 1967,
429 p. (in Hungarian)
viii
Goktan R.M, Gunes N. (2005) „A comparative study of Schmidt hammer testing procedures with reference to rock cutting
machine performance prediction”, International Journal of Rock Mechanics and Mining Sciences, Vol. 42, No. 3, pp.
466-472.
Goldsmith W. (1960) Impact – The theory and physical behaviour of colliding solids, Edward Arnold Publishers, 379 p.
Gonçalves A. (1995) „In situ concrete strength estimation. Simultaneous use of cores, rebound hammer and pulse
velocity”, Proceedings International Symposium NDT in Civil Engineering, Germany, pp. 977-984.
Graff K. F. (1975) Wave motion in elastic solids, Oxford University Press, 649 p.
Granzer H. (1970) „About the dynamic hardness testing of hardened concrete (Über die dynamische Härteprüfung von
Beton mit dichtem Gefüge)”, Dissertationen der Technischen Hochschule Wien, No. 14, Verlag Notring, Wien, 1970, p.
103. (in German)
Greene G. W. (1954) „Test Hammer Provides New Method of Evaluating Hardened Concrete”, Journal of the American
Concrete Institute, November 1954, Vol. 26, No. 3 (Title No. 51-11), pp. 249-256.
Grieb W. E. (1958) „Use of the Swiss Hammer for Estimating the Compressive Strength of Hardened Concrete”, Public
Roads, V. 30, No. 2, June 1958, pp. 45-50.
Gubicza J, Juhász A, Arató P, Szommer P, Tasnádi P, Vörös G. (1996) „Elastic modulus determination from depth sensing
indentation test”, Journal of Materials Science Letters, 15: 2141-2144.
Gyömbér Cs. (2004) „Nondestructive testing of lightweight concrete (Könnyűbeton roncsolásmentes vizsgálata)”, MSc Thesis,
Budapest University of Technology and Economics, Faculty of Civil Engineering (in Hungarian)
Harter H. L. (1960) “Tables of Range and Studentized Range”, The Annals of Mathematical Statistics, Vol. 31, No. 4, pp.
1122-1147.
Hertz H. (1881) „About the contact of elastic solid bodies (Über die Berührung fester elastischer Körper)”, Journal für die
reine und angewandte Mathematik, 1881/5, p. 12-23. (in German)
Herzig E. (1951) „Tests with the new concrete rebound hammer at the Dept. of Concrete and Reinforced Concrete,
Material Testing Institute of Zurich (Versuche mit dem neuen Beton-Prüfhammer an der Abteilung für Beton und
Eisenbeton der Eidg. Materialprüfungs- und Versuchsanstalt, Zürich)“, Schweizer Archiv für angewandte Wissenschaft und
Technik, V. 17, Mai 1951, pp. 144-146. (in German)
Hill R, Storakers B, Zdunek A. B. (1988) „A theoretical study of the Brinell hardness test”, Proc. of the Royal Society of
London. Series A, Mathematical and Physical Sciences, Vol. 423, No. 1865, Jun. 8. 1989, pp. 301-330.
Hobbs B, Kebir M. T. (2006) „Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete
buildings”, Forensic Science International, V. 167, 2006, Elsevier Ireland Ltd., pp. 167-172.
Huang Q. (2010) „Adaptive reliability analysis of reinforced concrete bridges using nondestructive testing”, PhD
dissertation, Civil Engineering, Texas A&M University, May 2010
Huang Q, Gardoni P, Hurlebaus S. (2011) „Predicting concrete compressive strength using ultrasonic pulse velocity and
rebound number”, ACI Materials Journal, Vol. 108, No. 4, pp. 403-412.
Huei L. J. (2009) „Multivariate analysis to determine in-situ concrete strength-beam”, MSc Thesis, Faculty of Civil
Engineering, University Teknologi Malaysia
Huygens C. (1690) „Treatise on light: in which are explained the causes of that which occurs in reflexion, & in refraction,
and particularly in the strange refraction of Iceland crystal (Traité de la Lumière: Où sont expliquées les causes de ce
qui luy arrive dans la réflexion, & dans la refraction; et particulièrement dans l’étrange refraction du cristal d’Islande)”,
1690, Leiden (in French)
IAEA (2002) „Guidebook on non-destructive testing of concrete structures”, Training Course Series No. 17, International
Atomic Energy Agency, Vienna, 231 p.
Idrissou M. M. (2006) „Finding an Unified Relationship between Crushing Strength of Concrete and Non-destructive Tests”,
Universiti Teknologi Malaysia
ISO 3534-1:2006 “Statistics – Vocabulary and symbols – Part 1: Probability and general statistical terms”
Jenkins R. S. (1985) „Nondestructive testing – An evaluation tool”, Concrete International, February 1985, pp. 22-26.
Johnson K. L. (1985) Contact mechanics, Cambridge University Press, 1985, 452 p.
Johnson W. (1972) Impact strength of materials, Edward Arnold Publishers, 361 p.
Jones R. (1962) „Non-Destructive Testing of Concrete”, Cambridge Engineering Series (Ed. Baker, J.), Cambridge
University Press, 1962, p. 104.
Juhász A, Vörös G, Tasnádi P, Kovács I, Somogyi I, Szöllösi J. (1993) „Investigation of the mechanical properties of silica
glasses by indentation tests”, Journal de Physique IV, The 3rd European Conference on Advanced Materials and
Processes, Vol. 3, No. C7, pp. 1485-1489.
ix
Kahraman S., Fener M., Gunaydin O. (2002) „Predicting the Schmidt hammer values of in–situ intact rock from core sample
values”, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, No. 3, pp. 395-399.
Katz O, Rechesa Z, Roegiers J.-C. (2000) „Evaluation of mechanical rock properties using a Schmidt Hammer”,
International Journal of Rock Mechanics and Mining Sciences, Vol. 37, pp. 723-728.
Kausay T. (2013) „Concrete – Explanation of some chapters of the concrete standard (Beton – A betonszabvány néhány
fejezetének értelmezése)”, Magyar Mérnöki Kamara Nonprofit Kft, Budapest, 2013. (in Hungarian)
Kecskés B. (2010) „Hardness Testing (Keménységmérés)”, Kézirat, Kecskeméti F őiskola, 17 p. (in Hungarian)
Keiller A. P. (1982) „Preliminary Investigation of Test Methods for the Assessment of Strength of In Situ Concrete”, Technical
Report No. 42.551, Cement and Concrete Association, Wexham Springs, 1982, p. 37.
Kheder G. F. (1999) „A two stage procedure for assessment of in situ concrete strength using combined non-destructive
testing”, Materials and Structures, Vol. 32, July 1999, pp. 410-417.
Kholmyansky M, Kogan E, Kovler K. (1994) On the hardness determination of fine grained concrete, Materials and
Structures, Vol. 27, No. 10, December 1994, pp. 584-587.
Kim J-K, Kim C-Y, Yi S-T, Lee Y. (2009) „Effect of carbonation on the rebound number and compressive strength of
concrete”, Cement & Concrete Composites,Vol. 31, No. 2, pp. 139-144.
Knaze P, Beno P. (1984) „The use of combined non-destructive testing methods to determine the compressive strength of
concrete”, Matériaux et Constructions, Vol. 17, No. 99, pp. 207-210.
Kolaiti E, Papadopoulo Z. (1993) „Evaluation of Schmidt rebound hammer testing: A critical approach”, Bulletin of
Engineering Geology and the Environment, Vol. 48, No. 1, pp. 69-76.
Kolek J. (1958) „An Appreciation of the Schmidt Rebound Hammer”, Magazine of Concrete Research, Vol. 10, No. 28,
March 1958, pp. 27-36.
Kolek J. (1969) „Using the Schmidt rebound hammer”, Concrete Construction, June 1969
Kolek J. (1970a) „Non-destructive testing of concrete by hardness methods”, Proceedings of the Symposium on Non-destructive
testing of concrete and timber, 11-12 June 1969, Institution of Civil Engineers, London, 1970, pp. 19-22.
Kolek J. (1970b) „Discussion of the paper 3A: Non-destructive testing of concrete by hardness methods, by Kolek, J.”,
Proceedings of the Symposium on Non-destructive testing of concrete and timber, 11-12 June 1969, Institution of Civil
Engineers, London, 1970, pp. 27-29.
Kolsky H. (1953) Stress waves in solids, Oxford Clarendon Press, 212 p.
Korshunov D. A, Sidorenko M. V. (1992) „Methods for determining the strength of concrete”, Materials and Structures, Vol.
25, No.1, 1992, pp. 29-33.
KTI (1978) „Application of non-destructive concrete tests (Roncsolásmentes betonvizsgálatok alkal-mazása)”, Study, Scientific
Research Institute of Road Transport (Közúti Közlekedési Tudományos Kutató Intézet), Budapest, 40 p. (in Hungarian)
KTI (2005) „Nondestructive testing of high strength concretes by the Schmidt rebound hammer (Nagyszi-lárdságú betonok
roncsolásmentes vizsgálata Schmidt kalapáccsal)”, Research Report, Prepared by Gáspár L., Tóth Z., Skokán G, KTI Kht,
2005 (in Hungarian)
Leeb, D. (1986) „Definition of the hardness value “L” in the Equotip dynamic measurement method”, VDI Berichte 583,
1986, pp. 109-133.
Leshchinsky A. M. (1990) „Determination of Concrete Strength by Nondestructive Methods”, Cement, Concrete and
Aggregates, Vol. 12, No. 2, pp. 107-113.
Leshchinsky A. M. (1991) „Improvement of Concrete Strength Statistical Control”, Cement, Concrete and Aggregates, Vol.
13, No. 2, pp. 88-92.
Leshchinsky A. M, Yu M, Goncharova A. S. (1990) „Within-Test Variability of Some Non-Destructive Methods for Concrete
Strength Determination”, Magazine of Concrete Research, V. 42, No. 153, pp. 245-248.
Li X, Rupert G, Summers D. A, Santi P, Liu D. (2000), „Analysis of Impact Hammer Rebound to Estimate Rock Drillability”,
Rock Mechanics and Rock Engineering, Vol. 33, No. 1, pp. 1-13.
Lima F. B, Silva M. F. B. (2000) “Correlation between the compressive strength and surface hardness of concrete
(Correlação entre a resistência à compressão do concreto e a sua dureza superficial)”. In: Juiz de Fora, editor.
Proceedings IV. Congresso de Engenharia Civil, p. 429-440. (in Portuguese)
Liu J-C, Sue M-L, Kou C-H. (2009) „Estimating the Strength of Concrete Using Surface Rebound Value and Design
Parameters of Concrete Material”, Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 1-7.
Long B. G, Kurtz H. J, Sandenaw T. A. (1945) „An Instrument and a Technic for Field Determination of Elasticity, and
Flexural Strength of Concrete (Pavements)”, Journal of the American Concrete Institute, Vol. 16., No. 3., Proceedings
Vol. 41., January 1945, pp. 217-231.
x
Mahmoudipour M. (2009) „Statistical case study on Schmidt hammer, ultrasonic and core compression strength tests’ results
performed on cores obtained from Behbahan cement factory in Iran”, Geotechnical Department, SANO Consulting
Engineers, No.11, Tavanir St.,Valiasr St., Tehran, Iran
Malhotra V. M. (1976) „Testing Hardened Concrete: Nondestructive Methods”, ACI Monograph, No. 9, American Concrete
Institute, Detroit, 188 p.
Malhotra V. M, Carette G. (1980) „Comparison of Pullout Strength of Concrete with Compressive Strength of Cylinders and Cores,
Pulse Velocity, and Rebound Number”, ACI Journal, May-June 1980, pp. 161-170.
Malhotra V. M, Carino N. J. (2004) „Handbook on nondestructive testing of concrete”, Second edition, CRC Press
LLC, 384 p.
Mata M, Casals O, Alcalá J. (2006) „The plastic zone size in indentation experiments: The analogy with the expansion of a
spherical cavity”, International Journal of Solids and Structures, Vol. 43, No. 20, pp. 5994-6013.
Matoušek M. (1977) „Effects of some environmental factors on structures (Působení vybraných atmosférických činitelů na
stavební konstrukce)”, PhD Thesis, Technical University of Brno, Czech Republic, 1977 (in Czech)
Mehta P. K., Monteiro P. J. M. (2005) „Concrete: Microstructure, Properties, and Materials”, McGraw Hill, 659 p.
Meyer E. (1908) Studies on hardness testing and hardness (Untersuchungen über Härteprüfung und Härte), Zeitschrift des
Vereines Deutscher Ingenieure, Vol. 52, No. 17, April 1908, pp. 645-654, 740-748, 835-844. (in German)
MI 15011 (1988) „Sectional analysis of existing load bearing elements of structures (Épületek megépült teherhordó
szerkezeteinek erőtani vizsgálata)”, Technical Guideline, Hungarian Institute of Standardization (Magyar Szabványügyi Hivatal),
27 p. (in Hungarian)
Mikulic D, Pause Z, Ukraincik V. (1992) „Determination of concrete quality in a structure by combination of destructive and nondestructive methods”, Materials and Structures, Vol. 25, No. 2, pp. 65-69.
Mindess S, Young J. F. (1981) „Concrete”, Prentice Hall, Englewood Cliffs, 671 p.
Mohs F. (1812) Trial of an elementary method to determine natural history and identification of fossils (Versuch einer
Elementar-Methode zur Naturhistorischen Bestimmung und Erkennung von Fossilien), Österreich Lexikon (in German)
Mommens A. (1977) “La precision de l’estimation de la résistance du béton au moyen de l’indice scléro-métrique”,
Matériaux et Constructions, Vol. 10, No. 55, 1977, pp. 49-54.
Monteiro A, Gonçalves A. (2009) „Assessment of characteristic compressive strength in structures by the rebound
hammer test according to EN 13791: 2007”, Proceedings NDTCE’09, Non-Destructive Testing in Civil Engineering,
Nantes, France, June 30th - July 3rd, 2009
MSZ 07-3318 (1991) „Közúti betonburkolatok és műtárgyak roncsolásmentes vizsgálata Schmidt kalapáccsal”, Magyar
Köztársaság Közlekedési Ágazati Szabvány, 19 p. Technical Guideline, Hungarian Standards Institution (Magyar
Szabványügyi Hivatal), 27 p. (in Hungarian)
MSZ 4715/5 (1972) „Testing of hardened concrete. Nondestructive testing (Megszilárdult beton vizsgálata. Roncsolásmentes
vizsgálatok)”, Hungarian Standard (Magyar Népköztársasági Országos Szabvány), 13 p. (in Hungarian)
Musschenbroek P. (1729) „Physicae Experimentales et Geometricae Dissertations”, 1729, Leiden (in French)
Nash’t I. H, A’bour S. H, Sadoon A. A. (2005) „Finding an Unified Relationship between Crushing Strength of Concrete and Nondestructive Tests”, Proceedings 3rd MENDT – Middle East Nondestructive Testing Conference and Exhibition, Bahrain,
Manama, www.ndt.net
Nasser K. W, Almanaseer A. A. (1987) „Comparison of Nondestructive Testers of Hardened Concrete”, ACI Materials
Journal, Vol. 84, No. 5, pp. 374-380.
Nehme S. G. (2004) „Porosity of concrete (A beton porozitása)”, PhD Thesis, Budapest University of Technology and
Economics, Faculty of Civil Engineering (in Hungarian)
Neville A. M. (1981) „Properties of Concrete”, Pitman Publ., London, 532 p.
Neville A. M. (1986) „Properties of Concrete - An Overview, Part 3”, Concrete International, Volume 8, Issue 4, April 1,
1986, pp. 53-57.
Neville A. M. (1995) „Properties of Concrete”, Prentice Hall, Essex, 844 p.
Neville A. M. (2001) „Core Tests: Easy to Perform, Not Easy to Interpret”, Concrete International, American Concrete
Institute, November 2001, pp. 59-68.
NIST (2009) „NIST/SEMATECH e-Handbook of Statistical Methods”, source: www.itl.nist.gov/div898/handbook/, National Institute of
Standards and Technology, January 2009
Nyim C. K. (2006) „Reliability in integrating NDT results of concrete structures”, MSc Thesis, Universiti Teknologi Malaysia,
April 2006
O’Neill H. V. (1967) “Hardness measurement of metals and alloys”, Chapman & Hall, London, 1967, 238. p.
xi
OECD (2008) “Glossary of Statistical Terms”, Organisation for Economic Co-operation and Development, 2008, 605 p.,
ISBN 978-92-64-025561
Ohdaira E, Masuzawa N. (2000) „Water content and its effect on ultrasound propagation in concrete – the possibility of
NDE”, Ultrasonics, V. 38, 2000, Elsevier, pp. 546-552.
Oktar O. N, Moral H, Taşdemir M. A. (1996) „Factors determining the correlations between concrete properties”, Cement
and Concrete Research, Vol. 26, No. 11, pp. 1629-1637.
Oktar O. N, Moral H, Taşdemir M. A. (1996) „Sensitivity of concrete properties to the pore structure of hardened cement
paste”, Cement and Concrete Research, Vol. 26, No. 11, November 1996 , pp. 1619-1627.
Oliveira F. G. X, Filgueiras V. J. B. F, Meira G. R, Carneiro A. M. P, Sousa J. P. (2009) „Evaluation of the structure`s
durability of parameters of bridge on the river Botafogo on the duplication of the BR 101 (Avaliação dos parâmetros de
durabilidade da estrutura da ponte sobre o rio Botafogo na duplicação da BR 101) „, Anais do 51˚ Congresso
Brasileiro do Concreto CBC2008, Ibracon 2009, (in Portuguese)
Oliver W.C., Pharr G. M. (2004) „Measurement of hardness and elastic modulus by instrumented inden-tation: Advances in
understanding and refinements to methodology”, Journal of Materials Research, Vol. 19, pp. 3-20.
Ozbek A, Gul M. (2011) „Variation of Schmidt hammer rebound values depending on bed thickness and discontinuity
surfaces”, Scientific Research and Essays, Vol. 6, No. 10, pp. 2201-2211.
Papadakis V. G, Fardis M. N, Vayenas C. G. (1992) „Effect of composition, environmental factors and cement-lime mortar
coating on concrete carbonation”, Materials and Structures, Vol. 25, No. 5, pp. 293-304.
Papadakis V. G., Fardis, M. N., Vayenas, C. G. (1992) „Hydration and Carbonation of Pozzolanic Cements”, ACI Materials
Journal, V. 89, No. 2, March-April 1992, pp. 119-130.
Pascale G, Di Leo A, Bonora V. (2003) „Nondestructive Assessment of the Actual Compressive Strength of High-Strength
Concrete”, ASCE Journal of Materials in Civil Engineering, Vol. 15., No. 5., pp. 452-459.
Pascale G, Di Leo A, Carli R, Bonora V. (2000) „Evaluation of Actual Compressive Strength of High Strength Concrete by
NDT”, Proceedings 15th WCNDT, Roma, Italy, www.ndt.net
Picu M. (2004) „Research regarding the investigation of steel hardness”, Annals of “Dunarea de Jos” University of Galati
Fascicle XIV Mechanical Engineering, ISSN 1224-5615
Pohl E. (1966) „Nondestructive testing of concrete (Zerstörungsfreie Prüfmethoden für Beton)“, VEB Verlag für Bauwesen
Berlin, 1966, p. 160. (in German)
Postacioglu B. (1985) „New significations of rebound index and ultrasonic pulse velocity (Nouvelles significations de l'indice
sclérométrique Schmidt et de la vitesse de propagation des ultra-sons)”, Materials and Structures, Vol. 18, No. 6, pp.
447-451.
Powers T. C, Brownyard T. L. (1947) „Studies of the Physical Properties of Hardened Portland Cement Paste”, Journal of
the American Concrete Institute, April 1947, Vol. 18 (Proceedings Vol. 43), No. 8, pp. 933-992.
Proceq SA (2003) „Concrete Test Hammer N/NR,L/LR and DIGI SCHMIDT ND/LD – Rebound Measurement and
Carbonation”, Info sheet
Proceq SA (2003) „Concrete Test Hammer ORIGINAL SCHMIDT N/NR and L/LR – Addition to the Operation Manual”, Info
sheet
Proceq SA (2004) „Non-Destructive testing of concrete – Schmidt concrete test hammer”, Training course handout
Proceq SA (2005) „Non-Destructive testing of concrete – Schmidt concrete test hammer”, Training course handout,
October 2005, Schwerzenbach, Switzerland
Proceq SA (2006) „Operating Instructions – Concrete Test Hammer N/NR – L/LR”, Manual, ver 09 2006, Schwerzenbach,
Switzerland
Proceq SA (2007) „Conversion curves for the new generation of concrete test hammers”, Ingenieur-gesellschaft GmbH
Proceq SA (2007) „The SilverSchmidt Conversion Curves – Guide to selecting the correct conversion curve”, Info sheet
Proceq SA (2008) „Silver Schmidt Operating Instructions”, Manual, ver 04 2008, Schwerzenbach, Switzerland
Proceq SA (2008) „Silver Schmidt product launch”, Info sheet, May 2008, Schwerzenbach, Switzerland
Pucinotti R. (2007) „The use of multiple combined non destructive testing in the concrete by the rebound hammer test
according to EN 13791: 2007”, Proceedings 7th International Symposium on Nondestructive Testing in Civil
Engineering, 30 June - 3 July 2009, Nantes, France „
Qasrawi H. Y. (2000) „Concrete strength by combined nondestructive methods – Simply and reliably predicted”, Cement
and Concrete Research, Vol. 30., pp. 739-746.
Qasrawi H. Y. (2001) „Reply to the discussion by E. Arioğlu, N. Arioğlu, and C. Girgin of the paper ‘‘Concrete strength by
combined nondestructive methods simply and reliably predicted”, Cement and Concrete Research, Vol. 31, p. 1241.
xii
Rackwitz R. (1983) „Predictive distribution of strength under control”, Materials and Structures, Vol. 16, No. 4, pp. 259-267.
Rational (1930) „Duroskop hardness tester (Duroskop Härteprüfer)”, Berlin Wilmersdorf: Rational GmbH, 2 p. (in German)
Ravindrajah R. S, Loo Y. H, Tam C. T. (1988) „Strength evaluation of recycled-aggregate concrete by in-situ tests”,
Materials and Structures, Vol. 21, pp. 289-295.
Razali N. M, Wah Y. B. (2011) „Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling
tests”, Journal of Statistical Modeling and Analytics, Vol. 2, No. 1, pp. 21-33.
Réaumur R. A. F. (1722) The art of converting iron into steel (L’art de convertir le fer forgé en acier), French Academy of
Sciences, Paris, 1722 (in French)
Reimann J. (1975) „Mathematical statistical analysis of characteristic flood data (Árvizek jellemző adatainak matematikai
statisztikai elemzése)”, Hidrológiai Közlöny, 1975/4, pp. 157-163. (in Hungarian)
Reimann J, V. Nagy I. (1984) „Statistics in Hydrology (Hidrológiai statisztika)”, Tankönyvkiadó, Budapest, 1984, 519 p. (in
Hungarian)
RILEM (1977) „Recommendations for testing concrete by hardness methods”, Tentative Recommendation, 7-NDT Committee
– Non Destructive Testing, Matériaux et Constructions, Vol. 10, No. 59, pp. 313-316.
Roknich Gy. (1966) „ Draft company-standard for rebound hammer test (Háziszabvány-tervezet Schmidt-kalapácsos
vizsgálathoz)”, Research Institute for Roads
Roknich Gy. (1967) „Cement and Concrete tests, Part C. Development of non-destructive test of concrete (Cement- és
betonvizsgálatok, C rész. A roncsolásmentes betonvizsgálat továbbfejlesztése)”, Research Institute for Roads, Report No.
07066013 (in Hungarian)
Roknich Gy. (1968) „Nondestructive testing of concrete (A beton roncsolásmentes vizsgálata)”, Mélyépítéstudományi
Szemle, Vol. XVIII, No. 7, pp. 298-301. (in Hungarian)
Rüsch H. (1964) „Statistical quality control of concrete (Zur statistischen Qualitätskontrolle des Betons)“, Materialprüfung, V. 6,
No. 11, November 1964, pp. 387-394. (in German)
Samarin A. (2004) „Combined Methods”, Chapter 9 in Malhotra, V. M., Carino, N. J. (Editors) „Handbook on nondestructive
testing of concrete”, Second edition, CRC Press LLC, pp. 9-1 to 9-12.
Schickert G. (1984) „Critical reflections on non-destructive testing of concrete”, Materials and Structures, Vol. 17, No. 3,
pp. 217-223.
Schleßl P. (2002) „Study aid of building materials practice for undergraduate (Unterlagen zum Praktikum im Grundstudium des
Fachs Baustoffkunde)”, Lehrstuhl für Baustoffkunde und Werkstoffprüfung, Technische Unversität München, München 2002
Schmidt E. (1950) „Rebound hammer for concrete testing (Der Beton-Prüfhammer)”, Schweizerische Bauzeitung, 15. Juli
1950, 68. Jahrgang, Nr. 28, pp. 378-379. (in German)
Schmidt E. (1951) „Quality control of concrete by rebound hammer testing (Versuche mit dem neuen Beton-Prüfhammer zur
Qualitätsbestimmung des Betons)“, Schweizer Archiv für angewandte Wissenschaft und Technik, V. 17, Mai 1951, pp. 139143. (in German)
Sestini Q. (1934) „Strength test of cementitious materials by Brinell testing (La prova Brinell applicata al materiali cementizi
come prova di resistenza)”, Le Strade, 1934/7, Vol. 16. (in Italian)
Shimizu Y, Hirosawa M, Zhou J. (2000) “Statistical analysis of concrete strength in existing reinforced concrete buildings in Japan”,
Proceedings 12WCEE 2000: 12th World Conference on Earthquake Engineering, January 30 – February 4, 2000, Auckland,
New Zealand, No. 1499, pp. 1-8.
Shore A. T. (1911) „Property of Hardness in Metals and Materials”, Proceedings, ASTM, Vol. 11, 1911, pp. 733-739.
Skramtajew B. G. (1938) „Determining Concrete Strength in Control for Concrete in Structures”, Journal of the American
Concrete Institute, January-February 1938, Vol. 9 (Proceedings Vol. 34), No. 3, pp. 285-303.
Skramtajew B. G., Leshchinsky, M. Y. (1964) „Strength testing of concrete (Испытание прочности бетона)”, Sztroizdat,
Moscow, 1964, 176 p. (in Russian)
Soroka I. (1971) “On compressive strength variation in concrete”, Matériaux et Constructions, Vol. 4, No. 21, 1971, pp.
155-161.
Soshiroda T, Voraputhaporn K. (1999) „Recommended method for earlier inspection of concrete quality by non-destructive
testing”, Proceedings Symp. Concrete Durability and Repair Technology, Dundee, UK, pp. 27-36.
Soshiroda T, Voraputhaporn K, Nozaki Y. (2006) „Early-stage inspection of concrete quality in structures by combined
nondestructive method”, Materials and Structures, DOI 10.1617/s11527-005-9007-6.
Springenschmid R., Wagner-Grey U. (1980) „Der zerstörunsfreie Prüfung von Brücken”, Forschungs-auftrag des
Bundesministeriums für Bauten und Technik, Straßenforschung, Heft 145, Wien
xiii
Steinwede K. (1937) „Application of ball hardness tests for the determination of strength of concrete (Über die Anwendung
des Kugelhärteversuches zur Bestimmung der Festigkeit des Betons), Doctoral Thesis, University of Hannover, Faculty of
Civil Engineering, 20 Feb 1937, Gebrüder Jänecke, Hannover, 69 p. (in German)
Swain M.V, Hagan J.T. (1976) “Indentation plasticity and the ensuing fracture of glass”, Journal of Physics D: Applied
Physics, Vol. 9, No. 15, pp. 2201-2214.
Swamy N, Rigby G. (1971) „Dynamic properties of hardened paste, mortar and concrete”, Matériaux et Constructions, Vol.
4, No. 19, pp. 13-40.
Szalai K. ed. (1982) „Quality control of concrete (A beton minőségellenőrzése)”, Standardization Library 26, Hungarian
Standards Institution, 538 p.
Szilágyi K, Borosnyói A. (2009) „50 years of experience with the Schmidt rebound hammer”, Concrete Structures, Vol. 10,
2009, pp. 46-56.
Szilágyi K, Borosnyói A. (2011) „Static indentation hardness testing of concrete: A long established method revived”, Épít
őanyag, Vol. 63. No. 1, 2011/1
Szilágyi K, Borosnyói A, Zsigovics I. (2011) „Rebound surface hardness of concrete: Introduction of an empirical
constitutive model”, Construction and Building Materials, Vol. 25, Issue 5, May 2011, pp. 2480-2487.
Szwedzicki T. (1988) „Indentation hardness testing of rock”, International Journal of Rock Mechanics and Mining Sciences
and Geomechanics Abstracts, Vol. 35, No. 6, pp. 825-829.
Szymanski, A., Szymanski, J. M. (1989) „Hardness estimation of minerals, rocks and ceramic materials”, Polish Scientific
Publishers, Warszawa, Elsevier, Amsterdam, 1989, 330. p.
Tabor D. (1947) „A simple theory of static and dynamic hardness”, Proc. of the Royal Society of London. Series A,
Mathematical and Physical Sciences, 192(1029): 247-274
Tabor D. (1951) The hardness of metals, Oxford University Press, 1951, 175 p.
Talabér J, Borján J, Józsa Zs. (1979) „Influences of concrete technology parameters to the strength estimation
relationships based on non-destructive testing (Betontechnológiai paraméterek hatása a roncsolásmentes
szilárdságbecslő összefüggésekre)”, Tudományos Közlemények 29, Budapest University of Technology, Dept. of
Building Materials, 97 p. (in Hungarian)
Tanigawa Y, Baba K, Mori H. (1984) „In Situ Tests: Estimation of concrete strength by combined non-destructive testing
method”, ACI Publication SP-82 In Situ/Nondestructive Testing of Concrete, Malhotra, V. M. (Editor), American
Concrete Institute, Detroit, Michigan, 1984, pp. 57-76.
Tewodros T, Soroushian G, Soroushian P. (2010) „Development of structure-property relationships for concrete”, Journal of
Advanced Concrete Technology, Vol. 9., No. 1., pp. 5-14.
Teychenné D. C. (1973) “Recommendations for the treatment of the variations of concrete strength in codes of practice”,
Matériaux et Constructions, Vol. 6, No. 34, 1973, pp. 259-267.
The People’s Republic of China industry standard JGJ/T23-2001. Technical Specification for Inspection of Concrete
Compressive Strength by Rebound Method. Approved by the People’s Republic of China Ministry of Construction, 1
October 2001. p. 32. (in Chinese)
Thewlis J. (1973) „Concise Dictionary of Physics”, Oxford, Pergamon Press, p. 248.
Thomaz E. C. S. (2011) „Sclerometer (Esclerômetro)”, Notas de Aula, pp. 1-20. (in Portuguese)
Timoshenko S. P. (1951) “History of strength of materials”, McGraw-Hill, New York, 1951, 452 p.
Timoshenko S, Goodier J. N. (1951) Theory of elasticity, McGraw-Hill Book Company, 567 p.
Todhunter I. (1893) „A history of the theory of elasticity and of the strength of materials from Galilei to the present time”.
Edited and completed by Karl Pearson, Cambridge University Press, 1893.
Tóth J. editor (2007) „Oxford-Typotex Encyclopaedia of mathematics (Oxford-Typotex Matematikai Kislexikon)”, Typotex
publishing, 2007, source: www.tankonyvtar.hu (in Hungarian)
Tyrman M. (1936) „Devices to determine hardness (Keménységmegállapító műszerek)”, A Magyar Mérnök- és Építész
Egylet Közlönye, Vol. LXX, No. 39-40, p. 282. (in Hungarian)
Ujhelyi J, Popovics S. (2006) „Improvements in accuracy of the relationship between concrete strength and water-cement
ratio (A betonszilárdság és a víz-cement tényező közötti összefüggés megbízha-tóságának javítása)”, Vasbetonépítés,
VIII. évf, 1. sz, pp. 2-9. (in Hungarian)
Ujhelyi J. (2005) „Concrete knowledge (Betonismeretek)”, BME University Press, 346 p. (in Hungarian)
ÚT 2-2.204 (1999) „Közúti betonburkolatok és műtárgyak roncsolásmentes vizsgálata Schmidt-kalapáccsal és
ultrahanggal”, Útügyi Műszaki Előírás, Magyar Útügyi Társaság, 39 p. (in Hungarian)
xiv
Vadász J. (1970) „Nondestructive testing of concrete strength in structures (A beton nyomószilárdsá-gának
roncsolásmentes meghatározása szerkezetekben)”, Doctoral Thesis, Budapest University of Technology, Faculty of
Civil Engineering (in Hungarian)
Vandone I. (1933) „Indentation testing for the determination of compressive strength of cements (La prova d’impronta per
determinare la resistenza a compressione dei cementi)”, Le Strade, 1933/9, Vol. 15. (in Italian)
Varga F, Tóth L, Pluvinage G. (1999) „Anyagok károsodása és vizsgálata különböző üzemi körülmények között –
Keménységmérés”, Miskolci Egyetem, 1999, p. 35. (in Hungarian)
Victor D. J. (1963) „Evaluation of hardened field concrete with rebound hammer”, Indian Concrete Journal, November 1963,
pp. 407-411.
Washa G. W, Wendt K. F. (1975) „Fifty Year Properties of Concrete”, ACI Journal, Vol. 72, No. 1, pp. 20-28.
Wassermann R, Katz A, Bentur A. (2009) „
Minimum cement content requirements: a must or a myth?”, Materials and Structures, Vol. 42, pp. 973–982.
Wesche K. (1967) „Strength testing of concrete in structures (Die Prüfung der Betonfestigkeit im Bauwerk)“, Betonstein-Zeitung,
Heft 6/1967, pp. 267-277. (in German)
Williams J. F. (1936) „A Method for the Estimation of Compressive Strength of Concrete in the Field”, The Structural
Engineer (London), Vol. 14, No. 7, July 1936, pp. 321-326.
Wolpert Wilson Instruments (2006) “WHL-380 MASSTER TESTOR”, Info sheet
Wood S. L. (1991) „Evaluation of the Long-Term Properties of Concrete”, ACI Materials Journal, V. 88, No. 6, NovemberDecember 1991, pp. 630-643.
WSDOT Materials Manual M 46-01.03 (2009) „Rebound Hammer Determination of Compressive Strength of Hardened
Concrete”, January 2009
Yoo J. K, Ryu D. W. (2008) „A study on the evaluation of strength development property of concrete at early ages”,
Proceedings of the 3rd ACF International Conference ACF/VCA, pp. 955-962.
Yoon I.-S, Copuroglu O, Park K.-B. (2007) „Effect of global climatic change on carbonation progress of concrete”,
Atmospheric Environment, Elsevier, doi: 10.1016/j.atmosenv.2007.05.028.
Yun C. H, Choi K. R, Kim S. Y, Song Y. C. (1988) „Comparative Evaluation of Nondestructive Test Methods for In-Place
Strength Determination”, ACI Publication SP-112 Nondestructive Testing, Lew, H. S. (Editor), American Concrete
Institute, Farmington Hills, Michigan, 1984, pp. 111-136.
Zeng K, Breder K, Rowcliffe D. J, Herrström C. (1992) „Elastic modulus determined by Hertzian indentation”, Journal of Materials
Science, Vol. 27, No. 14, pp. 3789-3792.
Zhu W, Gibbs J. C, Bartos P. J. M. (2001), „Uniformity of in situ properties of self-compacting concrete in full-scale
sructural elements”, Cement & Concrete Composites, Vol. 23, pp. 57-64.
Zoldners N. G. (1957) „Calibration and Use of Impact Test Hammer”, Journal of the American Concrete Institute, V. 29, No.
2, August 1957, Proceedings V. 54, pp. 161-165.
Zukas J. A, Nicholas T, Swift H. F, Greszczuk L. B, Curran D. R. (1982) Impact dynamics, Hohn Wiley & Sons, 452 p.
xv
Appendices
APPENDIX A – Numerical input for the statistical analysis together with the resulted
repeatability parameters
APPENDIX B – Results of the goodness of fit tests of the repeatability parameters
APPENDIX C – Results of the model verification experiments
APPENDIX D – Results of the targeted experiments
Appendix A
Rm
sR
VR, %
rR
θR
fcm, MPa
26 25 27 26 25 24 26 26 25 26
25.60
0.843
3.294
3
3.558
29.28
25 22 25 29 27 26 27 26 26 24
25.70
1.889
7.348
7
3.707
26.75
1/3
27 22 26 26 34 28 28 27 27 26
27.10
2.961
10.926
12
4.053
26.50
1/4
23 25 26 29 25 22 33 25 26 23
25.70
3.234
12.582
11
3.402
26.75
1/5
24 23 26 23 22 20 21 21 23 25
22.80
1.874
8.218
6
3.202
26.75
1/6
24 22 23 20 26 28 27 27 23 27
24.70
2.669
10.805
8
2.998
27.25
1/7
31 31 30 33 32 29 28 29 29 31
30.30
1.567
5.172
5
3.191
31.75
1/8
29 27 28 28 26 30 29 28 28 30
28.30
1.252
4.423
4
3.196
30.00
1/9
30 26 28 27 29 27 32 30 32 29
29.00
2.055
7.086
6
2.920
30.00
1/10
31 28 33 29 27 32 29 32 27 29
29.70
2.163
7.282
6
2.774
31.38
1/11
30 30 25 28 28 28 31 27 30 28
28.50
1.780
6.244
6
3.372
30.80
1/12
28 28 27 24 27 25 31 30 27 30
27.70
2.214
7.991
7
3.162
30.80
1/13
26 24 27 24 26 21 22 29 28 27
25.40
2.591
10.199
8
3.088
30.00
1/14
25 23 25 26 26 25 25 29 25 26
25.50
1.509
5.919
6
3.976
30.00
1/15
26 22 25 25 24 20 24 27 26 26
24.50
2.121
8.658
7
3.300
29.38
1/16
30 31 30 30 29 39 28 33 29 30
30.90
3.143
10.171
11
3.500
32.30
1/17
34 27 29 31 30 25 30 31 31 29
29.70
2.452
8.255
9
3.671
31.38
1/18
29 29 26 33 32 39 27 31 27 29
30.20
3.824
12.662
13
3.400
33.63
1/19
28 27 28 32 29 26 31 32 35 34
30.20
3.048
10.092
9
2.953
42.50
1/20
44 29 32 28 27 30 36 35 30 31
32.20
5.029
15.617
17
3.381
43.75
1/21
31 35 31 38 45 36 32 31 28 33
34.00
4.830
14.207
17
3.519
40.00
1/22
34 33 26 31 33 27 37 38 35 37
33.10
4.095
12.371
12
2.931
39.38
1/23
33 30 31 31 36 35 31 35 36 38
33.60
2.757
8.205
8
2.902
39.38
1/24
34 35 32 32 34 33 36 36 36 34
34.20
1.549
4.530
4
2.582
40.38
1/25
32 32 28 27 33 34 36 31 35 35
32.30
2.983
9.236
9
3.017
21.38
1/26
32 28 32 27 35 27 30 37 35 33
31.60
3.534
11.183
10
2.830
33.25
1/27
34 31 34 34 34 35 35 35 36 34
34.20
1.317
3.850
5
3.798
39.30
2/1
34 33 34 34 35 37 35 34 34 36
34.60
1.174
3.392
4
3.408
22.40
2/2
36 36 36 35 36 37 34 36 34 36
35.60
0.966
2.714
3
3.105
24.00
2/3
34 40 36 35 37 36 34 36 33 35
35.60
1.955
5.492
7
3.580
23.40
2/4
40 36 38 41 39 43 39 42 39 41
39.80
2.044
5.136
7
3.425
32.10
2/5
39 39 38 35 35 37 36 39 40 42
38.00
2.261
5.949
7
3.096
33.60
2/6
38 34 39 38 40 39 36 35 38 40
37.70
2.058
5.458
6
2.916
32.60
2/7
34 40 40 40 40 42 35 44 39 40
39.40
2.951
7.491
10
3.388
37.20
2/8
38 34 35 39 42 42 40 40 41 40
39.10
2.726
6.973
8
2.934
37.20
2/9
40 46 42 40 43 39 40 43 40 36
40.90
2.726
6.666
10
3.668
36.70
2/10
44 50 44 47 49 38 40 44 40 47
44.30
4.029
9.095
12
2.978
45.40
2/11
40 44 45 42 43 45 41 45 45 47
43.70
2.163
4.949
7
3.237
49.90
2/12
37 39 40 46 48 49 43 46 44 42
43.40
3.950
9.101
12
3.038
45.40
2/13
32 34 30 32 31 32 34 30 32 34
32.10
1.524
4.747
4
2.625
22.40
2/14
30 32 31 32 32 33 30 35 32 33
32.00
1.491
4.658
5
3.354
24.00
2/15
34 33 32 36 38 35 33 35 36 34
34.60
1.776
5.134
6
3.378
23.40
2/16
39 40 40 37 36 39 40 37 40 38
38.60
1.506
3.900
4
2.657
32.10
2/17
40 35 37 38 36 38 40 40 38 38
38.00
1.700
4.473
5
2.942
33.60
2/18
38 38 39 37 38 40 40 39 37 38
38.40
1.075
2.799
3
2.791
32.60
2/19
39 38 36 38 37 40 38 41 38 33
37.80
2.201
5.823
8
3.635
37.20
2/20
33 33 46 38 41 43 44 40 40 38
39.60
4.300
10.858
13
3.023
37.20
2/21
35 44 34 41 40 44 40 39 40 40
39.70
3.234
8.145
10
3.093
36.70
2/22
40 38 43 40 40 42 43 46 43 44
41.90
2.378
5.676
8
3.364
45.40
2/23
40 45 41 42 46 45 38 42 40 45
42.40
2.716
6.406
8
2.945
49.90
2/24
45 42 43 46 51 43 45 43 42 46
44.60
2.716
6.090
9
3.313
45.40
2/25
38 39 38 34 38 38 36 38 36 40
37.50
1.716
4.576
6
3.497
29.10
Test area
R1
1/1
1/2
R2
R3
R4
R5
R6
R7
R8
R9
R10
A1
Test area
R1
2/26
2/27
R2
R3
R4
R5
R6
R7
R8
R9
R10
sR
VR, %
36 38 45 40 41 41 36 37 37 39
39.00
2.828
7.252
9
3.182
31.60
34 40 40 40 40 42 35 44 39 40
39.40
2.951
7.491
10
3.388
32.60
2/28
36 38 38 38 40 38 39 40 40 38
38.50
1.269
3.297
4
3.151
34.70
2/29
39 36 36 38 36 39 39 40 40 38
38.10
1.595
4.187
4
2.508
38.70
2/30
39 39 40 39 40 39 40 38 41 40
39.50
0.850
2.151
3
3.530
37.20
2/31
38 38 42 37 41 40 41 43 40 40
40.00
1.886
4.714
6
3.182
38.20
2/32
46 44 36 39 36 45 38 42 40 33
39.90
4.306
10.793
13
3.019
39.20
2/33
37 40 37 39 45 46 40 35 42 40
40.10
3.479
8.675
11
3.162
40.80
2/34
41 41 44 45 41 42 45 45 45 46
43.50
2.014
4.630
5
2.483
48.90
2/35
40 42 43 40 42 43 42 42 40 44
41.80
1.398
3.345
4
2.860
51.00
2/36
48 46 41 43 47 48 44 40 40 47
44.40
3.239
7.294
8
2.470
45.40
2/37
34 34 38 38 38 39 34 33 40 35
36.30
2.541
6.999
7
2.755
29.10
2/38
39 38 38 38 38 39 40 38 39 32
37.90
2.183
5.761
8
3.664
31.60
2/39
39 38 36 37 38 40 38 41 38 33
37.80
2.201
5.823
8
3.635
32.60
2/40
36 38 41 39 40 38 41 38 40 40
39.10
1.595
4.080
5
3.135
34.70
2/41
40 41 40 38 40 43 41 40 40 40
40.30
1.252
3.106
5
3.995
38.70
2/42
38 40 39 41 40 42 43 41 43 42
40.90
1.663
4.067
5
3.006
37.20
2/43
43 44 38 32 46 42 46 36 42 41
41.00
4.472
10.908
14
3.130
38.20
2/44
42 43 43 34 44 41 44 44 40 41
41.60
3.026
7.274
10
3.305
39.20
2/45
40 42 34 34 36 41 42 40 40 43
39.20
3.327
8.486
9
2.705
40.80
2/46
38 40 38 38 42 52 42 40 44 44
41.80
4.264
10.200
14
3.284
48.90
2/47
43 48 38 42 50 46 44 43 42 42
43.80
3.425
7.821
12
3.503
51.00
2/48
45 40 41 40 44 45 43 44 42 40
42.40
2.066
4.872
5
2.421
45.40
2/49
37 37 39 35 37 37 34 37 38 38
36.90
1.449
3.927
5
3.450
33.60
2/50
38 37 38 38 38 37 39 36 36 38
37.50
0.972
2.592
3
3.087
33.10
2/51
37 38 36 37 38 35 37 36 36 38
36.80
1.033
2.807
3
2.905
33.10
2/52
34 34 38 42 44 32 40 38 34 30
36.60
4.526
12.367
14
3.093
33.60
2/53
38 38 40 38 33 36 34 32 32 34
35.50
2.877
8.105
8
2.781
39.20
2/54
35 35 34 34 36 38 36 39 40 37
36.40
2.066
5.675
6
2.905
38.20
2/55
42 40 42 44 41 41 41 43 41 43
41.80
1.229
2.941
4
3.254
41.80
2/56
44 42 45 45 44 40 42 44 45 43
43.40
1.647
3.794
5
3.037
42.80
2/57
40 43 43 45 43 40 41 40 42 43
42.00
1.700
4.047
5
2.942
43.80
2/58
42 39 33 39 35 40 42 38 33 41
38.20
3.425
8.967
9
2.627
44.30
2/59
44 40 46 43 49 40 41 36 42 43
42.40
3.565
8.409
13
3.646
47.40
2/60
40 42 45 43 44 42 43 45 44 43
43.10
1.524
3.536
5
3.281
43.30
2/61
40 38 39 40 38 39 40 40 39 40
39.30
0.823
2.095
2
2.429
33.60
2/62
40 37 37 36 40 38 38 39 39 37
38.10
1.370
3.597
4
2.919
33.10
2/63
39 38 39 40 40 41 39 40 39 39
39.40
0.843
2.140
3
3.558
33.10
2/64
44 38 32 40 40 36 40 36 36 40
38.20
3.327
8.709
12
3.607
33.60
2/65
42 40 42 38 40 36 43 44 42 38
40.50
2.550
6.295
8
3.138
39.20
2/66
36 42 40 36 36 42 42 44 36 37
39.10
3.213
8.217
8
2.490
38.20
2/67
44 46 42 43 42 45 46 44 46 40
43.80
2.044
4.667
6
2.935
41.80
2/68
42 40 40 41 46 44 42 40 43 46
42.40
2.319
5.469
6
2.587
42.80
2/69
40 43 44 40 44 44 42 42 45 44
42.80
1.751
4.092
5
2.855
43.80
2/70
43 41 41 42 43 43 45 46 46 44
43.40
1.838
4.235
5
2.721
44.30
2/71
41 46 38 42 45 46 44 45 44 42
43.30
2.541
5.868
8
3.149
47.40
2/72
41 35 42 42 41 45 46 42 44 46
42.40
3.239
7.638
11
3.396
43.30
2/73
32 33 32 32 31 35 38 35 31 36
33.50
2.369
7.071
7
2.955
22.90
2/74
35 40 40 34 31 33 30 29 29 30
33.10
4.175
12.614
11
2.635
23.40
2/75
34 34 34 32 30 28 32 31 34 28
31.70
2.406
7.590
6
2.494
22.40
2/76
31 30 31 33 34 34 32 40 42 37
34.40
4.033
11.724
12
2.975
26.00
2/77
36 32 35 35 33 37 34 35 32 43
35.20
3.190
9.063
11
3.448
25.50
2/78
30 30 30 32 36 33 31 37 34 40
33.30
3.433
10.311
10
2.912
26.00
A2
rR
θR
Rm
fcm, MPa
Test area
R1
2/79
2/80
R2
R3
R4
R5
R6
R7
R8
R9
R10
sR
33 31 34 32 33 31 33 34 36 32
32.90
1.524
4.632
5
3.281
29.60
32 40 38 32 41 40 43 40 34 36
37.60
3.893
10.354
11
2.826
29.10
2/81
40 40 38 34 38 37 33 30 36 32
35.80
3.425
9.568
10
2.919
30.10
2/82
39 38 40 40 38 38 40 39 40 40
39.20
0.919
2.344
2
2.176
33.60
2/83
38 36 36 38 37 40 40 38 40 41
38.40
1.776
4.626
5
2.815
32.60
2/84
39 39 36 39 40 40 38 37 38 40
38.60
1.350
3.497
4
2.963
33.60
2/85
39 40 40 38 38 38 37 42 38 38
38.80
1.476
3.803
5
3.388
22.90
2/86
29 35 35 34 36 34 31 36 34 36
34.00
2.309
6.792
7
3.031
23.40
2/87
36 32 36 36 33 40 41 37 39 37
36.70
2.830
7.712
9
3.180
22.40
2/88
38 40 43 33 40 42 36 35 37 39
38.30
3.129
8.169
10
3.196
26.00
2/89
40 36 40 37 38 38 37 38 40 38
38.20
1.398
3.661
4
2.860
25.50
2/90
40 36 38 36 38 41 34 32 38 37
37.00
2.667
7.207
9
3.375
26.00
2/91
42 40 38 36 40 42 41 40 41 42
40.20
1.932
4.806
6
3.105
29.60
2/92
44 40 39 41 41 43 38 41 39 40
40.60
1.838
4.527
6
3.265
29.10
2/93
43 41 39 36 42 44 36 40 40 42
40.30
2.710
6.725
8
2.952
30.10
2/94
40 40 41 38 36 40 42 41 40 40
39.80
1.687
4.238
6
3.558
33.60
2/95
40 40 39 39 36 38 40 41 39 39
39.10
1.370
3.505
5
3.649
32.60
2/96
39 38 38 41 40 40 40 41 39 39
39.50
1.080
2.734
3
2.777
33.60
2/97
34 30 26 43 32 31 32 34 34 36
33.20
4.417
13.305
17
3.849
35.70
2/98
34 33 32 33 34 35 36 33 33 34
33.70
1.160
3.441
4
3.450
35.20
2/99
33 34 33 30 32 35 34 30 34 33
32.80
1.687
5.142
5
2.965
31.60
2/100
36 36 35 35 36 35 33 38 39 36
35.90
1.663
4.633
6
3.607
34.10
2/101
32 34 33 35 40 35 34 40 34 32
34.90
2.885
8.266
8
2.773
35.70
2/102
38 34 34 38 40 35 34 37 33 36
35.90
2.283
6.359
7
3.066
35.70
2/103
36 37 39 33 38 40 34 39 37 35
36.80
2.300
6.249
7
3.044
37.20
2/104
39 41 42 43 42 39 42 42 40 41
41.10
1.370
3.334
4
2.919
40.80
2/105
36 32 37 34 40 34 36 33 35 35
35.20
2.251
6.395
8
3.554
38.70
2/106
40 40 42 39 38 40 40 39 40 41
39.90
1.101
2.758
4
3.635
38.20
2/107
40 40 37 40 41 39 39 41 43 40
40.00
1.563
3.909
6
3.838
39.20
2/108
40 41 40 39 39 41 42 40 41 40
40.30
0.949
2.354
3
3.162
40.30
2/109
36 39 38 33 38 35 39 43 40 38
37.90
2.767
7.300
10
3.614
35.70
2/110
42 37 41 35 38 42 38 40 40 40
39.30
2.263
5.759
7
3.093
35.20
2/111
40 39 41 39 43 39 34 42 36 42
39.50
2.799
7.086
9
3.216
31.60
2/112
41 46 40 39 41 39 40 38 38 40
40.20
2.300
5.721
8
3.479
34.10
2/113
43 46 43 40 43 40 41 39 41 45
42.10
2.283
5.422
7
3.066
35.70
2/114
38 44 42 39 40 45 39 43 44 43
41.70
2.497
5.987
7
2.804
35.70
2/115
43 43 40 39 44 42 41 44 40 39
41.50
1.958
4.718
5
2.554
37.20
2/116
40 36 44 42 43 44 44 38 44 42
41.70
2.830
6.788
8
2.826
40.80
2/117
44 41 32 38 44 44 41 42 38 41
40.50
3.719
9.184
12
3.226
38.70
2/118
39 40 41 41 43 44 41 43 42 41
41.50
1.509
3.637
5
3.313
38.20
2/119
40 39 38 38 40 40 42 40 41 38
39.60
1.350
3.409
4
2.963
39.20
2/120
39 40 42 43 41 41 40 40 39 40
40.50
1.269
3.134
4
3.151
40.30
2/121
36 41 40 42 44 42 43 41 40 42
41.10
2.183
5.312
8
3.664
33.10
2/122
38 41 44 44 42 40 43 43 37 46
41.80
2.821
6.748
9
3.191
33.10
2/123
44 38 40 44 42 48 43 38 35 40
41.20
3.765
9.139
13
3.453
33.10
2/124
37 40 40 38 40 41 38 40 38 42
39.40
1.578
4.004
5
3.169
34.70
2/125
45 42 43 38 38 40 40 41 38 44
40.90
2.558
6.255
7
2.736
37.20
2/126
38 41 42 44 42 44 43 42 39 40
41.50
2.014
4.853
6
2.979
34.70
2/127
44 46 42 40 40 39 41 42 42 40
41.60
2.119
5.093
7
3.304
38.70
2/128
40 40 41 43 40 43 46 43 41 40
41.70
2.003
4.803
6
2.996
38.20
2/129
45 44 43 40 39 37 45 43 42 41
41.90
2.644
6.309
8
3.026
36.70
2/130
48 40 39 45 43 43 45 42 48 50
44.30
3.592
8.108
11
3.063
43.80
2/131
45 40 44 40 39 45 40 40 42 41
41.60
2.271
5.458
6
2.642
43.30
A3
VR, %
rR
θR
Rm
fcm, MPa
Test area
R1
2/132
2/133
R2
R3
R4
R5
R6
R7
R8
R9
R10
sR
VR, %
38 40 39 45 46 40 43 43 41 40
41.50
2.635
6.350
8
3.036
42.80
42 40 37 35 43 47 46 42 41 41
41.40
3.627
8.761
12
3.308
33.10
2/134
38 36 32 38 40 43 40 43 43 43
39.60
3.688
9.313
11
2.983
33.10
2/135
38 38 39 38 40 40 43 46 43 41
40.60
2.675
6.589
8
2.991
33.10
2/136
38 42 37 38 45 42 42 43 45 41
41.30
2.830
6.853
8
2.826
34.70
2/137
35 35 35 38 41 38 40 42 41 40
38.50
2.718
7.060
7
2.575
37.20
2/138
36 38 40 39 42 44 43 44 42 41
40.90
2.644
6.464
8
3.026
34.70
2/139
42 44 40 38 46 45 39 40 40 42
41.60
2.675
6.430
8
2.991
38.70
2/140
39 42 43 40 46 40 40 38 41 41
41.00
2.261
5.514
8
3.539
38.20
2/141
40 40 40 46 47 42 40 41 41 38
41.50
2.838
6.839
9
3.171
36.70
2/142
42 40 41 45 40 39 42 43 43 43
41.80
1.814
4.339
6
3.308
43.80
2/143
43 43 40 39 38 40 40 41 43 41
40.80
1.751
4.292
5
2.855
43.30
2/144
40 41 40 43 44 44 40 38 40 44
41.40
2.171
5.243
6
2.764
42.80
3/1
45 44 48 45 40 46 45 40 45 42
44.00
2.582
5.868
8
3.098
41.61
3/2
40 39 41 46 42 42 44 42 42 43
42.10
1.969
4.677
7
3.555
42.77
3/3
42 41 46 48 48 44 42 40 42 47
44.00
3.018
6.860
8
2.650
41.61
3/4
44 42 44 46 46 47 46 42 46 47
45.00
1.886
4.190
5
2.652
42.77
3/5
42 44 46 44 43 41 41 42 40 42
42.50
1.780
4.187
6
3.372
43.59
3/6
43 40 42 41 45 39 41 42 41 45
41.90
1.969
4.700
6
3.047
42.64
3/7
45 45 42 47 48 43 46 46 45 44
45.10
1.792
3.973
6
3.348
43.59
3/8
48 44 43 45 43 41 45 43 47 43
44.20
2.098
4.746
7
3.337
42.64
3/9
47 48 49 48 48 50 49 49 48 52
48.80
1.398
2.866
5
3.575
61.25
3/10
49 49 48 47 46 48 49 49 50 48
48.30
1.160
2.401
4
3.450
62.01
3/11
51 49 48 52 52 50 52 53 50 50
50.70
1.567
3.091
5
3.191
61.25
3/12
51 49 48 52 52 50 52 53 50 52
50.90
1.595
3.134
5
3.135
62.01
3/13
50 50 51 51 50 52 51 48 48 52
50.30
1.418
2.819
4
2.821
59.12
3/14
52 51 54 51 56 52 51 53 51 51
52.20
1.687
3.231
5
2.965
62.09
3/15
53 55 54 52 55 53 52 55 51 51
53.10
1.595
3.004
4
2.508
59.12
3/16
51 50 56 50 55 51 51 52 50 50
51.60
2.171
4.206
6
2.764
62.09
3/17
46 50 50 48 50 48 47 46 48 47
48.00
1.563
3.257
4
2.558
70.18
3/18
52 50 55 52 52 50 51 50 52 50
51.40
1.578
3.069
5
3.169
70.28
3/19
46 48 50 50 52 48 48 48 48 52
49.00
1.944
3.967
6
3.087
70.18
3/20
50 48 50 48 50 50 48 48 50 50
49.20
1.033
2.099
2
1.936
70.28
3/21
48 47 48 46 50 47 46 50 50 50
48.20
1.687
3.499
4
2.372
64.74
3/22
48 47 48 47 46 44 46 48 47 48
46.90
1.287
2.743
4
3.109
65.33
3/23
53 52 52 52 52 54 51 51 51 50
51.80
1.135
2.192
4
3.523
64.74
3/24
49 52 50 52 54 54 52 48 51 54
51.60
2.119
4.106
6
2.832
65.33
3/25
48 47 45 46 47 47 45 44 44 48
46.10
1.524
3.306
4
2.625
62.01
3/26
52 54 56 54 52 55 54 56 56 56
54.50
1.581
2.901
4
2.530
67.58
3/27
52 51 56 50 50 51 52 52 52 53
51.90
1.729
3.331
6
3.471
74.62
3/28
49 46 48 50 48 48 46 48 47 49
47.90
1.287
2.686
4
3.109
67.50
3/29
47 46 48 45 44 48 49 45 45 44
46.10
1.792
3.887
5
2.790
62.01
3/30
54 58 54 52 52 54 55 52 58 57
54.60
2.366
4.334
6
2.535
67.58
3/31
52 50 52 50 50 54 53 49 50 52
51.20
1.619
3.163
5
3.088
74.62
3/32
49 50 54 49 52 48 50 49 49 50
50.00
1.764
3.528
6
3.402
67.50
3/33
48 49 49 48 50 48 50 48 50 47
48.70
1.059
2.175
3
2.832
70.11
3/34
48 48 52 48 46 48 48 48 48 49
48.30
1.494
3.094
6
4.015
70.03
3/35
46 50 47 48 48 50 50 50 46 48
48.30
1.636
3.388
4
2.444
63.32
3/36
50 47 47 47 45 47 48 45 48 47
47.10
1.449
3.077
5
3.450
69.93
3/37
48 48 51 48 45 46 46 48 46 47
47.30
1.703
3.600
6
3.523
66.68
3/38
48 48 47 48 48 48 49 48 46 49
47.90
0.876
1.828
3
3.426
71.94
3/39
48 48 52 48 46 48 48 48 48 49
48.30
1.494
3.094
6
4.015
65.98
A4
rR
θR
Rm
fcm, MPa
Rm
sR
VR, %
rR
θR
fcm, MPa
48 48 50 48 46 48 48 48 49 52
48.50
1.581
3.260
6
3.795
53.78
48 50 50 49 49 48 50 52 50 49
49.50
1.179
2.381
4
3.394
70.11
3/42
46 48 48 48 49 48 48 48 47 48
47.80
0.789
1.650
3
3.803
70.03
3/43
45 48 50 52 48 49 48 45 52 46
48.30
2.541
5.260
7
2.755
63.32
3/44
49 48 47 47 47 47 48 51 47 49
48.00
1.333
2.778
4
3.000
69.93
3/45
47 49 46 46 48 48 46 48 47 45
47.00
1.247
2.654
4
3.207
66.68
3/46
49 45 50 48 51 50 46 46 48 47
48.00
2.000
4.167
6
3.000
71.94
3/47
46 48 48 48 49 48 48 48 47 48
47.80
0.789
1.650
3
3.803
65.98
3/48
46 48 48 48 49 48 48 48 47 48
47.80
0.789
1.650
3
3.803
53.78
3/49
40 44 46 43 46 40 40 41 42 42
42.40
2.319
5.469
6
2.587
49.48
3/50
48 44 46 50 44 40 47 44 48 46
45.70
2.830
6.193
10
3.533
51.76
3/51
49 46 45 49 47 44 46 46 44 45
46.10
1.792
3.887
5
2.790
50.98
3/52
42 40 41 40 41 44 42 44 42 42
41.80
1.398
3.345
4
2.860
54.74
3/53
45 44 48 45 40 46 45 40 45 42
44.00
2.582
5.868
8
3.098
54.73
3/54
42 47 42 44 41 40 41 44 44 44
42.90
2.079
4.846
7
3.367
53.39
3/55
40 43 41 41 42 41 40 41 45 41
41.50
1.509
3.637
5
3.313
49.48
3/56
48 45 47 46 44 45 48 45 44 47
45.90
1.524
3.320
4
2.625
51.76
3/57
45 44 45 46 46 43 45 46 48 46
45.40
1.350
2.973
5
3.704
50.98
3/58
48 46 46 48 45 49 45 45 47 47
46.60
1.430
3.068
4
2.798
54.74
3/59
42 41 46 48 48 44 42 40 42 47
44.00
3.018
6.860
8
2.650
54.73
3/60
46 45 44 43 48 48 44 43 46 48
45.50
2.014
4.426
5
2.483
53.39
3/61
43 40 43 41 46 44 46 47 42 43
43.50
2.273
5.225
7
3.080
58.69
3/62
46 42 48 42 43 43 43 45 46 46
44.40
2.066
4.652
6
2.905
57.23
3/63
44 47 43 44 47 47 46 45 45 47
45.50
1.509
3.317
4
2.650
63.29
3/64
44 44 46 48 43 44 44 46 46 42
44.70
1.767
3.953
6
3.396
55.30
3/65
44 48 44 47 47 47 47 48 47 48
46.70
1.494
3.200
4
2.677
54.56
3/66
50 50 48 46 46 48 50 47 47 47
47.90
1.595
3.330
4
2.508
57.17
3/67
46 46 48 47 44 47 46 46 48 46
46.40
1.174
2.530
4
3.408
60.23
3/68
44 46 45 45 49 44 48 48 47 48
46.40
1.838
3.961
5
2.721
51.77
3/69
46 47 44 46 46 46 46 44 48 45
45.80
1.229
2.684
4
3.254
52.04
3/70
46 47 50 47 46 46 45 44 46 44
46.10
1.729
3.750
6
3.471
58.69
3/71
44 43 44 45 46 46 45 48 44 46
45.10
1.449
3.213
5
3.450
57.23
3/72
46 46 46 45 46 46 46 46 48 48
46.30
0.949
2.049
3
3.162
63.29
3/73
43 46 47 43 48 48 46 46 46 48
46.10
1.853
4.019
5
2.698
55.30
3/74
47 46 47 48 48 48 47 50 48 49
47.80
1.135
2.375
4
3.523
54.56
3/75
47 43 47 44 46 43 43 44 46 46
44.90
1.663
3.705
4
2.405
57.17
3/76
46 46 47 47 47 45 44 44 44 48
45.80
1.476
3.222
4
2.711
60.23
3/77
48 51 52 52 45 49 44 46 46 46
47.90
2.961
6.181
8
2.702
51.77
3/78
52 52 44 45 49 51 46 48 47 47
48.10
2.846
5.917
8
2.811
52.04
3/79
50 50 50 49 51 50 48 49 50 52
49.90
1.101
2.205
4
3.635
69.56
3/80
52 53 51 52 52 53 50 50 50 49
51.20
1.398
2.731
4
2.860
69.71
3/81
50 52 51 51 52 51 52 53 52 52
51.60
0.843
1.634
3
3.558
70.69
3/82
50 52 50 52 51 51 50 49 51 52
50.80
1.033
2.033
3
2.905
69.56
3/83
50 50 54 50 52 51 51 53 50 53
51.40
1.506
2.929
4
2.657
69.71
3/84
49 49 50 51 50 50 51 50 48 50
49.80
0.919
1.845
3
3.265
70.69
3/85
47 44 50 48 49 45 45 46 46 46
46.60
1.897
4.072
6
3.162
64.97
3/86
47 47 48 49 46 45 45 47 45 46
46.50
1.354
2.912
4
2.954
68.01
3/87
47 48 48 48 46 46 44 42 46 47
46.20
1.932
4.182
6
3.105
64.34
3/88
48 50 50 49 50 49 51 52 48 50
49.70
1.252
2.518
4
3.196
71.89
3/89
47 46 48 49 48 50 52 50 46 50
48.60
1.955
4.023
6
3.069
64.97
3/90
49 49 50 48 48 49 49 48 47 50
48.70
0.949
1.948
3
3.162
68.01
3/91
46 48 46 50 49 48 48 47 47 47
47.60
1.265
2.657
4
3.162
64.34
3/92
48 49 50 50 50 50 50 51 49 48
49.50
0.972
1.963
3
3.087
71.89
Test area
R1
3/40
3/41
R2
R3
R4
R5
R6
R7
R8
R9
R10
A5
Rm
sR
VR, %
rR
θR
fcm, MPa
55 54 54 54 53 54 53 53 54 54
53.80
0.632
1.176
2
3.162
80.12
51 52 54 54 53 52 54 52 52 55
52.90
1.287
2.432
4
3.109
83.89
3/95
53 50 52 53 54 54 52 53 54 52
52.70
1.252
2.375
4
3.196
82.28
3/96
52 53 50 50 52 53 51 53 52 54
52.00
1.333
2.564
4
3.000
82.88
3/97
53 52 53 51 53 52 52 50 51 51
51.80
1.033
1.994
3
2.905
83.41
3/98
50 51 52 50 51 52 53 51 50 52
51.20
1.033
2.017
3
2.905
81.45
3/99
54 50 52 50 50 51 50 50 50 52
50.90
1.370
2.692
4
2.919
84.01
3/100
50 50 50 49 50 51 50 50 50 49
49.90
0.568
1.138
2
3.523
78.69
3/101
58 57 58 59 58 56 55 57 58 58
57.40
1.174
2.045
4
3.408
80.12
3/102
56 58 54 57 57 58 57 57 56 56
56.60
1.174
2.074
4
3.408
83.89
3/103
56 56 54 54 55 56 55 55 55 57
55.30
0.949
1.716
3
3.162
82.28
3/104
54 55 54 54 55 56 55 55 54 54
54.60
0.699
1.281
2
2.860
82.88
3/105
49 49 50 47 47 50 52 50 49 49
49.20
1.476
2.999
5
3.388
83.41
3/106
54 54 53 55 56 56 56 52 54 54
54.40
1.350
2.481
4
2.963
81.45
3/107
52 53 52 54 55 55 52 53 54 54
53.40
1.174
2.198
3
2.556
84.01
3/108
48 53 54 54 54 54 51 51 49 52
52.00
2.211
4.252
6
2.714
78.69
3/109
55 54 56 57 54 54 55 55 56 56
55.20
1.033
1.871
3
2.905
88.14
3/110
56 58 53 57 56 55 57 59 58 56
56.50
1.716
3.037
6
3.497
88.14
3/111
38 38 41 39 38 42 42 38 39 40
39.50
1.650
4.177
4
2.424
47.73
3/112
44 42 43 42 42 42 41 46 40 42
42.40
1.647
3.883
6
3.644
50.73
3/113
42 46 45 41 45 48 51 46 41 43
44.80
3.190
7.121
10
3.135
49.74
3/114
40 45 42 45 42 44 46 44 45 44
43.70
1.829
4.185
6
3.281
48.30
3/115
47 46 44 47 43 47 41 48 47 44
45.40
2.271
5.001
7
3.083
47.73
3/116
44 44 46 46 48 46 48 50 48 51
47.10
2.331
4.949
7
3.003
50.73
3/117
44 45 44 42 46 43 44 48 46 44
44.60
1.713
3.840
6
3.503
49.74
3/118
41 42 42 44 42 42 42 46 44 41
42.60
1.578
3.703
5
3.169
48.30
3/119
48 48 47 48 50 49 48 50 47 49
48.40
1.075
2.221
3
2.791
71.11
3/120
50 47 48 49 48 49 50 50 47 50
48.80
1.229
2.519
3
2.440
70.39
3/121
54 54 53 54 49 52 51 50 49 51
51.70
2.003
3.874
5
2.497
71.11
3/122
50 51 50 50 51 52 54 50 49 51
50.80
1.398
2.753
5
3.575
70.39
3/123
40 39 38 40 40 42 42 43 40 40
40.40
1.506
3.727
5
3.321
36.89
3/124
41 43 40 39 40 41 41 39 39 41
40.40
1.265
3.131
4
3.162
37.73
3/125
41 40 40 42 39 38 39 39 38 40
39.60
1.265
3.194
4
3.162
38.96
3/126
44 40 44 44 44 42 40 40 41 43
42.20
1.814
4.297
4
2.206
36.89
3/127
41 41 42 41 40 39 41 40 41 43
40.90
1.101
2.691
4
3.635
37.73
3/128
43 46 48 47 44 42 44 45 44 43
44.60
1.897
4.254
6
3.162
38.96
3/129
41 40 39 37 35 40 40 40 39 40
39.10
1.792
4.583
6
3.348
32.68
3/130
39 40 38 39 39 39 37 39 40 39
38.90
0.876
2.251
3
3.426
34.45
3/131
40 40 41 40 39 41 40 40 39 40
40.00
0.667
1.667
2
3.000
32.68
3/132
38 40 41 41 43 40 40 40 41 41
40.50
1.269
3.134
5
3.939
34.45
3/133
56 54 52 52 54 50 50 51 53 50
52.20
2.044
3.916
6
2.935
63.49
3/134
52 53 52 53 51 51 50 53 52 52
51.90
0.994
1.916
3
3.017
81.02
3/135
54 51 54 54 54 53 53 51 54 51
52.90
1.370
2.590
3
2.189
83.37
3/136
52 51 52 50 49 50 51 48 48 51
50.20
1.476
2.940
4
2.711
80.04
3/137
52 52 54 52 55 55 51 55 52 55
53.30
1.636
3.070
4
2.444
86.40
3/138
50 53 48 47 49 51 50 50 49 52
49.90
1.792
3.591
6
3.348
80.09
3/139
52 54 52 52 50 52 51 50 53 51
51.70
1.252
2.421
4
3.196
76.50
3/140
51 54 53 53 52 53 53 50 50 52
52.10
1.370
2.630
4
2.919
63.49
3/141
58 53 54 53 54 54 54 56 56 54
54.60
1.578
2.889
5
3.169
81.02
3/142
55 56 54 53 54 54 54 52 53 52
53.70
1.252
2.331
4
3.196
83.37
3/143
51 52 52 51 52 50 51 52 54 53
51.80
1.135
2.192
4
3.523
80.04
3/144
52 53 54 52 56 55 55 52 52 53
53.40
1.506
2.819
4
2.657
86.40
3/145
49 50 50 51 51 49 50 52 50 52
50.40
1.075
2.133
3
2.791
80.09
Test area
R1
3/93
3/94
R2
R3
R4
R5
R6
R7
R8
R9
R10
A6
Rm
sR
VR, %
rR
θR
fcm, MPa
52 52 53 54 50 54 53 54 51 53
52.60
1.350
2.566
4
2.963
76.50
42 44 43 44 43 41 43 44 42 44
43.00
1.054
2.451
3
2.846
32.24
3/148
44 43 44 42 40 42 43 45 45 46
43.40
1.776
4.093
6
3.378
32.17
3/149
44 46 43 45 44 46 43 45 44 44
44.40
1.075
2.421
3
2.791
30.85
3/150
44 42 40 41 44 43 43 42 43 41
42.30
1.337
3.162
4
2.991
30.85
3/151
49 46 44 42 44 42 44 42 40 41
43.40
2.633
6.067
9
3.418
29.88
3/152
44 43 46 42 42 43 44 42 43 43
43.20
1.229
2.846
4
3.254
30.89
3/153
37 38 38 37 39 39 38 36 36 36
37.40
1.174
3.138
3
2.556
37.31
3/154
38 40 40 38 39 38 38 38 40 40
38.90
0.994
2.556
2
2.011
39.44
3/155
44 43 43 44 42 40 44 44 43 42
42.90
1.287
2.999
4
3.109
32.24
3/156
42 43 42 41 42 43 44 45 43 42
42.70
1.160
2.715
4
3.450
32.17
3/157
43 44 44 48 44 45 43 43 44 46
44.40
1.578
3.553
5
3.169
30.85
3/158
42 40 42 43 40 43 44 44 44 43
42.50
1.509
3.551
4
2.650
30.85
3/159
42 43 46 44 41 41 44 42 43 44
43.00
1.563
3.636
5
3.198
29.88
3/160
43 45 44 47 44 42 47 42 42 41
43.70
2.111
4.830
6
2.842
30.89
3/161
40 41 41 40 40 41 38 39 41 40
40.10
0.994
2.480
3
3.017
37.31
3/162
43 45 44 44 44 42 42 42 43 43
43.20
1.033
2.391
3
2.905
39.44
3/163
38 40 42 43 42 41 40 42 42 41
41.10
1.449
3.526
5
3.450
27.03
3/164
40 39 38 41 45 44 40 39 39 41
40.60
2.271
5.593
7
3.083
33.46
3/165
39 40 40 39 38 41 42 40 42 39
40.00
1.333
3.333
4
3.000
31.89
3/166
39 40 40 40 39 40 41 42 41 39
40.10
0.994
2.480
3
3.017
34.51
3/167
44 45 44 43 43 44 42 44 42 46
43.70
1.252
2.864
4
3.196
34.49
3/168
40 44 43 41 42 44 45 44 44 41
42.80
1.687
3.941
5
2.965
27.03
3/169
42 43 44 44 45 44 46 47 48 46
44.90
1.853
4.127
6
3.238
33.46
3/170
43 41 39 40 41 40 43 40 40 42
40.90
1.370
3.350
4
2.919
31.89
3/171
43 39 39 42 44 39 40 40 38 41
40.50
1.958
4.834
6
3.065
34.51
3/172
46 43 43 46 43 41 43 44 46 44
43.90
1.663
3.789
5
3.006
34.49
3/173
44 40 39 41 41 39 38 41 42 38
40.30
1.889
4.686
6
3.177
30.64
3/174
39 40 43 42 39 40 41 39 40 40
40.30
1.337
3.319
4
2.991
30.47
3/175
38 39 39 38 38 39 40 39 40 38
38.80
0.789
2.033
2
2.535
29.78
3/176
38 39 42 41 42 40 38 40 38 42
40.00
1.700
4.249
4
2.353
30.64
3/177
35 40 39 36 40 37 40 36 38 38
37.90
1.853
4.889
5
2.698
30.47
3/178
38 39 36 39 37 37 37 42 39 38
38.20
1.687
4.415
6
3.558
29.78
3/179
54 56 53 53 54 54 56 52 52 52
53.60
1.506
2.809
4
2.657
81.89
3/180
54 53 55 50 56 55 52 52 50 51
52.80
2.150
4.072
6
2.791
76.57
3/181
51 54 52 54 52 54 54 52 54 52
52.90
1.197
2.263
3
2.506
82.16
3/182
56 56 54 52 53 53 53 54 54 52
53.70
1.418
2.641
4
2.821
83.13
3/183
53 52 52 50 50 51 53 54 53 53
52.10
1.370
2.630
4
2.919
80.28
3/184
56 58 56 54 56 55 57 55 55 57
55.90
1.197
2.142
4
3.341
81.89
3/185
58 56 58 56 58 55 56 55 55 56
56.30
1.252
2.223
3
2.397
76.57
3/186
57 56 56 51 53 56 55 55 55 54
54.80
1.751
3.196
6
3.426
82.16
3/187
53 56 56 56 55 57 57 56 54 54
55.40
1.350
2.437
4
2.963
83.13
3/188
54 54 57 54 56 55 55 58 57 55
55.50
1.434
2.583
4
2.790
80.28
3/189
37 36 34 38 37 34 33 34 35 36
35.40
1.647
4.651
5
3.037
23.84
3/190
36 36 34 34 36 35 36 37 36 35
35.50
0.972
2.738
3
3.087
25.02
3/191
33 36 32 34 34 37 38 32 38 36
35.00
2.309
6.598
6
2.598
23.84
3/192
36 36 37 35 37 33 38 37 35 34
35.80
1.549
4.327
5
3.227
25.02
3/193
53 56 53 54 55 56 54 56 55 54
54.60
1.174
2.150
3
2.556
92.83
3/194
54 56 54 54 56 52 54 53 55 54
54.20
1.229
2.268
4
3.254
92.05
3/195
54 54 56 54 54 54 54 53 54 54
54.10
0.738
1.364
3
4.066
92.90
3/196
53 56 54 57 54 52 54 53 54 55
54.20
1.476
2.723
5
3.388
92.83
3/197
52 54 57 56 54 58 54 53 56 55
54.90
1.853
3.375
6
3.238
92.05
3/198
55 55 54 52 50 55 56 54 50 54
53.50
2.121
3.965
6
2.828
92.90
Test area
R1
3/146
3/147
R2
R3
R4
R5
R6
R7
R8
R9
R10
A7
Rm
sR
VR, %
rR
θR
fcm, MPa
51 53 53 54 51 54 54 52 52 51
52.50
1.269
2.418
3
2.364
92.11
52 52 50 53 52 53 51 52 52 50
51.70
1.059
2.049
3
2.832
92.41
3/201
59 55 55 57 55 57 56 56 56 55
56.10
1.287
2.294
4
3.109
90.48
3/202
54 54 58 55 56 54 54 52 57 56
55.00
1.764
3.207
6
3.402
92.11
3/203
51 52 53 50 54 50 49 54 51 52
51.60
1.713
3.319
5
2.919
92.41
3/204
52 54 56 58 53 54 53 55 52 55
54.20
1.874
3.457
6
3.202
90.48
3/205
40 43 39 38 39 40 36 40 41 39
39.50
1.841
4.660
7
3.803
31.89
3/206
40 40 42 42 40 40 42 38 38 38
40.00
1.633
4.082
4
2.449
31.82
3/207
43 41 41 44 43 44 49 39 41 44
42.90
2.726
6.355
10
3.668
31.89
3/208
42 42 38 40 42 41 40 43 44 44
41.60
1.897
4.561
6
3.162
31.82
3/209
50 51 47 48 49 53 48 49 46 50
49.10
2.025
4.124
7
3.457
59.16
3/210
50 50 50 48 51 50 48 51 51 49
49.80
1.135
2.280
3
2.642
59.02
3/211
46 48 48 49 53 53 48 52 52 51
50.00
2.494
4.989
7
2.806
59.16
3/212
48 48 50 50 48 48 52 48 50 50
49.20
1.398
2.842
4
2.860
59.02
3/213
49 49 50 48 49 50 50 50 50 51
49.60
0.843
1.700
3
3.558
84.69
3/214
54 54 52 54 55 54 52 53 54 54
53.60
0.966
1.802
3
3.105
80.33
3/215
54 56 56 52 53 55 56 53 54 53
54.20
1.476
2.723
4
2.711
84.69
3/216
54 52 53 52 54 54 53 54 52 52
53.00
0.943
1.779
2
2.121
80.33
3/217
56 55 56 52 56 58 55 58 54 58
55.80
1.932
3.463
6
3.105
90.62
3/218
58 55 57 54 55 55 53 55 55 55
55.20
1.398
2.533
5
3.575
84.17
3/219
54 55 55 52 55 56 55 55 57 56
55.00
1.333
2.424
5
3.750
90.62
3/220
56 54 54 53 54 52 53 56 54 54
54.00
1.247
2.310
4
3.207
84.17
3/221
52 55 56 55 54 53 53 54 54 54
54.00
1.155
2.138
4
3.464
87.54
3/222
57 55 53 54 54 55 53 55 54 53
54.30
1.252
2.305
4
3.196
90.87
3/223
50 49 56 54 52 52 51 54 52 54
52.40
2.119
4.043
7
3.304
87.54
3/224
51 55 50 53 54 52 54 50 52 52
52.30
1.703
3.256
5
2.936
90.87
3/225
52 52 52 48 56 50 50 53 52 48
51.30
2.406
4.690
8
3.325
65.05
3/226
48 48 49 50 48 48 45 48 52 48
48.40
1.776
3.670
7
3.941
63.75
3/227
50 50 50 50 50 51 52 50 52 48
50.30
1.160
2.305
4
3.450
66.99
3/228
47 50 49 50 49 54 48 47 48 48
49.00
2.055
4.193
7
3.407
69.35
3/229
48 48 47 50 48 47 48 52 49 51
48.80
1.687
3.456
5
2.965
70.50
3/230
48 46 51 50 49 46 49 50 48 48
48.50
1.650
3.402
5
3.030
69.56
3/231
47 48 48 50 50 50 48 48 48 48
48.50
1.080
2.227
3
2.777
56.64
3/232
48 52 50 51 47 48 47 49 50 48
49.00
1.700
3.469
5
2.942
64.91
3/233
53 54 50 51 50 51 50 52 50 54
51.50
1.650
3.204
4
2.424
65.05
3/234
52 52 54 50 49 48 48 48 50 50
50.10
2.025
4.042
6
2.963
63.75
3/235
48 48 53 50 50 52 46 51 50 50
49.80
2.044
4.104
7
3.425
66.99
3/236
52 53 52 53 49 52 50 51 54 51
51.70
1.494
2.891
5
3.346
69.35
3/237
47 49 50 46 50 52 52 50 52 50
49.80
2.044
4.104
6
2.935
70.50
3/238
50 50 52 52 52 49 54 50 50 49
50.80
1.619
3.188
5
3.088
69.56
3/239
51 49 50 50 50 49 52 49 49 49
49.80
1.033
2.074
3
2.905
56.64
3/240
53 50 54 48 48 55 49 46 47 50
50.00
3.055
6.110
9
2.946
64.91
3/241
55 57 56 54 56 56 55 54 56 53
55.20
1.229
2.227
4
3.254
83.84
3/242
57 58 52 58 55 60 56 58 56 55
56.50
2.224
3.936
8
3.598
91.57
3/243
56 58 57 57 59 57 58 58 56 57
57.30
0.949
1.656
3
3.162
94.51
3/244
56 58 54 57 59 57 56 57 56 56
56.60
1.350
2.385
5
3.704
88.08
3/245
54 58 52 50 53 54 52 55 54 52
53.40
2.171
4.065
8
3.686
80.79
3/246
53 54 56 56 54 55 56 55 55 53
54.70
1.160
2.120
3
2.587
90.86
3/247
53 55 55 54 56 54 53 54 56 55
54.50
1.080
1.982
3
2.777
79.06
3/248
54 53 55 54 56 54 56 56 53 56
54.70
1.252
2.288
3
2.397
79.99
3/249
52 54 52 54 58 52 58 58 59 52
54.90
2.998
5.461
7
2.335
83.84
3/250
56 56 60 56 56 59 58 54 56 53
56.40
2.119
3.757
7
3.304
91.57
3/251
53 56 54 55 57 56 55 55 58 57
55.60
1.506
2.708
5
3.321
94.51
Test area
R1
3/199
3/200
R2
R3
R4
R5
R6
R7
R8
R9
R10
A8
Rm
sR
VR, %
rR
θR
fcm, MPa
55 54 53 52 55 54 52 54 54 54
53.70
1.059
1.973
3
2.832
88.08
58 55 59 56 56 53 55 57 56 56
56.10
1.663
2.965
6
3.607
80.79
3/254
56 56 58 59 59 59 57 57 57 59
57.70
1.252
2.169
3
2.397
90.86
3/255
54 54 58 56 54 55 54 54 56 55
55.00
1.333
2.424
4
3.000
79.06
3/256
57 58 60 56 54 59 54 58 56 60
57.20
2.201
3.848
6
2.726
79.99
3/257
47 50 48 48 49 49 52 49 49 50
49.10
1.370
2.791
5
3.649
64.55
3/258
51 50 51 49 48 50 50 49 50 49
49.70
0.949
1.909
3
3.162
64.89
3/259
55 52 50 50 50 56 51 51 51 51
51.70
2.111
4.083
6
2.842
65.74
3/260
52 52 52 52 51 51 51 53 52 52
51.80
0.632
1.221
2
3.162
65.81
3/261
52 52 50 50 52 50 54 50 50 52
51.20
1.398
2.731
4
2.860
58.82
3/262
50 49 52 49 52 51 51 51 48 50
50.30
1.337
2.659
4
2.991
64.55
3/263
54 50 47 53 49 53 51 48 53 49
50.70
2.452
4.836
7
2.855
64.89
3/264
52 50 55 52 50 50 53 51 50 50
51.30
1.703
3.320
5
2.936
65.74
3/265
55 51 52 52 55 52 52 52 54 53
52.80
1.398
2.649
4
2.860
65.81
3/266
52 52 50 52 51 52 52 52 54 52
51.90
0.994
1.916
4
4.022
58.82
3/267
53 58 55 54 54 58 53 54 56 55
55.00
1.826
3.320
5
2.739
78.33
3/268
50 52 54 54 55 56 51 50 53 54
52.90
2.079
3.930
6
2.886
80.73
3/269
53 56 54 55 50 54 56 52 55 56
54.10
1.969
3.640
6
3.047
80.29
3/270
57 55 56 55 58 58 56 57 58 57
56.70
1.160
2.045
3
2.587
89.89
3/271
56 58 57 59 56 55 55 58 55 56
56.50
1.434
2.538
4
2.790
78.33
3/272
52 56 55 53 56 54 53 53 52 55
53.90
1.524
2.827
4
2.625
80.73
3/273
56 58 58 59 59 56 56 57 59 56
57.40
1.350
2.352
3
2.222
80.29
3/274
55 57 58 58 55 55 54 54 54 56
55.60
1.578
2.837
4
2.535
89.89
3/275
41 39 38 40 38 40 39 38 37 35
38.50
1.716
4.457
6
3.497
29.92
3/276
34 39 39 37 40 40 34 37 35 38
37.30
2.312
6.198
6
2.595
27.68
3/277
44 38 40 37 36 37 42 38 38 42
39.20
2.658
6.781
8
3.009
29.92
3/278
38 36 35 40 39 38 38 41 42 39
38.60
2.119
5.489
7
3.304
27.68
3/279
50 49 49 48 49 48 49 50 47 47
48.60
1.075
2.212
3
2.791
61.69
3/280
47 47 49 45 47 48 46 49 48 48
47.40
1.265
2.669
4
3.162
61.44
3/281
50 52 49 52 47 48 50 52 48 47
49.50
2.014
4.068
5
2.483
61.69
3/282
47 51 47 47 47 49 48 49 47 47
47.90
1.370
2.861
4
2.919
61.44
3/283
54 50 52 52 51 51 54 51 50 50
51.50
1.509
2.931
4
2.650
85.91
3/284
53 54 52 52 52 53 52 54 54 52
52.80
0.919
1.740
2
2.176
86.24
3/285
54 52 55 52 53 54 53 52 52 54
53.10
1.101
2.073
3
2.726
85.91
3/286
53 52 52 51 52 52 51 53 52 52
52.00
0.667
1.282
2
3.000
86.24
3/287
36 39 39 39 39 39 38 38 37 40
38.40
1.174
3.057
4
3.408
37.57
3/288
36 34 37 37 38 35 38 36 38 36
36.50
1.354
3.710
4
2.954
36.80
3/289
39 38 40 40 37 37 38 36 38 42
38.50
1.780
4.622
6
3.372
38.40
3/290
36 37 37 38 37 38 37 37 37 37
37.10
0.568
1.530
2
3.523
38.63
3/291
40 39 40 39 42 39 40 39 40 39
39.70
0.949
2.390
3
3.162
37.57
3/292
40 38 38 38 38 38 36 37 37 38
37.80
1.033
2.732
4
3.873
36.80
3/293
39 38 38 37 40 36 40 40 38 39
38.50
1.354
3.517
4
2.954
38.40
3/294
39 35 38 36 38 37 37 38 37 39
37.40
1.265
3.382
4
3.162
38.63
3/295
48 52 54 54 51 52 50 52 51 51
51.50
1.780
3.455
6
3.372
77.50
3/296
50 51 53 52 50 52 50 50 53 52
51.30
1.252
2.440
3
2.397
75.07
3/297
51 51 52 51 53 50 50 52 49 54
51.30
1.494
2.913
5
3.346
77.50
3/298
50 54 54 52 51 53 52 54 50 53
52.30
1.567
2.996
4
2.553
75.07
4/1
25 24 25 24 23 23 27 28 28 28
25.50
2.068
8.111
5
2.417
11.60
4/2
34 25 27 27 24 21 25 32 28 29
27.20
3.824
14.058
13
3.400
14.27
4/3
30 29 28 35 26 26 33 36 28 27
29.80
3.645
12.233
10
2.743
14.90
4/4
16 19 18 17 19 18 24 22 20 21
19.40
2.413
12.438
8
3.315
6.12
4/5
16 19 19 19 17 10 18 21 18 17
17.40
2.951
16.962
11
3.727
5.35
Test area
R1
3/252
3/253
R2
R3
R4
R5
R6
R7
R8
R9
R10
A9
Rm
sR
VR, %
rR
θR
fcm, MPa
18 18 18 19 15 16 11 16 13 13
15.70
2.669
16.998
8
2.998
4.08
18 16 16 16 17 21 23 24 23 22
19.60
3.307
16.870
8
2.419
5.99
4/8
24 21 20 21 19 18 20 28 17 21
20.90
3.143
15.038
11
3.500
7.65
4/9
26 22 24 22 21 20 26 28 30 28
24.70
3.401
13.769
10
2.940
8.66
4/10
26 28 25 29 25 25 27 26 21 24
25.60
2.221
8.676
8
3.602
25.48
4/11
32 30 37 27 28 32 35 33 27 32
31.30
3.335
10.655
10
2.999
35.91
4/12
33 30 33 39 30 38 28 28 34 30
32.30
3.860
11.951
11
2.850
35.55
4/13
33 30 32 29 31 31 31 28 26 28
29.90
2.132
7.130
7
3.284
31.99
4/14
38 37 41 38 32 33 35 38 38 35
36.50
2.718
7.447
9
3.311
43.02
4/15
36 43 36 47 44 40 40 41 43 43
41.30
3.466
8.392
11
3.174
44.46
4/16
25 28 25 25
30 25 25 29
26.50
2.138
8.068
5
2.339
22.17
4/17
32 39 36 36 36 46 39 42 32 32
37.00
4.619
12.483
14
3.031
38.33
4/18
40 40 44 40 45 36 32 42 40 42
40.10
3.784
9.438
13
3.435
40.90
4/19
27 24 26 24
30 22 35 25 25
26.44
3.909
14.781
13
3.326
19.11
4/20
34 36 36 36
35 25 28 28 40
33.11
4.936
14.906
15
3.039
28.67
26 30 30 26
Test area
R1
4/6
4/7
R2
R3
R4
R5
R6
R7
R8
R9
R10
4/21
40 36 42 36
33.25
6.135
18.452
16
2.608
18.09
4/22
30 29 29 30 30 29 30 29 28 30
29.40
0.699
2.378
2
2.860
38.23
4/23
36 32 33 39 33 30 29 37 29 32
33.00
3.399
10.301
10
2.942
50.56
4/24
33 36 38 36 37 37 36 34 33 34
35.40
1.776
5.018
5
2.815
52.09
4/25
28 28 27 29 29 28 31 29 36 30
29.50
2.550
8.642
9
3.530
23.45
4/26
34 33 34 33 33 34 36 34 33 30
33.40
1.506
4.508
6
3.985
31.09
4/27
31 36 36 36 38 33 37 36 33 34
35.00
2.160
6.172
7
3.240
31.22
4/28
27 24 27 26 26 22 29 30 31 29
27.10
2.767
10.210
9
3.253
27.78
4/29
33 32 30 30 30 35 33 30 31 35
31.90
2.025
6.347
5
2.469
39.37
4/30
36 36 33 34 40 34 36 43 36 36
36.40
2.989
8.211
10
3.346
42.56
4/31
29 29 28 29 23 29 28 28 29 30
28.20
1.932
6.852
7
3.623
21.15
4/32
31 30 24 31 25 30 39 37 25 27
29.90
5.021
16.793
15
2.987
24.21
4/33
36 37 33 36 36 33 36 34 32 33
34.60
1.776
5.134
5
2.815
26.12
4/34
33 30 32 30 25 24 30 32 25 28
28.90
3.247
11.236
9
2.772
20.13
4/35
36 32 35 32 29 30 33 34 38 28
32.70
3.164
9.676
10
3.161
35.55
4/36
38 31 34 44 33 42 34 30 40 40
36.60
4.835
13.211
14
2.896
41.16
4/37
26 26 31 26 27 25 23 29 28 25
26.60
2.271
8.536
8
3.523
11.21
4/38
32 28 34 30 25 25 24 21 25 28
27.20
3.967
14.583
13
3.277
13.89
4/39
29 31 26 28 26 26 31 31 30 30
28.80
2.150
7.465
5
2.326
15.42
4/40
15 13 13 13 12 11 11 11 15 13
12.70
1.494
11.767
4
2.677
3.31
4/41
15 16 14 13 14 11 16 17 13 12
14.10
1.912
13.560
6
3.138
4.97
4/42
18 18 18 12 19 16 21 16 23 19
18.00
2.981
16.563
11
3.690
6.37
4/43
24 23 24 23 29 22 25 26 25 26
24.70
2.003
8.108
7
3.495
15.29
4/44
24 25 23 26 25 24 27 30 26 25
25.50
1.958
7.678
7
3.575
19.50
4/45
30 26 26 27 26 25 33 33 28 28
28.20
2.898
10.278
8
2.760
21.79
4/46
24 22 20 23 21
25 22 21 19
21.89
1.900
8.682
6
3.157
11.85
4/47
25 28 24 24 21 22 23 21 21 21
23.00
2.309
10.041
7
3.031
17.33
4/48
27 27 30 27 27 29 28 32 28 27
28.20
1.687
5.981
5
2.965
18.35
4/49
17 19 18 15 16 18 19 20 24 23
18.90
2.846
15.058
9
3.162
8.54
4/50
23 23 21 21 18 21 20 21 23 22
21.30
1.567
7.357
5
3.191
16.06
4/51
24 24 26 24 26 28 28 26 28 28
26.20
1.751
6.684
4
2.284
18.35
4/52
26 25 25 22 25 27 26 26 27 26
25.50
1.434
5.622
5
3.487
10.19
4/53
30 30 26 26 26 24 27 24 30 25
26.80
2.394
8.934
6
2.506
12.87
4/54
30 30 28 28 27 29 30 28 28 30
28.80
1.135
3.942
3
2.642
13.00
4/55
26 24 26 25 25 24 28 28 31 25
26.20
2.201
8.401
7
3.180
10.96
4/56
25 26 30 25 25 32 30 34 26 33
28.60
3.596
12.574
9
2.503
15.93
4/57
30 32 34 26 32 30 34 32 32 32
31.40
2.319
7.385
8
3.450
18.60
4/58
30 28 26 24 21 21 24 22 27 29
25.20
3.293
13.068
9
2.733
16.31
A10
Rm
sR
VR, %
rR
θR
fcm, MPa
27 28 30 26 22 26 26 26 25 25
26.10
2.079
7.965
8
3.848
20.13
31 28 28 30 24 25 30 28 30 32
28.60
2.547
8.907
8
3.141
22.55
4/61
21 18 21 17 16 16 18 12 14 13
16.60
3.062
18.448
9
2.939
6.37
4/62
21 20 18 15 18
20 20 18 18
18.67
1.803
9.658
6
3.328
7.65
4/63
23 22 18 20 18 18 24 23 18 18
20.20
2.530
12.524
6
2.372
7.65
4/64
22 21 18 18 16 20 20 18 16 16
18.50
2.173
11.746
6
2.761
6.50
4/65
21 19 20 24 16 24 20 19 18 16
19.70
2.791
14.167
8
2.867
8.92
4/66
28 22 21 22 18 20 26 20 22 22
22.10
2.923
13.227
10
3.421
9.17
4/67
16 12 20 11 11 11 19 10 13 10
13.30
3.713
27.920
10
2.693
7.26
4/68
21 18 10 10 16 10 24 18 20 22
16.90
5.259
31.117
14
2.662
10.32
4/69
24 21 20 18 16 16 22 22 20 20
19.90
2.601
13.072
8
3.075
10.83
4/70
33 37 34 33 32 29 34 36 36 31
33.50
2.461
7.346
8
3.251
33.89
4/71
36 38 34 30 33 34 36 37 33 32
34.30
2.452
7.148
8
3.263
43.58
4/72
40 39 36 36 38 40 40 42 42 40
39.30
2.111
5.371
6
2.842
55.05
4/73
34 33 34 33 37 30 35 33 35 36
34.00
1.944
5.717
7
3.601
38.74
4/74
32 32 35 33 35 32 36 37 35 38
34.50
2.173
6.299
6
2.761
46.38
4/75
28 41 33 36 40 40 40 43 37 38
37.60
4.402
11.707
15
3.408
51.73
4/76
21 26 21 23 18 23 21 23 22 22
22.00
2.055
9.340
8
3.893
15.55
4/77
27 24 26 30 21 20 23 26 28 23
24.80
3.155
12.723
10
3.169
18.35
4/78
28 26 24 30 23 23 33 28 24 24
26.30
3.368
12.807
10
2.969
18.99
4/79
27 25 25 20 21 22 21 26 24 23
23.40
2.366
10.113
7
2.958
16.18
4/80
32 26 19 20 22 16 32 31 32 23
25.30
6.129
24.226
16
2.610
23.57
4/81
30 24 31 20 26 16 40 36 32 38
29.30
7.804
26.634
24
3.075
29.31
4/82
27 20 26 24 24 21 23 24 23 21
23.30
2.214
9.500
7
3.162
11.60
4/83
32 34 28 24 22 23 21 20 22 19
24.50
5.126
20.923
15
2.926
15.55
4/84
42 30 30 28 26 26 31 30 28 28
29.90
4.581
15.322
16
3.492
18.86
4/85
35 29 30 31 24 26 31 31 24 23
28.40
3.950
13.907
12
3.038
13.76
4/86
30 29 28 34 26 34 23 30 27 27
28.80
3.425
11.894
11
3.211
18.35
4/87
36 36 36 34 30 32 34 36 33 34
34.10
2.025
5.938
6
2.963
20.01
4/88
17 11 14 13 12 13 16 12 14 11
13.30
2.003
15.058
6
2.996
4.71
4/89
22 19 17 18 15 14 17 16 16 11
16.50
2.953
17.899
11
3.725
8.79
4/90
23 27 20 22 20 21 24 18 26 20
22.10
2.885
13.054
9
3.120
9.56
4/91
28 28 28 27 31 30 28 23 29 30
28.20
2.201
7.805
8
3.635
33.89
4/92
32 32 31 30 31 31 30 32 34 34
31.70
1.418
4.474
4
2.821
42.81
4/93
34 34 33 30 30 32 33 33 38 38
33.50
2.759
8.235
8
2.900
43.83
4/94
31 29 29 26 21 22 24 22 22 22
24.80
3.676
14.822
10
2.721
7.01
4/95
26 26 27 25 21 22 28 25 26 26
25.20
2.150
8.531
7
3.256
8.79
4/96
33 30 28 27 26 25 33 30 28 32
29.20
2.860
9.793
8
2.798
12.10
4/97
14 16 14 18 18 19 19 19 18 15
17.00
2.055
12.087
5
2.433
4.33
4/98
19 14 13 19 18 18 20 22 18 17
17.80
2.658
14.934
9
3.386
5.61
4/99
25 22 23 16 24 11 26 22 23 18
21.00
4.643
22.109
15
3.231
7.14
4/100
28 28 29 26 29 23 28 28 31 27
27.70
2.111
7.620
8
3.790
19.50
4/101
32 31 27 29 28 35 30 33 33 31
30.90
2.470
7.993
8
3.239
25.87
4/102
31 30 33 34 29 33 34 34 35 34
32.70
2.003
6.125
6
2.996
25.87
4/103
16 20 18 19 18 21 23 23 23 26
20.70
3.057
14.767
10
3.271
11.47
4/104
22 23 21 22 22 24 23 24 27 26
23.40
1.897
8.108
6
3.162
15.42
4/105
21 25 24 23 23 21 29 25 28 28
24.70
2.869
11.617
8
2.788
14.91
4/106
30 26 24 28 23 27 29 29 21 26
26.30
2.908
11.056
9
3.095
16.56
4/107
26 30 29 27 28 28 32 35 35 30
30.00
3.127
10.423
9
2.878
23.27
4/108
32 33 30 36 36 34 36 36 33 34
34.00
2.055
6.044
6
2.920
25.99
5/1
39 40 34 36 41 34 46 36 36 38
38.00
3.682
9.689
12
3.259
55.47
5/2
34 32 32 39 34 39 34 30 29 30
33.30
3.498
10.503
10
2.859
40.71
Test area
R1
4/59
4/60
R2
R3
R4
R5
R6
R7
R8
R9
R10
A11
Rm
sR
VR, %
rR
θR
fcm, MPa
34 32 32 32 34 34 32 30 34 32
32.60
1.350
4.141
4
2.963
50.67
32 30 30 32 31 30 33 31 36 36
32.10
2.283
7.111
6
2.628
42.22
5/5
42 34 34 32 37 37 34 30 34 38
35.20
3.393
9.639
12
3.537
35.87
5/6
34 32 42 32 34 33 36 32 34 33
34.20
3.011
8.804
10
3.321
40.53
5/7
37 32 33 31 32 32 30 30 32 33
32.20
1.989
6.177
7
3.520
50.27
5/8
39 32 34 40 36 32 34 32 34 30
34.30
3.199
9.326
10
3.126
48.89
5/9
39 32 44 32 34 33 38 41 36 35
36.40
4.033
11.080
12
2.975
34.22
5/10
34 30 34 32 36 33 32 36 37 33
33.70
2.163
6.418
7
3.237
52.67
5/11
32 30 26 32 30 31 30 30 31 34
30.60
2.066
6.750
8
3.873
52.98
5/12
33 40 40 44 33 34 32 33 40 38
36.70
4.191
11.420
12
2.863
37.78
5/13
36 35 30 34 36 34 36 30 32 32
33.50
2.369
7.071
6
2.533
53.73
5/14
30 32 30 42 38 32 36 30 32 32
33.40
4.006
11.993
12
2.996
46.58
5/15
34 32 30 30 30 34 34 32 34 32
32.20
1.751
5.438
4
2.284
45.78
5/16
34 43 32 34 34 37 42 35 36 40
36.70
3.743
10.199
11
2.939
31.47
5/17
33 34 34 36 32 32 46 37 32 32
34.80
4.315
12.400
14
3.244
51.29
5/18
40 34 34 33 33 46 34 36 43 32
36.50
4.813
13.187
14
2.909
45.47
5/19
32 34 30 32 34 32 32 32 32 32
32.20
1.135
3.526
4
3.523
50.89
5/20
40 33 34 34 34 40 44 33 38 34
36.40
3.836
10.537
11
2.868
37.78
5/21
38 38 36 41 37 34 40 33 36 44
37.70
3.302
8.757
11
3.332
59.02
5/22
32 37 34 34 33 37 42 34 34 38
35.50
2.991
8.425
10
3.344
58.58
5/23
32 33 42 34 34 34 42 46 32 34
36.30
5.034
13.869
14
2.781
60.04
5/24
32 34 39 33 34 51 34 37 32 42
36.80
5.940
16.143
19
3.198
58.49
5/25
36 43 36 34 32 42 36 34 32 32
35.70
3.945
11.052
11
2.788
45.07
5/26
33 39 35 34 32 31 31 39 38 34
34.60
3.098
8.955
8
2.582
48.00
5/27
34 38 33 34 34 34 32 32 34 34
33.90
1.663
4.907
6
3.607
37.78
5/28
30 30 32 32 28 32 34 34 32 32
31.60
1.838
5.816
6
3.265
48.13
5/29
34 34 30 34 34 34 32 30 38 34
33.40
2.319
6.943
8
3.450
46.09
5/30
32 32 30 30 34 30 32 30 30 32
31.20
1.398
4.482
4
2.860
47.87
5/31
32 34 34 30 28 32 32 30 30 36
31.80
2.394
7.530
8
3.341
45.29
5/32
28 30 34 34 32 34 30 36 34 34
32.60
2.503
7.679
8
3.196
48.09
5/33
32 34 30 30 32 34 30 36 30 32
32.00
2.108
6.588
6
2.846
46.62
5/34
30 34 30 34 32 32 28 20 34 28
30.20
4.264
14.118
14
3.284
47.56
5/35
32 32 32 34 34 32 30 32 32 36
32.60
1.647
5.051
6
3.644
46.13
5/36
30 30 32 30 32 30 32 30 32 34
31.20
1.398
4.482
4
2.860
45.91
5/37
32 32 34 32 34 34 32 34 34 34
33.20
1.033
3.111
2
1.936
47.47
5/38
33 32 33 33 33 32 29 29 28 29
31.10
2.079
6.685
5
2.405
33.16
5/39
26 27 28 33 40 29 30 30 33 30
30.60
4.006
13.090
14
3.495
33.56
5/40
30 29 27 27 27 32 42 30 40 30
31.40
5.337
16.998
15
2.810
33.02
5/41
36 29 30 32 36 26 27 29 33 29
30.70
3.466
11.289
10
2.885
33.60
5/42
26 30 28 26 32 38 30 40 34 30
31.40
4.719
15.028
14
2.967
31.42
5/43
28 26 27 32 36 28 31 34 32 30
30.40
3.204
10.540
10
3.121
35.51
5/44
32 32 30 26 24 22 26 28 24 28
27.20
3.425
12.593
10
2.919
35.07
5/45
36 32 30 29 31 30 28 35 34 27
31.20
3.011
9.651
9
2.989
35.20
5/46
30 32 28 30 32 32 28 30 32 34
30.80
1.932
6.273
6
3.105
37.64
5/47
32 27 32 29 28 30 28 26 28 34
29.40
2.547
8.664
8
3.141
35.16
5/48
25 30 29 30 29 26 27 30 32 32
29.00
2.357
8.128
7
2.970
24.13
5/49
32 30 34 26 36 26 29 25 28 30
29.60
3.596
12.150
11
3.059
28.49
5/50
32 33 26 26 26 36 22 25 26 23
27.50
4.577
16.642
14
3.059
28.13
5/51
27 31 27 25 26 26 29 38 26 25
28.00
3.972
14.186
13
3.273
28.98
5/52
25 26 25 31 36 30 28 25 26 22
27.40
4.006
14.619
14
3.495
27.64
5/53
28 30 35 29 36 28 28 28 27 26
29.50
3.342
11.328
10
2.993
30.62
5/54
30 32 34 30 28 30 30 34 30 32
31.00
1.944
6.270
6
3.087
31.78
5/55
26 28 27 29 26 28 29 28 28 26
27.50
1.179
4.285
3
2.546
31.16
Test area
R1
5/3
5/4
R2
R3
R4
R5
R6
R7
R8
R9
R10
A12
Rm
sR
VR, %
rR
θR
fcm, MPa
29 31 32 38 32 27 35 26 30 26
30.60
3.893
12.722
12
3.082
31.42
36 28 33 30 32 28 28 27 30 30
30.20
2.781
9.208
9
3.236
31.24
5/58
33 35 40 33 36 36 32 40 35 36
35.60
2.716
7.630
8
2.945
55.47
5/59
32 30 32 35 32 32 40 32 32 34
33.10
2.767
8.359
10
3.614
40.71
5/60
38 32 41 32 32 32 30 38 34 32
34.10
3.604
10.569
11
3.052
50.67
5/61
34 30 30 35 32 30 34 32 30 31
31.80
1.932
6.076
5
2.588
42.22
5/62
32 32 32 32 32 30 33 34 39 36
33.20
2.573
7.751
9
3.497
35.87
5/63
33 32 33 35 30 36 41 33 40 35
34.80
3.458
9.936
11
3.181
40.53
5/64
32 30 30 30 35 30 32 31 33 30
31.30
1.703
5.441
5
2.936
50.27
5/65
32 30 32 32 32 32 40 32 30 39
33.10
3.479
10.509
10
2.875
48.89
5/66
33 36 34 34 35 37 42 38 38 35
36.20
2.658
7.343
9
3.386
34.22
5/67
30 30 30 30 33 30 33 30 32 31
30.90
1.287
4.164
3
2.332
52.67
5/68
31 32 36 36 31 32 34 31 30 31
32.40
2.171
6.699
6
2.764
52.98
5/69
36 38 36 33 38 34 44 32 34 36
36.10
3.414
9.457
12
3.515
37.78
5/70
30 31 36 34 30 38 37 33 32 32
33.30
2.869
8.617
8
2.788
53.73
5/71
30 32 33 32 38 32 34 32 33 33
32.90
2.079
6.319
8
3.848
46.58
5/72
30 32 32 32 40 33 33 33 37 36
33.80
2.974
8.799
10
3.363
45.78
5/73
40 35 35 33 37 32 33 40 34 34
35.30
2.830
8.018
8
2.826
31.47
5/74
33 33 32 32 30 32 32 32 30 32
31.80
1.033
3.248
3
2.905
51.29
5/75
34 32 44 34 43 32 34 34 32 34
35.30
4.423
12.531
12
2.713
45.47
5/76
40 34 32 32 32 34 32 32 30 32
33.00
2.708
8.206
10
3.693
50.89
5/77
35 42 38 33 39 32 34 36 35 35
35.90
2.998
8.351
10
3.335
37.78
5/78
33 40 32 34 32 34 34 34 34 36
34.30
2.312
6.740
8
3.460
59.02
5/79
32 35 43 38 36 37 34 35 34 34
35.80
3.048
8.513
11
3.609
58.58
5/80
37 40 34 47 38 34 34 35 34 34
36.70
4.191
11.420
13
3.102
60.04
5/81
32 36 36 33 34 36 34 34 36 36
34.70
1.494
4.307
4
2.677
58.49
5/82
32 38 32 33 34 37 35 40 33 38
35.20
2.860
8.124
8
2.798
45.07
5/83
33 33 36 32 32 32 32 32 32 32
32.60
1.265
3.880
4
3.162
48.00
5/84
44 38 32 45 33 34 32 48 39 34
37.90
5.915
15.607
16
2.705
37.78
5/85
30 28 32 28 30 32 28 32 32 32
30.40
1.838
6.046
4
2.176
48.13
5/86
32 30 30 30 32 34 34 34 34 34
32.40
1.838
5.672
4
2.176
46.09
5/87
32 32 32 36 30 34 34 36 30 32
32.80
2.150
6.555
6
2.791
47.87
5/88
28 28 34 34 30 32 30 30 34 36
31.60
2.797
8.851
8
2.860
45.29
5/89
32 30 30 30 30 32 30 34 34 34
31.60
1.838
5.816
4
2.176
48.09
5/90
36 38 28 28 30 34 32 28 32 32
31.80
3.458
10.873
10
2.892
46.62
5/91
30 30 30 30 32 32 34 30 40 32
32.00
3.127
9.772
10
3.198
47.56
5/92
32 28 30 28 30 32 28 34 36 34
31.20
2.860
9.166
8
2.798
46.13
5/93
28 30 36 28 30 34 32 36 32 36
32.20
3.190
9.908
8
2.508
45.91
5/94
32 32 30 32 30 32 32 32 34 32
31.80
1.135
3.570
4
3.523
47.47
5/95
27 30 32 28 29 28 27 31 30 42
30.40
4.402
14.480
15
3.408
33.16
5/96
26 36 33 38 36 36 29 34 31 36
33.50
3.779
11.279
12
3.176
33.56
5/97
29 36 33 29 27 30 31 32 27 25
29.90
3.247
10.860
11
3.388
33.02
5/98
31 33 28 32 31 30 31 32 28 32
30.80
1.687
5.476
5
2.965
33.60
5/99
32 28 26 26 29 29 29 29 29 34
29.10
2.424
8.331
8
3.300
31.42
5/100
33 28 28 30 33 27 31 28 27 26
29.10
2.514
8.641
7
2.784
35.51
5/101
28 32 34 24 36 34 28 28 29 29
30.20
3.676
12.171
12
3.265
35.07
5/102
26 30 29 29 29 29 33 36 29 28
29.80
2.781
9.332
10
3.596
35.20
5/103
34 30 34 32 32 30 30 30 32 32
31.60
1.578
4.992
4
2.535
37.64
5/104
32 30 32 40 42 29 32 30 32 29
32.80
4.517
13.770
13
2.878
35.16
5/105
29 30 25 26 34 28 26 24 32 25
27.90
3.315
11.882
10
3.017
24.13
5/106
28 29 27 30 28 26 29 24 32 32
28.50
2.506
8.791
8
3.193
28.49
5/107
26 26 29 30 32 28 28 27 26 24
27.60
2.319
8.402
8
3.450
28.13
5/108
27 27 30 29 25 28 25 27 26 33
27.70
2.452
8.851
8
3.263
28.98
Test area
R1
5/56
5/57
R2
R3
R4
R5
R6
R7
R8
R9
R10
A13
Rm
sR
VR, %
rR
θR
fcm, MPa
28 24 24 36 28 31 30 22 32 30
28.50
4.249
14.909
14
3.295
27.64
28 27 30 34 27 29 30 29 24 25
28.30
2.830
10.001
10
3.533
30.62
5/111
28 28 30 30 30 30 30 30 30 28
29.40
0.966
3.286
2
2.070
31.78
5/112
32 31 34 28 28 27 36 29 35 38
31.80
3.824
12.025
11
2.877
31.16
5/113
35 26 37 29 36 34 30 22 24 29
30.20
5.203
17.227
15
2.883
31.42
5/114
33 30 32 32 34 28 31 28 30 30
30.80
1.989
6.457
6
3.017
31.24
6/1
46 45 44 45 43 44 44 46 46 46
44.90
1.101
2.451
3
2.726
65.56
6/2
48 47 45 48 47 45 46 48 45 48
46.70
1.337
2.864
3
2.243
67.35
6/3
46 47 48 47 47 47 45 45 45 46
46.30
1.059
2.288
3
2.832
80.01
6/4
45 46 45 47 48 47 45 47 45 44
45.90
1.287
2.803
4
3.109
77.57
6/5
47 47 47 47 46 48 47 47 47 46
46.90
0.568
1.210
2
3.523
88.94
6/6
48 48 48 48 47 47 47 46 46 47
47.20
0.789
1.671
2
2.535
88.83
6/7
46 50 49 48 49 50 52 45 49 49
48.70
2.003
4.112
7
3.495
103.30
6/8
49 52 51 52 51 51 50 53 52 51
51.20
1.135
2.217
4
3.523
94.62
6/9
52 54 50 54 54 54 52 53 54 51
52.80
1.476
2.795
4
2.711
99.55
6/10
52 51 50 50 52 52 52 49 51 52
51.10
1.101
2.154
3
2.726
101.99
6/11
53 49 51 52 53 53 53 53 49 49
51.50
1.841
3.575
4
2.173
105.25
6/12
53 51 49 52 51 52 51 49 49 52
50.90
1.449
2.847
4
2.760
101.52
6/13
50 50 48 50 50 50 46 49 49 47
48.90
1.449
2.963
4
2.760
66.35
6/14
48 49 48 48 51 49 50 48 46 46
48.30
1.567
3.244
5
3.191
68.24
6/15
51 51 50 47 51 47 50 47 47 49
49.00
1.826
3.726
4
2.191
80.05
6/16
51 51 49 48 49 51 50 48 48 48
49.30
1.337
2.713
3
2.243
74.69
6/17
49 51 50 50 49 50 48 51 49 51
49.80
1.033
2.074
3
2.905
88.59
6/18
49 50 51 49 47 49 51 50 49 48
49.30
1.252
2.539
4
3.196
88.54
6/19
51 51 50 50 52 48 49 50 51 50
50.20
1.135
2.262
4
3.523
102.35
6/20
52 52 52 52 49 52 49 48 51 49
50.60
1.647
3.254
4
2.429
97.37
6/21
51 52 51 51 53 50 51 53 53 52
51.70
1.059
2.049
3
2.832
99.39
6/22
49 52 51 52 50 52 51 50 53 51
51.10
1.197
2.343
4
3.341
102.61
6/23
51 50 51 53 49 51 49 53 53 50
51.00
1.563
3.066
4
2.558
103.61
6/24
49 50 50 49 50 54 52 52 51 49
50.60
1.647
3.254
5
3.037
99.80
6/25
48 48 49 47 47 48 47 49 49 47
47.90
0.876
1.828
2
2.284
67.21
6/26
50 48 49 48 49 49 47 49 48 50
48.70
0.949
1.948
3
3.162
68.57
6/27
48 50 47 47 48 49 48 48 49 49
48.30
0.949
1.964
3
3.162
75.71
6/28
48 48 49 48 50 47 48 48 50 49
48.50
0.972
2.004
3
3.087
77.74
6/29
48 53 50 51 53 49 50 48 50 48
50.00
1.886
3.771
5
2.652
87.11
6/30
48 51 48 52 52 49 49 49 51 50
49.90
1.524
3.054
4
2.625
85.18
6/31
57 54 52 56 54 56 53 56 55 55
54.80
1.549
2.827
5
3.227
90.27
6/32
49 49 48 48 50 51 51 50 48 48
49.20
1.229
2.499
3
2.440
93.45
6/33
49 51 53 53 51 52 51 51 50 49
51.00
1.414
2.773
4
2.828
94.35
6/34
52 51 51 52 50 50 49 53 52 51
51.10
1.197
2.343
4
3.341
95.52
6/35
54 50 52 51 52 54 53 53 54 54
52.70
1.418
2.691
4
2.821
97.05
6/36
54 52 54 53 51 51 53 51 50 53
52.20
1.398
2.679
4
2.860
95.96
6/37
48 49 50 47 49 48 47 50 46 47
48.10
1.370
2.849
4
2.919
68.41
6/38
49 48 47 47 49 48 49 47 47 48
47.90
0.876
1.828
2
2.284
69.57
6/39
51 50 50 51 47 50 46 51 50 46
49.20
2.044
4.154
5
2.446
75.76
6/40
48 46 50 49 51 47 50 46 48 49
48.40
1.713
3.539
5
2.919
76.48
6/41
49 48 50 50 49 49 50 51 52 51
49.90
1.197
2.399
4
3.341
87.54
6/42
47 49 49 50 47 51 47 50 51 47
48.80
1.687
3.456
4
2.372
85.59
6/43
50 52 49 52 49 48 48 52 52 50
50.20
1.687
3.360
4
2.372
91.14
6/44
49 51 52 48 49 48 49 49 50 51
49.60
1.350
2.722
4
2.963
91.08
6/45
50 51 50 50 51 49 53 50 51 52
50.70
1.160
2.287
4
3.450
95.14
6/46
48 53 52 49 52 48 51 52 53 52
51.00
1.944
3.811
5
2.572
97.60
Test area
R1
5/109
5/110
R2
R3
R4
R5
R6
R7
R8
R9
R10
A14
Rm
sR
VR, %
rR
θR
fcm, MPa
50 52 53 51 50 50 51 52 53 49
51.10
1.370
2.682
4
2.919
95.67
50 48 50 51 50 50 50 53 52 50
50.40
1.350
2.678
5
3.704
97.44
6/49
45 45 45 43 44 47 48 45 48 47
45.70
1.703
3.726
5
2.936
62.65
6/50
46 48 48 48 48 46 48 46 47 47
47.20
0.919
1.947
2
2.176
63.76
6/51
49 48 47 49 44 47 46 49 45 45
46.90
1.853
3.951
5
2.698
72.63
6/52
49 49 46 48 48 49 45 46 48 48
47.60
1.430
3.004
4
2.798
71.42
6/53
49 47 51 49 51 47 49 47 48 51
48.90
1.663
3.401
4
2.405
76.12
6/54
48 49 49 46 47 47 47 50 47 46
47.60
1.350
2.836
4
2.963
77.31
6/55
49 51 51 48 47 49 51 50 48 48
49.20
1.476
2.999
4
2.711
83.19
6/56
49 48 49 48 49 49 47 48 50 49
48.60
0.843
1.735
3
3.558
80.08
6/57
49 48 47 51 48 50 51 48 49 48
48.90
1.370
2.802
4
2.919
84.59
6/58
50 51 51 47 51 47 48 47 51 48
49.10
1.853
3.774
4
2.159
81.91
6/59
50 52 49 48 48 51 48 48 49 49
49.20
1.398
2.842
4
2.860
83.62
6/60
49 50 48 52 52 50 52 48 49 51
50.10
1.595
3.184
4
2.508
87.28
6/61
47 47 50 48 46 49 48 47 50 48
48.00
1.333
2.778
4
3.000
65.05
6/62
47 48 48 47 47 46 49 48 47 46
47.30
0.949
2.006
3
3.162
65.82
6/63
50 46 47 49 47 48 49 48 46 48
47.80
1.317
2.754
4
3.038
74.76
6/64
48 47 48 46 49 48 50 48 49 51
48.40
1.430
2.954
5
3.497
70.83
6/65
51 49 51 49 49 49 47 49 50 51
49.50
1.269
2.564
4
3.151
74.95
6/66
52 51 49 49 47 52 49 48 49 49
49.50
1.650
3.333
5
3.030
76.26
6/67
49 51 52 48 48 50 51 52 51 50
50.20
1.476
2.940
4
2.711
84.33
6/68
50 51 52 50 53 51 48 50 53 51
50.90
1.524
2.994
5
3.281
78.14
6/69
48 52 51 52 50 53 51 50 49 51
50.70
1.494
2.948
5
3.346
82.81
6/70
50 49 53 52 51 48 51 50 49 49
50.20
1.549
3.086
5
3.227
84.68
6/71
53 51 51 49 53 52 52 51 52 49
51.30
1.418
2.764
4
2.821
82.89
6/72
52 52 49 48 49 52 50 51 52 52
50.70
1.567
3.091
4
2.553
86.85
6/73
45 45 47 45 45 47 47 45 46 46
45.80
0.919
2.006
2
2.176
69.25
6/74
48 44 46 48 44 44 47 46 44 44
45.50
1.716
3.771
4
2.331
59.33
6/75
48 48 46 43 45 46 47 47 46 46
46.20
1.476
3.194
5
3.388
71.26
6/76
48 48 46 48 47 45 46 45 45 47
46.50
1.269
2.730
3
2.364
76.25
6/77
47 47 47 47 47 50 51 51 48 51
48.60
1.897
3.904
4
2.108
84.43
6/78
51 48 50 47 48 51 50 48 48 51
49.20
1.549
3.149
4
2.582
79.28
6/79
51 52 50 49 48 48 51 51 50 52
50.20
1.476
2.940
4
2.711
87.35
6/80
51 49 49 52 48 49 49 51 52 51
50.10
1.449
2.892
4
2.760
86.80
6/81
49 51 51 47 51 49 49 50 48 52
49.70
1.567
3.153
5
3.191
89.43
6/82
48 50 49 52 50 50 51 48 49 53
50.00
1.633
3.266
5
3.062
92.58
6/83
50 53 49 51 51 51 50 49 50 49
50.30
1.252
2.488
4
3.196
90.90
6/84
53 53 49 53 51 49 51 49 51 51
51.00
1.633
3.202
4
2.449
94.21
6/85
48 50 46 47 50 49 47 47 49 46
47.90
1.524
3.181
4
2.625
68.23
6/86
49 46 46 50 49 50 50 47 46 49
48.20
1.751
3.633
4
2.284
60.91
6/87
47 47 50 47 50 47 50 50 48 51
48.70
1.636
3.360
4
2.444
69.58
6/88
49 47 49 47 49 51 51 49 49 48
48.90
1.370
2.802
4
2.919
74.22
6/89
50 48 50 50 48 50 52 49 51 51
49.90
1.287
2.579
4
3.109
84.34
6/90
47 50 48 50 47 50 49 49 48 49
48.70
1.160
2.381
3
2.587
77.54
6/91
50 51 49 49 52 50 52 51 52 48
50.40
1.430
2.837
4
2.798
86.71
6/92
52 49 49 49 49 52 51 49 52 49
50.10
1.449
2.892
3
2.070
88.72
6/93
50 52 51 49 49 48 50 50 52 48
49.90
1.449
2.904
4
2.760
89.80
6/94
51 49 49 49 51 53 51 52 51 49
50.50
1.434
2.839
4
2.790
90.10
6/95
51 48 49 51 48 52 49 51 50 49
49.80
1.398
2.808
4
2.860
90.48
6/96
49 49 52 49 53 52 51 49 50 49
50.30
1.567
3.115
4
2.553
94.26
6/97
46 42 45 45 42 42 43 42 44 44
43.50
1.509
3.469
4
2.650
59.65
6/98
46 47 47 42 44 44 47 43 45 47
45.20
1.874
4.146
5
2.668
61.16
6/99
42 42 45 44 45 44 45 44 42 42
43.50
1.354
3.113
3
2.216
75.45
Test area
R1
6/47
6/48
R2
R3
R4
R5
R6
R7
R8
R9
R10
A15
Rm
sR
VR, %
rR
θR
fcm, MPa
44 42 46 43 45 42 46 44 46 44
44.20
1.549
3.505
4
2.582
77.02
48 47 48 45 49 49 48 50 50 48
48.20
1.476
3.062
5
3.388
83.37
6/102
46 48 47 47 49 50 49 47 48 49
48.00
1.247
2.598
4
3.207
80.88
6/103
47 47 47 47 49 50 51 48 48 49
48.30
1.418
2.936
4
2.821
81.94
6/104
47 50 48 49 50 49 51 47 47 47
48.50
1.509
3.112
4
2.650
84.44
6/105
51 51 49 48 52 49 50 52 50 50
50.20
1.317
2.623
4
3.038
86.50
6/106
51 52 49 52 52 49 49 48 48 49
49.90
1.663
3.333
4
2.405
88.32
6/107
51 50 52 51 51 51 49 52 50 50
50.70
0.949
1.871
3
3.162
89.02
6/108
50 52 50 51 49 48 49 51 50 53
50.30
1.494
2.971
5
3.346
89.92
6/109
48 49 46 47 46 48 50 47 47 46
47.40
1.350
2.848
4
2.963
60.49
6/110
49 49 48 47 46 49 47 50 48 47
48.00
1.247
2.598
4
3.207
61.99
6/111
49 47 49 49 49 51 51 51 48 46
49.00
1.700
3.469
5
2.942
73.48
6/112
49 50 50 50 47 47 49 48 46 48
48.40
1.430
2.954
4
2.798
76.05
6/113
48 48 48 51 51 51 51 49 52 50
49.90
1.524
3.054
4
2.625
82.67
6/114
48 50 48 51 50 47 50 48 50 49
49.10
1.287
2.621
4
3.109
81.34
6/115
51 52 51 51 50 52 49 50 51 48
50.50
1.269
2.513
4
3.151
83.36
6/116
49 51 48 49 50 52 48 51 49 50
49.70
1.337
2.691
4
2.991
86.60
6/117
49 48 50 51 53 52 49 48 50 48
49.80
1.751
3.516
5
2.855
85.84
6/118
51 49 49 50 52 50 52 52 50 51
50.60
1.174
2.320
3
2.556
90.20
6/119
49 49 48 47 50 48 53 49 50 48
49.10
1.663
3.388
6
3.607
90.00
6/120
49 52 48 47 51 49 52 49 48 50
49.50
1.716
3.467
5
2.914
87.59
6/121
48 51 51 47 46 49 48 48 46 50
48.40
1.838
3.797
5
2.721
65.07
6/122
45 44 45 45 42 44 41 45 44 42
43.70
1.494
3.420
4
2.677
62.61
6/123
48 48 50 47 48 50 47 48 51 50
48.70
1.418
2.912
4
2.821
71.94
6/124
47 50 49 45 46 48 46 50 51 51
48.30
2.214
4.583
6
2.711
72.51
6/125
49 52 50 52 48 50 47 48 51 52
49.90
1.853
3.713
5
2.698
77.26
6/126
47 54 49 50 49 51 49 47 50 52
49.80
2.150
4.317
7
3.256
80.96
6/127
43 44 45 48 45 46 45 44 47 46
45.30
1.494
3.299
5
3.346
81.86
6/128
54 53 53 51 54 54 55 52 52 52
53.00
1.247
2.353
4
3.207
84.57
6/129
49 47 50 49 49 52 48 48 49 47
48.80
1.476
3.024
5
3.388
87.07
6/130
48 48 47 48 47 50 49 48 46 50
48.10
1.287
2.675
4
3.109
83.43
6/131
49 50 50 49 49 51 51 48 51 50
49.80
1.033
2.074
3
2.905
88.18
6/132
48 49 48 48 51 50 50 49 50 51
49.40
1.174
2.376
3
2.556
85.92
6/133
48 46 46 49 48 46 46 45 49 50
47.30
1.703
3.600
5
2.936
65.37
6/134
47 49 48 48 50 49 46 47 45 48
47.70
1.494
3.133
5
3.346
62.15
6/135
48 46 46 47 46 47 49 47 50 50
47.60
1.578
3.314
4
2.535
72.58
6/136
46 49 47 46 50 50 48 48 47 48
47.90
1.449
3.025
4
2.760
73.07
6/137
49 48 49 50 47 49 48 51 48 51
49.00
1.333
2.721
4
3.000
77.42
6/138
48 51 46 48 50 50 50 46 49 49
48.70
1.703
3.497
5
2.936
80.03
6/139
50 48 49 47 48 49 47 50 50 51
48.90
1.370
2.802
4
2.919
83.81
6/140
48 52 50 48 48 51 49 49 51 47
49.30
1.636
3.319
5
3.056
82.14
6/141
50 48 50 51 47 52 49 51 51 51
50.00
1.563
3.127
5
3.198
87.50
6/142
49 49 51 49 51 48 49 49 50 50
49.50
0.972
1.963
3
3.087
85.30
6/143
50 51 51 50 52 50 52 47 47 53
50.30
2.003
3.982
6
2.996
88.75
6/144
52 50 49 47 52 52 53 52 51 53
51.10
1.912
3.742
6
3.138
86.43
6/145
44 47 43 46 44 44 44 43 44 46
44.50
1.354
3.043
4
2.954
61.56
6/146
43 44 43 44 44 46 44 46 46 47
44.70
1.418
3.173
4
2.821
59.89
6/147
48 47 46 45 48 48 48 44 45 46
46.50
1.509
3.246
4
2.650
67.76
6/148
45 46 47 48 47 44 48 48 44 44
46.10
1.729
3.750
4
2.314
65.85
6/149
50 47 46 48 49 47 50 46 48 49
48.00
1.491
3.106
4
2.683
71.74
6/150
50 46 50 48 50 50 46 49 49 47
48.50
1.650
3.402
4
2.424
74.56
6/151
48 47 47 46 46 49 46 47 46 49
47.10
1.197
2.542
3
2.506
83.13
6/152
48 46 50 47 50 47 48 49 47 47
47.90
1.370
2.861
4
2.919
80.47
Test area
R1
6/100
6/101
R2
R3
R4
R5
R6
R7
R8
R9
R10
A16
Rm
sR
VR, %
rR
θR
fcm, MPa
50 52 51 50 50 51 51 52 47 50
50.40
1.430
2.837
5
3.497
87.97
49 50 47 49 49 50 48 50 51 48
49.10
1.197
2.438
4
3.341
87.84
6/155
51 51 49 51 50 48 50 50 48 51
49.90
1.197
2.399
3
2.506
93.62
6/156
50 51 48 52 49 49 48 49 48 52
49.60
1.578
3.181
4
2.535
91.47
6/157
45 46 49 46 47 48 45 49 45 49
46.90
1.729
3.686
4
2.314
62.84
6/158
49 48 49 49 47 48 44 49 47 49
47.90
1.595
3.330
5
3.135
59.38
6/159
46 48 49 49 49 49 48 45 45 48
47.60
1.647
3.459
4
2.429
64.96
6/160
44 47 46 48 45 45 46 47 47 48
46.30
1.337
2.889
4
2.991
68.81
6/161
46 50 48 49 48 47 50 48 48 49
48.30
1.252
2.591
4
3.196
75.71
6/162
46 48 49 46 50 46 47 49 49 45
47.50
1.716
3.613
5
2.914
70.96
6/163
45 49 46 49 46 46 50 47 50 49
47.70
1.889
3.959
5
2.648
83.04
6/164
46 48 47 50 45 48 47 49 49 49
47.80
1.549
3.241
5
3.227
81.98
6/165
47 48 46 50 49 46 47 48 47 49
47.70
1.337
2.804
4
2.991
90.57
6/166
46 46 50 49 49 48 47 46 47 47
47.50
1.434
3.018
4
2.790
85.95
6/167
52 52 51 50 50 52 52 48 51 49
50.70
1.418
2.797
4
2.821
91.24
6/168
50 48 53 48 51 47 51 50 49 50
49.70
1.767
3.555
6
3.396
92.16
6/169
42 45 44 42 42 45 42 43 45 43
43.30
1.337
3.089
3
2.243
54.32
6/170
45 44 44 46 42 45 42 47 43 46
44.40
1.713
3.857
5
2.919
55.87
6/171
45 47 46 46 46 47 44 47 46 46
46.00
0.943
2.050
3
3.182
65.24
6/172
47 46 47 47 46 45 44 47 44 48
46.10
1.370
2.972
4
2.919
65.26
6/173
48 45 49 48 50 48 48 50 47 45
47.80
1.751
3.664
5
2.855
71.56
6/174
46 45 45 46 45 45 48 45 48 50
46.30
1.767
3.816
5
2.830
70.93
6/175
47 47 48 46 47 48 51 50 48 50
48.20
1.619
3.360
5
3.088
79.56
6/176
49 51 49 51 46 47 49 50 47 46
48.50
1.900
3.918
5
2.631
80.87
6/177
48 50 48 51 51 49 48 51 47 47
49.00
1.633
3.333
4
2.449
83.96
6/178
52 49 50 51 47 51 49 50 49 48
49.60
1.506
3.035
5
3.321
85.14
6/179
51 48 52 51 50 48 49 51 48 49
49.70
1.494
3.007
4
2.677
90.30
6/180
48 48 47 47 50 50 48 52 50 52
49.20
1.874
3.809
5
2.668
89.86
6/181
45 48 45 45 47 45 47 48 47 48
46.50
1.354
2.912
3
2.216
53.28
6/182
46 46 47 46 49 48 48 49 45 49
47.30
1.494
3.159
4
2.677
56.18
6/183
45 45 44 49 47 49 49 46 48 47
46.90
1.853
3.951
5
2.698
61.64
6/184
47 47 46 47 49 46 49 46 49 47
47.30
1.252
2.646
3
2.397
64.25
6/185
45 50 49 48 46 50 48 47 49 48
48.00
1.633
3.402
5
3.062
69.32
6/186
47 48 50 45 45 47 48 49 49 49
47.70
1.703
3.570
5
2.936
71.60
6/187
50 49 47 47 50 50 47 47 49 46
48.20
1.549
3.214
4
2.582
80.84
6/188
50 46 47 49 46 48 46 46 50 45
47.30
1.829
3.866
5
2.734
82.53
6/189
48 49 48 48 48 47 46 50 48 49
48.10
1.101
2.288
4
3.635
85.99
6/190
46 46 50 50 51 49 47 48 47 46
48.00
1.886
3.928
5
2.652
82.53
6/191
47 50 48 52 49 47 51 48 50 50
49.20
1.687
3.428
5
2.965
88.63
6/192
49 50 52 48 53 50 52 52 52 49
50.70
1.703
3.359
5
2.936
87.29
6/193
40 44 44 42 43 41 42 42 41 41
42.00
1.333
3.175
4
3.000
46.72
6/194
42 41 44 40 44 43 41 42 42 44
42.30
1.418
3.353
4
2.821
47.85
6/195
42 42 43 43 45 46 44 41 42 43
43.10
1.524
3.536
5
3.281
56.43
6/196
43 43 46 43 43 46 44 43 46 43
44.00
1.414
3.214
3
2.121
57.23
6/197
44 46 44 46 46 44 45 48 44 47
45.40
1.430
3.149
4
2.798
64.29
6/198
47 48 46 45 46 46 46 44 47 47
46.20
1.135
2.457
4
3.523
62.76
6/199
49 47 48 49 47 49 50 45 46 49
47.90
1.595
3.330
5
3.135
74.11
6/200
48 49 48 47 50 49 49 47 49 46
48.20
1.229
2.550
4
3.254
72.84
6/201
50 49 50 50 48 50 50 47 48 50
49.20
1.135
2.308
3
2.642
83.51
6/202
47 47 47 50 48 46 51 50 47 47
48.00
1.700
3.541
5
2.942
85.95
6/203
46 46 49 48 49 49 51 47 48 50
48.30
1.636
3.388
5
3.056
89.13
6/204
50 50 48 47 50 50 50 50 51 51
49.70
1.252
2.518
4
3.196
85.02
6/205
44 43 45 44 47 45 44 44 47 45
44.80
1.317
2.939
4
3.038
49.66
Test area
R1
6/153
6/154
R2
R3
R4
R5
R6
R7
R8
R9
R10
A17
Rm
sR
VR, %
rR
θR
fcm, MPa
46 45 47 44 44 47 47 44 47 43
45.40
1.578
3.475
4
2.535
52.00
44 47 48 44 46 47 47 45 47 44
45.90
1.524
3.320
4
2.625
57.13
6/208
44 45 45 46 44 45 47 44 48 47
45.50
1.434
3.151
4
2.790
56.67
6/209
48 48 46 48 45 45 47 47 46 44
46.40
1.430
3.082
4
2.798
66.26
6/210
45 46 49 44 47 46 48 48 47 47
46.70
1.494
3.200
5
3.346
62.59
6/211
47 46 45 48 45 48 49 48 48 47
47.10
1.370
2.909
4
2.919
76.84
6/212
47 50 49 48 49 46 49 49 45 48
48.00
1.563
3.257
5
3.198
72.20
6/213
49 50 46 48 46 49 48 47 48 46
47.70
1.418
2.973
4
2.821
81.08
6/214
48 46 48 45 50 46 48 46 46 46
46.90
1.524
3.249
5
3.281
83.57
6/215
52 50 47 49 48 52 49 49 51 50
49.70
1.636
3.293
5
3.056
85.42
6/216
53 51 50 47 53 53 50 47 52 50
50.60
2.271
4.487
6
2.642
86.56
7/1
32 31 37 33 36 32 32 30 32 32
32.70
2.163
6.614
7
3.237
28.57
7/2
33 36 34 33 34 35 34 34 33 35
34.10
0.994
2.916
3
3.017
27.56
7/3
37 36 34 35 36 37 37 34 33 35
35.40
1.430
4.039
4
2.798
38.06
7/4
36 35 36 34 35 38 35 34 33 35
35.10
1.370
3.904
5
3.649
38.05
7/5
41 42 40 45 42 42 42 42 46 46
42.80
2.098
4.901
6
2.860
47.86
7/6
46 44 43 43 48 45 43 46 42 44
44.40
1.838
4.139
6
3.265
47.27
7/7
44 44 46 42 42 44 42 43 45 42
43.40
1.430
3.295
4
2.798
58.44
7/8
46 48 46 44 45 46 48 48 44 45
46.00
1.563
3.399
4
2.558
57.32
7/9
49 47 48 48 47 51 47 48 46 49
48.00
1.414
2.946
5
3.536
63.44
7/10
47 51 47 47 46 46 49 47 51 49
48.00
1.886
3.928
5
2.652
66.67
7/11
50 49 48 51 49 50 47 50 47 47
48.80
1.476
3.024
4
2.711
68.23
7/12
49 49 46 49 48 47 50 48 49 50
48.50
1.269
2.617
4
3.151
69.49
7/13
24 28 26 26 26 27 27 28 26 27
26.50
1.179
4.447
4
3.394
17.07
7/14
24 25 24 25 24 25 26 24 26 25
24.80
0.789
3.181
2
2.535
16.33
7/15
36 36 34 36 35 35 33 33 32 35
34.50
1.434
4.156
4
2.790
36.70
7/16
34 35 35 33 35 35 32 35 34 36
34.40
1.174
3.412
4
3.408
35.41
7/17
40 42 40 40 42 41 43 42 40 41
41.10
1.101
2.678
3
2.726
46.81
7/18
41 42 38 38 35 42 42 38 37 35
38.80
2.781
7.167
7
2.517
46.50
7/19
45 43 42 44 44 45 47 45 46 46
44.70
1.494
3.343
5
3.346
58.95
7/20
43 43 42 42 42 47 44 43 42 46
43.40
1.776
4.093
5
2.815
56.84
7/21
50 53 48 49 46 49 46 51 47 48
48.70
2.214
4.545
7
3.162
62.38
7/22
46 47 45 47 46 46 46 48 46 45
46.20
0.919
1.989
3
3.265
60.85
7/23
48 50 49 49 49 50 48 47 50 49
48.90
0.994
2.034
3
3.017
69.83
7/24
48 48 50 47 49 48 48 50 49 48
48.50
0.972
2.004
3
3.087
68.85
7/25
33 31 32 34 32 32 30 33 31 34
32.20
1.317
4.089
4
3.038
29.95
7/26
34 30 32 34 30 32 30 31 34 33
32.00
1.700
5.311
4
2.353
31.98
7/27
41 38 40 38 37 41 39 38 42 45
39.90
2.424
6.076
8
3.300
51.11
7/28
41 42 37 41 41 38 40 40 41 41
40.20
1.549
3.854
5
3.227
49.33
7/29
45 44 48 44 47 46 46 45 46 43
45.40
1.506
3.316
5
3.321
62.74
7/30
48 49 46 45 43 46 46 43 44 44
45.40
2.011
4.430
6
2.983
59.23
7/31
47 46 47 49 48 48 47 48 47 49
47.60
0.966
2.030
3
3.105
65.26
7/32
45 47 49 50 47 48 48 50 49 48
48.10
1.524
3.168
5
3.281
65.70
7/33
50 50 52 51 49 50 50 50 52 52
50.60
1.075
2.124
3
2.791
74.21
7/34
48 49 50 50 50 49 49 47 46 50
48.80
1.398
2.866
4
2.860
71.73
7/35
53 50 50 51 50 50 52 50 54 50
51.00
1.491
2.923
4
2.683
81.40
7/36
48 52 50 50 54 51 52 54 53 51
51.50
1.900
3.690
6
3.157
78.01
7/37
28 27 30 31 30 32 36 32 32 34
31.20
2.658
8.520
9
3.386
26.10
7/38
31 34 32 34 31 30 31 30 29 29
31.10
1.792
5.762
5
2.790
25.98
7/39
41 39 40 39 38 40 38 40 38 36
38.90
1.449
3.725
5
3.450
42.91
7/40
38 36 38 39 38 38 39 41 39 38
38.40
1.265
3.294
5
3.953
43.21
7/41
46 43 46 45 46 44 43 45 43 43
44.40
1.350
3.040
3
2.222
55.62
Test area
R1
6/206
6/207
R2
R3
R4
R5
R6
R7
R8
R9
R10
A18
Rm
sR
VR, %
rR
θR
fcm, MPa
46 45 44 43 43 45 45 42 43 44
44.00
1.247
2.835
4
3.207
53.82
42 40 40 41 43 43 46 47 46 46
43.40
2.675
6.164
7
2.617
62.15
7/44
46 47 45 47 45 46 47 46 45 46
46.00
0.816
1.775
2
2.449
54.81
7/45
46 45 46 48 47 46 47 45 45 45
46.00
1.054
2.292
3
2.846
58.83
7/46
48 47 47 50 48 46 46 46 47 46
47.10
1.287
2.732
4
3.109
72.84
7/47
49 47 48 52 49 48 49 54 51 50
49.70
2.111
4.247
7
3.316
76.06
7/48
48 50 54 48 47 51 50 50 50 49
49.70
1.947
3.917
7
3.596
75.14
7/49
22 22 24 25 24 23 24 22 25 23
23.40
1.174
5.016
3
2.556
12.69
7/50
22 23 24 23 23 21 20 22 23 22
22.30
1.160
5.200
4
3.450
12.53
7/51
27 30 27 26 28 27 26 27 28 29
27.50
1.269
4.616
4
3.151
29.38
7/52
28 28 27 30 28 30 28 27 28 29
28.30
1.059
3.743
3
2.832
29.11
7/53
43 37 37 39 40 38 38 42 38 40
39.20
2.044
5.214
6
2.935
41.59
7/54
40 38 40 39 38 38 40 40 39 41
39.30
1.059
2.696
3
2.832
42.08
7/55
43 44 40 44 40 44 47 43 42 48
43.50
2.593
5.960
8
3.086
57.17
7/56
46 44 43 45 43 45 40 42 44 43
43.50
1.716
3.945
6
3.497
56.03
7/57
44 43 43 46 48 48 47 48 44 49
46.00
2.309
5.020
6
2.598
67.69
7/58
49 44 45 48 50 44 45 45 48 50
46.80
2.440
5.215
6
2.459
66.58
7/59
45 48 47 45 47 47 45 46 46 48
46.40
1.174
2.530
3
2.556
69.94
7/60
48 48 47 48 48 44 48 45 48 47
47.10
1.449
3.077
4
2.760
72.19
7/61
25 24 27 24 27 25 24 23 24 26
24.90
1.370
5.503
4
2.919
19.26
7/62
28 26 24 25 26 25 24 23 25 24
25.00
1.414
5.657
5
3.536
18.62
7/63
27 28 30 29 30 30 28 27 30 31
29.00
1.414
4.877
4
2.828
28.04
7/64
30 27 29 32 30 27 31 27 30 30
29.30
1.767
6.031
5
2.830
27.62
7/65
34 34 37 36 38 38 37 37 38 39
36.80
1.687
4.583
5
2.965
40.80
7/66
38 36 34 35 35 36 38 36 36 37
36.10
1.287
3.564
4
3.109
38.80
7/67
45 43 42 40 47 41 42 43 40 41
42.40
2.221
5.238
7
3.152
54.14
7/68
45 43 45 42 45 40 40 40 42 41
42.30
2.111
4.990
5
2.369
52.67
7/69
48 45 46 43 44 47 45 46 47 46
45.70
1.494
3.270
5
3.346
60.08
7/70
45 46 46 44 47 45 47 44 44 46
45.40
1.174
2.585
3
2.556
60.93
7/71
47 46 48 46 47 47 48 47 47 44
46.70
1.160
2.483
4
3.450
64.05
7/72
45 47 45 48 46 48 46 44 48 48
46.50
1.509
3.246
4
2.650
68.75
7/73
33 36 37 33 33 35 36 35 37 38
35.30
1.829
5.181
5
2.734
30.96
7/74
29 28 27 27 32 30 37 29 29 34
30.20
3.225
10.678
10
3.101
29.27
7/75
46 45 45 45 44 43 46 45 42 44
44.50
1.269
2.852
4
3.151
46.30
7/76
44 44 45 46 47 44 45 43 45 43
44.60
1.265
2.836
4
3.162
47.89
7/77
50 50 48 49 50 52 47 53 51 50
50.00
1.764
3.528
6
3.402
60.15
7/78
49 47 49 48 50 49 50 49 49 46
48.60
1.265
2.603
4
3.162
59.54
7/79
49 51 50 53 50 53 49 52 48 52
50.70
1.767
3.485
5
2.830
67.46
7/80
52 50 52 52 53 52 51 50 53 53
51.80
1.135
2.192
3
2.642
71.90
7/81
52 52 52 53 53 54 50 55 53 52
52.60
1.350
2.566
5
3.704
78.57
7/82
54 56 51 54 53 56 55 54 54 54
54.10
1.449
2.679
5
3.450
79.08
7/83
51 54 54 55 54 54 53 56 55 53
53.90
1.370
2.542
5
3.649
80.82
7/84
52 53 52 52 56 54 55 56 53 53
53.60
1.578
2.943
4
2.535
83.67
7/85
35 33 34 33 38 34 34 35 37 38
35.10
1.912
5.447
5
2.615
28.21
7/86
33 33 36 32 38 32 38 34 35 33
34.40
2.271
6.601
6
2.642
28.85
7/87
46 40 41 39 39 40 37 40 41 40
40.30
2.312
5.736
9
3.893
41.41
7/88
41 40 39 42 40 41 41 40 40 43
40.70
1.160
2.849
4
3.450
40.79
7/89
46 47 46 48 47 48 47 47 47 48
47.10
0.738
1.567
2
2.711
56.00
7/90
47 48 46 46 48 47 47 48 47 48
47.20
0.789
1.671
2
2.535
56.84
7/91
47 48 47 50 51 49 47 48 49 49
48.50
1.354
2.792
4
2.954
67.51
7/92
47 48 48 49 53 46 47 50 50 47
48.50
2.068
4.264
7
3.384
68.41
7/93
50 51 52 48 52 51 48 49 51 49
50.10
1.524
3.042
4
2.625
70.89
7/94
49 49 50 48 49 49 49 48 50 48
48.90
0.738
1.509
2
2.711
74.81
Test area
R1
7/42
7/43
R2
R3
R4
R5
R6
R7
R8
R9
R10
A19
Rm
sR
VR, %
rR
θR
fcm, MPa
52 48 50 52 52 51 49 50 50 50
50.40
1.350
2.678
4
2.963
73.83
50 53 49 50 49 51 51 49 50 51
50.30
1.252
2.488
4
3.196
75.60
7/97
27 29 26 28 27 25 25 22 24 24
25.70
2.111
8.213
7
3.316
12.90
7/98
29 25 23 26 27 28 24 24 26 26
25.80
1.874
7.263
6
3.202
13.04
7/99
34 33 33 33 33 31 33 29 32 33
32.40
1.430
4.413
5
3.497
34.34
7/100
34 32 34 34 33 34 33 35 33 34
33.60
0.843
2.510
3
3.558
33.80
7/101
34 37 35 29 35 34 36 38 35 29
34.20
3.011
8.804
9
2.989
41.66
7/102
41 38 37 38 34 36 38 38 39 40
37.90
1.969
5.196
7
3.555
53.25
7/103
40 39 42 41 38 43 43 41 44 41
41.20
1.874
4.548
6
3.202
49.18
7/104
41 44 40 45 45 43 40 42 42 40
42.20
1.989
4.713
5
2.514
49.72
7/105
46 46 45 48 47 45 46 45 47 48
46.30
1.160
2.504
3
2.587
60.64
7/106
50 45 44 47 48 47 50 47 48 49
47.50
1.958
4.122
6
3.065
60.12
7/107
47 46 46 48 47 48 48 46 48 46
47.00
0.943
2.006
2
2.121
67.81
7/108
48 46 50 48 47 47 44 49 48 46
47.30
1.703
3.600
6
3.523
67.73
7/109
24 20 22 24 22 25 23 23 23 26
23.20
1.687
7.270
6
3.558
11.40
7/110
20 20 20 20 20 18 22 22 22 23
20.70
1.494
7.219
5
3.346
11.61
7/111
30 31 28 29 29 29 31 31 30 31
29.90
1.101
3.681
3
2.726
26.40
7/112
31 30 31 30 31 30 31 29 30 28
30.10
0.994
3.304
3
3.017
27.82
7/113
32 35 35 35 36 33 35 30 33 31
33.50
2.014
6.011
6
2.979
39.67
7/114
37 37 38 35 35 34 32 33 36 37
35.40
1.955
5.523
6
3.069
39.98
7/115
38 39 40 43 42 40 39 43 41 43
40.80
1.874
4.593
5
2.668
48.85
7/116
40 43 42 40 39 41 41 40 42 43
41.10
1.370
3.334
4
2.919
49.17
7/117
46 50 52 45 45 47 46 47 49 46
47.30
2.312
4.888
7
3.028
56.75
7/118
46 45 44 45 46 44 45 45 45 44
44.90
0.738
1.643
2
2.711
59.03
7/119
44 43 42 44 42 46 42 46 44 45
43.80
1.549
3.537
4
2.582
65.16
7/120
44 46 48 45 47 48 48 47 48 48
46.90
1.449
3.090
4
2.760
65.91
7/121
26 26 26 24 24 23 25 24 24 26
24.80
1.135
4.578
3
2.642
12.40
7/122
22 22 23 24 23 23 25 24 25 24
23.50
1.080
4.596
3
2.777
12.47
7/123
32 27 30 28 29 34 28 33 31 31
30.30
2.312
7.630
7
3.028
31.21
7/124
35 32 29 29 34 34 31 32 35 34
32.50
2.273
6.994
6
2.640
31.22
7/125
32 30 28 30 30 32 32 30 30 34
30.80
1.687
5.476
6
3.558
39.63
7/126
32 31 30 29 33 31 34 30 33 33
31.60
1.647
5.211
5
3.037
39.48
7/127
36 38 34 37 39 38 37 38 35 36
36.80
1.549
4.210
5
3.227
50.83
7/128
34 35 40 34 34 38 36 37 34 38
36.00
2.160
6.001
6
2.777
45.38
7/129
39 39 37 39 39 42 40 39 40 42
39.60
1.506
3.802
5
3.321
57.97
7/130
43 44 46 44 44 39 39 39 40 41
41.90
2.601
6.208
7
2.691
53.51
7/131
44 44 44 44 42 42 39 39 40 42
42.00
2.055
4.892
5
2.433
57.44
7/132
48 49 48 48 48 46 45 48 50 48
47.80
1.398
2.926
5
3.575
65.96
7/133
30 29 27 31 27 31 28 31 31 31
29.60
1.713
5.786
4
2.335
21.80
7/134
28 31 27 33 33 30 27 31 32 29
30.10
2.283
7.584
6
2.628
22.58
7/135
31 31 29 33 29 28 28 28 32 29
29.80
1.814
6.086
5
2.757
30.41
7/136
34 31 30 31 34 30 31 33 33 30
31.70
1.636
5.162
4
2.444
33.63
7/137
32 33 34 33 35 32 34 34 33 34
33.40
0.966
2.892
3
3.105
38.34
7/138
34 34 35 34 34 33 32 32 35 34
33.70
1.059
3.143
3
2.832
39.83
7/139
35 38 35 35 35 36 37 37 39 37
36.40
1.430
3.928
4
2.798
49.24
7/140
35 36 39 34 35 33 36 37 38 40
36.30
2.214
6.098
7
3.162
45.45
7/141
40 45 42 43 43 46 42 40 42 43
42.60
1.897
4.454
6
3.162
55.81
7/142
40 46 41 40 39 40 41 43 40 40
41.00
2.055
5.012
7
3.407
52.82
7/143
40 40 40 43 41 42 40 40 41 43
41.00
1.247
3.042
3
2.405
64.39
7/144
43 42 38 38 43 42 42 40 42 40
41.00
1.886
4.599
5
2.652
60.54
7/145
32 32 32 35 33 31 30 34 36 33
32.80
1.814
5.529
6
3.308
28.57
7/146
32 35 33 32 32 32 31 32 34 34
32.70
1.252
3.828
4
3.196
27.56
7/147
35 36 34 37 35 33 36 33 35 37
35.10
1.449
4.129
4
2.760
38.06
Test area
R1
7/95
7/96
R2
R3
R4
R5
R6
R7
R8
R9
R10
A20
Rm
sR
VR, %
rR
θR
fcm, MPa
35 34 33 34 37 36 34 36 34 37
35.00
1.414
4.041
4
2.828
38.05
43 44 45 45 46 40 44 44 40 42
43.30
2.058
4.752
6
2.916
47.86
7/150
40 39 44 39 41 40 41 42 41 40
40.70
1.494
3.672
5
3.346
47.27
7/151
41 44 42 44 43 42 44 45 41 43
42.90
1.370
3.194
4
2.919
58.44
7/152
47 46 48 47 48 47 48 46 50 48
47.50
1.179
2.481
4
3.394
57.32
7/153
46 46 47 46 46 49 48 46 47 48
46.90
1.101
2.346
3
2.726
63.44
7/154
50 49 49 48 50 53 48 50 50 48
49.50
1.509
3.049
5
3.313
66.67
7/155
50 49 46 48 48 50 49 50 47 50
48.70
1.418
2.912
4
2.821
68.23
7/156
50 49 49 49 47 48 49 50 48 48
48.70
0.949
1.948
3
3.162
69.49
7/157
26 28 30 24 26 30 27 28 26 28
27.30
1.889
6.918
6
3.177
17.07
7/158
24 25 25 26 24 25 25 26 26 25
25.10
0.738
2.940
2
2.711
16.33
7/159
35 36 36 36 34 35 35 32 35 35
34.90
1.197
3.430
4
3.341
36.70
7/160
35 34 34 36 34 36 33 32 35 34
34.30
1.252
3.649
4
3.196
35.41
7/161
40 40 38 41 42 41 40 37 42 38
39.90
1.729
4.333
5
2.892
46.81
7/162
40 41 39 39 39 42 37 34 39 38
38.80
2.201
5.673
8
3.635
46.50
7/163
42 44 47 46 48 43 44 44 47 46
45.10
1.969
4.366
6
3.047
58.95
7/164
44 44 46 43 46 45 45 44 46 41
44.40
1.578
3.553
5
3.169
56.84
7/165
46 49 47 46 46 47 48 52 47 48
47.60
1.838
3.861
6
3.265
62.38
7/166
44 46 45 46 44 47 48 44 45 45
45.40
1.350
2.973
4
2.963
60.85
7/167
47 48 50 50 51 48 50 51 49 50
49.40
1.350
2.733
4
2.963
69.83
7/168
48 51 48 52 50 50 48 51 48 49
49.50
1.509
3.049
4
2.650
68.85
7/169
32 30 34 30 31 30 33 32 31 34
31.70
1.567
4.943
4
2.553
29.95
7/170
34 31 30 34 30 34 32 30 29 32
31.60
1.897
6.004
5
2.635
31.98
7/171
42 41 42 40 39 41 39 39 42 38
40.30
1.494
3.708
4
2.677
51.11
7/172
38 42 40 38 40 42 40 39 41 39
39.90
1.449
3.632
4
2.760
49.33
7/173
44 49 43 45 46 43 45 45 46 43
44.90
1.853
4.127
6
3.238
62.74
7/174
45 45 46 45 46 47 46 45 46 45
45.60
0.699
1.533
2
2.860
59.23
7/175
46 46 48 48 49 47 51 48 48 47
47.80
1.476
3.087
5
3.388
65.26
7/176
46 48 47 46 47 45 47 49 49 51
47.50
1.780
3.746
6
3.372
65.70
7/177
50 52 49 50 48 52 51 52 50 48
50.20
1.549
3.086
4
2.582
74.21
7/178
50 50 51 52 50 48 51 48 49 53
50.20
1.619
3.226
5
3.088
71.73
7/179
47 48 48 52 51 50 52 53 51 50
50.20
1.989
3.962
6
3.017
81.40
7/180
49 51 49 49 49 50 50 52 49 53
50.10
1.449
2.892
4
2.760
78.01
7/181
32 30 31 31 34 29 30 31 30 31
30.90
1.370
4.435
5
3.649
26.10
7/182
31 32 30 30 29 31 28 31 31 34
30.70
1.636
5.330
6
3.667
25.98
7/183
41 38 38 38 40 41 40 39 38 37
39.00
1.414
3.626
4
2.828
42.91
7/184
39 40 40 41 40 39 40 36 41 41
39.70
1.494
3.764
5
3.346
43.21
7/185
45 44 44 45 45 44 45 45 45 43
44.50
0.707
1.589
2
2.828
55.62
7/186
43 44 46 43 44 43 46 43 45 43
44.00
1.247
2.835
3
2.405
53.82
7/187
46 48 48 43 45 49 49 44 44 48
46.40
2.271
4.894
6
2.642
62.15
7/188
48 46 46 45 48 46 45 47 47 46
46.40
1.075
2.317
3
2.791
54.81
7/189
48 49 48 48 50 50 49 47 48 48
48.50
0.972
2.004
3
3.087
58.83
7/190
50 48 47 48 48 46 50 50 48 48
48.30
1.337
2.769
4
2.991
72.84
7/191
51 49 48 49 51 48 52 47 48 47
49.00
1.764
3.600
5
2.835
76.06
7/192
49 50 48 50 51 47 51 48 50 48
49.20
1.398
2.842
4
2.860
75.14
7/193
24 22 24 23 22 21 22 24 22 23
22.70
1.059
4.667
3
2.832
12.69
7/194
24 24 23 24 22 23 24 22 23 24
23.30
0.823
3.533
2
2.429
12.53
7/195
28 30 32 31 28 28 27 30 28 26
28.80
1.874
6.506
6
3.202
29.38
7/196
27 30 28 27 30 31 28 29 30 27
28.70
1.494
5.207
4
2.677
29.11
7/197
39 37 39 38 40 38 39 39 39 38
38.60
0.843
2.185
3
3.558
41.59
7/198
41 39 37 41 36 38 37 43 41 37
39.00
2.357
6.044
7
2.970
42.08
7/199
43 43 43 44 44 43 43 43 45 47
43.80
1.317
3.006
4
3.038
57.17
7/200
42 43 43 44 45 44 43 42 44 43
43.30
0.949
2.191
3
3.162
56.03
Test area
R1
7/148
7/149
R2
R3
R4
R5
R6
R7
R8
R9
R10
A21
Rm
sR
VR, %
rR
θR
fcm, MPa
47 50 44 50 48 47 48 46 48 43
47.10
2.283
4.847
7
3.066
67.69
46 46 43 47 48 48 43 50 48 47
46.60
2.221
4.766
7
3.152
66.58
7/203
48 47 47 46 47 47 47 46 48 45
46.80
0.919
1.964
3
3.265
69.94
7/204
48 48 48 47 46 47 47 48 47 49
47.50
0.850
1.789
3
3.530
72.19
7/205
24 24 27 28 24 23 24 25 26 26
25.10
1.595
6.355
5
3.135
19.26
7/206
28 27 25 27 24 28 24 25 24 27
25.90
1.663
6.422
4
2.405
18.62
7/207
27 29 30 27 28 30 27 30 32 28
28.80
1.687
5.856
5
2.965
28.04
7/208
27 30 30 30 27 32 30 30 28 30
29.40
1.578
5.366
5
3.169
27.62
7/209
37 36 38 37 38 34 35 33 36 37
36.10
1.663
4.608
5
3.006
40.80
7/210
38 35 37 39 35 37 38 37 38 37
37.10
1.287
3.468
4
3.109
38.80
7/211
40 42 43 40 40 43 42 46 41 43
42.00
1.886
4.490
6
3.182
54.14
7/212
45 44 43 42 41 42 42 43 40 41
42.30
1.494
3.533
5
3.346
52.67
7/213
46 45 46 46 44 44 47 44 47 48
45.70
1.418
3.103
4
2.821
60.08
7/214
44 42 44 41 42 44 42 41 42 40
42.20
1.398
3.314
4
2.860
60.93
7/215
46 46 44 43 47 43 44 44 45 43
44.50
1.434
3.222
4
2.790
64.05
7/216
44 46 45 47 48 45 48 48 45 48
46.40
1.578
3.400
4
2.535
68.75
7/217
34 34 33 38 34 36 33 34 37 36
34.90
1.729
4.954
5
2.892
30.96
7/218
28 32 27 28 27 34 27 31 29 33
29.60
2.675
9.037
7
2.617
29.27
7/219
43 44 48 47 45 46 44 46 44 47
45.40
1.647
3.627
5
3.037
46.30
7/220
46 47 44 48 46 46 42 46 44 43
45.20
1.874
4.146
6
3.202
47.89
7/221
50 50 52 51 49 52 49 50 50 51
50.40
1.075
2.133
3
2.791
60.15
7/222
50 50 49 50 48 50 47 51 49 48
49.20
1.229
2.499
4
3.254
59.54
7/223
50 51 50 52 52 53 52 51 51 53
51.50
1.080
2.097
3
2.777
67.46
7/224
53 54 53 53 52 51 53 51 53 53
52.60
0.966
1.837
3
3.105
71.90
7/225
53 50 52 51 50 54 55 52 54 55
52.60
1.897
3.607
5
2.635
78.57
7/226
56 58 53 57 53 50 54 56 56 53
54.60
2.413
4.419
8
3.315
79.08
7/227
53 54 53 54 53 52 54 55 54 54
53.60
0.843
1.573
3
3.558
80.82
7/228
52 56 52 54 54 55 53 56 52 55
53.90
1.595
2.959
4
2.508
83.67
7/229
33 34 34 33 34 31 31 33 33 31
32.70
1.252
3.828
3
2.397
28.21
7/230
36 34 39 38 36 33 33 38 36 33
35.60
2.271
6.378
6
2.642
28.85
7/231
43 42 39 42 39 38 41 40 42 41
40.70
1.636
4.021
5
3.056
41.41
7/232
43 40 39 42 40 41 43 41 38 40
40.70
1.636
4.021
5
3.056
40.79
7/233
46 46 48 49 46 47 46 48 46 48
47.00
1.155
2.457
3
2.598
56.00
7/234
48 46 46 48 46 47 46 45 44 47
46.30
1.252
2.703
4
3.196
56.84
7/235
48 49 46 49 46 46 49 50 50 47
48.00
1.633
3.402
4
2.449
67.51
7/236
47 48 50 50 49 50 50 50 50 49
49.30
1.059
2.149
3
2.832
68.41
7/237
49 48 50 52 51 50 49 48 50 50
49.70
1.252
2.518
4
3.196
70.89
7/238
52 50 54 47 53 51 51 52 52 50
51.20
1.932
3.774
7
3.623
74.81
7/239
52 51 48 50 48 50 51 48 49 50
49.70
1.418
2.853
4
2.821
73.83
7/240
50 52 50 52 50 52 53 51 50 50
51.00
1.155
2.264
3
2.598
75.60
7/241
23 24 27 29 25 25 28 26 27 24
25.80
1.932
7.489
6
3.105
12.90
7/242
25 29 24 26 28 26 27 25 22 25
25.70
2.003
7.793
7
3.495
13.04
7/243
35 31 30 31 30 35 33 31 32 35
32.30
2.058
6.370
5
2.430
34.34
7/244
35 32 34 33 32 31 32 36 31 34
33.00
1.700
5.151
5
2.942
33.80
7/245
37 39 39 40 38 35 36 37 36 38
37.50
1.581
4.216
5
3.162
41.66
7/246
42 37 38 39 40 38 39 38 40 40
39.10
1.449
3.706
5
3.450
53.25
7/247
39 45 38 45 40 43 42 44 41 39
41.60
2.591
6.227
7
2.702
49.18
7/248
39 44 44 40 40 43 44 44 44 40
42.20
2.150
5.095
5
2.326
49.72
7/249
47 49 46 49 43 50 46 45 43 48
46.60
2.459
5.276
7
2.847
60.64
7/250
46 46 46 47 48 44 47 45 47 47
46.30
1.160
2.504
4
3.450
60.12
7/251
46 49 46 46 48 47 49 48 46 46
47.10
1.287
2.732
3
2.332
67.81
7/252
48 48 46 46 49 49 47 46 49 46
47.40
1.350
2.848
3
2.222
67.73
7/253
25 24 22 22 23 21 21 22 22 22
22.40
1.265
5.647
4
3.162
11.40
Test area
R1
7/201
7/202
R2
R3
R4
R5
R6
R7
R8
R9
R10
A22
Rm
sR
VR, %
rR
θR
fcm, MPa
22 23 24 22 24 24 24 23 22 24
23.20
0.919
3.961
2
2.176
11.61
28 30 29 32 30 30 30 30 29 32
30.00
1.247
4.157
4
3.207
26.40
7/256
32 31 33 32 29 30 29 28 30 30
30.40
1.578
5.190
5
3.169
27.82
7/257
35 35 38 34 36 34 39 35 36 34
35.60
1.713
4.811
5
2.919
39.67
7/258
30 34 33 32 36 30 31 35 36 35
33.20
2.348
7.071
6
2.556
39.98
7/259
43 39 40 41 40 41 42 40 41 41
40.80
1.135
2.783
4
3.523
48.85
7/260
42 41 43 42 41 43 39 41 42 40
41.40
1.265
3.055
4
3.162
49.17
7/261
45 45 45 44 44 45 44 44 45 45
44.60
0.516
1.158
1
1.936
56.75
7/262
48 50 45 46 47 46 46 45 46 45
46.40
1.578
3.400
5
3.169
59.03
7/263
46 48 44 48 46 46 47 44 45 48
46.20
1.549
3.353
4
2.582
65.16
7/264
47 48 48 48 49 46 49 48 48 49
48.00
0.943
1.964
3
3.182
65.91
7/265
24 23 23 25 23 25 24 26 24 23
24.00
1.054
4.392
3
2.846
12.40
7/266
20 20 22 22 22 24 25 26 24 23
22.80
1.989
8.723
6
3.017
12.47
7/267
24 27 28 28 29 28 30 28 31 29
28.20
1.874
6.645
7
3.736
31.21
7/268
29 32 30 33 31 30 31 30 31 28
30.50
1.434
4.701
5
3.487
31.22
7/269
31 33 33 33 32 35 32 33 30 30
32.20
1.549
4.811
5
3.227
39.63
7/270
33 30 30 30 34 32 34 34 33 30
32.00
1.826
5.705
4
2.191
39.48
7/271
37 36 35 36 39 36 36 36 36 38
36.50
1.179
3.229
4
3.394
50.83
7/272
39 37 39 37 35 36 37 36 36 34
36.60
1.578
4.310
5
3.169
45.38
7/273
41 41 42 41 41 41 40 39 39 39
40.40
1.075
2.661
3
2.791
57.97
7/274
39 42 39 41 41 38 40 38 39 38
39.50
1.434
3.630
4
2.790
53.51
7/275
45 45 42 46 48 45 44 48 41 46
45.00
2.261
5.024
7
3.096
57.44
7/276
50 48 50 46 44 51 48 52 46 50
48.50
2.550
5.257
8
3.138
65.96
7/277
31 32 29 31 33 30 31 31 26 28
30.20
2.044
6.768
7
3.425
21.80
7/278
27 30 29 37 28 30 31 30 27 31
30.00
2.867
9.558
10
3.487
22.58
7/279
33 29 30 28 30 28 27 29 31 28
29.30
1.767
6.031
6
3.396
30.41
7/280
32 30 31 32 32 34 33 32 31 30
31.70
1.252
3.948
4
3.196
33.63
7/281
33 32 33 32 31 33 34 34 35 34
33.10
1.197
3.617
4
3.341
38.34
7/282
34 33 34 33 33 33 29 32 29 32
32.20
1.814
5.632
5
2.757
39.83
7/283
36 40 39 40 37 38 39 40 39 35
38.30
1.767
4.614
5
2.830
49.24
7/284
34 35 39 36 37 38 36 37 41 38
37.10
2.025
5.458
7
3.457
45.45
7/285
40 40 42 39 44 43 39 40 44 41
41.20
1.932
4.690
5
2.588
55.81
7/286
40 41 43 39 39 42 41 40 39 44
40.80
1.751
4.292
5
2.855
52.82
7/287
42 44 44 44 44 40 39 40 41 42
42.00
1.944
4.628
5
2.572
64.39
7/288
43 44 45 44 43 43 42 44 44 42
43.40
0.966
2.226
3
3.105
60.54
8/1
28 33 25 28 30 33 30 29 26 32
29.40
2.757
9.377
8
2.902
26.63
8/2
28 27 30 27 28 34 28 30 27 29
28.80
2.150
7.465
7
3.256
26.11
8/3
33 39 37 32 32 33 30 34 34 37
34.10
2.767
8.114
9
3.253
35.57
8/4
34 31 34 33 36 33 35 34 35 33
33.80
1.398
4.137
5
3.575
36.19
8/5
40 37 34 40 39 38 37 39 40 36
38.00
2.000
5.263
6
3.000
40.05
8/6
35 33 34 34 35 36 34 35 34 33
34.30
0.949
2.766
3
3.162
41.75
8/7
44 45 40 40 43 40 40 38 40 44
41.40
2.366
5.716
7
2.958
47.15
8/8
42 39 40 44 44 43 44 36 37 40
40.90
2.961
7.239
8
2.702
47.11
8/9
40 39 39 40 42 41 38 39 40 42
40.00
1.333
3.333
4
3.000
51.96
8/10
40 41 42 40 40 39 40 41 40 39
40.20
0.919
2.286
3
3.265
48.28
8/11
43 46 42 42 42 41 43 41 40 42
42.20
1.619
3.837
6
3.705
52.77
8/12
39 40 42 42 42 43 44 44 42 43
42.10
1.595
3.789
5
3.135
55.79
8/13
34 34 34 32 30 30 28 29 29 30
31.00
2.309
7.450
6
2.598
34.15
8/14
29 34 36 30 30 33 31 33 29 33
31.80
2.348
7.382
7
2.982
35.43
8/15
35 38 38 39 41 38 41 39 40 43
39.20
2.201
5.615
8
3.635
43.55
8/16
36 35 36 34 36 36 33 33 32 38
34.90
1.853
5.309
6
3.238
42.92
8/17
39 41 43 44 43 39 41 40 39 38
40.70
2.058
5.055
6
2.916
52.36
Test area
R1
7/254
7/255
R2
R3
R4
R5
R6
R7
R8
R9
R10
A23
Rm
sR
VR, %
rR
θR
fcm, MPa
38 37 37 38 36 39 38 38 38 38
37.70
0.823
2.184
3
3.644
51.27
44 45 48 44 42 46 45 46 48 49
45.70
2.163
4.733
7
3.237
57.23
8/20
43 47 45 44 43 45 41 43 43 43
43.70
1.636
3.745
6
3.667
54.10
8/21
40 40 42 44 40 43 43 46 42 48
42.80
2.658
6.211
8
3.009
57.93
8/22
42 41 38 40 40 38 40 37 41 42
39.90
1.729
4.333
5
2.892
55.92
8/23
46 46 46 45 42 41 42 42 45 44
43.90
1.969
4.486
5
2.539
62.29
8/24
40 40 45 42 43 44 44 42 40 42
42.20
1.814
4.297
5
2.757
62.90
8/25
26 30 26 32 30 29 29 29 32 28
29.10
2.079
7.144
6
2.886
27.48
8/26
34 28 28 30 32 30 29 31 32 30
30.40
1.897
6.241
6
3.162
27.97
8/27
43 40 36 36 35 35 34 36 35 36
36.60
2.757
7.532
9
3.265
36.53
8/28
31 32 32 35 33 37 32 35 33 34
33.40
1.838
5.503
6
3.265
36.17
8/29
34 36 39 41 38 42 38 36 39 36
37.90
2.470
6.517
8
3.239
40.71
8/30
37 35 36 38 37 36 38 38 38 37
37.00
1.054
2.849
3
2.846
42.09
8/31
42 40 43 40 40 38 41 40 37 43
40.40
1.955
4.839
6
3.069
44.42
8/32
42 40 44 45 47 39 43 38 40 40
41.80
2.898
6.934
9
3.105
45.57
8/33
32 34 32 36 36 38 38 38 38 36
35.80
2.394
6.688
6
2.506
51.78
8/34
40 42 40 41 41 46 46 45 45 48
43.40
2.914
6.713
8
2.746
46.55
8/35
38 41 42 39 43 40 40 39 38 44
40.40
2.066
5.113
6
2.905
53.19
8/36
38 39 43 38 41 42 39 43 40 40
40.30
1.889
4.686
5
2.648
52.29
8/37
31 32 29 30 29 27 32 33 32 35
31.00
2.309
7.450
8
3.464
35.11
8/38
33 27 28 31 34 26 32 27 26 28
29.20
3.011
10.312
8
2.657
34.46
8/39
38 39 40 36 39 40 34 37 43 38
38.40
2.459
6.402
9
3.661
41.26
8/40
36 36 37 34 35 33 34 35 37 34
35.10
1.370
3.904
4
2.919
40.49
8/41
32 36 36 36 35 37 36 38 34 36
35.60
1.647
4.625
6
3.644
50.22
8/42
37 37 42 39 36 37 38 39 38 35
37.80
1.932
5.112
7
3.623
50.66
8/43
40 42 38 39 40 38 39 42 40 41
39.90
1.449
3.632
4
2.760
56.61
8/44
40 39 39 40 42 42 40 38 39 40
39.90
1.287
3.225
4
3.109
56.51
8/45
41 40 40 42 40 38 39 39 41 40
40.00
1.155
2.887
4
3.464
58.73
8/46
40 42 42 44 39 39 36 38 40 42
40.20
2.348
5.840
8
3.408
58.14
8/47
26 25 29 26 30 30 30 27 32 28
28.30
2.263
7.997
7
3.093
30.42
8/48
25 27 29 27 26 29 28 27 26 28
27.20
1.317
4.840
4
3.038
27.65
8/49
34 32 30 32 29 31 34 36 28 34
32.00
2.539
7.933
8
3.151
38.86
8/50
34 38 35 35 35 37 35 33 36 34
35.20
1.476
4.192
5
3.388
34.40
8/51
38 36 44 37 35 43 38 37 38 36
38.20
2.974
7.785
9
3.026
44.23
8/52
37 42 41 39 39 43 37 36 38 37
38.90
2.378
6.113
7
2.943
42.60
8/53
34 35 34 34 36 34 37 35 34 35
34.80
1.033
2.968
3
2.905
45.98
8/54
36 38 37 36 38 40 40 37 39 39
38.00
1.491
3.923
4
2.683
49.42
8/55
39 40 42 36 38 40 42 38 40 39
39.40
1.838
4.665
6
3.265
50.57
8/56
32 34 36 35 35 40 36 36 35 40
35.90
2.470
6.880
8
3.239
51.21
8/57
43 42 44 44 44 43 42 45 44 45
43.60
1.075
2.466
3
2.791
58.50
8/58
42 45 42 40 40 42 40 42 43 42
41.80
1.549
3.706
5
3.227
56.87
8/59
28 28 31 29 27 32 30 28 30 30
29.30
1.567
5.348
5
3.191
35.83
8/60
28 29 25 28 30 33 32 26 27 32
29.00
2.708
9.338
8
2.954
35.69
8/61
33 37 32 35 34 33 35 29 33 34
33.50
2.121
6.332
8
3.771
39.34
8/62
34 34 33 30 33 30 31 32 34 32
32.30
1.567
4.851
4
2.553
40.60
8/63
34 38 39 36 37 37 35 35 36 38
36.50
1.581
4.332
5
3.162
46.01
8/64
43 40 38 45 37 38 40 42 40 37
40.00
2.667
6.667
8
3.000
48.76
8/65
40 39 41 40 42 39 38 39 40 41
39.90
1.197
3.001
4
3.341
56.06
8/66
40 41 40 42 42 42 41 40 40 41
40.90
0.876
2.141
2
2.284
57.00
8/67
39 41 41 40 38 42 41 41 38 39
40.00
1.414
3.536
4
2.828
58.84
8/68
40 40 42 39 37 39 43 40 41 41
40.20
1.687
4.195
6
3.558
57.97
8/69
30 30 28 32 31 31 28 31 32 30
30.30
1.418
4.680
4
2.821
29.13
8/70
28 28 27 33 29 27 29 28 30 30
28.90
1.792
6.201
6
3.348
26.23
Test area
R1
8/18
8/19
R2
R3
R4
R5
R6
R7
R8
R9
R10
A24
Rm
sR
VR, %
rR
θR
fcm, MPa
38 39 33 38 41 35 38 39 36 37
37.40
2.271
6.071
8
3.523
41.90
38 37 36 38 37 39 35 34 40 33
36.70
2.214
6.032
7
3.162
37.49
8/73
44 41 42 40 42 41 40 40 41 39
41.00
1.414
3.449
5
3.536
50.27
8/74
39 41 40 39 39 38 39 40 39 44
39.80
1.687
4.238
6
3.558
47.65
8/75
41 43 40 42 42 40 41 42 43 40
41.40
1.174
2.835
3
2.556
51.54
8/76
44 45 42 43 43 43 43 42 44 41
43.00
1.155
2.685
4
3.464
56.05
8/77
44 40 41 44 38 46 43 43 45 38
42.20
2.821
6.684
8
2.836
59.49
8/78
40 41 42 44 39 37 40 40 38 36
39.70
2.359
5.943
8
3.391
63.28
8/79
32 31 33 32 33 33 31 30 30 31
31.60
1.174
3.715
3
2.556
30.99
8/80
33 34 30 31 30 32 33 33 36 30
32.20
1.989
6.177
6
3.017
31.11
8/81
39 38 44 40 41 42 39 39 40 41
40.30
1.767
4.385
6
3.396
43.97
8/82
36 36 45 39 39 41 40 40 39 36
39.10
2.767
7.076
9
3.253
44.97
8/83
40 44 44 44 45 39 40 40 44 39
41.90
2.470
5.895
6
2.429
54.24
8/84
41 38 41 41 39 39 40 38 43 38
39.80
1.687
4.238
5
2.965
51.63
8/85
40 42 42 41 40 44 43 43 41 42
41.80
1.317
3.150
4
3.038
57.90
8/86
44 43 40 41 42 42 44 42 41 42
42.10
1.287
3.056
4
3.109
60.67
8/87
46 43 41 45 46 47 41 42 41 42
43.40
2.366
5.453
6
2.535
63.36
8/88
40 41 42 44 40 47 45 44 44 44
43.10
2.283
5.296
7
3.066
62.72
8/89
26 27 28 26 27 27 26 27 28 28
27.00
0.816
3.024
2
2.449
22.71
8/90
27 27 26 26 26 25 29 28 30 27
27.10
1.524
5.623
5
3.281
22.71
8/91
34 37 36 33 33 34 35 37 34 36
34.90
1.524
4.366
4
2.625
34.39
8/92
36 35 37 38 40 38 40 37 37 38
37.60
1.578
4.196
5
3.169
35.01
8/93
34 32 36 31 33 35 35 33 32 30
33.10
1.912
5.776
6
3.138
40.55
8/94
36 35 37 37 36 36 34 35 33 34
35.30
1.337
3.789
4
2.991
42.02
8/95
38 40 38 39 40 41 39 38 40 42
39.50
1.354
3.428
4
2.954
46.13
8/96
40 42 41 40 39 41 41 40 41 42
40.70
0.949
2.331
3
3.162
44.96
8/97
35 36 37 38 38 35 37 38 36 38
36.80
1.229
3.340
3
2.440
48.17
8/98
42 40 41 42 38 39 40 38 41 40
40.10
1.449
3.614
4
2.760
47.63
8/99
30 29 28 31 32 32 34 30 29 31
30.60
1.776
5.805
6
3.378
29.89
8/100
32 33 31 34 34 34 35 30 29 31
32.30
2.003
6.201
6
2.996
26.90
8/101
41 40 37 45 41 38 38 37 36 38
39.10
2.685
6.868
9
3.352
43.71
8/102
38 36 39 37 38 41 37 39 40 39
38.40
1.506
3.921
5
3.321
40.22
8/103
40 37 43 44 40 41 42 38 40 39
40.40
2.171
5.373
7
3.225
49.62
8/104
36 35 40 35 38 39 37 36 40 40
37.60
2.066
5.494
5
2.421
47.89
8/105
44 40 42 43 40 42 45 44 46 42
42.80
1.989
4.647
6
3.017
55.98
8/106
44 41 46 44 44 46 45 46 48 44
44.80
1.874
4.183
7
3.736
54.55
8/107
41 38 38 40 41 44 42 40 41 42
40.70
1.829
4.493
6
3.281
57.67
8/108
39 39 42 42 45 36 43 42 42 44
41.40
2.675
6.461
9
3.365
57.78
8/109
26 23 24 21 25 23 22 22 24 23
23.30
1.494
6.414
5
3.346
23.62
8/110
26 30 21 22 24 26 27 22 25 24
24.70
2.710
10.972
9
3.321
23.90
8/111
35 35 38 35 38 35 33 34 37 33
35.30
1.829
5.181
5
2.734
37.38
8/112
33 32 34 36 35 36 32 34 33 38
34.30
1.947
5.675
6
3.082
37.08
8/113
35 37 37 37 37 33 34 33 32 31
34.60
2.319
6.702
6
2.587
42.80
8/114
41 41 42 38 39 39 40 41 37 37
39.50
1.780
4.505
5
2.810
45.08
8/115
36 38 37 40 38 36 35 40 37 38
37.50
1.650
4.400
5
3.030
47.28
8/116
32 33 38 35 37 37 38 38 37 38
36.30
2.214
6.098
6
2.711
46.64
8/117
44 39 38 40 37 43 38 42 41 41
40.30
2.312
5.736
7
3.028
49.72
8/118
33 38 33 32 35 35 32 32 36 34
34.00
2.000
5.882
6
3.000
50.11
8/119
29 28 30 26 26 27 28 27 27 26
27.40
1.350
4.927
4
2.963
25.99
8/120
26 22 23 25 27 31 22 25 24 24
24.90
2.685
10.785
9
3.352
27.06
8/121
32 35 34 36 33 38 35 39 32 35
34.90
2.331
6.679
7
3.003
42.54
8/122
35 36 35 34 38 35 34 37 35 38
35.70
1.494
4.186
4
2.677
41.64
8/123
35 34 34 36 37 40 36 40 37 35
36.40
2.171
5.963
6
2.764
48.01
Test area
R1
8/71
8/72
R2
R3
R4
R5
R6
R7
R8
R9
R10
A25
Rm
sR
VR, %
rR
θR
fcm, MPa
39 39 35 37 38 37 40 40 39 37
38.10
1.595
4.187
5
3.135
49.09
40 41 42 39 43 42 43 39 40 39
40.80
1.619
3.969
4
2.470
53.03
8/126
40 42 46 41 43 44 44 43 42 40
42.50
1.900
4.471
6
3.157
54.12
8/127
37 36 36 39 35 36 39 37 37 34
36.60
1.578
4.310
5
3.169
54.82
8/128
41 36 38 40 39 38 42 40 44 45
40.30
2.791
6.925
9
3.225
57.27
8/129
31 34 34 34 31 34 32 32 34 32
32.80
1.317
4.014
3
2.279
29.02
8/130
31 31 33 31 33 31 30 30 32 34
31.60
1.350
4.272
4
2.963
29.25
8/131
35 39 34 37 39 35 37 38 38 37
36.90
1.729
4.685
5
2.892
35.71
8/132
36 35 37 40 36 42 37 37 40 42
38.20
2.573
6.737
7
2.720
36.01
8/133
40 40 41 40 39 39 38 40 38 38
39.30
1.059
2.696
3
2.832
42.00
8/134
40 38 39 38 36 40 37 40 43 39
39.00
1.944
4.984
7
3.601
45.82
8/135
40 40 43 40 41 42 42 42 41 40
41.10
1.101
2.678
3
2.726
49.34
8/136
37 39 40 37 42 37 40 41 41 42
39.60
2.011
5.078
5
2.486
51.16
8/137
40 38 45 41 45 43 42 44 41 42
42.10
2.234
5.305
7
3.134
52.87
8/138
44 40 42 43 45 40 39 41 47 45
42.60
2.633
6.181
8
3.038
50.91
8/139
35 37 38 33 37 38 36 38 36 33
36.10
1.912
5.296
5
2.615
37.46
8/140
32 34 31 36 35 36 35 36 37 36
34.80
1.932
5.552
6
3.105
32.32
8/141
40 37 36 37 38 38 38 41 39 43
38.70
2.111
5.454
7
3.316
45.98
8/142
40 40 38 35 37 39 38 38 39 38
38.20
1.476
3.863
5
3.388
45.77
8/143
38 41 43 40 40 38 41 38 39 41
39.90
1.663
4.169
5
3.006
48.99
8/144
42 38 39 40 41 40 40 39 38 41
39.80
1.317
3.308
4
3.038
48.86
8/145
44 40 43 42 41 41 40 42 41 43
41.70
1.337
3.207
4
2.991
56.30
8/146
47 48 43 41 45 42 41 46 47 48
44.80
2.821
6.296
7
2.482
53.55
8/147
43 42 42 40 42 42 39 44 40 45
41.90
1.853
4.422
6
3.238
57.71
8/148
43 41 37 39 39 42 40 44 38 39
40.20
2.251
5.599
7
3.110
55.08
8/149
29 30 32 34 31 28 29 28 29 28
29.80
1.989
6.674
6
3.017
24.99
8/150
29 29 33 31 30 30 34 33 32 29
31.00
1.886
6.083
5
2.652
26.17
8/151
32 33 32 31 36 31 35 39 33 34
33.60
2.503
7.450
8
3.196
33.95
8/152
34 32 34 37 31 31 34 33 36 32
33.40
2.011
6.021
6
2.983
33.57
8/153
39 39 38 37 38 37 36 37 37 38
37.60
0.966
2.569
3
3.105
36.89
8/154
34 34 35 34 33 34 34 35 36 36
34.50
0.972
2.817
3
3.087
40.33
8/155
40 42 44 41 43 41 42 41 45 40
41.90
1.663
3.970
5
3.006
45.62
8/156
38 37 40 36 41 40 40 39 37 38
38.60
1.647
4.266
5
3.037
42.22
8/157
44 42 38 42 44 40 43 40 41 40
41.40
1.955
4.722
6
3.069
25.93
8/158
40 47 42 41 42 49 45 43 44 45
43.80
2.781
6.349
9
3.236
47.60
8/159
33 37 36 34 35 36 34 39 37 33
35.40
1.955
5.523
6
3.069
34.10
8/160
37 34 31 34 35 33 32 35 32 32
33.50
1.841
5.495
6
3.259
32.59
8/161
33 36 35 31 33 36 36 33 35 36
34.40
1.776
5.164
5
2.815
36.47
8/162
34 32 35 37 38 37 33 35 36 32
34.90
2.132
6.108
6
2.815
40.79
8/163
40 42 41 38 38 42 37 38 41 44
40.10
2.283
5.693
7
3.066
47.87
8/164
41 44 39 42 44 38 38 40 39 44
40.90
2.470
6.039
6
2.429
47.43
8/165
40 42 41 40 41 41 42 40 42 41
41.00
0.816
1.991
2
2.449
60.37
8/166
39 40 38 43 44 45 43 44 42 40
41.80
2.394
5.728
7
2.923
57.61
8/167
43 41 46 43 44 48 43 44 40 43
43.50
2.273
5.225
8
3.520
57.89
8/168
43 41 43 44 45 43 45 44 47 41
43.60
1.838
4.215
6
3.265
61.01
8/169
30 28 29 30 28 32 31 30 26 27
29.10
1.853
6.367
6
3.238
25.64
8/170
29 33 29 31 28 30 28 31 29 29
29.70
1.567
5.276
5
3.191
25.70
8/171
31 33 34 36 34 34 36 35 32 34
33.90
1.595
4.705
5
3.135
30.49
8/172
38 38 35 38 33 34 34 31 36 35
35.20
2.348
6.669
7
2.982
29.83
8/173
34 33 36 36 36 34 38 35 36 36
35.40
1.430
4.039
5
3.497
37.04
8/174
34 37 34 40 34 33 34 35 38 36
35.50
2.224
6.264
7
3.148
37.38
8/175
36 38 40 39 36 37 38 40 41 37
38.20
1.751
4.584
5
2.855
48.31
8/176
44 42 40 40 42 41 42 40 39 42
41.20
1.476
3.582
5
3.388
48.76
Test area
R1
8/124
8/125
R2
R3
R4
R5
R6
R7
R8
R9
R10
A26
Rm
sR
VR, %
rR
θR
fcm, MPa
44 44 39 47 43 40 42 39 44 39
42.10
2.767
6.572
8
2.891
50.77
39 44 43 43 38 40 40 43 38 43
41.10
2.331
5.671
6
2.574
49.41
8/179
32 33 32 34 36 31 33 33 32 31
32.70
1.494
4.570
5
3.346
29.64
8/180
33 31 30 34 35 32 31 32 33 34
32.50
1.581
4.865
5
3.162
31.28
8/181
38 41 34 34 36 35 36 34 34 35
35.70
2.263
6.340
7
3.093
35.37
8/182
35 36 37 38 34 34 35 36 36 37
35.80
1.317
3.678
4
3.038
34.41
8/183
37 39 39 39 36 41 38 41 39 40
38.90
1.595
4.101
5
3.135
47.29
8/184
32 36 36 40 40 36 34 33 34 35
35.60
2.675
7.514
8
2.991
41.49
8/185
36 40 42 40 46 39 42 41 42 40
40.80
2.573
6.307
10
3.886
53.67
8/186
41 42 42 42 44 40 42 39 40 42
41.40
1.430
3.454
5
3.497
53.27
8/187
44 41 42 43 44 44 40 42 46 42
42.80
1.751
4.092
6
3.426
54.63
8/188
40 44 42 47 42 42 43 43 44 44
43.10
1.853
4.299
7
3.778
55.52
8/189
29 29 29 28 28 26 27 28 29 27
28.00
1.054
3.765
3
2.846
26.63
8/190
30 32 29 30 30 28 27 30 28 29
29.30
1.418
4.840
5
3.526
26.11
8/191
37 35 38 32 34 35 35 38 37 35
35.60
1.897
5.330
6
3.162
35.57
8/192
34 33 37 32 34 37 34 38 36 35
35.00
1.944
5.553
6
3.087
36.19
8/193
39 33 34 37 33 35 36 35 34 34
35.00
1.886
5.387
6
3.182
40.05
8/194
34 35 35 33 32 37 34 33 33 35
34.10
1.449
4.250
5
3.450
41.75
8/195
40 39 38 43 40 43 38 45 39 40
40.50
2.369
5.849
7
2.955
47.15
8/196
40 40 44 40 38 40 38 39 40 39
39.80
1.687
4.238
6
3.558
47.11
8/197
38 40 40 42 42 42 41 39 39 40
40.30
1.418
3.519
4
2.821
51.96
8/198
41 42 40 43 40 40 41 39 41 40
40.70
1.160
2.849
4
3.450
48.28
8/199
42 44 44 43 42 42 45 46 43 40
43.10
1.729
4.011
6
3.471
52.77
8/200
44 42 42 43 44 42 42 43 44 44
43.00
0.943
2.193
2
2.121
55.79
8/201
30 33 28 29 33 33 36 32 32 31
31.70
2.312
7.293
8
3.460
34.15
8/202
33 31 32 31 31 31 32 35 33 32
32.10
1.287
4.008
4
3.109
35.43
8/203
36 38 36 33 34 39 36 37 34 36
35.90
1.853
5.161
6
3.238
43.55
8/204
34 35 35 37 34 37 36 33 32 36
34.90
1.663
4.766
5
3.006
42.92
8/205
38 41 40 40 38 37 37 41 40 39
39.10
1.524
3.897
4
2.625
52.36
8/206
39 42 42 40 41 39 39 37 40 39
39.80
1.549
3.892
5
3.227
51.27
8/207
42 43 42 43 45 43 43 42 44 41
42.80
1.135
2.653
4
3.523
57.23
8/208
41 40 43 41 42 43 41 40 41 41
41.30
1.059
2.565
3
2.832
54.10
8/209
41 40 40 42 42 43 44 42 46 45
42.50
2.014
4.738
6
2.979
57.93
8/210
41 40 40 39 43 45 45 46 39 40
41.80
2.700
6.459
7
2.593
55.92
8/211
41 41 40 40 40 42 44 41 39 42
41.00
1.414
3.449
5
3.536
62.29
8/212
45 43 44 44 45 40 44 46 45 41
43.70
1.889
4.322
6
3.177
62.90
8/213
27 30 30 33 28 30 29 28 30 26
29.10
1.969
6.767
7
3.555
27.48
8/214
34 26 28 34 32 28 31 29 32 32
30.60
2.716
8.876
8
2.945
27.97
8/215
34 34 36 34 37 36 39 34 34 37
35.50
1.780
5.013
5
2.810
36.53
8/216
35 35 34 34 36 37 35 37 38 36
35.70
1.337
3.746
4
2.991
36.17
8/217
40 37 39 36 38 37 41 38 39 38
38.30
1.494
3.902
5
3.346
40.71
8/218
37 36 38 37 36 40 38 39 37 39
37.70
1.337
3.548
4
2.991
42.09
8/219
40 42 40 38 44 38 38 42 37 40
39.90
2.234
5.598
7
3.134
44.42
8/220
40 46 40 39 42 43 39 40 42 40
41.10
2.183
5.312
7
3.206
45.57
8/221
38 36 32 35 36 34 34 35 39 40
35.90
2.470
6.880
8
3.239
51.78
8/222
49 42 48 47 47 46 46 46 48 42
46.10
2.378
5.159
7
2.943
46.55
8/223
40 38 41 40 40 44 40 42 42 40
40.70
1.636
4.021
6
3.667
53.19
8/224
44 40 43 42 41 44 40 44 44 41
42.30
1.703
4.026
4
2.349
52.29
8/225
30 29 32 28 26 30 28 26 27 29
28.50
1.900
6.668
6
3.157
35.11
8/226
29 28 33 26 31 30 29 29 29 28
29.20
1.874
6.417
7
3.736
34.46
8/227
38 35 39 36 37 35 40 39 38 43
38.00
2.449
6.446
8
3.266
41.26
8/228
38 34 35 34 39 35 34 35 35 35
35.40
1.713
4.838
5
2.919
40.49
8/229
38 36 36 37 35 36 37 38 36 35
36.40
1.075
2.953
3
2.791
50.22
Test area
R1
8/177
8/178
R2
R3
R4
R5
R6
R7
R8
R9
R10
A27
Rm
sR
VR, %
rR
θR
fcm, MPa
37 38 38 40 38 40 37 36 35 37
37.60
1.578
4.196
5
3.169
50.66
40 38 39 39 38 39 40 39 39 40
39.10
0.738
1.887
2
2.711
56.61
8/232
38 38 40 42 38 38 39 40 42 38
39.30
1.636
4.164
4
2.444
56.51
8/233
38 42 38 38 40 39 42 38 39 42
39.60
1.776
4.486
4
2.252
58.73
8/234
39 39 41 40 42 40 38 39 40 43
40.10
1.524
3.800
5
3.281
58.14
8/235
24 28 24 28 23 29 25 22 24 26
25.30
2.359
9.326
7
2.967
30.42
8/236
24 25 24 27 25 25 23 23 30 28
25.40
2.271
8.939
7
3.083
27.65
8/237
32 34 32 33 35 36 33 34 34 34
33.70
1.252
3.714
4
3.196
38.86
8/238
33 32 32 35 37 32 32 34 29 32
32.80
2.150
6.555
8
3.721
34.40
8/239
37 38 42 37 39 39 41 36 37 36
38.20
2.044
5.351
6
2.935
44.23
8/240
38 37 40 39 40 40 37 37 37 38
38.30
1.337
3.492
3
2.243
42.60
8/241
34 35 36 34 37 32 34 38 35 33
34.80
1.814
5.211
6
3.308
45.98
8/242
35 35 35 35 40 36 36 39 39 36
36.60
1.955
5.342
5
2.557
49.42
8/243
40 42 43 40 39 39 38 45 46 40
41.20
2.700
6.553
8
2.963
50.57
8/244
39 40 35 35 33 38 39 40 35 36
37.00
2.494
6.742
7
2.806
51.21
8/245
42 43 42 41 44 43 40 43 45 43
42.60
1.430
3.356
5
3.497
58.50
8/246
41 43 43 42 41 44 41 42 43 44
42.40
1.174
2.768
3
2.556
56.87
8/247
29 27 30 30 25 25 28 32 28 31
28.50
2.369
8.312
7
2.955
35.83
8/248
31 33 30 30 31 25 29 30 30 25
29.40
2.547
8.664
8
3.141
35.69
8/249
31 30 33 39 34 34 35 33 32 34
33.50
2.461
7.346
9
3.657
39.34
8/250
31 34 34 38 34 38 37 35 35 37
35.30
2.214
6.271
7
3.162
40.60
8/251
37 36 35 34 37 38 37 37 35 36
36.20
1.229
3.396
4
3.254
46.01
8/252
42 40 37 38 37 37 42 40 42 36
39.10
2.378
6.082
6
2.523
48.76
8/253
40 41 40 42 39 40 38 40 38 39
39.70
1.252
3.153
4
3.196
56.06
8/254
40 41 40 40 39 40 41 42 40 42
40.50
0.972
2.400
3
3.087
57.00
8/255
39 40 40 42 38 43 40 40 42 43
40.70
1.703
4.184
5
2.936
58.84
8/256
43 43 40 42 41 41 40 39 42 40
41.10
1.370
3.334
4
2.919
57.97
8/257
30 29 32 31 31 31 28 29 33 28
30.20
1.687
5.585
5
2.965
29.13
8/258
27 28 31 30 29 30 29 28 30 27
28.90
1.370
4.742
4
2.919
26.23
8/259
35 36 39 40 33 37 37 38 38 40
37.30
2.214
5.935
7
3.162
41.90
8/260
35 36 36 35 34 38 37 35 36 39
36.10
1.524
4.221
5
3.281
37.49
8/261
40 39 44 45 39 40 41 42 44 40
41.40
2.221
5.365
6
2.701
50.27
8/262
39 40 38 38 37 38 39 40 41 39
38.90
1.197
3.078
4
3.341
47.65
8/263
40 40 40 43 39 42 41 42 42 40
40.90
1.287
3.146
4
3.109
51.54
8/264
40 40 42 41 46 43 44 44 42 43
42.50
1.900
4.471
6
3.157
56.05
8/265
44 43 44 48 40 46 42 45 44 41
43.70
2.359
5.399
8
3.391
59.49
8/266
38 44 38 47 42 44 42 43 40 38
41.60
3.062
7.361
9
2.939
63.28
8/267
30 29 33 32 32 33 32 30 33 30
31.40
1.506
4.795
4
2.657
30.99
8/268
33 32 31 32 28 34 32 31 33 36
32.20
2.098
6.514
8
3.814
31.11
8/269
39 36 38 43 42 38 38 39 41 37
39.10
2.234
5.712
7
3.134
43.97
8/270
38 36 43 39 39 40 36 36 37 39
38.30
2.214
5.780
7
3.162
44.97
8/271
41 42 40 46 45 39 39 40 38 44
41.40
2.757
6.659
8
2.902
54.24
8/272
41 38 38 43 41 44 44 43 38 40
41.00
2.449
5.974
6
2.449
51.63
8/273
42 40 42 40 42 44 40 42 41 42
41.50
1.269
3.059
4
3.151
57.90
8/274
42 46 42 44 43 44 45 43 42 41
43.20
1.549
3.586
5
3.227
60.67
8/275
44 45 41 39 40 41 46 41 42 48
42.70
2.908
6.810
9
3.095
63.36
8/276
45 43 41 40 45 42 48 43 43 42
43.20
2.300
5.324
8
3.479
62.72
8/277
27 26 26 26 27 26 28 29 25 30
27.00
1.563
5.791
5
3.198
22.71
8/278
26 28 28 29 28 28 30 28 28 25
27.80
1.398
5.030
5
3.575
22.71
8/279
32 38 32 34 35 36 31 33 37 35
34.30
2.312
6.740
7
3.028
34.39
8/280
38 40 38 36 37 37 36 40 38 37
37.70
1.418
3.762
4
2.821
35.01
8/281
32 34 33 30 32 38 36 35 31 32
33.30
2.452
7.363
8
3.263
40.55
8/282
35 33 36 34 37 34 36 35 37 35
35.20
1.317
3.740
4
3.038
42.02
Test area
R1
8/230
8/231
R2
R3
R4
R5
R6
R7
R8
R9
R10
A28
Rm
sR
VR, %
rR
θR
fcm, MPa
39 41 42 40 38 39 42 41 40 41
40.30
1.337
3.319
4
2.991
46.13
44 40 40 41 42 41 43 40 40 41
41.20
1.398
3.394
4
2.860
44.96
8/285
35 38 38 40 38 37 41 38 36 37
37.80
1.751
4.633
6
3.426
48.17
8/286
40 39 37 37 37 38 39 40 36 40
38.30
1.494
3.902
4
2.677
47.63
8/287
28 28 30 30 29 33 32 32 33 30
30.50
1.900
6.230
5
2.631
29.89
8/288
30 30 35 33 32 31 29 29 30 34
31.30
2.111
6.744
6
2.842
26.90
8/289
40 43 36 37 35 44 41 42 40 41
39.90
2.998
7.514
9
3.002
43.71
8/290
36 36 36 37 38 37 35 38 38 36
36.70
1.059
2.887
3
2.832
40.22
8/291
39 42 40 38 41 40 37 41 38 39
39.50
1.581
4.003
5
3.162
49.62
8/292
42 43 40 39 44 40 40 41 41 42
41.20
1.549
3.760
5
3.227
47.89
8/293
43 40 42 41 40 44 45 43 46 41
42.50
2.068
4.867
6
2.901
55.98
8/294
43 47 46 45 44 43 48 48 48 46
45.80
1.989
4.342
5
2.514
54.55
8/295
42 40 42 43 41 44 40 41 44 42
41.90
1.449
3.459
4
2.760
57.67
8/296
36 37 42 37 39 43 40 39 36 40
38.90
2.424
6.232
7
2.887
57.78
8/297
27 21 22 24 24 22 22 23 25 26
23.60
1.955
8.284
6
3.069
23.62
8/298
22 23 25 27 30 29 28 24 22 26
25.60
2.875
11.231
8
2.782
23.90
8/299
35 36 39 33 36 35 38 35 35 35
35.70
1.703
4.770
6
3.523
37.38
8/300
36 33 36 34 31 33 32 38 38 38
34.90
2.644
7.575
7
2.648
37.08
8/301
40 36 38 34 35 39 35 34 39 37
36.70
2.214
6.032
6
2.711
42.80
8/302
43 43 38 41 38 40 38 37 39 38
39.50
2.173
5.501
6
2.761
45.08
8/303
40 39 42 41 40 40 38 39 42 40
40.10
1.287
3.209
4
3.109
47.28
8/304
33 32 34 36 37 36 33 34 36 37
34.80
1.814
5.211
5
2.757
46.64
8/305
42 40 37 42 44 41 40 38 40 42
40.60
2.066
5.088
7
3.389
49.72
8/306
31 33 37 33 33 34 34 37 37 32
34.10
2.183
6.403
6
2.748
50.11
8/307
28 30 31 27 29 25 24 26 26 25
27.10
2.331
8.601
7
3.003
25.99
8/308
24 22 25 27 28 26 26 25 22 30
25.50
2.506
9.826
8
3.193
27.06
8/309
34 37 32 33 33 30 35 34 38 34
34.00
2.309
6.792
8
3.464
42.54
8/310
34 34 39 39 39 35 34 38 36 35
36.30
2.214
6.098
5
2.259
41.64
8/311
34 32 36 33 38 37 35 37 33 33
34.80
2.098
6.028
6
2.860
48.01
8/312
42 39 38 38 40 41 40 40 42 38
39.80
1.549
3.892
4
2.582
49.09
8/313
41 42 44 45 39 41 42 44 44 41
42.30
1.889
4.465
6
3.177
53.03
8/314
43 44 46 45 44 45 44 43 40 42
43.60
1.713
3.928
6
3.503
54.12
8/315
44 43 36 36 39 35 38 40 39 40
39.00
2.944
7.549
9
3.057
54.82
8/316
36 36 36 38 35 37 36 38 40 37
36.90
1.449
3.927
5
3.450
57.27
8/317
31 31 31 30 30 32 30 30 31 32
30.80
0.789
2.561
2
2.535
29.02
8/318
31 30 32 33 34 32 31 30 30 32
31.50
1.354
4.298
4
2.954
29.25
8/319
31 34 31 30 32 33 32 36 30 32
32.10
1.853
5.772
6
3.238
35.71
8/320
34 39 37 35 39 40 35 32 34 36
36.10
2.601
7.206
8
3.075
36.01
8/321
38 36 38 42 39 40 41 37 42 39
39.20
2.044
5.214
6
2.935
42.00
8/322
40 38 41 41 41 39 44 38 38 40
40.00
1.886
4.714
6
3.182
45.82
8/323
42 44 40 41 40 41 43 44 40 40
41.50
1.650
3.976
4
2.424
49.34
8/324
40 43 42 44 40 41 41 42 43 40
41.60
1.430
3.437
4
2.798
51.16
8/325
43 40 43 46 45 45 48 44 49 43
44.60
2.633
5.904
9
3.418
52.87
8/326
43 42 41 44 44 46 44 40 41 48
43.30
2.452
5.662
8
3.263
50.91
8/327
34 36 36 35 35 35 39 35 36 34
35.50
1.434
4.039
5
3.487
37.46
8/328
34 31 36 33 33 34 32 35 36 33
33.70
1.636
4.856
5
3.056
32.32
8/329
36 38 41 40 39 40 39 36 39 41
38.90
1.792
4.607
5
2.790
45.98
8/330
35 40 39 41 43 36 36 41 39 40
39.00
2.582
6.620
8
3.098
45.77
8/331
38 40 43 39 37 40 37 39 38 36
38.70
2.003
5.175
7
3.495
48.99
8/332
37 38 40 41 39 39 38 43 40 41
39.60
1.776
4.486
6
3.378
48.86
8/333
42 41 42 41 40 44 42 40 42 41
41.50
1.179
2.840
4
3.394
56.30
8/334
45 48 44 43 44 42 41 43 46 47
44.30
2.214
4.997
7
3.162
53.55
8/335
44 43 44 40 39 39 44 47 48 49
43.70
3.592
8.219
10
2.784
57.71
Test area
R1
8/283
8/284
R2
R3
R4
R5
R6
R7
R8
R9
R10
A29
Rm
sR
VR, %
rR
θR
fcm, MPa
44 41 43 39 39 42 40 38 40 41
40.70
1.889
4.640
6
3.177
55.08
32 33 32 31 31 29 32 30 31 30
31.10
1.197
3.850
4
3.341
24.99
8/338
30 28 30 28 31 29 30 28 32 31
29.70
1.418
4.775
4
2.821
26.17
8/339
32 31 33 30 29 32 31 31 33 32
31.40
1.265
4.028
4
3.162
33.95
8/340
32 31 34 36 34 33 32 34 37 30
33.30
2.163
6.495
7
3.237
33.57
8/341
38 34 36 36 38 38 40 38 36 38
37.20
1.687
4.534
6
3.558
36.89
8/342
38 39 39 37 36 38 39 38 37 40
38.10
1.197
3.142
4
3.341
40.33
8/343
41 42 41 44 43 44 45 40 42 42
42.40
1.578
3.721
5
3.169
45.62
8/344
39 40 38 41 41 43 42 42 41 40
40.70
1.494
3.672
5
3.346
42.22
8/345
45 41 39 40 39 45 40 38 40 39
40.60
2.459
6.056
7
2.847
25.93
8/346
42 42 40 39 39 36 38 40 40 38
39.40
1.838
4.665
6
3.265
47.60
8/347
34 38 35 36 34 35 37 34 34 33
35.00
1.563
4.467
5
3.198
34.10
8/348
35 36 34 34 33 32 36 33 35 33
34.10
1.370
4.019
4
2.919
32.59
8/349
38 34 36 33 38 36 36 33 36 33
35.30
1.947
5.514
5
2.569
36.47
8/350
34 34 38 35 38 36 34 35 37 38
35.90
1.729
4.816
4
2.314
40.79
8/351
42 40 39 42 38 37 37 41 37 40
39.30
2.003
5.096
5
2.497
47.87
8/352
41 39 44 40 42 44 38 39 42 44
41.30
2.263
5.480
6
2.651
47.43
8/353
44 43 40 42 46 40 43 44 42 45
42.90
1.969
4.590
6
3.047
60.37
8/354
42 45 41 42 44 43 45 44 41 43
43.00
1.491
3.467
4
2.683
57.61
8/355
44 44 45 44 47 49 49 44 40 47
45.30
2.751
6.072
9
3.272
57.89
8/356
42 43 41 42 45 40 45 42 43 46
42.90
1.912
4.457
6
3.138
61.01
8/357
31 32 33 29 30 31 29 30 31 30
30.60
1.265
4.134
4
3.162
25.64
8/358
30 29 28 31 28 28 29 30 31 30
29.40
1.174
3.992
3
2.556
25.70
8/359
33 38 34 35 35 34 37 32 34 36
34.80
1.814
5.211
6
3.308
30.49
8/360
26 27 28 27 29 25 27 29 30 28
27.60
1.506
5.455
5
3.321
29.83
8/361
34 35 36 38 34 34 35 36 36 37
35.50
1.354
3.814
4
2.954
37.04
8/362
37 36 36 37 36 36 35 36 37 38
36.40
0.843
2.317
3
3.558
37.38
8/363
38 40 37 38 39 40 37 36 38 39
38.20
1.317
3.446
4
3.038
48.31
8/364
43 42 41 40 41 40 43 40 42 40
41.20
1.229
2.984
3
2.440
48.76
8/365
43 38 36 44 38 39 42 37 37 40
39.40
2.757
6.997
8
2.902
50.77
8/366
39 36 36 38 35 40 39 36 38 43
38.00
2.404
6.326
8
3.328
49.41
8/367
35 35 34 35 34 33 32 33 34 35
34.00
1.054
3.100
3
2.846
29.64
8/368
33 31 29 34 35 33 32 31 30 31
31.90
1.853
5.809
6
3.238
31.28
8/369
33 32 34 35 35 35 35 35 33 34
34.10
1.101
3.227
3
2.726
35.37
8/370
36 35 37 34 33 34 33 32 34 33
34.10
1.524
4.469
5
3.281
34.41
8/371
42 42 37 35 36 37 40 35 36 42
38.20
2.974
7.785
7
2.354
47.29
8/372
40 39 39 37 38 35 38 36 38 37
37.70
1.494
3.964
5
3.346
41.49
8/373
44 44 40 42 43 44 46 46 42 45
43.60
1.897
4.352
6
3.162
53.67
8/374
44 42 43 40 41 40 42 43 40 40
41.50
1.509
3.637
4
2.650
53.27
8/375
39 42 43 44 41 40 42 44 44 44
42.30
1.829
4.323
5
2.734
54.63
8/376
44 42 43 39 42 38 46 43 40 44
42.10
2.470
5.867
8
3.239
55.52
9/1
24 23 22 19 25 23 24 24 22 26
23.20
1.932
8.328
7
3.623
14.90
9/2
19 21 21 19 22 21 23 21 21 22
21.00
1.247
5.939
4
3.207
13.86
9/3
32 30 29 34 36 30 36 35 30 36
32.80
2.898
8.836
7
2.415
23.51
9/4
32 30 32 31 28 32 34 30 34 33
31.60
1.897
6.004
6
3.162
22.49
9/5
34 30 31 33 31 32 36 30 31 34
32.20
1.989
6.177
6
3.017
28.59
9/6
34 34 35 35 31 31 34 32 33 36
33.50
1.716
5.122
5
2.914
29.71
9/7
31 34 37 32 33 35 34 34 35 31
33.60
1.897
5.647
6
3.162
32.12
9/8
31 31 37 33 33 35 32 36 35 34
33.70
2.058
6.105
6
2.916
33.90
9/9
36 37 34 41 43 36 34 41 34 36
37.20
3.293
8.852
9
2.733
34.62
9/10
39 39 35 38 36 36 37 36 41 39
37.60
1.897
5.046
6
3.162
34.96
9/11
20 21 20 21 18 22 21 21 22 20
20.60
1.174
5.698
4
3.408
12.08
Test area
R1
8/336
8/337
R2
R3
R4
R5
R6
R7
R8
R9
R10
A30
Rm
sR
VR, %
rR
θR
fcm, MPa
19 26 23 23 26 23 20 19 22 26
22.70
2.751
12.118
7
2.545
12.12
29 29 29 29 30 28 30 30 28 30
29.20
0.789
2.701
2
2.535
20.64
9/14
30 32 33 31 29 29 30 32 28 28
30.20
1.751
5.799
5
2.855
21.76
9/15
32 34 30 33 32 30 29 28 30 33
31.10
1.969
6.332
6
3.047
25.32
9/16
28 33 29 31 32 33 30 31 31 32
31.00
1.633
5.268
5
3.062
24.07
9/17
34 35 30 34 34 36 37 34 38 36
34.80
2.201
6.325
8
3.635
31.36
9/18
32 30 30 30 28 33 31 33 32 28
30.70
1.829
5.957
5
2.734
30.30
9/19
38 35 35 41 37 40 35 36 37 35
36.90
2.183
5.917
6
2.748
32.75
9/20
42 38 39 38 41 37 39 36 35 37
38.20
2.150
5.628
7
3.256
32.93
9/21
26 28 28 27 26 28 29 28 30 28
27.80
1.229
4.422
4
3.254
32.65
9/22
28 27 26 28 27 26 28 30 26 30
27.60
1.506
5.455
4
2.657
30.96
9/23
34 31 33 32 31 33 34 32 32 35
32.70
1.337
4.090
4
2.991
44.81
9/24
32 32 32 34 32 34 33 32 34 32
32.70
0.949
2.901
2
2.108
46.94
9/25
36 38 36 37 38 37 36 38 37 37
37.00
0.816
2.207
2
2.449
56.80
9/26
34 36 36 35 36 35 35 36 36 35
35.40
0.699
1.975
2
2.860
55.16
9/27
36 41 38 38 37 36 37 36 36 37
37.20
1.549
4.164
5
3.227
60.52
9/28
36 35 36 34 36 35 36 37 36 36
35.70
0.823
2.306
3
3.644
58.35
9/29
39 36 35 36 38 35 37 38 36 41
37.10
1.912
5.154
6
3.138
61.84
9/30
35 38 38 36 36 37 37 36 37 38
36.80
1.033
2.807
3
2.905
62.99
9/31
33 34 32 33 32 32 34 34 33 32
32.90
0.876
2.661
2
2.284
38.42
9/32
34 33 32 33 33 35 31 31 32 34
32.80
1.317
4.014
4
3.038
39.55
9/33
36 36 40 37 37 38 38 38 36 36
37.20
1.317
3.539
4
3.038
58.96
9/34
40 37 40 39 37 38 40 39 36 36
38.20
1.619
4.239
4
2.470
58.27
9/35
39 39 40 40 40 40 39 38 40 40
39.50
0.707
1.790
2
2.828
64.08
9/36
42 42 43 41 41 41 43 40 41 42
41.60
0.966
2.322
3
3.105
68.98
9/37
42 40 45 42 41 42 43 41 42 45
42.30
1.636
3.869
5
3.056
71.92
9/38
45 42 45 40 43 40 44 43 40 44
42.60
2.011
4.721
5
2.486
78.92
9/39
41 42 42 44 42 45 41 42 46 46
43.10
1.969
4.569
5
2.539
74.96
9/40
44 42 43 46 44 41 40 43 41 41
42.50
1.841
4.332
6
3.259
79.89
9/41
26 24 22 20 22 23 21 22 21 24
22.50
1.780
7.909
6
3.372
14.90
9/42
20 20 22 22 22 21 22 21 19 20
20.90
1.101
5.266
3
2.726
13.86
9/43
34 32 35 32 33 35 33 29 30 31
32.40
2.011
6.207
6
2.983
23.51
9/44
29 26 29 28 28 29 28 28 26 29
28.00
1.155
4.124
3
2.598
22.49
9/45
30 36 32 33 30 32 30 31 34 35
32.30
2.163
6.696
6
2.774
28.59
9/46
36 32 33 32 32 31 32 31 31 32
32.20
1.476
4.583
5
3.388
29.71
9/47
33 34 33 34 35 32 34 30 33 33
33.10
1.370
4.140
5
3.649
32.12
9/48
35 33 36 34 32 35 36 32 33 35
34.10
1.524
4.469
4
2.625
33.90
9/49
34 34 39 35 34 35 35 34 34 33
34.70
1.636
4.716
6
3.667
34.62
9/50
36 34 35 36 36 39 41 35 36 36
36.40
2.066
5.675
7
3.389
34.96
9/51
20 20 21 22 19 19 23 20 19 22
20.50
1.434
6.994
4
2.790
12.08
9/52
20 23 22 18 21 20 21 22 21 20
20.80
1.398
6.723
5
3.575
12.12
9/53
30 31 30 31 31 31 29 32 30 31
30.60
0.843
2.756
3
3.558
20.64
9/54
28 30 28 29 30 28 27 27 32 27
28.60
1.647
5.757
5
3.037
21.76
9/55
28 29 32 33 33 31 28 29 30 33
30.60
2.066
6.750
5
2.421
25.32
9/56
33 30 29 30 33 32 30 29 30 30
30.60
1.506
4.920
4
2.657
24.07
9/57
33 38 35 31 34 36 35 34 38 36
35.00
2.160
6.172
7
3.240
31.36
9/58
35 28 32 33 34 32 34 32 32 33
32.50
1.900
5.847
7
3.684
30.30
9/59
35 39 36 35 34 34 38 38 34 36
35.90
1.853
5.161
5
2.698
32.75
9/60
37 36 38 39 36 40 38 37 35 39
37.50
1.581
4.216
5
3.162
32.93
9/61
27 28 30 28 27 26 26 25 28 29
27.40
1.506
5.495
5
3.321
32.65
9/62
26 27 26 27 28 30 27 26 27 28
27.20
1.229
4.519
4
3.254
30.96
9/63
32 32 33 32 34 32 32 32 33 32
32.40
0.699
2.158
2
2.860
44.81
9/64
32 30 31 30 33 32 30 31 33 34
31.60
1.430
4.525
4
2.798
46.94
Test area
R1
9/12
9/13
R2
R3
R4
R5
R6
R7
R8
R9
R10
A31
Rm
sR
VR, %
rR
θR
fcm, MPa
36 36 36 35 34 35 34 34 35 34
34.90
0.876
2.509
2
2.284
56.80
36 34 36 36 35 37 35 35 36 34
35.40
0.966
2.729
3
3.105
55.16
9/67
36 38 37 36 38 36 37 37 37 38
37.00
0.816
2.207
2
2.449
60.52
9/68
34 35 34 34 34 35 36 34 35 33
34.40
0.843
2.451
3
3.558
58.35
9/69
35 38 35 37 39 41 37 42 37 37
37.80
2.300
6.084
7
3.044
61.84
9/70
36 37 40 36 37 38 41 38 36 37
37.60
1.713
4.555
5
2.919
62.99
9/71
32 32 32 33 34 31 32 30 32 34
32.20
1.229
3.818
4
3.254
38.42
9/72
33 34 33 35 33 32 34 33 34 35
33.60
0.966
2.875
3
3.105
39.55
9/73
39 37 35 40 39 42 38 39 39 40
38.80
1.874
4.829
7
3.736
58.96
9/74
39 39 38 39 40 40 39 36 38 40
38.80
1.229
3.168
4
3.254
58.27
9/75
42 43 40 42 39 39 38 39 42 42
40.60
1.776
4.375
5
2.815
64.08
9/76
39 43 43 40 44 40 40 39 43 43
41.40
1.955
4.722
5
2.557
68.98
9/77
40 44 42 42 45 42 44 41 43 42
42.50
1.509
3.551
5
3.313
71.92
9/78
40 44 45 45 46 44 42 45 43 44
43.80
1.751
3.998
6
3.426
78.92
9/79
44 42 44 43 44 41 42 43 45 43
43.10
1.197
2.778
4
3.341
74.96
9/80
44 44 44 42 42 41 43 44 40 44
42.80
1.476
3.448
4
2.711
79.89
10/1
57 54 55 56 54 54 54 54 54 55
54.70
1.059
1.937
3
2.832
91.69
10/2
50 52 52 54 54 52 55 56 53 53
53.10
1.729
3.256
6
3.471
91.69
10/3
32 33 33 37 37 36 38 35 37 39
35.70
2.359
6.609
7
2.967
47.78
10/4
37 40 38 37 38 38 35 37 38 40
37.80
1.476
3.904
5
3.388
47.78
10/5
48 48 46 50 46 47 48 52 47 49
48.10
1.853
3.852
6
3.238
74.44
10/6
46 46 45 46 44 47 45 46 44 45
45.40
0.966
2.128
3
3.105
74.44
10/7
42 43 42 41 44 44 46 44 43 44
43.30
1.418
3.275
5
3.526
72.89
10/8
39 40 40 40 44 44 48 43 40 41
41.90
2.807
6.699
9
3.207
72.89
10/9
48 46 44 43 43 41 40 44 41 42
43.20
2.440
5.649
8
3.278
73.02
10/10
42 43 41 44 44 40 45 41 43 41
42.40
1.647
3.883
5
3.037
73.02
10/11
41 46 43 41 49 41 44 43 47 40
43.50
2.991
6.875
9
3.009
74.04
10/12
41 39 41 41 40 41 41 37 43 39
40.30
1.636
4.061
6
3.667
74.04
10/13
43 48 45 46 45 42 46 47 45 46
45.30
1.767
3.901
6
3.396
73.11
10/14
44 46 45 45 42 45 45 43 42 44
44.10
1.370
3.107
4
2.919
73.11
10/15
46 48 45 48 46 42 46 43 45 47
45.60
1.955
4.287
6
3.069
70.98
10/16
43 45 44 46 44 44 45 45 43 43
44.20
1.033
2.337
3
2.905
70.98
10/17
53 54 54 53 52 55 55 50 53 55
53.40
1.578
2.954
5
3.169
85.20
10/18
52 53 52 54 56 54 53 52 51 53
53.00
1.414
2.668
5
3.536
85.20
10/19
57 57 58 60 61 59 58 58 60 58
58.60
1.350
2.304
4
2.963
84.58
10/20
58 60 60 59 57 60 60 58 56 56
58.40
1.647
2.819
4
2.429
84.58
10/21
51 45 49 42 44 44 52 46 41 44
45.80
3.706
8.091
11
2.968
58.62
10/22
47 44 50 44 52 46 50 50 44 46
47.30
2.983
6.307
8
2.682
58.62
10/23
45 44 44 46 44 47 50 46 46 49
46.10
2.079
4.510
6
2.886
56.98
10/24
46 43 44 42 48 44 46 52 45 52
46.20
3.490
7.553
10
2.866
56.98
10/25
42 41 42 38 48 38 41 45 38 39
41.20
3.293
7.993
10
3.037
67.16
10/26
41 38 43 39 46 40 43 46 41 35
41.20
3.458
8.392
11
3.181
67.16
10/27
48 46 49 48 49 48 54 48 51 50
49.10
2.183
4.447
8
3.664
67.78
10/28
51 50 49 54 50 52 49 51 51 52
50.90
1.524
2.994
5
3.281
67.78
10/29
54 54 53 56 53 54 52 54 55 52
53.70
1.252
2.331
4
3.196
64.80
10/30
55 52 52 55 51 54 52 54 54 52
53.10
1.449
2.729
4
2.760
64.80
10/31
47 53 56 55 54 53 56 54 59 52
53.90
3.143
5.831
12
3.818
63.60
10/32
49 53 54 49 54 50 52 54 55 53
52.30
2.214
4.232
6
2.711
63.60
10/33
38 34 32 40 37 39 32 32 32 39
35.50
3.408
9.599
8
2.348
43.42
10/34
33 32 32 34 33 32 34 33 33 32
32.80
0.789
2.405
2
2.535
43.42
10/35
32 34 37 32 36 31 39 33 34 33
34.10
2.514
7.374
8
3.182
44.53
10/36
36 32 34 35 33 36 31 34 34 32
33.70
1.703
5.053
5
2.936
44.53
Test area
R1
9/65
9/66
R2
R3
R4
R5
R6
R7
R8
R9
R10
A32
Test area
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
10/37
44 43 40 45 44 42 45 41 44 43
43.10
1.663
3.859
5
3.006
49.29
10/38
42 39 45 39 45 44 39 44 43 49
42.90
3.247
7.569
10
3.080
49.29
10/39
37 41 37 37 39 35 36 34 41 37
37.40
2.319
6.201
7
3.019
48.76
10/40
37 38 36 36 39 36 36 35 37
36.67
1.225
3.340
4
3.266
48.76
10/41
44 46 44 47 46 44 44 50 45 41
45.10
2.378
5.273
9
3.784
52.04
10/42
44 47 49 45 42 49 48 50 42 42
45.80
3.190
6.966
8
2.508
52.04
10/43
50 42 45 52 45 51 44 48 51 48
47.60
3.438
7.223
10
2.908
54.04
10/44
42 46 48 41 45 48 54 46 41 50
46.10
4.149
8.999
13
3.134
54.04
10/45
45 49 50 47 51 45 47 51 46 49
48.00
2.309
4.811
6
2.598
69.33
10/46
45 45 42 46 46 48 49 47 46 49
46.30
2.111
4.559
7
3.316
69.33
10/47
44 48 47 49 48 48 48 52 49 50
48.30
2.058
4.260
8
3.888
64.44
10/48
49 47 43 49 47 47 44 48 47 43
46.40
2.271
4.894
6
2.642
64.44
10/49
49 53 51 56 44 54 48 52 51 50
50.80
3.360
6.614
12
3.572
68.67
10/50
54 51 51 48 55 55 46 49 51 50
51.00
2.981
5.846
9
3.019
68.67
10/51
48 51 52 49 47 51 48 47 51 47
49.10
1.969
4.011
5
2.539
67.29
10/52
52 52 51 52 50 51 51 50 55 52
51.60
1.430
2.771
5
3.497
67.29
10/53
46 43 45 45 44 43 40 46 46 44
44.20
1.874
4.239
6
3.202
65.29
10/54
43 43 42 44 42 44 41 39 42 42
42.20
1.476
3.497
5
3.388
65.29
10/55
48 51 43 52 49 43 52 45 51 49
48.30
3.498
7.241
9
2.573
64.53
10/56
43 49 51 51 46 49 49 51 49 50
48.80
2.530
5.184
8
3.162
64.53
10/57
41 41 44 47 43 45 48 42 43 47
44.10
2.558
5.801
7
2.736
54.67
10/58
44 42 44 44 48 44 41 49 40 40
43.60
3.062
7.024
9
2.939
54.67
10/59
37 37 37 30 39 32 37 39 33 39
36.00
3.197
8.881
9
2.815
54.00
10/60
42 36 44 39 36 35 34 38 36 39
37.90
3.178
8.385
10
3.147
54.00
10/61
48 52 42 43 44 43 41 49 42 44
44.80
3.615
8.069
11
3.043
51.64
10/62
47 44 44 47 41 46 42 44 45 48
44.80
2.251
5.024
7
3.110
51.64
10/63
44 47 42 48 42 48 47 47 43 48
45.60
2.547
5.586
6
2.355
51.96
10/64
52 47 42 44 41 46 44 43 42 46
44.70
3.234
7.234
11
3.402
51.96
10/65
42 44 42 41 41 41 41 47 41 40
42.00
2.055
4.892
7
3.407
46.62
10/66
40 41 48 38 42 45 43 39 45 44
42.50
3.100
7.295
10
3.226
46.62
10/67
42 45 43 41 40 43 42 43 41 42
42.20
1.398
3.314
5
3.575
45.38
10/68
42 45 42 41 39 45 39 43 39 43
41.80
2.300
5.502
6
2.609
45.38
10/69
34 41 41 39 37 37 37 41 38 36
38.10
2.378
6.242
7
2.943
42.62
10/70
38 37 37 38 37 39 35 38 35 41
37.50
1.780
4.745
6
3.372
42.62
10/71
32 35 35 35 35 37 35 37 35 36
35.20
1.398
3.973
5
3.575
42.93
10/72
37 36 36 37 34 35 34 36 31 42
35.80
2.821
7.879
11
3.900
42.93
10/73
49 53 55 53 54 52 53 55 52 53
52.90
1.729
3.268
6
3.471
75.33
10/74
53 53 54 54 55 53 51 52 54 55
53.40
1.265
2.369
4
3.162
75.33
10/75
52 54 55 51 55 56 54 56 54 56
54.30
1.703
3.136
5
2.936
76.44
10/76
55 53 55 54 55 54 53 54 52 54
53.90
0.994
1.845
3
3.017
76.44
10/77
52 48 54 53 53 51 49 47 49 49
50.50
2.415
4.783
7
2.898
63.60
10/78
46 49 50 52 51 50 50 51 51 49
49.90
1.663
3.333
6
3.607
63.60
10/79
49 54 49 55 54 53 52 52 52 52
52.20
1.989
3.810
6
3.017
62.49
10/80
52 52 51 53 51 54 51 52 51 50
51.70
1.160
2.243
4
3.450
62.49
10/81
42 41 41 42 44 50 51 46 43 38
43.80
4.104
9.370
13
3.167
66.93
10/82
43 43 44 48 46 44 44 41 44 45
44.20
1.874
4.239
7
3.736
66.93
10/83
39 48 37 40 41 36 34 40 41 39
39.50
3.749
9.491
14
3.734
64.44
10/84
45 45 41 43 44 45 38 37 40 37
41.50
3.342
8.052
8
2.394
64.44
10/85
53 51 51 50 49 50 51 52 49 51
50.70
1.252
2.469
4
3.196
80.89
10/86
51 54 53 51 49 48 50 47 50 48
50.10
2.234
4.458
7
3.134
80.89
10/87
52 52 52 52 53 52 45 52
51.25
2.550
4.975
8
3.138
81.24
10/88
51 53 55 52 50 50 52 50
51.63
1.768
3.424
5
2.828
81.24
10/89
48 48 44 47 44 46 49 46 46 44
46.20
1.814
3.925
5
2.757
79.69
A33
Rm
sR
VR, %
rR
θR
fcm, MPa
45 46 45 47 46 43 46 48 46 45
45.70
1.337
2.927
5
3.738
79.69
50 54 53 55 53 53 56 55 55 48
53.20
2.486
4.672
8
3.219
79.91
10/92
51 54 54 53 56 55 51 55 52 52
53.30
1.767
3.315
5
2.830
79.91
10/93
46 46 51 48 50 49 51 51 48 45
48.50
2.273
4.687
6
2.640
79.64
10/94
50 54 51 48 50 48 50 54 49 51
50.50
2.121
4.201
6
2.828
79.64
10/95
56 57 53 55 57 54 57 57 56 55
55.70
1.418
2.546
4
2.821
82.22
10/96
56 58 54 55 58 53 58 57 55 54
55.80
1.874
3.358
5
2.668
82.22
10/97
57 58 56 56 56 56 57 57 57 57
56.70
0.675
1.190
2
2.963
89.24
10/98
56 56 57 58 59 60 59 59 55 56
57.50
1.716
2.984
5
2.914
89.24
Test area
R1
10/90
10/91
R2
R3
R4
R5
R6
R7
R8
R9
R10
10/99
55 60 58 58 63 61 58 57 59 56
58.50
2.369
4.049
8
3.377
90.36
10/100
60 56 58 57 59 57 59 59 60 59
58.40
1.350
2.311
4
2.963
90.36
10/101
54 54 53 51 52 53 54 50 45 51
51.70
2.751
5.321
9
3.272
74.93
10/102
53 56 52 55 54 55 54 54 53 53
53.90
1.197
2.221
4
3.341
74.93
10/103
49 47 48 50 49 53 44 48 49 44
48.10
2.685
5.583
9
3.352
68.58
10/104
48 53 46 45 47 49 46 49 51 44
47.80
2.781
5.818
9
3.236
68.58
10/105
52 56 56 57 58 57 54 54 52 55
55.10
2.079
3.773
6
2.886
68.31
10/106
56 52 56 55 51 58 56 57 58 59
55.80
2.573
4.612
8
3.109
68.31
10/107
51 49 48 49 48 51 48 47 49 50
49.00
1.333
2.721
4
3.000
65.07
10/108
48 55 50 51 51 49 48 48 49 49
49.80
2.150
4.317
7
3.256
65.07
10/109
31 35 37 40 36 38 34 38 32 40
36.10
3.107
8.608
9
2.896
59.91
10/110
39 42 40 42 32 36 35 39 32 34
37.10
3.814
10.280
10
2.622
59.91
10/111
43 49 46 42 39 49 40 40 49 42
43.90
4.012
9.140
10
2.492
58.44
10/112
41 42 42 48 44 39 45 40 50 46
43.70
3.561
8.148
11
3.089
58.44
10/113
39 32 36 33 35 35 33 34 40 34
35.10
2.601
7.411
8
3.075
58.67
10/114
37 42 40 36 37 32 35 40 38 40
37.70
2.946
7.814
10
3.395
58.67
10/115
51 41 41 52 51 47 52 41 40 53
46.90
5.527
11.784
13
2.352
60.98
10/116
44 48 51 46 46 41 43 50 51 50
47.00
3.559
7.572
10
2.810
60.98
10/117
42 39 42 46 50 52 50 45 46 50
46.20
4.290
9.285
13
3.031
60.36
10/118
49 50 48 50 50 44 49 46 50 52
48.80
2.300
4.713
8
3.479
60.36
11/1
43 44 43 44 42 42 42 44 43 43
43.00
0.816
1.899
2
2.449
55.98
11/2
50 50 52 50 51 49 52 52 48 50
50.40
1.350
2.678
4
2.963
60.79
11/3
44 43 45 42 44 43 44 46 46 46
44.30
1.418
3.201
4
2.821
71.44
11/4
42 40 41 39 39 39 38 39 42 41
40.00
1.414
3.536
4
2.828
53.64
11/5
42 42 41 41 42 41 41 43 41 40
41.40
0.843
2.037
3
3.558
59.97
11/6
41 42 43 43 42 44 44 44 44 44
43.10
1.101
2.553
3
2.726
59.09
11/7
34 38 33 32 33 34 35 32 33 35
33.90
1.792
5.286
6
3.348
42.57
11/8
43 44 43 41 41 40 41 42 40 40
41.50
1.434
3.455
4
2.790
48.50
11/9
40 38 37 40 41 42 40 42 44 41
40.50
2.014
4.972
7
3.476
53.62
11/10
42 41 42 42 43 43 42 42 42 43
42.20
0.632
1.499
2
3.162
55.99
11/11
50 48 46 49 49 50 48 46 48 50
48.40
1.506
3.111
4
2.657
64.75
11/12
46 47 47 48 48 49 48 49 48 48
47.80
0.919
1.922
3
3.265
69.91
11/13
39 41 38 42 38 39 41 39 39 41
39.70
1.418
3.572
4
2.821
53.61
11/14
42 43 40 41 42 41 42 42 40 41
41.40
0.966
2.334
3
3.105
61.26
11/15
42 46 44 44 45 46 44 43 43 44
44.10
1.287
2.918
4
3.109
62.89
11/16
34 38 33 35 32 32 34 33 32 34
33.70
1.829
5.427
6
3.281
42.82
11/17
40 41 39 39 41 40 42 39 38 41
40.00
1.247
3.118
4
3.207
46.86
11/18
39 38 39 43 37 39 40 38 38 37
38.80
1.751
4.513
6
3.426
49.12
11/19
45 46 45 45 48 46 45 46 47 46
45.90
0.994
2.167
3
3.017
70.15
11/20
44 43 42 45 44 45 46 46 46 45
44.60
1.350
3.027
4
2.963
79.99
11/21
48 49 47 48 49 48 47 48 48 47
47.90
0.738
1.540
2
2.711
82.37
11/22
44 44 47 47 44 47 46 44 44 44
45.10
1.449
3.213
3
2.070
66.26
11/23
47 47 48 45 45 45 47 44 45 46
45.90
1.287
2.803
4
3.109
70.84
A34
Rm
sR
VR, %
rR
θR
fcm, MPa
45 44 44 46 45 43 47 44 45 45
44.80
1.135
2.534
4
3.523
70.97
40 39 38 37 39 38 38 39 40 40
38.80
1.033
2.662
3
2.905
52.14
11/26
43 44 45 46 44 46 43 46 43 43
44.30
1.337
3.019
3
2.243
60.34
11/27
43 46 46 45 48 48 45 47 45 45
45.80
1.549
3.383
5
3.227
59.93
11/28
44 45 46 46 44 45 43 46 45 44
44.80
1.033
2.305
3
2.905
69.86
11/29
46 46 48 47 45 48 48 47 47 48
47.00
1.054
2.243
3
2.846
78.25
11/30
48 50 48 47 48 48 47 46 47 48
47.70
1.059
2.221
4
3.776
79.75
11/31
44 44 47 45 46 44 44 46 44 44
44.80
1.135
2.534
3
2.642
65.68
11/32
45 44 45 43 47 46 47 44 47 46
45.40
1.430
3.149
4
2.798
59.30
11/33
44 44 45 45 45 44 47 44 46 44
44.80
1.033
2.305
3
2.905
71.10
11/34
42 37 39 40 38 37 37 41 38 40
38.90
1.792
4.607
5
2.790
52.09
11/35
47 44 45 46 46 47 43 46 43 43
45.00
1.633
3.629
4
2.449
56.61
11/36
48 47 47 46 46 46 49 44 44 46
46.30
1.567
3.384
5
3.191
62.05
11/37
45 47 49 50 50 46 47 47 50 47
47.80
1.814
3.794
5
2.757
76.02
11/38
48 50 51 48 50 48 50 51 48 49
49.30
1.252
2.539
3
2.397
82.12
11/39
47 51 47 48 50 49 48 50 49 50
48.90
1.370
2.802
4
2.919
83.52
11/40
47 49 45 45 45 44 44 47 47 44
45.70
1.703
3.726
5
2.936
70.22
11/41
46 48 44 47 45 48 47 48 48 48
46.90
1.449
3.090
4
2.760
79.25
11/42
48 48 47 50 48 48 49 51 49 50
48.80
1.229
2.519
4
3.254
84.61
11/43
43 45 43 44 47 46 46 45 45 43
44.70
1.418
3.173
4
2.821
57.30
11/44
45 45 46 48 45 46 45 46 45 45
45.60
0.966
2.119
3
3.105
58.40
11/45
46 46 45 47 46 45 46 46 44 46
45.70
0.823
1.801
3
3.644
67.20
11/46
46 43 44 46 47 51 47 45 43 44
45.60
2.413
5.292
8
3.315
76.74
11/47
48 51 48 47 48 51 47 49 50 51
49.00
1.633
3.333
4
2.449
78.42
11/48
50 50 50 50 49 51 48 48 49 51
49.60
1.075
2.167
3
2.791
85.34
11/49
43 44 47 45 43 46 44 44 43 43
44.20
1.398
3.164
4
2.860
69.34
11/50
49 48 47 47 46 50 48 50 47 46
47.80
1.476
3.087
4
2.711
76.19
11/51
47 47 47 47 47 48 47 47 51 48
47.60
1.265
2.657
4
3.162
75.32
11/52
43 45 47 44 47 44 44 46 45 44
44.90
1.370
3.052
4
2.919
55.89
11/53
44 47 45 46 44 45 45 45 45 46
45.20
0.919
2.033
3
3.265
59.62
11/54
47 48 48 47 47 46 47 49 46 48
47.30
0.949
2.006
3
3.162
68.04
11/55
50 50 48 50 48 50 48 50 50 49
49.30
0.949
1.924
2
2.108
75.12
11/56
49 52 51 52 49 53 49 50 51 52
50.80
1.476
2.905
4
2.711
90.18
11/57
48 47 48 48 51 48 48 52 49 50
48.90
1.595
3.262
5
3.135
85.95
11/58
44 44 43 43 45 44 44 43 44 43
43.70
0.675
1.545
2
2.963
76.64
11/59
46 50 49 49 48 50 51 49 47 46
48.50
1.716
3.538
5
2.914
83.87
11/60
46 47 47 48 47 48 49 46 48 48
47.40
0.966
2.038
3
3.105
84.20
11/61
43 44 44 44 42 44 46 42 43 47
43.90
1.595
3.634
5
3.135
60.45
11/62
49 47 47 46 46 46 46 49 45 46
46.70
1.337
2.864
4
2.991
69.35
11/63
50 52 53 49 48 51 51 50 50 51
50.50
1.434
2.839
5
3.487
74.53
11/64
48 46 47 50 51 50 46 50 48 49
48.50
1.780
3.669
5
2.810
77.80
11/65
48 49 50 50 49 51 48 48 52 50
49.50
1.354
2.735
4
2.954
89.16
11/66
50 50 52 52 49 49 51 50 50 50
50.30
1.059
2.106
3
2.832
93.68
11/67
44 43 42 43 43 43 44 44 44 45
43.50
0.850
1.954
3
3.530
76.20
11/68
48 51 49 47 48 46 47 47 52 47
48.20
1.932
4.009
6
3.105
82.72
11/69
46 48 46 47 46 48 49 46 47 47
47.00
1.054
2.243
3
2.846
85.27
11/70
44 44 46 44 43 42 45 43 43 42
43.60
1.265
2.901
4
3.162
65.55
11/71
48 47 46 46 47 48 46 47 46 47
46.80
0.789
1.685
2
2.535
59.07
11/72
50 50 50 49 50 50 50 50 50 49
49.80
0.422
0.847
1
2.372
74.61
11/73
48 47 47 50 50 47 46 48 49 49
48.10
1.370
2.849
4
2.919
80.49
11/74
46 46 49 47 48 47 45 46 46 49
46.90
1.370
2.922
4
2.919
65.39
11/75
48 46 48 50 52 48 52 46 52 46
48.80
2.530
5.184
6
2.372
73.46
11/76
48 48 50 48 50 51 50 50 52 48
49.50
1.434
2.896
4
2.790
79.73
Test area
R1
11/24
11/25
R2
R3
R4
R5
R6
R7
R8
R9
R10
A35
Rm
sR
VR, %
rR
θR
fcm, MPa
49 50 47 51 48 52 48 50 47 49
49.10
1.663
3.388
5
3.006
86.35
49 46 49 47 46 46 47 47 49 48
47.40
1.265
2.669
3
2.372
64.28
11/79
48 50 50 48 46 49 52 49 48 50
49.00
1.633
3.333
6
3.674
71.04
11/80
46 48 46 47 46 49 52 46 49 46
47.50
2.014
4.240
6
2.979
77.56
11/81
55 49 50 51 54 52 58 50 50 49
51.80
2.974
5.741
9
3.026
84.33
11/82
51 52 51 48 53 50 50 52 51 49
50.70
1.494
2.948
5
3.346
59.48
11/83
50 49 49 50 52 50 48 47 50 50
49.50
1.354
2.735
5
3.693
70.16
11/84
53 54 50 51 54 52 52 52 50 52
52.00
1.414
2.720
4
2.828
86.82
11/85
48 47 46 46 49 48 49 50 44 47
47.40
1.776
3.748
6
3.378
56.77
11/86
49 48 49 49 49 49 47 50 51 49
49.00
1.054
2.151
4
3.795
67.11
11/87
41 44 41 44 43 41 40 43 41 46
42.40
1.897
4.475
6
3.162
54.48
11/88
44 45 46 45 44 45 47 47 47 45
45.50
1.179
2.590
3
2.546
61.88
11/89
45 46 46 45 45 46 45 44 46 47
45.50
0.850
1.868
3
3.530
69.28
11/90
39 38 40 38 42 38 42 40 39 42
39.80
1.687
4.238
4
2.372
53.20
11/91
42 39 40 44 40 38 38 40 42 42
40.50
1.958
4.834
6
3.065
57.17
Test area
R1
11/77
11/78
R2
R3
R4
R5
R6
R7
R8
R9
R10
11/92
44 45 44 44 44 42 42 48 40 43
43.60
2.119
4.859
8
3.776
62.28
11/93
30 33 34 29 32 20 28 30 31 30
29.70
3.860
12.997
14
3.627
34.68
11/94
42 40 43 42 40 39 39 39 38 38
40.00
1.764
4.410
5
2.835
45.35
11/95
46 44 43 44 43 44 42 43 43 45
43.70
1.160
2.653
4
3.450
54.94
11/96
44 43 43 46 44 42 43 46 43 42
43.60
1.430
3.279
4
2.798
58.25
11/97
45 43 43 44 43 44 45 44 45 44
44.00
0.816
1.856
2
2.449
59.73
11/98
46 44 49 48 46 44 45 45 48 44
45.90
1.853
4.037
5
2.698
71.52
11/99
36 36 35 39 37 36 38 37 38 36
36.80
1.229
3.340
4
3.254
46.44
11/100
41 41 42 40 41 43 40 41 39 40
40.80
1.135
2.783
4
3.523
58.36
11/101
40 44 42 44 45 45 42 40 40 45
42.70
2.163
5.065
5
2.312
62.48
11/102
33 34 36 35 35 32 33 34 36 34
34.20
1.317
3.850
4
3.038
37.87
11/103
38 39 39 38 40 38 41 39 40 38
39.00
1.054
2.703
3
2.846
45.88
11/104
43 41 44 45 43 40 42 40 41 40
41.90
1.792
4.277
5
2.790
55.08
11/105
44 44 43 44 44 43 44 44 44 45
43.90
0.568
1.293
2
3.523
70.67
11/106
43 46 48 50 50 46 50 48 45 48
47.40
2.366
4.992
7
2.958
77.43
11/107
44 49 49 50 48 49 49 48 50 47
48.30
1.767
3.658
6
3.396
79.97
11/108
46 44 45 48 48 48 47 46 46 49
46.70
1.567
3.356
5
3.191
58.49
11/109
46 49 46 46 45 46 46 47 47 48
46.60
1.174
2.519
4
3.408
70.43
11/110
46 47 47 46 46 48 48 47 44 45
46.40
1.265
2.726
4
3.162
77.10
11/111
38 36 35 37 38 40 42 36 38 36
37.60
2.119
5.635
7
3.304
47.57
11/112
39 40 40 41 39 40 41 40 40 39
39.90
0.738
1.849
2
2.711
53.88
11/113
45 46 46 45 47 47 45 47 46 46
46.00
0.816
1.775
2
2.449
66.62
11/114
42 42 42 43 43 44 46 44 43 42
43.10
1.287
2.985
4
3.109
68.93
11/115
43 43 43 43 44 44 42 45 42 42
43.10
0.994
2.307
3
3.017
75.47
11/116
48 48 47 51 49 48 48 51 50 50
49.00
1.414
2.886
4
2.828
86.22
11/117
44 45 45 45 46 45 47 46 46 46
45.50
0.850
1.868
3
3.530
59.28
11/118
46 47 48 48 45 45 45 45 46 46
46.10
1.197
2.597
3
2.506
67.98
11/119
45 47 46 48 48 46 47 47 48 48
47.00
1.054
2.243
3
2.846
75.76
11/120
36 35 36 36 37 42 36 38 36 37
36.90
1.969
5.337
7
3.555
43.13
11/121
42 42 42 42 42 41 40 42 42 42
41.70
0.675
1.619
2
2.963
55.20
11/122
46 45 45 44 47 45 44 46 44 47
45.30
1.160
2.560
3
2.587
64.99
11/123
48 48 48 45 44 44 45 49 44 48
46.30
2.058
4.444
5
2.430
69.73
11/124
52 52 52 52 53 51 50 50 52 52
51.60
0.966
1.872
3
3.105
88.78
11/125
45 44 45 46 46 47 47 47 45 45
45.70
1.059
2.318
3
2.832
95.15
11/126
44 43 44 44 44 44 43 43 44 46
43.90
0.876
1.995
3
3.426
66.82
11/127
43 44 44 45 45 45 47 45 47 46
45.10
1.287
2.853
4
3.109
75.40
11/128
46 48 46 45 48 46 44 50 46 48
46.70
1.767
3.784
6
3.396
81.20
11/129
38 39 40 38 39 38 38 40 39 42
39.10
1.287
3.291
4
3.109
46.61
A36
Rm
sR
VR, %
rR
θR
fcm, MPa
46 44 44 44 47 46 44 46 46 46
45.30
1.160
2.560
3
2.587
64.73
47 45 48 47 49 48 48 47 45 49
47.30
1.418
2.998
4
2.821
70.86
11/132
46 45 46 48 47 48 46 45 46 46
46.30
1.059
2.288
3
2.832
76.53
11/133
50 48 48 54 50 48 47 47 49 47
48.80
2.150
4.406
7
3.256
86.72
11/134
45 46 45 47 47 45 45 44 46 48
45.80
1.229
2.684
4
3.254
95.63
11/135
44 43 41 44 46 45 44 43 42 43
43.50
1.434
3.296
5
3.487
69.95
11/136
45 46 46 44 46 46 46 46 46 46
45.70
0.675
1.477
2
2.963
75.76
11/137
48 50 50 50 50 48 52 50 49 51
49.80
1.229
2.468
4
3.254
81.40
11/138
39 39 42 42 38 39 38 43 38 39
39.70
1.889
4.757
5
2.648
50.21
11/139
46 47 44 47 47 43 46 47 43 45
45.50
1.650
3.626
4
2.424
65.01
11/140
48 47 47 48 47 47 47 49 49 50
47.90
1.101
2.298
3
2.726
73.73
11/141
47 48 51 48 47 50 50 50 48 48
48.70
1.418
2.912
4
2.821
79.33
11/142
48 50 50 50 47 50 52 50 50 52
49.90
1.524
3.054
5
3.281
85.17
11/143
45 47 46 46 45 47 50 49 46 46
46.70
1.636
3.504
5
3.056
97.60
11/144
43 44 46 45 46 46 42 43 46 40
44.10
2.079
4.714
6
2.886
69.73
11/145
54 52 54 56 52 53 52 54 54 53
53.40
1.265
2.369
4
3.162
80.56
11/146
50 52 48 55 52 54 54 50 50 51
51.60
2.221
4.304
7
3.152
85.24
11/147
40 41 39 38 39 41 42 40 39 40
39.90
1.197
3.001
4
3.341
53.39
11/148
46 48 46 47 47 47 48 45 48 46
46.80
1.033
2.207
3
2.905
64.60
11/149
46 47 46 45 44 45 45 46 47 48
45.90
1.197
2.608
4
3.341
79.87
11/150
47 47 47 47 48 48 47 48 49 48
47.60
0.699
1.469
2
2.860
78.18
11/151
52 50 51 50 53 52 52 50 51 50
51.10
1.101
2.154
3
2.726
86.66
11/152
52 54 56 57 54 55 53 54 53 54
54.20
1.476
2.723
5
3.388
98.75
11/153
50 47 49 46 50 49 54 51 48 48
49.20
2.251
4.575
8
3.554
78.41
11/154
52 51 54 52 55 51 54 50 54 50
52.30
1.829
3.497
5
2.734
80.16
11/155
50 51 52 52 53 49 50 50 53 51
51.10
1.370
2.682
4
2.919
88.92
11/156
41 39 40 38 40 40 40 42 40 39
39.90
1.101
2.758
4
3.635
53.85
11/157
44 44 44 45 48 48 52 44 46 50
46.50
2.877
6.187
8
2.781
64.18
11/158
46 46 46 46 46 47 44 48 50 46
46.50
1.581
3.400
6
3.795
79.42
11/159
52 51 54 52 51 49 53 54 56 50
52.20
2.098
4.018
7
3.337
89.33
11/160
52 50 51 53 50 54 52 53 51 50
51.60
1.430
2.771
4
2.798
95.74
11/161
44 44 48 47 49 49 46 50 45 49
47.10
2.234
4.742
6
2.686
71.29
11/162
53 52 54 51 51 50 48 48 54 50
51.10
2.183
4.273
6
2.748
75.44
11/163
54 51 48 53 49 56 59 52 51 55
52.80
3.327
6.300
11
3.307
86.42
11/164
44 43 47 42 41 45 41 43 41 41
42.80
2.044
4.776
6
2.935
57.72
11/165
53 48 49 48 46 45 46 47 46 48
47.60
2.271
4.770
8
3.523
66.64
11/166
53 52 51 55 51 52 52 52 51 52
52.10
1.197
2.298
4
3.341
79.48
11/167
50 49 48 49 50 49 47 48 49 48
48.70
0.949
1.948
3
3.162
87.25
11/168
53 49 51 52 52 51 49 50 52 53
51.20
1.476
2.882
4
2.711
95.68
11/169
50 47 48 47 44 48 48 49 46 48
47.50
1.650
3.474
6
3.637
74.68
11/170
48 50 46 49 51 48 52 50 48 52
49.40
1.955
3.958
6
3.069
75.43
11/171
53 52 55 53 51 55 53 49 51 53
52.50
1.841
3.506
6
3.259
89.02
11/172
43 44 41 42 41 42 45 44 41 43
42.60
1.430
3.356
4
2.798
54.81
11/173
46 45 45 48 45 45 46 45 44 47
45.60
1.174
2.574
4
3.408
63.80
11/174
51 53 52 53 52 51 54 50 53 51
52.00
1.247
2.398
4
3.207
81.83
11/175
57 54 60 54 52 57 58 60 57 55
56.40
2.633
4.669
8
3.038
86.18
11/176
54 50 57 55 54 52 52 52 51 53
53.00
2.055
3.877
7
3.407
96.52
11/177
50 47 49 52 49 47 51 50 50 52
49.70
1.767
3.555
5
2.830
73.69
11/178
51 52 50 53 50 50 49 48 50 53
50.60
1.647
3.254
5
3.037
78.68
11/179
47 48 52 50 52 48 52 52 51 52
50.40
2.011
3.990
5
2.486
82.86
11/180
39 42 41 39 44 45 44 43 45 44
42.60
2.271
5.330
6
2.642
57.55
11/181
50 48 47 49 47 48 47 51 47 47
48.10
1.449
3.013
4
2.760
66.14
11/182
51 52 51 50 47 48 54 50 56 57
51.60
3.239
6.276
10
3.088
76.05
Test area
R1
11/130
11/131
R2
R3
R4
R5
R6
R7
R8
R9
R10
A37
Rm
sR
VR, %
rR
θR
fcm, MPa
56 51 51 54 59 55 60 56 54 56
55.20
2.936
5.319
9
3.065
84.94
53 52 50 55 56 54 57 54 51 56
53.80
2.300
4.275
7
3.044
92.78
11/185
44 47 46 43 47 46 45 49 50 46
46.30
2.111
4.559
7
3.316
69.46
11/186
53 52 48 48 48 50 49 48 51 48
49.50
1.900
3.839
5
2.631
75.28
11/187
51 50 52 50 50 51 50 49 49 52
50.40
1.075
2.133
3
2.791
83.94
11/188
39 44 45 43 42 43 46 44 45 41
43.20
2.098
4.856
7
3.337
58.23
11/189
47 50 48 47 50 48 51 50 49 48
48.80
1.398
2.866
4
2.860
67.36
11/190
55 50 53 50 50 55 51 50 58 54
52.60
2.836
5.392
8
2.821
76.20
11/191
45 44 45 44 43 42 45 44 43 46
44.10
1.197
2.715
4
3.341
60.23
11/192
45 45 45 49 44 46 46 45 45 45
45.50
1.354
2.976
5
3.693
68.37
11/193
49 48 50 46 49 49 48 48 47 50
48.40
1.265
2.613
4
3.162
68.70
11/194
38 40 38 40 37 39 40 39 38 41
39.00
1.247
3.198
4
3.207
43.92
11/195
44 44 44 44 48 47 46 44 46 44
45.10
1.524
3.379
4
2.625
59.31
11/196
46 45 45 45 46 44 43 44 45 45
44.80
0.919
2.051
3
3.265
65.98
11/197
36 37 38 37 35 36 36 36 35 37
36.30
0.949
2.613
3
3.162
35.45
11/198
39 36 35 36 36 40 36 36 36 36
36.60
1.578
4.310
5
3.169
36.93
11/199
39 38 39 40 38 38 38 37 37 37
38.10
0.994
2.610
3
3.017
43.19
11/200
43 45 45 46 46 44 44 43 46 45
44.70
1.160
2.594
3
2.587
61.39
11/201
46 46 48 48 48 48 48 47 47 49
47.50
0.972
2.046
3
3.087
69.70
11/202
46 46 44 46 47 46 47 49 48 46
46.50
1.354
2.912
5
3.693
67.28
11/203
37 40 36 40 39 40 38 36 36 38
38.00
1.700
4.473
4
2.353
43.37
11/204
47 46 46 43 47 46 46 45 47 44
45.70
1.337
2.927
4
2.991
58.24
11/205
46 45 46 47 47 48 46 46 47 47
46.50
0.850
1.828
3
3.530
66.34
11/206
39 37 36 38 37 37 38 37 36 35
37.00
1.155
3.121
4
3.464
35.65
11/207
36 35 36 37 37 35 39 38 35 36
36.40
1.350
3.709
4
2.963
39.02
11/208
37 37 37 38 38 40 37 37 37 37
37.50
0.972
2.592
3
3.087
41.36
11/209
45 46 46 45 47 44 44 46 44 44
45.10
1.101
2.440
3
2.726
69.21
11/210
48 49 48 49 51 48 53 49 52 48
49.50
1.841
3.719
5
2.716
82.17
11/211
47 47 48 47 47 46 48 47 48 48
47.30
0.675
1.427
2
2.963
87.67
11/212
44 40 40 42 42 42 40 44 42 42
41.80
1.476
3.530
4
2.711
54.55
11/213
49 52 48 53 48 50 46 51 49 48
49.40
2.119
4.289
7
3.304
69.50
11/214
48 49 47 48 49 51 49 50 49 48
48.80
1.135
2.326
4
3.523
76.61
11/215
40 42 38 38 40 40 38 39 40 38
39.30
1.337
3.403
4
2.991
45.58
11/216
39 39 39 39 39 38 38 41 40 39
39.10
0.876
2.239
3
3.426
51.41
11/217
41 41 42 44 44 43 46 46 43 42
43.20
1.814
4.198
5
2.757
50.45
11/218
43 43 45 44 44 43 45 44 44 44
43.90
0.738
1.681
2
2.711
74.52
11/219
47 48 48 49 50 48 46 49 49 50
48.40
1.265
2.613
4
3.162
81.18
11/220
47 48 47 48 48 49 49 48 47 48
47.90
0.738
1.540
2
2.711
85.73
11/221
43 46 46 44 44 46 45 44 46 44
44.80
1.135
2.534
3
2.642
55.49
11/222
48 52 49 47 44 48 49 48 46 48
47.90
2.079
4.340
8
3.848
66.54
11/223
50 48 50 52 50 51 52 52 50 51
50.60
1.265
2.500
4
3.162
77.93
11/224
36 37 39 36 36 35 39 40 39 38
37.50
1.716
4.576
5
2.914
44.45
11/225
42 42 42 42 42 43 43 43 39 42
42.00
1.155
2.749
4
3.464
50.66
11/226
44 45 42 42 41 43 46 42 43 43
43.10
1.524
3.536
5
3.281
48.16
11/227
45 46 46 47 46 46 46 47 46 48
46.30
0.823
1.778
3
3.644
82.06
11/228
47 46 48 49 48 48 48 48 49 46
47.70
1.059
2.221
3
2.832
89.84
11/229
53 50 53 54 48 53 53 52 55 54
52.50
2.068
3.940
7
3.384
82.51
11/230
49 50 48 47 48 49 48 48 48 47
48.20
0.919
1.907
3
3.265
67.41
11/231
47 48 50 47 49 48 46 48 47 51
48.10
1.524
3.168
5
3.281
74.19
11/232
51 51 48 52 52 50 50 54 49 50
50.70
1.703
3.359
6
3.523
85.32
11/233
45 42 46 42 45 42 42 44 45 45
43.80
1.619
3.697
4
2.470
54.89
11/234
39 41 40 39 40 38 39 38 43 39
39.60
1.506
3.802
5
3.321
53.20
11/235
44 47 48 44 45 46 46 49 45 44
45.80
1.751
3.824
5
2.855
54.55
Test area
R1
11/183
11/184
R2
R3
R4
R5
R6
R7
R8
R9
R10
A38
Rm
sR
VR, %
rR
θR
fcm, MPa
46 48 45 47 46 47 48 47 46 47
46.70
0.949
2.031
3
3.162
80.17
51 53 51 49 52 52 53 52 53 50
51.60
1.350
2.616
4
2.963
88.96
11/238
52 52 53 54 52 52 52 54 53 54
52.80
0.919
1.740
2
2.176
81.74
11/239
46 45 47 45 48 47 48 44 47 46
46.30
1.337
2.889
4
2.991
59.87
11/240
48 48 48 49 50 49 48 51 50 49
49.00
1.054
2.151
3
2.846
73.76
11/241
52 52 51 52 49 52 51 54 51 50
51.40
1.350
2.626
5
3.704
83.60
11/242
40 40 40 40 39 40 40 44 45 42
41.00
2.000
4.878
6
3.000
52.68
11/243
41 43 41 41 40 42 42 41 40 40
41.10
0.994
2.420
3
3.017
54.05
11/244
44 45 44 44 45 46 43 44 47 44
44.60
1.174
2.632
4
3.408
61.28
11/245
50 52 48 50 52 46 48 50 49 52
49.70
2.003
4.030
6
2.996
82.89
11/246
51 51 51 51 53 52 51 53 53 53
51.90
0.994
1.916
2
2.011
87.99
11/247
53 50 50 56 51 53 51 54 54 52
52.40
1.955
3.731
6
3.069
88.51
11/248
46 45 42 46 43 48 48 47 45 45
45.50
1.958
4.303
6
3.065
67.24
11/249
48 53 50 48 52 52 50 53 53 51
51.00
1.944
3.811
5
2.572
74.40
11/250
53 53 55 53 53 50 54 52 50 51
52.40
1.647
3.142
5
3.037
88.43
11/251
40 38 40 38 43 45 42 39 38 40
40.30
2.359
5.855
7
2.967
56.12
11/252
45 42 42 41 41 44 45 43 46 41
43.00
1.886
4.385
5
2.652
61.59
11/253
41 44 41 42 43 44 40 44 41 41
42.10
1.524
3.620
4
2.625
61.45
11/254
48 46 45 48 47 45 45 46 46 46
46.20
1.135
2.457
3
2.642
82.89
11/255
52 51 52 53 54 51 53 52 52 52
52.20
0.919
1.760
3
3.265
92.17
11/256
51 53 51 52 53 55 57 51 53 54
53.00
1.944
3.667
6
3.087
84.29
11/257
46 46 43 47 45 48 49 46 48 47
46.50
1.716
3.690
6
3.497
69.77
11/258
48 50 48 49 51 49 47 50 50 49
49.10
1.197
2.438
4
3.341
76.67
11/259
53 52 52 52 53 56 53 53 54 52
53.00
1.247
2.353
4
3.207
87.16
11/260
39 39 38 37 42 41 43 43 37 43
40.20
2.486
6.183
6
2.414
58.22
11/261
39 40 42 39 39 41 40 40 39 39
39.80
1.033
2.595
3
2.905
54.51
11/262
44 43 43 44 42 45 44 43 44 40
43.20
1.398
3.237
5
3.575
57.68
11/263
50 49 51 51 52 51 52 51 48 49
50.40
1.350
2.678
4
2.963
82.11
11/264
49 54 49 51 50 52 51 50 51 51
50.80
1.476
2.905
5
3.388
92.43
11/265
55 54 54 55 55 56 58 57 58 54
55.60
1.578
2.837
4
2.535
105.75
11/266
48 49 46 48 52 48 51 48 50 47
48.70
1.829
3.755
6
3.281
73.42
11/267
52 46 52 53 52 54 51 49 51 55
51.50
2.550
4.951
9
3.530
82.73
11/268
52 50 54 52 55 52 54 51 54 54
52.80
1.619
3.067
5
3.088
92.99
11/269
50 43 46 49 43 43 42 50 42 44
45.20
3.293
7.286
8
2.429
63.02
11/270
48 48 49 47 54 49 46 45 49 49
48.40
2.413
4.985
9
3.730
64.70
11/271
43 44 42 45 43 43 42 45 46 43
43.60
1.350
3.096
4
2.963
61.61
11/272
50 50 51 49 53 51 52 50 53 51
51.00
1.333
2.614
4
3.000
80.91
11/273
50 54 52 51 51 50 51 50 50 52
51.10
1.287
2.518
4
3.109
92.03
11/274
55 56 54 54 53 56 53 56 55 56
54.80
1.229
2.243
3
2.440
102.17
11/275
46 47 49 45 45 47 47 47 48 46
46.70
1.252
2.680
4
3.196
74.16
11/276
53 54 54 52 52 55 56 53 54 54
53.70
1.252
2.331
4
3.196
81.13
11/277
52 53 54 56 56 50 53 53 55 56
53.80
1.989
3.697
6
3.017
94.35
11/278
47 45 47 52 48 48 46 48 44 46
47.10
2.183
4.635
8
3.664
63.02
11/279
43 42 45 47 45 47 43 42 45 49
44.80
2.348
5.240
7
2.982
58.66
11/280
41 41 42 44 46 45 41 45 43 43
43.10
1.853
4.299
5
2.698
57.65
11/281
52 54 54 54 52 52 53 50 52 53
52.60
1.265
2.405
4
3.162
79.31
11/282
52 53 52 51 50 53 53 52 51 51
51.80
1.033
1.994
3
2.905
92.64
11/283
50 52 51 52 52 50 52 50 51 53
51.30
1.059
2.065
3
2.832
91.27
11/284
40 41 42 40 41 42 40 43 44 46
41.90
1.969
4.700
6
3.047
75.32
11/285
52 54 52 54 50 54 55 50 50 53
52.40
1.897
3.621
5
2.635
82.47
11/286
51 52 54 50 52 53 50 52 52 51
51.70
1.252
2.421
4
3.196
92.67
11/287
48 46 47 47 48 50 48 50 49 49
48.20
1.317
2.731
4
3.038
63.44
11/288
40 40 44 44 45 44 45 42 44 42
43.00
1.886
4.385
5
2.652
62.28
Test area
R1
11/236
11/237
R2
R3
R4
R5
R6
R7
R8
R9
R10
A39
Rm
sR
VR, %
rR
θR
fcm, MPa
52 51 50 48 50 48 47 51 48 46
49.10
1.969
4.011
6
3.047
56.35
51 54 49 50 55 55 50 48 52 53
51.70
2.497
4.829
7
2.804
80.37
11/291
50 52 50 49 49 50 51 51 52 55
50.90
1.792
3.521
6
3.348
93.26
11/292
55 55 52 53 53 54 52 53 51 52
53.00
1.333
2.516
4
3.000
102.78
11/293
44 46 45 42 44 44 43 41 44 43
43.60
1.430
3.279
5
3.497
74.08
11/294
52 51 54 53 52 51 52 52 52 51
52.00
0.943
1.813
3
3.182
84.44
11/295
51 51 52 52 54 55 52 52 53 50
52.20
1.476
2.827
5
3.388
95.80
11/296
49 53 51 49 48 47 52 50 49 50
49.80
1.814
3.642
6
3.308
65.27
11/297
50 44 48 45 48 49 48 47 48 50
47.70
1.947
4.081
6
3.082
62.21
11/298
48 49 50 51 48 49 52 52 49 51
49.90
1.524
3.054
4
2.625
62.24
11/299
44 43 42 44 42 41 41 40 43 43
42.30
1.337
3.162
4
2.991
52.87
11/300
42 39 40 42 40 43 42 44 39 40
41.10
1.729
4.206
5
2.892
54.65
11/301
44 47 45 48 49 49 47 48 48 48
47.30
1.636
3.460
5
3.056
66.40
11/302
42 37 38 39 36 36 36 38 38 36
37.60
1.897
5.046
6
3.162
40.13
11/303
40 42 45 42 43 43 42 38 37 41
41.30
2.406
5.826
8
3.325
50.61
11/304
33 34 32 36 33 32 32 35 34 34
33.50
1.354
4.042
4
2.954
35.52
11/305
38 42 41 39 41 41 41 39 38 42
40.20
1.549
3.854
4
2.582
47.84
11/306
42 42 43 42 41 41 41 41 40 41
41.40
0.843
2.037
3
3.558
52.41
11/307
40 42 41 44 43 44 44 40 42 41
42.10
1.595
3.789
4
2.508
53.88
11/308
42 41 43 43 44 43 42 41 42 41
42.20
1.033
2.447
3
2.905
46.15
11/309
34 35 30 34 33 34 34 36 36 32
33.80
1.814
5.365
6
3.308
41.74
11/310
40 42 40 44 42 40 44 42 43 42
41.90
1.524
3.637
4
2.625
48.08
11/311
32 34 33 34 32 34 34 35 33 34
33.50
0.972
2.901
3
3.087
34.50
11/312
44 40 43 41 39 38 42 43 41 40
41.10
1.912
4.652
6
3.138
46.63
11/313
43 46 46 43 44 45 43 43 43 43
43.90
1.287
2.931
3
2.332
61.70
11/314
46 47 48 47 47 46 49 47 46 47
47.00
0.943
2.006
3
3.182
61.64
11/315
47 46 44 44 47 48 48 50 44 48
46.60
2.066
4.433
6
2.905
71.15
11/316
41 40 38 40 39 38 43 38 38 40
39.50
1.650
4.177
5
3.030
45.83
11/317
44 43 43 42 40 42 42 43 44 44
42.70
1.252
2.931
4
3.196
54.37
11/318
40 40 45 40 44 40 38 38 38 39
40.20
2.440
6.071
7
2.868
41.68
11/319
48 47 48 46 46 45 45 45 46 44
46.00
1.333
2.899
4
3.000
52.70
11/320
45 45 46 46 48 46 48 48 47 46
46.50
1.179
2.534
3
2.546
60.68
11/321
47 47 47 47 46 47 47 46 46 47
46.70
0.483
1.034
1
2.070
62.79
11/322
44 45 46 47 44 46 49 48 45 44
45.80
1.751
3.824
5
2.855
61.39
11/323
42 38 38 38 38 39 38 40 38 39
38.80
1.317
3.393
4
3.038
47.55
11/324
42 43 44 40 46 42 47 41 45 45
43.50
2.273
5.225
7
3.080
52.25
11/325
40 40 37 36 38 39 36 41 37 38
38.20
1.751
4.584
5
2.855
40.43
11/326
48 43 43 48 46 42 44 44 44 43
44.50
2.121
4.767
6
2.828
51.03
11/327
46 44 47 44 46 45 46 48 47 46
45.90
1.287
2.803
4
3.109
66.39
11/328
46 46 47 48 49 46 47 49 49 49
47.60
1.350
2.836
3
2.222
69.95
11/329
43 41 40 42 41 44 46 44 46 42
42.90
2.079
4.846
6
2.886
81.61
11/330
38 42 41 43 43 44 42 44 44 39
42.00
2.108
5.019
6
2.846
50.55
11/331
46 42 47 46 44 46 44 45 45 46
45.10
1.449
3.213
5
3.450
58.78
11/332
41 40 42 40 37 41 41 42 38 38
40.00
1.764
4.410
5
2.835
46.01
11/333
43 47 44 44 44 41 44 45 46 44
44.20
1.619
3.664
6
3.705
56.92
11/334
45 47 46 47 48 47 45 47 47 46
46.50
0.972
2.090
3
3.087
69.69
11/335
44 43 46 43 43 43 43 44 44 44
43.70
0.949
2.171
3
3.162
70.91
11/336
45 42 43 43 46 43 42 43 45 44
43.60
1.350
3.096
4
2.963
63.86
11/337
42 43 45 45 38 38 43 40 39 40
41.30
2.669
6.462
7
2.623
52.08
11/338
46 42 46 47 48 46 42 43 46 47
45.30
2.163
4.774
6
2.774
57.78
11/339
35 40 38 40 38 41 38 44 40 41
39.50
2.415
6.115
9
3.726
48.13
11/340
39 45 40 39 42 43 46 45 42 44
42.50
2.550
5.999
7
2.746
57.37
11/341
46 46 47 45 47 45 46 48 44 45
45.90
1.197
2.608
4
3.341
74.15
Test area
R1
11/289
11/290
R2
R3
R4
R5
R6
R7
R8
R9
R10
A40
Rm
sR
VR, %
rR
θR
fcm, MPa
49 45 44 50 52 45 45 48 47 47
47.20
2.573
5.452
8
3.109
74.84
47 50 47 49 48 48 50 49 49 48
48.50
1.080
2.227
3
2.777
73.82
11/344
39 42 39 41 43 43 38 40 42 41
40.80
1.751
4.292
5
2.855
55.67
11/345
38 43 41 41 42 41 42 37 41 40
40.60
1.838
4.527
6
3.265
64.17
11/346
47 47 46 45 42 41 40 43 45 44
44.00
2.449
5.567
7
2.858
49.99
11/347
42 45 43 46 44 47 44 47 43 40
44.10
2.234
5.065
7
3.134
60.18
11/348
47 48 49 48 48 47 48 48 47 49
47.90
0.738
1.540
2
2.711
71.29
11/349
45 52 50 44 52 51 48 48 47 46
48.30
2.869
5.941
8
2.788
73.53
11/350
44 46 48 49 48 47 47 46 46 50
47.10
1.729
3.671
6
3.471
69.50
11/351
41 40 39 40 39 42 40 40 40 40
40.10
0.876
2.184
3
3.426
55.13
11/352
43 40 41 40 42 40 40 43 42 40
41.10
1.287
3.131
3
2.332
65.85
11/353
42 41 40 40 40 43 39 40 45 46
41.60
2.366
5.689
7
2.958
49.76
11/354
47 47 48 44 48 45 47 43 44 45
45.80
1.814
3.960
5
2.757
64.32
11/355
46 48 46 45 48 50 49 46 50 48
47.60
1.776
3.732
5
2.815
69.21
11/356
46 46 46 46 50 44 47 43 45 47
46.00
1.886
4.099
7
3.712
71.19
11/357
53 53 51 53 52 50 54 53 51 54
52.40
1.350
2.576
4
2.963
88.09
11/358
44 46 47 43 44 48 48 45 43 43
45.10
2.025
4.490
5
2.469
58.33
11/359
47 46 48 50 48 45 46 48 48 46
47.20
1.476
3.127
5
3.388
65.73
11/360
40 44 46 43 40 44 42 43 44 40
42.60
2.066
4.849
6
2.905
53.50
11/361
46 48 50 48 48 46 47 46 50 46
47.50
1.581
3.329
4
2.530
69.72
11/362
47 46 46 48 49 47 49 49 51 51
48.30
1.829
3.786
5
2.734
70.37
11/363
45 45 46 48 48 46 47 50 46 46
46.70
1.567
3.356
5
3.191
74.25
11/364
47 46 46 48 49 48 50 49 47 51
48.10
1.663
3.458
5
3.006
66.29
11/365
44 46 45 47 46 44 44 47 46 44
45.30
1.252
2.763
3
2.397
56.80
11/366
47 54 50 50 51 47 48 53 51 51
50.20
2.348
4.676
7
2.982
67.05
11/367
39 43 44 40 40 41 43 41 44 40
41.50
1.841
4.436
5
2.716
55.54
11/368
39 44 41 38 40 38 43 38 40 41
40.20
2.098
5.218
6
2.860
69.66
11/369
42 44 42 46 46 48 45 45 46 48
45.20
2.098
4.641
6
2.860
70.31
11/370
53 50 49 48 50 50 49 52 51 48
50.00
1.633
3.266
5
3.062
78.31
11/371
50 50 49 51 51 49 51 50 50 48
49.90
0.994
1.993
3
3.017
74.89
11/372
47 48 47 46 46 46 48 48 49 48
47.30
1.059
2.240
3
2.832
64.19
11/373
48 48 51 49 48 48 48 45 48 47
48.00
1.491
3.106
6
4.025
74.23
11/374
42 44 46 45 46 46 47 48 50 45
45.90
2.183
4.757
8
3.664
70.71
11/375
48 50 51 49 50 52 54 50 50 52
50.60
1.713
3.385
6
3.503
75.29
11/376
50 48 51 53 50 53 49 49 50 48
50.10
1.792
3.577
5
2.790
94.38
11/377
45 47 47 45 46 48 46 45 48 48
46.50
1.269
2.730
3
2.364
61.87
11/378
48 49 46 46 47 47 50 46 46 46
47.10
1.449
3.077
4
2.760
68.74
11/379
44 42 41 44 41 42 44 41 44 44
42.70
1.418
3.321
3
2.115
55.98
11/380
47 50 51 49 49 48 49 47 54 50
49.40
2.066
4.181
7
3.389
60.79
11/381
44 41 46 46 43 42 44 45 44 45
44.00
1.633
3.711
5
3.062
71.44
11/382
39 41 42 41 42 41 42 42 40 41
41.10
0.994
2.420
3
3.017
53.64
11/383
41 43 42 41 43 40 40 43 42 40
41.50
1.269
3.059
3
2.364
59.97
11/384
44 41 45 44 42 44 45 42 44 45
43.60
1.430
3.279
4
2.798
59.09
11/385
34 36 33 32 32 33 35 33 34 36
33.80
1.476
4.366
4
2.711
42.57
11/386
40 43 40 42 41 40 41 39 40 40
40.60
1.174
2.891
4
3.408
48.50
11/387
39 40 41 44 42 39 38 40 41 41
40.50
1.716
4.237
6
3.497
53.62
11/388
44 42 43 42 42 43 42 41 43 42
42.40
0.843
1.989
3
3.558
55.99
11/389
48 46 49 48 47 48 48 46 48 49
47.70
1.059
2.221
3
2.832
64.75
11/390
50 50 52 50 50 49 52 50 52 50
50.50
1.080
2.139
3
2.777
69.91
11/391
41 42 41 40 41 39 40 41 41 41
40.70
0.823
2.023
3
3.644
53.61
11/392
42 40 40 42 44 42 42 41 43 39
41.50
1.509
3.637
5
3.313
61.26
11/393
46 46 44 47 43 46 46 46 47 46
45.70
1.252
2.739
4
3.196
62.89
11/394
37 37 36 35 33 36 35 37 33 36
35.50
1.509
4.251
4
2.650
42.82
Test area
R1
11/342
11/343
R2
R3
R4
R5
R6
R7
R8
R9
R10
A41
Rm
sR
VR, %
rR
θR
fcm, MPa
39 38 40 40 41 39 41 38 39 41
39.60
1.174
2.964
3
2.556
46.86
44 42 42 42 40 40 36 40 42 43
41.10
2.234
5.435
8
3.582
49.12
11/397
45 45 46 44 48 44 46 47 46 46
45.70
1.252
2.739
4
3.196
70.15
11/398
47 45 48 46 47 45 46 46 47 45
46.20
1.033
2.235
3
2.905
79.99
11/399
48 48 49 47 48 49 50 48 49 47
48.30
0.949
1.964
3
3.162
82.37
11/400
45 44 45 44 44 44 43 46 45 47
44.70
1.160
2.594
4
3.450
66.26
11/401
45 44 46 45 45 44 46 46 44 44
44.90
0.876
1.950
2
2.284
70.84
11/402
44 45 46 48 46 45 44 47 45 45
45.50
1.269
2.790
4
3.151
70.97
11/403
38 41 39 42 41 39 40 38 39 37
39.40
1.578
4.004
5
3.169
52.14
11/404
44 44 46 44 43 44 45 46 45 47
44.80
1.229
2.744
4
3.254
60.34
11/405
46 44 43 44 44 46 46 44 44 44
44.50
1.080
2.427
3
2.777
59.93
11/406
46 47 45 43 43 44 44 46 44 44
44.60
1.350
3.027
4
2.963
69.86
11/407
46 48 49 47 47 46 46 46 46 48
46.90
1.101
2.346
3
2.726
78.25
11/408
49 48 47 46 48 48 47 48 47 49
47.70
0.949
1.989
3
3.162
79.75
11/409
44 44 44 47 44 44 44 44 46 44
44.50
1.080
2.427
3
2.777
65.68
11/410
45 44 46 47 45 46 45 44 45 48
45.50
1.269
2.790
4
3.151
59.30
11/411
46 45 45 44 44 47 44 46 47 45
45.30
1.160
2.560
3
2.587
71.10
11/412
40 39 41 37 37 38 38 38 38 39
38.50
1.269
3.297
4
3.151
52.09
11/413
46 45 47 44 43 43 44 44 44 44
44.40
1.265
2.849
4
3.162
56.61
11/414
47 48 45 48 43 43 46 47 46 46
45.90
1.792
3.904
5
2.790
62.05
11/415
52 49 49 50 48 48 50 50 48 48
49.20
1.317
2.676
4
3.038
76.02
11/416
50 51 50 51 51 51 49 52 51 51
50.70
0.823
1.624
3
3.644
82.12
11/417
50 51 50 49 49 51 49 49 48 52
49.80
1.229
2.468
4
3.254
83.52
11/418
45 44 45 44 44 44 44 44 44 45
44.30
0.483
1.090
1
2.070
70.22
11/419
48 48 49 50 48 47 49 47 47 48
48.10
0.994
2.067
3
3.017
79.25
11/420
49 48 48 48 47 49 47 48 47 48
47.90
0.738
1.540
2
2.711
84.61
11/421
43 45 47 47 45 46 44 48 47 46
45.80
1.549
3.383
5
3.227
57.30
11/422
45 46 47 47 48 47 45 45 46 44
46.00
1.247
2.711
4
3.207
58.40
11/423
47 46 47 45 45 46 46 48 45 46
46.10
0.994
2.157
3
3.017
67.20
11/424
43 45 46 42 45 45 42 46 47 43
44.40
1.776
4.001
5
2.815
76.74
11/425
49 49 48 52 49 48 50 49 51 48
49.30
1.337
2.713
4
2.991
78.42
11/426
51 52 50 50 52 50 48 49 51 48
50.10
1.449
2.892
4
2.760
85.34
11/427
45 44 46 45 47 44 45 44 46 43
44.90
1.197
2.666
4
3.341
69.34
11/428
48 46 47 46 46 46 50 48 46 47
47.00
1.333
2.837
4
3.000
76.19
11/429
47 46 46 47 48 47 47 48 47 48
47.10
0.738
1.567
2
2.711
75.32
11/430
46 45 46 44 44 44 47 45 46 44
45.10
1.101
2.440
3
2.726
55.89
11/431
46 47 46 45 46 47 49 44 46 47
46.30
1.337
2.889
5
3.738
59.62
11/432
46 46 48 47 46 45 47 47 46 46
46.40
0.843
1.817
3
3.558
68.04
11/433
48 50 50 48 48 49 49 48 49 48
48.70
0.823
1.690
2
2.429
75.12
11/434
53 52 50 52 50 51 51 52 49 48
50.80
1.549
3.050
5
3.227
90.18
11/435
49 48 48 48 49 51 50 52 50 48
49.30
1.418
2.877
4
2.821
85.95
11/436
46 46 46 46 44 44 45 44 45 45
45.10
0.876
1.941
2
2.284
76.64
11/437
45 47 46 50 49 45 49 50 46 50
47.70
2.111
4.425
5
2.369
83.87
11/438
46 48 47 47 49 48 48 47 48 47
47.50
0.850
1.789
3
3.530
84.20
11/439
43 46 46 45 42 45 45 45 44 47
44.80
1.476
3.294
5
3.388
60.45
11/440
46 46 48 46 47 46 46 46 47 46
46.40
0.699
1.507
2
2.860
69.35
11/441
50 51 50 48 51 48 50 52 52 48
50.00
1.563
3.127
4
2.558
74.53
11/442
49 48 48 50 48 49 52 50 48 49
49.10
1.287
2.621
4
3.109
77.80
11/443
48 50 52 48 50 50 51 50 51 52
50.20
1.398
2.786
4
2.860
89.16
11/444
51 51 49 51 51 51 51 49 52 51
50.70
0.949
1.871
3
3.162
93.68
11/445
44 45 46 46 46 46 45 46 44 45
45.30
0.823
1.817
2
2.429
76.20
11/446
47 49 50 46 46 46 46 47 49 50
47.60
1.713
3.598
4
2.335
82.72
11/447
49 48 47 47 48 48 47 48 48 47
47.70
0.675
1.415
2
2.963
85.27
Test area
R1
11/395
11/396
R2
R3
R4
R5
R6
R7
R8
R9
R10
A42
Rm
sR
VR, %
rR
θR
fcm, MPa
43 42 46 43 43 42 45 42 41 43
43.00
1.491
3.467
5
3.354
65.55
46 46 47 46 47 46 46 46 47 47
46.40
0.516
1.113
1
1.936
59.07
11/450
51 48 49 49 49 50 50 48 48 50
49.20
1.033
2.099
3
2.905
74.61
11/451
47 48 47 48 47 49 50 50 47 48
48.10
1.197
2.489
3
2.506
80.49
11/452
48 46 49 46 46 49 47 49 50 48
47.80
1.476
3.087
4
2.711
65.39
11/453
48 49 50 48 49 49 49 48 50 48
48.80
0.789
1.616
2
2.535
73.46
11/454
53 55 53 54 52 52 55 53 52 52
53.10
1.197
2.255
3
2.506
79.73
11/455
50 50 51 49 49 50 52 51 52 49
50.30
1.160
2.305
3
2.587
86.35
11/456
46 46 45 44 44 45 45 46 44 45
45.00
0.816
1.814
2
2.449
64.28
11/457
48 51 47 50 52 48 48 48 48 48
48.80
1.619
3.318
5
3.088
71.04
11/458
49 48 50 47 47 47 48 49 48 48
48.10
0.994
2.067
3
3.017
77.56
11/459
52 49 51 52 53 55 50 49 51 54
51.60
2.011
3.897
6
2.983
84.33
11/460
53 50 48 49 49 55 53 53 54 51
51.50
2.415
4.690
7
2.898
59.48
11/461
49 49 49 48 46 53 51 50 47 48
49.00
2.000
4.082
7
3.500
70.16
11/462
56 52 55 53 54 51 55 57 58 56
54.70
2.214
4.047
7
3.162
86.82
11/463
48 46 46 47 47 45 50 49 48 46
47.20
1.549
3.282
5
3.227
56.77
11/464
49 49 45 46 44 46 49 48 47 49
47.20
1.874
3.970
5
2.668
67.11
11/465
42 44 43 42 44 44 43 42 43 43
43.00
0.816
1.899
2
2.449
54.48
11/466
45 46 44 45 47 47 44 46 47 46
45.70
1.160
2.537
3
2.587
61.88
11/467
47 50 44 50 48 47 45 48 48 47
47.40
1.897
4.003
6
3.162
69.28
11/468
40 40 37 42 39 42 39 40 43 41
40.30
1.767
4.385
6
3.396
53.20
11/469
42 42 42 42 40 42 44 40 43 42
41.90
1.197
2.857
4
3.341
57.17
11/470
42 43 46 44 45 42 45 44 42 46
43.90
1.595
3.634
4
2.508
62.28
11/471
35 29 32 31 34 35 33 30 33 31
32.30
2.058
6.370
6
2.916
34.68
11/472
39 40 38 40 38 39 38 38 39 40
38.90
0.876
2.251
2
2.284
45.35
11/473
43 44 43 42 41 42 42 42 42 44
42.50
0.972
2.287
3
3.087
54.94
11/474
45 43 43 43 44 44 41 42 44 44
43.30
1.160
2.678
4
3.450
58.25
11/475
43 46 46 44 44 44 45 46 44 46
44.80
1.135
2.534
3
2.642
59.73
11/476
45 44 44 44 44 47 43 46 44 45
44.60
1.174
2.632
4
3.408
71.52
11/477
38 36 35 35 36 36 35 35 38 36
36.00
1.155
3.208
3
2.598
46.44
11/478
44 42 39 43 41 40 45 41 39 40
41.40
2.066
4.989
6
2.905
58.36
11/479
44 44 43 44 43 44 46 44 42 44
43.80
1.033
2.358
4
3.873
62.48
11/480
32 32 30 33 36 31 34 30 33 31
32.20
1.874
5.819
6
3.202
37.87
11/481
40 40 41 42 41 41 39 38 37 39
39.80
1.549
3.892
5
3.227
45.88
11/482
42 41 40 41 40 42 40 41 41 42
41.00
0.816
1.991
2
2.449
55.08
11/483
46 46 46 46 44 45 45 43 46 46
45.30
1.059
2.339
3
2.832
70.67
11/484
45 45 44 46 48 44 43 44 44 44
44.70
1.418
3.173
5
3.526
77.43
11/485
48 48 50 51 48 48 51 48 48 48
48.80
1.317
2.698
3
2.279
79.97
11/486
46 45 45 46 45 45 44 46 47 45
45.40
0.843
1.857
3
3.558
58.49
11/487
45 46 45 48 49 48 48 46 45 45
46.50
1.581
3.400
4
2.530
70.43
11/488
45 47 48 48 48 49 48 45 48 46
47.20
1.398
2.963
4
2.860
77.10
11/489
38 36 40 39 42 42 40 40 37 43
39.70
2.263
5.701
7
3.093
47.57
11/490
39 39 40 38 40 38 39 40 39 40
39.20
0.789
2.012
2
2.535
53.88
11/491
47 48 47 46 47 46 46 48 47 48
47.00
0.816
1.737
2
2.449
66.62
11/492
43 46 44 45 46 45 46 44 45 44
44.80
1.033
2.305
3
2.905
68.93
11/493
47 46 45 45 44 48 46 44 46 46
45.70
1.252
2.739
4
3.196
75.47
11/494
48 48 47 47 47 47 48 48 49 48
47.70
0.675
1.415
2
2.963
86.22
11/495
44 47 46 45 45 44 47 49 44 46
45.70
1.636
3.581
5
3.056
59.28
11/496
46 46 47 46 47 48 48 46 46 45
46.50
0.972
2.090
3
3.087
67.98
11/497
46 46 46 47 48 48 47 48 48 47
47.10
0.876
1.859
2
2.284
75.76
11/498
36 36 36 35 36 38 36 35 36 37
36.10
0.876
2.425
3
3.426
43.13
11/499
40 42 42 40 40 40 41 42 40 42
40.90
0.994
2.431
2
2.011
55.20
11/500
48 46 46 45 44 47 45 44 47 48
46.00
1.491
3.241
4
2.683
64.99
Test area
R1
11/448
11/449
R2
R3
R4
R5
R6
R7
R8
R9
R10
A43
Rm
sR
VR, %
rR
θR
fcm, MPa
50 44 46 48 46 44 47 45 47 46
46.30
1.829
3.950
6
3.281
69.73
48 52 50 47 52 50 49 51 48 48
49.50
1.780
3.595
5
2.810
88.78
11/503
47 48 47 48 46 49 47 49 47 48
47.60
0.966
2.030
3
3.105
95.15
11/504
44 44 46 44 46 44 45 44 45 43
44.50
0.972
2.184
3
3.087
66.82
11/505
44 47 46 46 47 46 46 46 46 45
45.90
0.876
1.908
3
3.426
75.40
11/506
46 49 48 49 49 48 46 45 47 48
47.50
1.434
3.018
4
2.790
81.20
11/507
40 42 40 38 38 38 39 39 42 41
39.70
1.567
3.947
4
2.553
46.61
11/508
44 43 44 45 42 46 42 44 43 46
43.90
1.449
3.301
4
2.760
64.73
11/509
48 48 50 50 50 47 47 49 48 48
48.50
1.179
2.430
3
2.546
70.86
11/510
49 46 47 47 49 46 48 47 45 48
47.20
1.317
2.789
4
3.038
76.53
11/511
48 50 49 46 51 50 50 52 48 48
49.20
1.751
3.559
6
3.426
86.72
11/512
47 49 49 47 46 46 46 46 47 48
47.10
1.197
2.542
3
2.506
95.63
11/513
41 44 46 45 44 46 43 45 45 44
44.30
1.494
3.373
5
3.346
69.95
11/514
45 46 46 48 45 46 47 46 46 47
46.20
0.919
1.989
3
3.265
75.76
11/515
52 52 52 50 50 52 50 50 49 50
50.70
1.160
2.287
3
2.587
81.40
11/516
43 44 36 43 40 40 37 38 38 42
40.10
2.807
6.999
8
2.850
50.21
11/517
44 46 43 46 47 43 46 46 43 42
44.60
1.776
3.983
5
2.815
65.01
11/518
49 49 51 48 48 49 47 48 49 49
48.70
1.059
2.175
4
3.776
73.73
11/519
47 50 50 50 48 49 49 49 49 48
48.90
0.994
2.034
3
3.017
79.33
11/520
50 50 51 49 48 53 52 51 53 50
50.70
1.636
3.228
5
3.056
85.17
11/521
46 46 48 50 48 47 48 48 49 47
47.70
1.252
2.624
4
3.196
97.60
11/522
46 46 43 43 46 48 43 47 44 46
45.20
1.814
4.012
5
2.757
69.73
11/523
53 52 52 52 51 55 51 54 52 50
52.20
1.476
2.827
5
3.388
80.56
11/524
48 47 48 52 50 48 48 48 49 53
49.10
1.969
4.011
6
3.047
85.24
11/525
40 40 40 41 41 40 40 39 40 42
40.30
0.823
2.043
3
3.644
53.39
11/526
48 46 48 50 48 50 46 46 50 48
48.00
1.633
3.402
4
2.449
64.60
11/527
47 48 46 46 46 45 48 44 45 48
46.30
1.418
3.063
4
2.821
79.87
11/528
48 47 47 47 47 47 48 48 47 48
47.40
0.516
1.089
1
1.936
78.18
11/529
49 50 49 49 53 51 49 51 50 49
50.00
1.333
2.667
4
3.000
86.66
11/530
46 49 49 49 49 46 51 50 50 49
48.80
1.619
3.318
5
3.088
98.75
11/531
50 50 45 47 48 48 52 50 46 47
48.30
2.163
4.478
7
3.237
78.41
11/532
51 52 50 53 50 54 51 54 50 51
51.60
1.578
3.057
4
2.535
80.16
11/533
55 54 52 52 54 52 55 52 53 50
52.90
1.595
3.015
5
3.135
88.92
11/534
42 40 40 42 39 40 39 39 43 39
40.30
1.494
3.708
4
2.677
53.85
11/535
44 45 45 43 48 52 44 50 46 44
46.10
2.961
6.423
9
3.040
64.18
11/536
48 46 49 48 46 46 46 46 44 45
46.40
1.506
3.245
5
3.321
79.42
11/537
56 55 54 53 51 52 49 52 51 51
52.40
2.119
4.043
7
3.304
89.33
11/538
53 54 52 52 55 51 53 53 51 52
52.60
1.265
2.405
4
3.162
95.74
11/539
46 46 45 49 47 52 48 51 46 47
47.70
2.312
4.847
7
3.028
71.29
11/540
52 48 48 52 52 47 48 48 50 49
49.40
1.955
3.958
5
2.557
75.44
11/541
58 51 52 57 52 55 54 52 57 56
54.40
2.547
4.683
7
2.748
86.42
11/542
44 44 43 43 41 42 43 43 42 43
42.80
0.919
2.147
3
3.265
57.72
11/543
46 47 46 47 50 46 49 46 47 47
47.10
1.370
2.909
4
2.919
66.64
11/544
50 54 50 53 50 50 52 51 53 54
51.70
1.703
3.294
4
2.349
79.48
11/545
53 52 53 50 51 49 52 51 50 54
51.50
1.581
3.070
5
3.162
87.25
11/546
51 52 50 49 52 53 50 51 51 50
50.90
1.197
2.352
4
3.341
95.68
11/547
52 47 53 48 52 49 52 50 49 53
50.50
2.173
4.303
6
2.761
74.68
11/548
47 47 51 50 47 45 49 51 48 51
48.60
2.119
4.359
6
2.832
75.43
11/549
52 54 56 51 49 53 54 54 56 56
53.50
2.321
4.339
7
3.015
89.02
11/550
42 42 41 44 41 41 41 42 41 43
41.80
1.033
2.471
3
2.905
54.81
11/551
44 49 46 45 48 49 49 50 48 46
47.40
2.011
4.243
6
2.983
63.80
11/552
56 52 51 51 50 51 53 51 52 54
52.10
1.792
3.439
6
3.348
81.83
11/553
56 52 55 52 55 58 52 54 59 58
55.10
2.644
4.798
7
2.648
86.18
Test area
R1
11/501
11/502
R2
R3
R4
R5
R6
R7
R8
R9
R10
A44
Rm
sR
VR, %
rR
θR
fcm, MPa
50 52 54 53 54 50 53 55 54 50
52.50
1.900
3.620
5
2.631
96.52
52 52 48 46 51 50 47 51 50 49
49.60
2.066
4.164
6
2.905
73.69
11/556
48 50 52 48 49 48 48 52 52 51
49.80
1.814
3.642
4
2.206
78.68
11/557
50 52 50 52 53 50 50 49 50 48
50.40
1.506
2.987
5
3.321
82.86
11/558
46 43 43 45 44 47 45 44 45 48
45.00
1.633
3.629
5
3.062
57.55
11/559
49 51 50 51 51 51 51 52 49 51
50.60
0.966
1.909
3
3.105
66.14
11/560
59 54 50 52 53 52 49 56 51 50
52.60
3.062
5.822
10
3.266
76.05
11/561
55 54 54 56 58 56 57 52 54 56
55.20
1.751
3.172
6
3.426
84.94
11/562
52 52 52 55 55 55 58 60 53 55
54.70
2.669
4.879
8
2.998
92.78
11/563
47 48 46 46 47 47 46 46 44 44
46.10
1.287
2.791
4
3.109
69.46
11/564
48 50 49 53 53 47 46 47 50 51
49.40
2.459
4.977
7
2.847
75.28
11/565
52 51 52 50 51 50 49 52 52 49
50.80
1.229
2.420
3
2.440
83.94
11/566
44 45 43 46 44 44 42 41 45 47
44.10
1.792
4.063
6
3.348
58.23
11/567
50 50 48 47 51 49 50 47 47 52
49.10
1.792
3.650
5
2.790
67.36
11/568
51 54 52 51 51 58 54 53 52 52
52.80
2.150
4.072
7
3.256
76.20
11/569
43 46 47 48 46 47 44 43 46 44
45.40
1.776
3.913
5
2.815
60.23
11/570
45 45 45 44 45 45 45 48 45 45
45.20
1.033
2.285
4
3.873
68.37
11/571
49 52 52 50 49 50 49 51 49 48
49.90
1.370
2.746
4
2.919
68.70
11/572
38 40 38 38 36 38 36 39 38 40
38.10
1.370
3.597
4
2.919
43.92
11/573
45 45 46 47 46 45 46 45 46 46
45.70
0.675
1.477
2
2.963
59.31
11/574
44 44 45 45 43 44 45 43 44 44
44.10
0.738
1.673
2
2.711
65.98
11/575
35 34 34 38 34 34 34 35 37 36
35.10
1.449
4.129
4
2.760
35.45
11/576
34 33 35 34 34 35 35 34 35 35
34.40
0.699
2.033
2
2.860
36.93
11/577
37 37 37 38 39 37 38 38 40 37
37.80
1.033
2.732
3
2.905
43.19
11/578
46 44 45 46 47 43 47 46 46 44
45.40
1.350
2.973
4
2.963
61.39
11/579
47 49 48 48 49 48 48 48 48 48
48.10
0.568
1.180
2
3.523
69.70
11/580
48 46 47 46 47 45 48 47 48 50
47.20
1.398
2.963
5
3.575
67.28
11/581
39 38 40 38 37 40 38 37 36 41
38.40
1.578
4.108
5
3.169
43.37
11/582
47 46 46 44 43 47 47 44 43 44
45.10
1.663
3.688
4
2.405
58.24
11/583
46 44 46 47 47 47 46 47 46 46
46.20
0.919
1.989
3
3.265
66.34
11/584
36 38 37 35 38 38 37 38 35 38
37.00
1.247
3.371
3
2.405
35.65
11/585
39 39 38 36 39 36 37 39 36 36
37.50
1.434
3.823
3
2.092
39.02
11/586
37 37 38 37 37 37 38 37 37 37
37.20
0.422
1.133
1
2.372
41.36
11/587
46 44 44 43 47 45 44 43 43 43
44.20
1.398
3.164
4
2.860
69.21
11/588
53 52 50 48 48 52 49 50 47 48
49.70
2.058
4.140
6
2.916
82.17
11/589
48 49 49 47 49 47 48 46 48 47
47.80
1.033
2.161
3
2.905
87.67
11/590
40 40 39 40 43 39 41 39 38 38
39.70
1.494
3.764
5
3.346
54.55
11/591
47 50 52 48 49 49 45 50 47 49
48.60
1.955
4.023
7
3.580
69.50
11/592
48 50 47 48 48 50 50 50 50 51
49.20
1.317
2.676
4
3.038
76.61
11/593
39 39 40 38 37 39 40 40 37 38
38.70
1.160
2.996
3
2.587
45.58
11/594
38 39 42 42 40 40 38 37 37 40
39.30
1.829
4.653
5
2.734
51.41
11/595
45 46 42 45 46 41 43 42 45 42
43.70
1.889
4.322
5
2.648
50.45
11/596
44 43 44 43 43 44 43 43 46 45
43.80
1.033
2.358
3
2.905
74.52
11/597
46 48 46 47 46 48 46 48 47 49
47.10
1.101
2.337
3
2.726
81.18
11/598
48 48 48 48 49 50 49 49 47 49
48.50
0.850
1.752
3
3.530
85.73
11/599
46 46 46 46 44 45 46 46 45 45
45.50
0.707
1.554
2
2.828
55.49
11/600
48 48 46 48 51 46 48 47 46 46
47.40
1.578
3.328
5
3.169
66.54
11/601
50 48 49 52 50 48 50 48 49 50
49.40
1.265
2.561
4
3.162
77.93
11/602
40 41 38 40 40 40 39 41 37 42
39.80
1.476
3.708
5
3.388
44.45
11/603
40 40 39 40 41 39 39 38 41 40
39.70
0.949
2.390
3
3.162
50.66
11/604
43 43 42 44 43 43 43 44 42 46
43.30
1.160
2.678
4
3.450
48.16
11/605
46 48 47 46 46 48 46 46 46 46
46.50
0.850
1.828
2
2.353
82.06
11/606
45 49 45 49 49 46 47 49 48 47
47.40
1.647
3.474
4
2.429
89.84
Test area
R1
11/554
11/555
R2
R3
R4
R5
R6
R7
R8
R9
R10
A45
Rm
sR
VR, %
rR
θR
fcm, MPa
52 51 50 51 53 51 52 50 49 54
51.30
1.494
2.913
5
3.346
82.51
47 47 47 48 48 47 47 48 48 49
47.60
0.699
1.469
2
2.860
67.41
11/609
48 48 48 52 49 52 50 47 49 51
49.40
1.776
3.596
5
2.815
74.19
11/610
50 50 54 54 50 51 52 51 50 50
51.20
1.619
3.163
4
2.470
85.32
11/611
47 46 42 42 40 42 43 40 40 41
42.30
2.452
5.796
7
2.855
54.89
11/612
39 40 40 38 42 38 42 41 40 38
39.80
1.549
3.892
4
2.582
53.20
11/613
47 48 48 48 44 48 45 48 46 47
46.90
1.449
3.090
4
2.760
54.55
11/614
45 47 47 46 48 45 48 47 47 47
46.70
1.059
2.268
3
2.832
80.17
11/615
51 52 53 54 54 53 52 52 54 52
52.70
1.059
2.010
3
2.832
88.96
11/616
52 50 50 50 51 53 54 51 52 51
51.40
1.350
2.626
4
2.963
81.74
11/617
48 46 46 45 45 47 45 45 44 46
45.70
1.160
2.537
4
3.450
59.87
11/618
48 50 48 52 51 50 51 51 49 48
49.80
1.476
2.963
4
2.711
73.76
11/619
51 51 50 50 52 54 53 53 51 52
51.70
1.337
2.587
4
2.991
83.60
11/620
42 43 41 44 44 43 40 43 41 42
42.30
1.337
3.162
4
2.991
52.68
11/621
42 40 41 43 40 39 41 42 40 42
41.00
1.247
3.042
4
3.207
54.05
11/622
44 47 45 47 45 47 44 45 46 44
45.40
1.265
2.786
3
2.372
61.28
11/623
49 50 48 52 49 52 50 53 49 52
50.40
1.713
3.398
5
2.919
82.89
11/624
54 54 52 51 53 53 51 51 56 55
53.00
1.764
3.328
5
2.835
87.99
11/625
55 56 57 54 56 53 49 49 49 52
53.00
3.127
5.900
8
2.558
88.51
11/626
46 47 48 46 46 48 50 48 48 48
47.50
1.269
2.672
4
3.151
67.24
11/627
51 54 50 50 52 54 53 50 51 56
52.10
2.079
3.990
6
2.886
74.40
11/628
52 52 53 51 51 49 55 52 52 52
51.90
1.524
2.936
6
3.937
88.43
11/629
40 43 40 43 39 39 40 40 40 40
40.40
1.430
3.539
4
2.798
56.12
11/630
45 42 44 45 43 45 46 44 46 47
44.70
1.494
3.343
5
3.346
61.59
11/631
41 43 43 42 43 44 43 42 43 43
42.70
0.823
1.928
3
3.644
61.45
11/632
49 46 45 44 46 48 48 47 47 48
46.80
1.549
3.310
5
3.227
82.89
11/633
54 53 54 52 51 53 53 54 54 53
53.10
0.994
1.873
3
3.017
92.17
11/634
56 52 54 56 56 52 54 52 55 49
53.60
2.319
4.326
7
3.019
84.29
11/635
47 48 49 45 49 50 48 49 48 50
48.30
1.494
3.094
5
3.346
69.77
11/636
49 48 50 49 48 48 49 48 49 52
49.00
1.247
2.545
4
3.207
76.67
11/637
53 55 50 53 52 53 52 55 52 53
52.80
1.476
2.795
5
3.388
87.16
11/638
42 40 39 43 42 44 44 40 40 40
41.40
1.838
4.439
5
2.721
58.22
11/639
43 40 42 41 42 40 42 42 44 42
41.80
1.229
2.941
4
3.254
54.51
11/640
44 43 42 45 45 44 44 41 45 42
43.50
1.434
3.296
4
2.790
57.68
11/641
49 52 50 53 50 50 49 50 49 53
50.50
1.581
3.131
4
2.530
82.11
11/642
50 51 49 48 49 51 49 48 52 51
49.80
1.398
2.808
4
2.860
92.43
11/643
57 57 57 54 56 54 57 58 59 56
56.50
1.581
2.798
5
3.162
105.75
11/644
49 45 51 48 46 50 49 47 46 50
48.10
2.025
4.210
6
2.963
73.42
11/645
51 57 57 50 51 52 48 49 52 51
51.80
3.011
5.813
9
2.989
82.73
11/646
55 55 54 55 54 56 53 53 52 55
54.20
1.229
2.268
4
3.254
92.99
11/647
46 42 46 44 47 46 48 47 44 44
45.40
1.838
4.048
6
3.265
63.02
11/648
48 44 47 45 44 47 45 46 47 49
46.20
1.687
3.651
5
2.965
64.70
11/649
44 42 47 45 42 46 46 42 41 45
44.00
2.108
4.791
6
2.846
61.61
11/650
53 49 50 50 51 48 50 50 49 48
49.80
1.476
2.963
5
3.388
80.91
11/651
50 51 51 54 49 50 53 50 52 50
51.00
1.563
3.066
5
3.198
92.03
11/652
56 55 55 55 52 55 54 56 54 53
54.50
1.269
2.329
4
3.151
102.17
11/653
47 46 47 49 46 48 46 48 47 47
47.10
0.994
2.111
3
3.017
74.16
11/654
52 52 52 54 52 53 52 52 50 52
52.10
0.994
1.909
4
4.022
81.13
11/655
52 52 52 51 50 50 49 51 53 53
51.30
1.337
2.607
4
2.991
94.35
11/656
46 45 47 45 46 47 45 47 46 44
45.80
1.033
2.255
3
2.905
63.02
11/657
41 48 44 50 44 43 43 44 49 46
45.20
2.936
6.496
9
3.065
58.66
11/658
45 46 44 45 47 43 46 44 41 44
44.50
1.716
3.856
6
3.497
57.65
11/659
54 54 51 55 57 52 56 55 53 56
54.30
1.889
3.478
6
3.177
79.31
Test area
R1
11/607
11/608
R2
R3
R4
R5
R6
R7
R8
R9
R10
A46
Rm
sR
VR, %
rR
θR
fcm, MPa
53 54 55 51 50 50 54 54 55 51
52.70
2.003
3.800
5
2.497
92.64
51 52 53 52 51 52 50 50 51 52
51.40
0.966
1.880
3
3.105
91.27
11/662
42 41 43 40 42 41 40 42 42 42
41.50
0.972
2.342
3
3.087
75.32
11/663
51 54 53 52 50 51 51 50 52 54
51.80
1.476
2.849
4
2.711
82.47
11/664
50 51 50 52 49 49 50 52 49 51
50.30
1.160
2.305
3
2.587
92.67
11/665
48 47 49 46 48 47 50 49 48 50
48.20
1.317
2.731
4
3.038
63.44
11/666
43 44 45 46 43 42 42 41 40 43
42.90
1.792
4.177
6
3.348
62.28
11/667
46 46 49 51 48 54 54 52 49 50
49.90
2.885
5.781
8
2.773
56.35
11/668
51 50 52 49 50 52 53 49 50 51
50.70
1.337
2.638
4
2.991
80.37
11/669
52 50 49 50 49 51 53 52 51 51
50.80
1.317
2.592
4
3.038
93.26
11/670
57 53 53 54 50 52 51 55 56 52
53.30
2.214
4.153
7
3.162
102.78
11/671
46 46 46 44 42 41 42 45 44 42
43.80
1.932
4.411
5
2.588
74.08
11/672
50 52 53 53 50 51 50 50 52 53
51.40
1.350
2.626
3
2.222
84.44
11/673
50 51 53 54 50 52 54 53 51 51
51.90
1.524
2.936
4
2.625
95.80
11/674
51 53 52 49 50 52 51 49 50 50
50.70
1.337
2.638
4
2.991
65.27
11/675
48 47 46 48 50 49 50 47 48 49
48.20
1.317
2.731
4
3.038
62.21
11/676
47 49 49 50 52 51 50 50 48 51
49.70
1.494
3.007
5
3.346
62.24
11/677
38 38 37 42 41 39 41 40 41 40
39.70
1.636
4.122
5
3.056
52.87
11/678
42 41 44 40 41 43 43 40 44 44
42.20
1.619
3.837
4
2.470
54.65
11/679
45 47 46 47 46 48 47 46 46 48
46.60
0.966
2.073
3
3.105
66.40
11/680
39 38 36 35 36 34 40 40 36 38
37.20
2.098
5.639
6
2.860
40.13
11/681
42 42 44 42 44 41 38 43 38 40
41.40
2.171
5.243
6
2.764
50.61
11/682
35 32 36 37 38 34 33 33 32 36
34.60
2.119
6.123
6
2.832
35.52
11/683
42 42 43 41 39 38 42 43 43 40
41.30
1.767
4.278
5
2.830
47.84
11/684
42 43 42 40 40 43 42 42 41 41
41.60
1.075
2.584
3
2.791
52.41
11/685
44 44 44 40 40 40 42 44 42 44
42.40
1.838
4.335
4
2.176
53.88
11/686
40 43 42 44 42 42 43 42 40 41
41.90
1.287
3.071
4
3.109
46.15
11/687
37 36 35 36 35 32 34 33 38 36
35.20
1.814
5.152
6
3.308
41.74
11/688
43 44 39 42 41 40 42 42 45 42
42.00
1.764
4.200
6
3.402
48.08
11/689
33 34 34 34 33 32 35 32 32 32
33.10
1.101
3.325
3
2.726
34.50
11/690
41 40 39 39 43 40 42 42 43 39
40.80
1.619
3.969
4
2.470
46.63
11/691
41 46 46 43 44 46 43 43 45 42
43.90
1.792
4.082
5
2.790
61.70
11/692
47 48 46 46 46 46 46 48 47 46
46.60
0.843
1.810
2
2.372
61.64
11/693
46 46 44 48 49 49 48 48 48 48
47.40
1.578
3.328
5
3.169
71.15
11/694
39 39 38 39 38 39 38 41 38 39
38.80
0.919
2.368
3
3.265
45.83
11/695
43 43 44 44 43 41 46 41 44 41
43.00
1.633
3.798
5
3.062
54.37
11/696
42 38 40 37 38 38 39 43 38 37
39.00
2.055
5.269
6
2.920
41.68
11/697
44 47 43 46 44 44 45 44 45 43
44.50
1.269
2.852
4
3.151
52.70
11/698
46 44 45 46 44 44 46 44 46 45
45.00
0.943
2.095
2
2.121
60.68
11/699
46 46 46 47 46 46 46 46 47 46
46.20
0.422
0.913
1
2.372
62.79
11/700
47 48 50 49 46 48 48 47 46 45
47.40
1.506
3.176
5
3.321
61.39
11/701
39 39 39 38 40 38 42 38 38 38
38.90
1.287
3.308
4
3.109
47.55
11/702
45 40 45 45 45 47 43 47 48 44
44.90
2.283
5.084
8
3.504
52.25
11/703
38 36 36 37 38 41 40 36 37 40
37.90
1.853
4.889
5
2.698
40.43
11/704
46 45 45 45 42 44 46 47 44 45
44.90
1.370
3.052
5
3.649
51.03
11/705
49 48 49 46 45 45 48 46 47 45
46.80
1.619
3.460
4
2.470
66.39
11/706
44 49 48 46 47 44 48 46 48 47
46.70
1.703
3.647
5
2.936
69.95
11/707
46 46 46 44 45 46 47 46 46 47
45.90
0.876
1.908
3
3.426
81.61
11/708
44 40 40 41 39 39 40 42 41 44
41.00
1.826
4.453
5
2.739
50.55
11/709
45 44 46 43 48 48 46 49 46 46
46.10
1.853
4.019
6
3.238
58.78
11/710
37 41 40 43 39 40 42 38 39 42
40.10
1.912
4.768
6
3.138
46.01
11/711
47 48 42 41 47 48 46 44 44 46
45.30
2.452
5.412
7
2.855
56.92
11/712
46 47 47 45 45 44 45 48 45 47
45.90
1.287
2.803
4
3.109
69.69
Test area
R1
11/660
11/661
R2
R3
R4
R5
R6
R7
R8
R9
R10
A47
Rm
sR
VR, %
rR
θR
fcm, MPa
40 44 45 48 44 43 43 46 44 46
44.30
2.163
4.882
8
3.699
70.91
43 44 46 43 44 44 42 43 43 45
43.70
1.160
2.653
4
3.450
63.86
11/715
43 40 40 40 41 37 42 45 42 42
41.20
2.150
5.218
8
3.721
52.08
11/716
42 46 39 43 40 47 42 45 41 48
43.30
3.057
7.060
9
2.944
57.78
11/717
44 40 41 40 36 46 42 44 39 40
41.20
2.898
7.035
10
3.450
48.13
11/718
42 44 43 42 46 40 39 44 44 45
42.90
2.183
5.089
7
3.206
57.37
11/719
46 45 44 48 46 47 48 47 46 48
46.50
1.354
2.912
4
2.954
74.15
11/720
51 49 50 48 50 48 52 48 52 48
49.60
1.647
3.320
4
2.429
74.84
11/721
50 43 51 53 50 49 52 51 50 54
50.30
2.983
5.931
11
3.687
73.82
11/722
42 42 44 41 45 41 45 43 42 39
42.40
1.897
4.475
6
3.162
55.67
11/723
40 39 40 44 40 38 44 39 40 40
40.40
2.011
4.978
6
2.983
64.17
11/724
45 40 40 47 45 44 43 41 40 45
43.00
2.582
6.005
7
2.711
49.99
11/725
46 43 44 41 44 41 47 43 40 40
42.90
2.424
5.651
7
2.887
60.18
11/726
50 49 48 48 51 51 51 48 52 50
49.80
1.476
2.963
4
2.711
71.29
11/727
51 48 48 50 46 46 46 48 49 48
48.00
1.700
3.541
5
2.942
73.53
11/728
45 46 46 45 44 44 48 46 45 50
45.90
1.853
4.037
6
3.238
69.50
11/729
39 37 40 40 38 37 38 42 39 38
38.80
1.549
3.993
5
3.227
55.13
11/730
39 42 44 42 39 40 39 38 38 41
40.20
1.989
4.947
6
3.017
65.85
11/731
43 45 40 40 43 40 39 38 41 42
41.10
2.132
5.187
7
3.284
49.76
11/732
46 47 46 46 46 44 44 45 45 46
45.50
0.972
2.136
3
3.087
64.32
11/733
52 51 49 49 48 51 48 52 50 48
49.80
1.619
3.252
4
2.470
69.21
11/734
47 46 49 48 50 45 46 48 43 46
46.80
2.044
4.367
7
3.425
71.19
11/735
50 49 48 48 48 47 49 49 51 50
48.90
1.197
2.448
4
3.341
88.09
11/736
43 44 45 46 46 44 44 47 46 47
45.20
1.398
3.094
4
2.860
58.33
11/737
44 46 47 49 46 43 46 47 48 48
46.40
1.838
3.961
6
3.265
65.73
11/738
45 41 44 43 42 45 42 39 45 42
42.80
1.989
4.647
6
3.017
53.50
11/739
50 46 46 47 48 50 48 49 48 50
48.20
1.549
3.214
4
2.582
69.72
11/740
50 52 48 49 49 50 49 50 48 48
49.30
1.252
2.539
4
3.196
70.37
11/741
48 45 46 44 47 48 48 46 45 48
46.50
1.509
3.246
4
2.650
74.25
11/742
47 46 47 47 50 46 50 47 51 50
48.10
1.912
3.975
5
2.615
66.29
11/743
50 45 47 48 46 44 46 47 46 45
46.40
1.713
3.691
6
3.503
56.80
11/744
48 52 50 52 52 50 48 50 49 51
50.20
1.549
3.086
4
2.582
67.05
11/745
44 44 43 46 46 40 43 45 40 40
43.10
2.378
5.518
6
2.523
55.54
11/746
39 39 41 39 38 40 38 40 42 44
40.00
1.886
4.714
6
3.182
69.66
11/747
49 44 44 45 42 43 48 44 46 42
44.70
2.359
5.278
7
2.967
70.31
11/748
52 50 50 50 52 51 53 49 51 52
51.00
1.247
2.446
4
3.207
78.31
11/749
50 51 50 52 52 50 49 48 50 49
50.10
1.287
2.568
4
3.109
74.89
11/750
48 45 46 46 48 47 46 48 46 45
46.50
1.179
2.534
3
2.546
64.19
11/751
47 49 46 47 46 45 48 46 48 49
47.10
1.370
2.909
4
2.919
74.23
11/752
45 46 46 44 44 42 47 47 46 45
45.20
1.549
3.427
5
3.227
70.71
11/753
52 51 54 53 50 51 51 50 49 50
51.10
1.524
2.982
5
3.281
75.29
11/754
48 49 50 51 52 52 50 49 50 52
50.30
1.418
2.819
4
2.821
94.38
11/755
48 44 46 46 44 46 45 46 48 48
46.10
1.524
3.306
4
2.625
61.87
11/756
46 47 47 46 46 47 46 46 46 47
46.40
0.516
1.113
1
1.936
68.74
11/757
31 33 31 33 31 32 33 32 33 33
32.20
0.919
2.854
2
2.176
38.11
11/758
30 30 32 33 33 34 32 31 33 33
32.10
1.370
4.269
4
2.919
32.99
11/759
34 36 34 34 37 37 36 33 36 36
35.30
1.418
4.017
4
2.821
40.23
11/760
30 30 28 30 27 32 28 30 27 30
29.20
1.619
5.546
5
3.088
30.51
11/761
28 26 24 26 26 28 27 26 26 28
26.50
1.269
4.790
4
3.151
31.88
11/762
39 39 40 42 41 39 38 37 40 39
39.40
1.430
3.629
5
3.497
38.07
11/763
30 30 29 31 30 28 29 28 30 30
29.25
1.410
4.819
3
2.128
25.47
11/764
28 29 28 26 27 31 29 29 30 27
27.70
1.593
5.750
5
3.139
28.14
11/765
25 27 29 28 29 27 27 29 28 30
28.40
1.635
5.758
5
3.058
27.99
Test area
R1
11/713
11/714
R2
R3
R4
R5
R6
R7
R8
R9
R10
A48
Rm
sR
VR, %
rR
θR
fcm, MPa
33 33 34 34 31 33 30 31 31 34
32.60
1.501
4.604
4
2.665
37.37
30 30 33 34 30 33 30 33 32 30
31.65
1.531
4.838
4
2.612
34.80
11/768
35 35 35 32 35 35 32 32 32 35
34.45
1.504
4.364
3
1.995
40.09
11/769
30 29 28 32 29 28 27 30 28 30
29.15
1.387
4.758
5
3.605
30.20
11/770
24 26 27 25 26 26 25 27 26 25
25.85
0.988
3.822
3
3.036
32.36
11/771
37 36 37 36 36 36 39 37 38 37
36.85
0.933
2.533
3
3.214
42.14
11/772
26 26 22 30 28 27 26 27 24 28
25.75
2.197
8.534
8
3.641
27.78
11/773
27 27 26 27 26 27 28 29 29 25
26.55
1.276
4.807
4
3.134
27.79
11/774
26 26 29 33 27 26 26 27 27 30
27.80
2.016
7.251
7
3.473
24.35
11/775
37 38 40 36 36 41 37 36 40 36
37.50
1.670
4.454
5
2.994
47.99
11/776
38 37 38 41 37 38 38 39 37 39
37.40
1.273
3.404
4
3.142
45.62
11/777
44 43 44 44 45 46 44 44 45 44
43.85
1.137
2.592
3
2.639
62.05
11/778
38 38 37 36 34 35 38 36 36 35
36.70
1.689
4.602
4
2.368
45.02
11/779
40 44 39 38 42 40 38 38 39 38
39.15
2.033
5.194
6
2.951
49.88
11/780
43 41 44 44 40 42 41 44 43 42
42.25
1.552
3.673
4
2.578
55.26
11/781
36 36 38 34 32 34 38 39 32 34
34.00
2.675
7.869
7
2.616
35.88
11/782
33 32 32 31 29 35 33 29 31 29
33.20
2.587
7.793
6
2.319
37.88
11/783
34 36 35 33 35 34 35 36 34 33
34.80
0.894
2.570
3
3.354
39.78
11/784
38 38 37 36 37 37 36 36 41 36
37.30
1.490
3.995
5
3.355
50.99
11/785
38 39 36 37 37 37 37 37 38 38
37.50
0.946
2.522
3
3.172
43.90
11/786
43 42 42 41 44 42 44 43 45 44
42.65
1.424
3.340
4
2.808
62.76
11/787
36 35 39 35 36 35 36 34 36 36
36.80
1.824
4.956
5
2.742
46.12
11/788
39 38 42 40 37 39 39 43 36 38
38.75
2.197
5.671
7
3.185
49.88
11/789
41 41 40 40 39 42 39 41 40 39
40.15
1.182
2.944
3
2.538
56.64
11/790
32 34 33 30 32 30 30 31 35 32
32.15
1.725
5.366
5
2.898
34.83
11/791
32 33 34 35 35 33 33 32 33 34
34.30
1.559
4.546
3
1.924
39.17
11/792
33 33 34 34 35 36 34 34 35 35
34.80
1.240
3.562
3
2.420
38.99
11/793
39 44 39 40 43 37 37 44 38 38
39.85
2.254
5.657
7
3.105
57.40
11/794
40 42 41 40 42 39 39 38 41 40
40.15
1.565
3.898
4
2.556
57.18
11/795
42 42 40 44 42 43 44 42 41 44
43.30
1.559
3.601
4
2.565
63.94
11/796
38 40 43 43 38 36 40 38 38 38
38.55
2.089
5.420
7
3.350
53.06
11/797
37 40 39 38 38 40 40 42 44 39
39.10
2.174
5.560
7
3.220
54.39
11/798
44 45 45 44 45 45 44 45 46 47
43.95
1.701
3.869
3
1.764
69.22
11/799
34 34 35 34 34 37 37 36 33 36
34.40
1.698
4.937
4
2.355
42.56
11/800
39 39 37 38 36 37 37 37 37 34
37.70
1.490
3.953
5
3.355
45.31
11/801
39 38 38 39 38 40 38 38 42 37
38.80
1.322
3.407
5
3.782
54.92
11/802
38 37 38 37 38 37 38 37 39 38
37.70
0.979
2.596
2
2.043
52.58
11/803
44 44 45 45 44 42 44 43 46 43
43.00
1.717
3.993
4
2.330
64.80
11/804
36 42 39 38 40 39 37 42 40 39
38.25
2.049
5.356
6
2.929
52.51
11/805
42 41 42 45 41 41 38 43 42 42
41.15
1.725
4.192
7
4.058
59.97
11/806
45 45 46 42 42 40 45 41 44 45
43.50
2.013
4.628
6
2.980
70.41
11/807
37 33 33 33 36 37 32 36 36 37
35.15
1.755
4.994
5
2.848
40.71
11/808
38 36 36 36 38 36 36 36 36 36
37.55
1.538
4.096
2
1.300
47.11
11/809
40 41 44 40 39 43 41 40 45 41
41.15
1.599
3.885
6
3.753
62.59
11/810
38 39 43 40 41 41 42 39 40 42
40.20
1.361
3.386
5
3.673
57.57
11/811
40 41 43 41 45 42 42 39 40 43
41.60
1.818
4.370
6
3.300
67.34
11/812
42 46 41 41 43 45 43 40 42 41
42.40
1.667
3.932
6
3.599
54.85
11/813
45 45 45 45 43 43 41 43 45 44
43.80
1.508
3.443
4
2.653
63.85
11/814
52 47 48 49 48 50 55 49 48 52
48.95
2.064
4.217
8
3.876
78.30
11/815
38 37 37 37 36 42 37 42 41 36
38.50
1.987
5.161
6
3.020
49.40
11/816
39 38 39 39 40 38 43 41 40 40
39.55
1.605
4.058
5
3.115
51.16
11/817
46 46 42 47 49 43 48 44 45 47
45.70
1.867
4.084
7
3.750
53.50
11/818
41 44 39 43 41 41 42 38 38 43
40.90
1.832
4.480
6
3.274
64.61
Test area
R1
11/766
11/767
R2
R3
R4
R5
R6
R7
R8
R9
R10
A49
Rm
sR
VR, %
rR
θR
fcm, MPa
38 39 40 42 41 38 44 38 38 40
39.70
1.949
4.910
6
3.078
56.49
39 38 38 40 42 41 40 40 38 42
40.60
1.501
3.697
4
2.665
67.84
11/821
38 38 40 39 40 37 37 41 37 40
38.40
1.188
3.093
4
3.368
54.35
11/822
41 40 40 42 43 46 41 40 41 40
41.60
1.875
4.507
6
3.200
60.09
11/823
50 47 49 50 48 47 50 50 49 48
48.55
1.356
2.794
3
2.212
77.89
11/824
34 34 36 33 35 35 35 34 37 36
36.20
2.262
6.248
4
1.768
46.92
11/825
39 38 42 39 41 42 40 38 42 39
38.00
2.675
7.041
4
1.495
51.33
11/826
44 45 43 43 44 43 43 42 42 43
42.65
1.309
3.069
3
2.292
53.77
11/827
38 43 43 46 43 41 42 45 42 46
43.70
2.203
5.041
8
3.632
65.75
11/828
42 41 40 40 41 40 43 40 42 43
41.55
1.701
4.093
3
1.764
67.85
11/829
51 48 47 50 46 48 46 50 47 47
46.75
1.803
3.856
5
2.774
84.51
11/830
41 40 39 41 42 43 40 39 43 38
39.70
1.780
4.484
5
2.809
57.29
11/831
42 45 40 43 43 46 42 40 41 45
43.15
2.007
4.652
6
2.989
62.83
11/832
49 54 50 54 50 51 48 55 47 50
50.50
2.283
4.520
8
3.505
85.37
11/833
38 38 37 36 38 37 38 38 38 39
37.65
0.933
2.479
3
3.214
51.36
11/834
34 36 34 34 34 36 34 35 37 35
35.15
1.137
3.234
3
2.639
54.08
11/835
38 38 39 38 38 43 38 37 42 44
38.00
2.406
6.332
7
2.909
59.47
11/836
44 42 45 42 40 39 41 44 45 40
42.65
2.059
4.828
6
2.914
68.87
11/837
40 40 39 42 40 43 42 40 39 44
41.25
1.682
4.077
5
2.973
64.55
11/838
45 46 48 47 45 49 45 44 46 48
46.55
1.605
3.448
5
3.115
75.07
11/839
39 40 43 42 41 45 45 41 40 38
40.85
1.814
4.442
7
3.858
60.42
11/840
43 45 46 45 44 43 40 46 42 46
43.55
1.731
3.975
6
3.466
68.90
11/841
47 47 50 50 47 46 48 50 51 47
48.75
1.888
3.873
5
2.648
81.49
11/842
43 42 38 39 41 39 38 40 41 39
39.50
1.395
3.533
5
3.583
52.85
11/843
38 43 37 41 40 37 39 42 36 39
37.75
2.573
6.815
7
2.721
55.48
11/844
33 32 36 38 32 32 30 32 35 37
33.20
2.167
6.526
8
3.692
58.08
11/845
45 46 43 43 45 40 42 40 46 48
44.40
2.257
5.084
8
3.544
70.56
11/846
45 43 42 45 44 46 45 41 40 40
43.35
1.785
4.118
6
3.361
69.19
11/847
46 49 46 50 49 45 47 46 45 50
48.20
2.441
5.064
5
2.048
80.13
11/848
42 40 42 39 40 40 38 44 39 38
39.80
1.735
4.360
6
3.458
61.55
11/849
47 46 45 42 44 45 42 43 44 46
42.85
2.661
6.210
5
1.879
71.90
11/850
52 49 48 49 51 50 53 49 50 50
50.10
1.619
3.231
5
3.088
88.15
11/851
40 40 39 38 39 41 40 38 41 41
39.45
1.356
3.438
3
2.212
54.73
11/852
42 44 45 45 40 38 39 43 45 42
41.90
2.075
4.952
7
3.374
59.16
11/853
42 41 44 45 43 43 36 42 42 43
42.45
1.959
4.616
9
4.593
60.57
11/854
45 47 48 48 43 45 45 42 47 45
45.40
1.759
3.875
6
3.411
71.00
11/855
45 44 48 43 44 48 45 44 45 44
44.45
2.188
4.922
5
2.285
70.32
11/856
47 45 50 48 46 49 45 48 47 50
47.00
1.622
3.452
5
3.082
90.10
11/857
40 38 37 40 37 39 41 42 42 37
39.60
1.729
4.366
5
2.892
62.03
11/858
45 47 40 45 40 43 41 41 38 40
43.20
2.726
6.310
9
3.301
67.32
11/859
49 52 51 50 51 50 48 47 49 52
50.10
1.553
3.099
5
3.220
87.72
11/860
38 37 39 39 40 41 40 40 39 38
39.30
1.302
3.313
4
3.073
52.88
11/861
43 41 42 43 43 45 43 40 45 43
42.55
1.959
4.605
5
2.552
58.55
11/862
45 43 43 42 40 42 40 40 43 45
42.90
1.714
3.995
5
2.918
58.65
11/863
30 26 31 32 28 28 27 33 32 29
30.35
2.084
6.868
7
3.358
33.55
11/864
32 33 30 28 30 32 30 30 29 32
30.50
1.638
5.372
5
3.052
36.02
11/865
36 35 35 35 33 34 36 36 33 33
33.55
1.761
5.250
3
1.703
37.76
11/866
26 25 26 24 24 25 30 27 24 28
25.40
1.569
6.179
6
3.823
23.25
11/867
29 30 29 33 28 30 29 28 33 29
29.90
1.744
5.833
5
2.867
36.77
11/868
32 32 29 30 33 31 33 34 28 30
30.75
2.291
7.451
6
2.619
34.08
11/869
23 23 22 22 22 22 21 23 24 29
22.25
1.943
8.734
8
4.117
15.26
11/870
24 26 25 22 22 23 27 24 25 23
23.35
1.631
6.985
5
3.065
19.38
11/871
26 27 25 25 27 27 25 26 25 27
26.30
1.218
4.632
2
1.642
21.70
Test area
R1
11/819
11/820
R2
R3
R4
R5
R6
R7
R8
R9
R10
A50
Rm
sR
VR, %
rR
θR
fcm, MPa
32 29 28 27 31 32 32 30 33 30
30.75
1.860
6.050
6
3.225
32.21
33 33 32 31 30 31 30 30 33 31
31.75
1.209
3.806
3
2.482
37.57
11/874
35 36 36 37 36 37 35 34 35 36
35.10
1.210
3.446
3
2.480
40.68
11/875
27 23 20 27 26 22 30 23 20 24
23.45
2.704
11.532
10
3.698
23.17
11/876
33 34 31 30 28 32 32 30 31 32
31.00
1.414
4.562
6
4.243
35.95
11/877
33 32 30 29 30 33 35 30 34 31
31.10
2.150
6.912
6
2.791
33.54
11/878
21 21 20 23 21 21 21 23 22 21
21.45
0.945
4.403
3
3.176
15.66
11/879
26 25 26 25 23 22 23 28 26 25
24.40
1.698
6.960
6
3.533
20.28
11/880
25 28 26 28 25 27 29 25 28 27
28.20
2.353
8.344
4
1.700
24.38
11/881
32 31 33 32 30 30 34 32 36 34
33.90
2.245
6.624
6
2.672
40.48
11/882
37 40 39 39 38 40 39 36 41 37
38.75
1.552
4.004
5
3.222
51.44
11/883
36 39 39 40 41 39 40 40 43 42
40.00
2.128
5.319
7
3.290
49.28
11/884
31 33 29 30 32 28 31 30 31 32
31.60
2.210
6.994
5
2.262
31.97
11/885
39 38 34 36 35 38 34 36 35 36
35.65
1.663
4.665
5
3.006
40.66
11/886
37 38 36 35 36 35 37 36 35 35
37.20
1.908
5.130
3
1.572
45.50
11/887
36 34 35 32 33 32 34 36 36 32
32.20
2.353
7.308
4
1.700
22.82
11/888
31 33 32 30 36 36 35 36 37 38
34.30
2.364
6.893
8
3.384
28.55
11/889
40 38 36 38 36 35 36 35 36 41
35.75
2.653
7.422
6
2.261
30.01
11/890
39 36 35 33 36 35 37 34 37 34
35.60
1.392
3.909
6
4.311
39.41
11/891
38 38 37 41 42 38 39 37 38 38
38.35
1.755
4.577
5
2.848
49.77
11/892
44 41 40 40 41 43 40 37 39 38
40.90
2.292
5.604
7
3.054
50.89
11/893
29 31 30 30 29 26 29 28 31 30
30.55
2.188
7.162
5
2.285
31.49
11/894
34 36 40 37 34 35 40 41 41 38
35.90
2.882
8.028
7
2.429
40.43
11/895
35 39 37 38 35 36 36 40 38 36
37.30
1.593
4.270
5
3.139
43.53
11/896
31 30 32 30 30 30 29 29 32 30
30.20
1.508
4.993
3
1.990
22.35
11/897
35 34 33 35 31 32 32 33 30 36
32.90
1.651
5.019
6
3.634
28.05
11/898
37 38 36 36 36 32 37 36 37 36
35.90
1.518
4.229
6
3.952
36.60
11/899
36 37 38 35 37 36 33 34 35 36
35.70
1.380
3.866
5
3.622
47.10
11/900
43 40 39 40 41 39 38 42 39 38
40.35
1.725
4.276
5
2.898
55.83
11/901
44 44 40 38 42 41 42 44 40 44
41.65
1.899
4.560
6
3.159
60.76
11/902
36 37 36 39 39 35 35 36 36 35
36.10
1.334
3.695
4
2.999
38.42
11/903
39 38 40 39 38 37 38 39 42 40
38.60
1.429
3.702
5
3.499
51.84
11/904
43 42 40 38 42 37 43 39 39 41
40.50
1.878
4.637
6
3.195
49.40
11/905
35 37 36 38 37 37 36 35 36 37
36.60
1.930
5.274
3
1.554
29.01
11/906
36 42 37 36 37 34 40 39 38 37
36.65
2.134
5.823
8
3.748
36.90
11/907
38 35 36 38 38 42 42 40 38 38
38.55
1.959
5.083
7
3.572
43.06
11/908
35 34 34 38 35 33 36 36 35 35
35.35
1.631
4.614
5
3.065
47.29
11/909
44 41 40 40 43 40 39 43 38 41
40.40
1.984
4.911
6
3.024
56.72
11/910
41 43 39 40 40 38 41 40 40 41
40.55
1.395
3.439
5
3.585
59.53
11/911
35 34 34 37 35 35 34 36 38 40
35.95
1.905
5.299
6
3.150
38.71
11/912
37 37 38 38 39 39 37 37 36 38
39.15
2.231
5.698
3
1.345
49.55
11/913
41 43 41 40 40 42 38 41 39 42
40.40
1.231
3.047
5
4.061
54.55
11/914
34 35 32 30 30 28 34 33 35 34
33.40
2.210
6.617
7
3.167
26.51
11/915
38 37 36 35 37 35 36 40 34 36
36.25
1.888
5.209
6
3.177
33.72
11/916
38 37 37 36 36 35 37 34 36 37
35.15
1.725
4.908
4
2.319
38.99
11/917
40 43 42 40 43 45 39 44 39 40
40.05
2.523
6.300
6
2.378
48.55
11/918
44 39 39 42 39 40 40 44 42 42
40.20
2.375
5.909
5
2.105
64.77
11/919
48 46 44 46 47 45 45 48 47 47
46.00
1.214
2.639
4
3.295
65.18
11/920
36 37 37 38 37 37 42 37 43 39
35.45
3.605
10.170
7
1.942
41.80
11/921
33 34 36 37 35 34 36 39 34 39
37.00
2.294
6.200
6
2.615
53.90
11/922
38 40 40 42 38 41 43 39 40 41
41.50
2.013
4.851
5
2.484
59.15
11/923
36 37 36 38 39 38 37 38 39 37
37.25
0.967
2.595
3
3.104
31.48
11/924
42 45 39 38 40 41 43 39 40 45
40.15
2.323
5.786
7
3.013
40.43
Test area
R1
11/872
11/873
R2
R3
R4
R5
R6
R7
R8
R9
R10
A51
Rm
sR
VR, %
rR
θR
fcm, MPa
39 38 37 37 38 39 37 37 36 37
39.45
2.460
6.235
3
1.220
45.11
38 40 37 38 38 39 41 42 39 40
39.15
1.309
3.343
5
3.820
53.86
11/927
42 37 41 42 43 41 40 40 41 43
40.95
1.731
4.228
6
3.466
64.06
11/928
51 47 52 49 48 49 48 45 49 50
47.50
2.283
4.806
7
3.067
71.32
11/929
33 33 32 34 31 33 33 33 32 34
35.80
3.286
9.180
3
0.913
43.77
11/930
39 43 39 42 42 39 40 41 44 41
41.70
1.838
4.408
5
2.720
54.39
11/931
41 45 46 47 46 42 44 45 47 45
44.50
1.792
4.027
6
3.349
61.49
11/932
34 37 36 37 38 36 37 37 38 36
36.85
1.954
5.303
4
2.047
32.34
11/933
37 40 42 38 37 39 37 43 40 39
39.20
1.881
4.798
6
3.190
39.85
11/934
39 40 41 40 44 39 38 41 39 38
40.65
1.755
4.318
6
3.418
45.98
11/935
45 46 48 45 43 42 43 45 41 41
43.70
2.515
5.756
7
2.783
57.53
11/936
48 42 45 47 43 45 41 40 48 50
44.70
3.028
6.774
10
3.303
66.39
11/937
46 46 40 42 40 41 43 40 44 42
42.90
2.573
5.998
6
2.332
73.21
11/938
41 39 38 39 36 39 42 39 37 53
39.50
3.720
9.419
17
4.569
45.96
11/939
45 45 48 45 47 49 49 48 44 47
43.70
3.450
7.896
5
1.449
61.62
11/940
48 48 44 43 45 50 48 47 46 50
45.70
2.638
5.772
7
2.654
64.92
11/941
34 34 33 37 35 37 32 35 38 37
36.10
2.269
6.285
6
2.645
34.88
11/942
40 38 36 41 37 38 40 39 42 39
38.35
1.694
4.418
6
3.541
43.47
11/943
40 44 42 44 40 45 43 42 43 42
43.30
1.750
4.042
5
2.857
47.46
11/944
41 47 43 42 40 41 41 43 47 42
42.10
2.222
5.278
7
3.150
54.60
11/945
45 48 47 44 45 48 45 47 48 44
45.80
1.824
3.982
4
2.193
67.99
11/946
42 45 46 44 45 43 47 46 44 46
43.55
2.164
4.968
5
2.311
72.36
11/947
38 39 38 38 42 39 41 40 38 36
38.60
1.957
5.071
6
3.065
41.98
11/948
46 43 43 43 43 46 44 45 45 44
44.90
1.553
3.458
3
1.932
62.43
11/949
50 46 47 49 48 51 48 49 50 52
46.85
2.907
6.205
6
2.064
62.41
11/950
33 31 39 36 33 34 32 35 33 34
35.60
2.521
7.083
8
3.173
35.34
11/951
38 38 34 34 34 37 40 38 40 36
37.90
2.511
6.625
6
2.389
41.70
11/952
39 40 42 40 43 45 45 46 45 44
42.15
2.159
5.122
7
3.243
52.16
11/953
35 38 37 37 43 40 37 41 36 38
39.60
2.521
6.367
8
3.173
59.25
11/954
42 41 41 42 39 40 39 38 39 40
41.70
2.080
4.988
4
1.923
75.41
11/955
46 43 43 45 42 47 43 45 44 46
44.30
1.922
4.339
5
2.601
80.21
11/956
41 44 38 41 39 41 43 40 40 41
40.25
1.618
4.020
6
3.708
50.65
11/957
42 42 42 44 46 47 44 44 46 48
45.10
1.832
4.063
6
3.274
68.68
11/958
36 36 35 36 41 39 35 34 34 36
36.30
1.720
4.738
7
4.070
37.89
11/959
36 38 36 34 39 38 37 37 37 42
37.20
2.067
5.557
8
3.870
45.50
11/960
46 46 42 41 40 45 47 45 44 45
43.10
2.100
4.873
7
3.333
58.82
11/961
40 39 36 41 39 42 36 42 40 40
40.95
2.704
6.604
6
2.219
58.81
11/962
42 39 42 45 38 43 43 45 46 40
42.15
2.323
5.512
8
3.443
73.39
11/963
44 43 46 47 48 47 49 45 45 44
46.10
1.683
3.650
6
3.566
73.48
11/964
39 38 39 39 38 41 42 43 40 39
39.65
1.663
4.194
5
3.006
51.84
11/965
42 45 47 44 44 45 45 42 43 42
44.85
1.899
4.235
5
2.632
61.72
11/966
35 34 35 39 34 36 38 36 37 37
36.10
1.553
4.301
5
3.220
36.60
11/967
37 35 36 34 34 37 35 35 36 33
34.75
1.552
4.465
4
2.578
43.45
11/968
46 44 48 44 45 47 45 49 45 45
44.45
2.328
5.237
5
2.148
55.02
11/969
38 38 39 38 39 37 37 38 38 37
37.20
1.508
4.053
2
1.326
47.40
11/970
39 38 45 40 39 40 42 42 39 40
40.40
1.759
4.354
7
3.979
48.21
11/971
40 40 42 42 42 40 41 41 39 40
41.15
1.182
2.873
3
2.538
56.53
11/972
34 34 35 34 34 33 33 32 31 31
32.15
1.565
4.869
4
2.556
40.37
11/973
31 30 34 29 30 33 33 30 31 28
30.85
1.531
4.964
6
3.918
39.59
11/974
35 38 38 35 35 35 34 32 34 35
35.60
1.698
4.770
6
3.533
44.98
11/975
23 24 26 21 20 21 25 24 25 24
23.15
1.954
8.441
6
3.071
21.85
11/976
26 22 30 25 25 26 27 25 26 28
25.50
1.850
7.253
8
4.325
25.52
11/977
28 27 30 32 30 29 28 30 32 25
28.95
2.212
7.640
7
3.165
35.15
Test area
R1
11/925
11/926
R2
R3
R4
R5
R6
R7
R8
R9
R10
A52
Rm
sR
VR, %
rR
θR
fcm, MPa
36 36 37 35 38 37 37 38 36 38
36.75
1.070
2.911
3
2.804
47.77
39 41 41 40 40 39 39 39 40 41
39.35
1.226
3.115
2
1.632
47.70
11/980
39 42 43 44 41 43 43 43 41 42
42.35
1.631
3.852
5
3.065
55.27
11/981
32 30 31 31 32 29 29 30 32 30
31.15
1.309
4.202
3
2.292
37.85
11/982
28 27 29 27 31 28 29 27 27 34
29.55
2.282
7.723
7
3.067
39.90
11/983
35 35 37 34 34 35 35 34 36 33
34.65
1.226
3.538
4
3.263
44.02
11/984
24 24 21 23 24 27 26 22 23 22
23.45
2.114
9.017
6
2.838
21.70
11/985
25 28 23 22 25 27 25 24 26 27
25.00
1.487
5.947
6
4.036
23.79
11/986
28 30 31 30 28 30 30 27 27 28
29.15
1.182
4.055
4
3.384
31.92
11/987
35 36 35 34 36 42 36 37 36 42
37.25
2.381
6.393
8
3.359
59.46
11/988
44 41 42 41 45 40 44 43 43 40
42.00
1.451
3.455
5
3.446
67.11
11/989
44 46 45 46 44 45 44 46 45 45
45.00
0.858
1.908
2
2.330
74.21
11/990
38 36 39 40 36 37 37 38 40 39
37.70
1.780
4.722
4
2.247
52.67
11/991
40 39 38 39 40 39 39 40 40 40
39.00
0.973
2.496
2
2.055
54.18
11/992
38 40 38 40 37 42 42 40 39 39
39.65
1.725
4.351
5
2.898
66.02
11/993
26 27 25 26 25 29 24 26 28 25
28.10
2.553
9.084
5
1.959
31.26
11/994
41 43 38 39 40 41 38 38 37 42
38.90
1.889
4.856
6
3.176
42.88
11/995
40 44 39 41 41 40 38 39 41 39
39.40
1.930
4.899
6
3.108
57.56
11/996
41 39 41 44 42 45 41 45 46 42
41.40
2.257
5.452
7
3.101
62.97
11/997
45 42 43 42 40 44 40 43 44 44
42.50
1.606
3.779
5
3.113
66.12
11/998
43 44 43 44 44 46 46 44 44 45
44.45
1.234
2.777
3
2.430
73.52
11/999
34 33 33 36 35 36 40 32 34 33
35.50
3.103
8.742
8
2.578
52.58
11/1000
39 37 37 39 38 39 38 37 40 37
38.25
0.910
2.380
3
3.295
55.22
11/1001
39 39 39 43 41 38 41 38 40 39
40.15
1.424
3.548
5
3.510
62.20
11/1002
27 26 28 27 28 29 30 30 31 32
30.15
2.254
7.477
6
2.662
34.42
11/1003
38 39 37 37 37 37 38 38 37 36
37.90
1.774
4.681
3
1.691
43.84
11/1004
39 39 39 38 39 40 37 39 39 40
39.45
1.432
3.629
3
2.095
55.84
11/1005
43 45 43 45 45 39 44 43 45 45
43.40
1.536
3.538
6
3.907
74.08
11/1006
42 41 43 41 46 42 42 43 45 41
43.30
1.838
4.245
5
2.720
75.79
11/1007
48 49 49 44 49 47 50 49 51 50
48.50
1.573
3.243
7
4.451
82.40
11/1008
40 40 40 39 40 39 45 41 40 40
41.20
1.881
4.565
6
3.190
61.94
11/1009
40 43 43 41 46 44 43 40 39 39
41.55
1.932
4.651
7
3.622
67.30
11/1010
42 44 44 43 42 46 47 44 45 44
45.05
2.012
4.467
5
2.485
74.71
11/1011
38 39 35 34 33 35 40 38 37 35
35.15
2.110
6.001
7
3.318
42.51
11/1012
39 38 40 37 39 36 36 40 37 40
37.30
1.720
4.611
4
2.326
51.89
11/1013
44 46 41 46 41 40 45 42 40 40
41.35
2.621
6.339
6
2.289
60.61
11/1014
44 41 42 40 42 45 46 46 42 42
43.40
1.875
4.320
6
3.200
68.60
11/1015
43 43 40 43 46 46 48 43 42 41
43.40
2.210
5.092
8
3.620
74.65
11/1016
48 48 46 48 51 47 48 47 47 48
48.25
1.410
2.921
5
3.547
81.66
11/1017
42 40 42 39 40 37 43 38 39 44
40.25
1.916
4.760
7
3.653
61.86
11/1018
43 40 42 42 44 38 42 40 41 40
40.35
1.954
4.843
6
3.071
65.03
11/1019
39 38 39 41 44 44 40 44 45 42
41.40
2.371
5.727
7
2.952
73.47
11/1020
37 38 37 33 36 34 40 34 34 37
35.75
2.023
5.658
7
3.460
40.52
11/1021
37 36 35 35 40 36 35 36 39 40
37.55
2.438
6.493
5
2.051
52.54
11/1022
39 43 44 36 43 46 42 43 44 40
42.15
2.796
6.634
10
3.576
68.28
11/1023
44 47 41 44 45 45 44 44 46 46
44.45
2.188
4.922
6
2.742
78.90
11/1024
44 47 52 48 46 46 46 45 47 49
46.85
2.207
4.711
8
3.625
82.61
11/1025
50 50 47 47 51 46 52 47 48 48
48.45
2.114
4.364
6
2.838
94.38
11/1026
42 41 43 41 43 44 42 46 44 44
42.45
1.877
4.422
5
2.664
68.92
11/1027
44 40 45 41 47 46 42 42 41 48
44.00
2.534
5.759
8
3.157
70.43
11/1028
49 44 47 47 44 44 46 46 47 46
44.85
2.455
5.475
5
2.036
80.35
11/1029
38 39 35 33 35 34 34 36 39 38
35.60
2.062
5.793
6
2.910
46.52
11/1030
38 43 44 43 38 39 40 45 42 41
41.70
2.638
6.326
7
2.654
57.05
Test area
R1
11/978
11/979
R2
R3
R4
R5
R6
R7
R8
R9
R10
A53
Rm
sR
VR, %
rR
θR
fcm, MPa
45 43 42 47 40 44 41 44 44 43
44.15
2.110
4.778
7
3.318
71.31
49 47 49 43 45 43 48 44 40 44
45.05
2.605
5.783
9
3.455
80.01
11/1033
50 44 44 49 46 49 47 48 51 44
46.90
2.337
4.984
7
2.995
79.38
11/1034
49 50 48 47 47 49 49 50 51 47
48.25
1.552
3.216
4
2.578
93.31
11/1035
42 44 42 42 40 42 42 40 41 44
42.30
1.809
4.277
4
2.211
70.29
11/1036
41 43 42 46 40 44 43 46 48 46
43.65
2.390
5.476
8
3.347
71.67
11/1037
43 43 44 48 42 46 43 40 47 48
44.20
3.189
7.214
8
2.509
82.21
11/1038
38 42 39 35 34 35 34 34 33 37
35.40
2.664
7.524
9
3.379
49.99
11/1039
40 38 39 39 37 37 40 39 38 37
39.05
2.089
5.351
3
1.436
56.06
11/1040
41 39 42 42 42 38 43 39 40 40
41.40
1.957
4.728
5
2.554
65.78
11/1041
46 49 45 44 42 43 43 43 43 42
43.75
2.314
5.289
7
3.025
78.24
11/1042
42 44 38 42 42 38 39 38 39 42
40.85
2.434
5.958
6
2.465
84.63
11/1043
48 49 52 50 48 50 50 47 47 48
49.50
2.351
4.749
5
2.127
94.15
11/1044
44 44 42 42 41 41 44 45 43 45
43.40
1.698
3.913
4
2.355
74.93
11/1045
40 41 43 40 39 38 40 39 39 39
40.55
2.038
5.027
5
2.453
78.34
11/1046
45 43 46 43 45 46 44 45 47 45
44.85
1.424
3.176
4
2.808
83.62
11/1047
38 39 37 37 40 41 37 38 37 37
38.35
1.387
3.617
4
2.884
53.28
11/1048
48 43 44 45 46 45 46 45 44 47
44.90
1.483
3.303
5
3.371
59.58
11/1049
40 44 45 42 44 45 46 40 41 40
43.20
2.042
4.726
6
2.939
71.64
11/1050
42 44 48 44 44 45 44 46 44 43
43.90
2.075
4.726
6
2.892
83.11
11/1051
44 43 40 46 41 42 48 46 48 49
44.70
2.364
5.289
9
3.807
87.59
11/1052
50 46 52 46 51 49 47 47 49 48
48.35
1.954
4.042
6
3.071
94.67
11/1053
42 44 47 44 42 43 41 42 41 41
42.90
1.586
3.697
6
3.783
75.90
11/1054
43 40 43 41 42 40 41 41 44 41
41.65
1.461
3.508
4
2.738
74.45
11/1055
45 47 44 44 47 45 43 43 46 44
45.35
1.694
3.736
4
2.361
86.41
11/1056
35 33 37 35 36 35 39 37 36 37
36.65
1.981
5.405
6
3.029
49.36
11/1057
46 42 41 43 41 45 42 41 40 41
42.35
1.927
4.550
6
3.114
60.52
11/1058
41 44 43 41 41 45 44 43 40 41
42.65
1.755
4.116
5
2.848
71.21
11/1059
48 46 47 46 48 44 43 46 47 46
46.35
1.461
3.152
5
3.423
101.64
11/1060
40 45 43 40 39 40 42 40 43 42
41.80
2.441
5.839
6
2.458
76.55
11/1061
40 44 42 43 44 47 43 42 44 43
43.95
2.481
5.645
7
2.821
92.37
11/1062
39 37 39 36 36 36 40 36 37 35
36.25
1.618
4.464
5
3.090
50.75
11/1063
37 35 37 36 36 36 35 36 38 34
37.15
2.183
5.876
4
1.832
62.11
11/1064
43 41 37 37 43 41 38 45 42 40
41.70
2.342
5.616
8
3.416
81.19
11/1065
44 44 45 44 46 43 44 47 46 49
46.35
2.300
4.963
6
2.608
103.09
11/1066
38 45 40 40 45 43 44 41 44 42
43.05
1.932
4.489
7
3.622
76.86
11/1067
42 40 44 42 41 38 39 43 41 40
41.95
2.305
5.495
6
2.603
87.08
11/1068
36 36 35 35 37 36 38 37 35 36
36.30
1.302
3.586
3
2.304
53.08
11/1069
38 38 37 37 42 44 40 39 38 41
39.70
2.273
5.726
7
3.079
60.54
11/1070
44 45 43 43 45 44 42 41 43 42
43.45
1.638
3.769
4
2.443
76.50
11/1071
32 31 34 33 36 34 35 31 32 33
33.05
1.877
5.680
5
2.664
36.37
11/1072
37 38 40 36 37 38 37 37 36 38
32.85
4.902
14.922
4
0.816
47.31
11/1073
35 38 44 37 40 37 36 36 41 36
37.40
2.415
6.457
9
3.727
52.61
11/1074
37 35 31 28 27 38 32 33 31 27
31.40
3.440
10.954
11
3.198
34.60
11/1075
24 25 23 29 27 24 25 26 25 24
25.20
1.704
6.764
6
3.520
27.30
11/1076
32 34 33 33 30 37 32 33 32 34
32.95
2.038
6.186
7
3.434
38.90
11/1077
32 31 28 31 32 29 28 29 30 31
30.75
2.099
6.828
4
1.905
37.59
11/1078
28 33 32 29 30 34 27 29 30 31
30.20
2.093
6.929
7
3.345
49.50
11/1079
38 40 36 42 38 39 36 41 37 38
38.85
2.207
5.681
6
2.719
54.62
11/1080
35 32 34 29 34 29 34 36 31 34
31.75
2.425
7.638
7
2.886
36.66
11/1081
24 23 25 25 28 26 25 25 27 23
24.80
1.542
6.219
5
3.242
26.04
11/1082
31 32 31 33 30 31 32 32 30 35
32.05
1.638
5.109
5
3.053
37.58
11/1083
35 36 34 37 35 40 35 42 37 38
37.30
2.203
5.906
8
3.632
42.48
Test area
R1
11/1031
11/1032
R2
R3
R4
R5
R6
R7
R8
R9
R10
A54
Rm
sR
VR, %
rR
θR
fcm, MPa
43 46 45 40 44 42 40 45 40 46
42.25
2.221
5.258
6
2.701
57.09
46 47 41 45 40 43 42 40 41 41
42.40
2.186
5.156
7
3.202
63.72
11/1086
36 36 35 41 39 38 37 39 38 36
36.65
1.954
5.332
6
3.071
46.43
11/1087
34 35 34 34 33 33 36 34 36 35
32.35
2.498
7.721
3
1.201
35.26
11/1088
38 35 37 38 35 34 34 41 37 36
37.15
2.159
5.811
7
3.243
51.97
11/1089
38 36 38 36 38 40 37 41 36 40
37.70
1.809
4.799
5
2.763
44.12
11/1090
41 40 43 40 40 40 39 39 39 38
40.35
1.981
4.909
5
2.524
57.85
11/1091
43 40 42 44 43 43 44 39 41 40
42.60
2.010
4.719
5
2.487
63.94
11/1092
35 38 34 36 39 35 40 36 37 37
35.10
2.382
6.786
6
2.519
42.63
11/1093
34 30 30 32 31 36 34 34 37 36
33.90
2.174
6.413
7
3.220
35.59
11/1094
36 37 38 35 38 36 36 37 36 37
37.35
1.725
4.619
3
1.739
48.80
11/1095
40 40 46 40 48 42 42 46 40 44
42.75
3.370
7.882
8
2.374
50.72
11/1096
48 45 45 46 44 43 41 40 48 45
45.25
2.954
6.527
8
2.709
63.58
11/1097
44 48 44 44 44 47 44 43 45 44
44.70
1.559
3.488
5
3.206
68.94
11/1098
39 39 34 36 35 40 38 35 35 36
36.85
1.981
5.375
6
3.029
50.29
11/1099
33 34 32 34 32 31 32 33 32 36
34.45
2.089
6.065
5
2.393
38.93
11/1100
38 39 36 42 41 35 38 36 38 38
37.50
2.585
6.894
7
2.708
55.38
11/1101
39 39 43 40 40 38 42 38 39 38
39.05
2.235
5.725
5
2.237
51.30
11/1102
44 40 45 43 44 41 45 48 43 42
44.10
2.125
4.819
8
3.765
63.55
11/1103
44 44 50 48 44 44 44 43 44 44
44.55
1.877
4.214
7
3.729
68.41
11/1104
40 34 36 37 38 38 37 37 35 36
36.00
2.077
5.771
6
2.888
48.69
11/1105
40 39 34 33 36 34 35 31 35 34
34.85
2.207
6.333
9
4.078
39.28
11/1106
42 35 38 40 38 34 35 37 40 38
38.05
2.212
5.813
8
3.617
54.22
11/1107
43 40 48 46 46 47 40 43 44 44
43.60
2.371
5.438
8
3.374
56.90
11/1108
51 44 45 47 44 50 51 44 44 44
46.50
2.606
5.604
7
2.686
70.17
11/1109
49 46 47 47 50 49 45 43 42 44
46.20
2.331
5.045
8
3.433
72.73
11/1110
36 39 42 38 41 40 38 37 39 38
39.65
2.434
6.138
6
2.465
52.35
11/1111
36 40 44 37 36 36 35 39 34 39
37.90
2.490
6.570
10
4.016
42.80
11/1112
43 38 42 45 44 47 41 40 40 41
40.95
2.350
5.739
9
3.829
62.97
11/1113
43 42 39 46 40 43 38 42 38 40
40.40
2.371
5.869
8
3.374
51.86
11/1114
42 42 46 45 44 41 44 40 46 43
43.70
2.029
4.642
6
2.957
67.44
11/1115
45 45 48 51 46 44 49 50 48 50
47.15
2.207
4.681
7
3.172
73.50
11/1116
36 38 41 41 39 43 36 39 37 45
39.75
2.593
6.523
9
3.471
55.09
11/1117
37 41 40 41 38 37 37 40 42 44
39.95
2.188
5.477
7
3.199
45.25
11/1118
38 37 41 40 44 42 43 39 38 43
41.35
2.758
6.670
7
2.538
63.31
11/1119
46 44 46 44 44 45 46 44 50 43
44.90
2.125
4.733
7
3.294
55.48
11/1120
46 48 47 50 48 50 50 48 47 48
47.65
1.755
3.684
4
2.279
69.69
11/1121
48 46 48 48 49 47 46 48 49 49
47.55
1.317
2.769
3
2.278
82.62
11/1122
45 41 45 46 44 41 42 43 44 45
43.65
1.927
4.415
5
2.595
56.79
11/1123
40 39 40 38 38 39 38 38 39 40
39.00
1.124
2.882
2
1.780
46.35
11/1124
45 44 42 42 43 46 41 45 43 44
42.95
1.701
3.960
5
2.940
66.37
11/1125
44 43 45 42 42 40 40 44 42 42
42.50
2.164
5.092
5
2.310
54.32
11/1126
45 47 47 46 48 48 46 48 47 50
47.20
1.508
3.195
5
3.316
72.50
11/1127
47 49 48 46 49 48 51 48 46 47
48.00
1.338
2.787
5
3.738
78.68
11/1128
40 39 37 39 37 39 38 40 39 40
39.35
1.694
4.306
3
1.771
53.94
11/1129
38 38 41 39 40 40 41 37 39 38
39.45
1.504
3.811
4
2.660
47.85
11/1130
41 42 39 43 41 38 37 43 44 41
40.80
1.824
4.470
7
3.838
63.50
11/1131
39 37 40 36 37 40 36 41 36 38
39.10
2.360
6.035
5
2.119
59.29
11/1132
46 44 45 43 44 47 47 45 44 49
46.00
1.806
3.927
6
3.321
76.24
11/1133
42 43 46 42 42 48 46 50 45 48
45.20
2.262
5.004
8
3.537
80.97
11/1134
46 42 39 42 42 39 42 39 38 40
41.90
2.490
5.943
8
3.213
69.41
11/1135
42 44 38 38 42 41 41 39 39 41
42.05
2.438
5.798
6
2.461
58.61
11/1136
42 44 42 44 42 47 45 42 44 43
43.25
1.552
3.588
5
3.222
75.13
Test area
R1
11/1084
11/1085
R2
R3
R4
R5
R6
R7
R8
R9
R10
A55
Rm
sR
VR, %
rR
θR
fcm, MPa
43 44 44 46 43 45 48 49 46 48
45.15
1.927
4.268
6
3.114
80.72
39 39 39 36 36 38 36 37 39 42
37.65
1.814
4.819
6
3.307
65.58
11/1139
30 33 33 32 32 32 33 33 34 33
32.50
1.080
3.323
4
3.703
38.11
11/1140
33 30 30 34 34 33 32 34 34 32
32.60
1.578
4.839
4
2.535
32.99
11/1141
34 34 36 37 35 35 35 34 36 36
35.20
1.033
2.934
3
2.905
40.23
11/1142
29 29 30 26 25 30 29 32 28 30
28.80
2.044
7.097
7
3.425
30.51
11/1143
25 24 25 28 25 26 28 27 26 25
25.90
1.370
5.291
4
2.919
31.88
11/1144
38 38 38 37 41 39 37 38 38 38
38.20
1.135
2.972
4
3.523
38.07
11/1145
32 28 27 30 29 28 30 30 26 30
29.25
1.410
4.819
6
4.257
25.47
11/1146
28 28 27 26 27 30 26 27 26 25
27.70
1.593
5.750
5
3.139
28.14
11/1147
28 29 30 32 27 28 29 30 26 30
28.40
1.635
5.758
6
3.669
27.99
11/1148
31 32 34 35 33 32 30 34 33 34
32.60
1.501
4.604
5
3.331
37.37
11/1149
33 30 30 33 33 34 31 32 32 30
31.65
1.531
4.838
4
2.612
34.80
11/1150
34 35 36 36 35 36 33 37 34 35
34.45
1.504
4.364
4
2.660
40.09
11/1151
30 31 28 27 29 28 30 31 28 30
29.15
1.387
4.758
4
2.884
30.20
11/1152
28 25 26 25 27 26 27 25 25 26
25.85
0.988
3.822
3
3.036
32.36
11/1153
37 37 37 37 36 36 36 39 36 37
36.85
0.933
2.533
3
3.214
42.14
11/1154
22 24 27 24 25 27 26 26 22 28
25.75
2.197
8.534
6
2.730
27.78
11/1155
28 26 25 25 25 27 26 25 26 27
26.55
1.276
4.807
3
2.351
27.79
11/1156
28 28 31 27 26 31 27 27 26 28
27.80
2.016
7.251
5
2.480
24.35
11/1157
40 36 37 38 39 36 36 37 36 38
37.50
1.670
4.454
4
2.395
47.99
11/1158
37 36 36 37 36 38 36 37 37 36
37.40
1.273
3.404
2
1.571
45.62
11/1159
43 43 42 42 45 43 44 46 43 43
43.85
1.137
2.592
4
3.519
62.05
11/1160
40 39 36 37 35 34 39 37 36 38
36.70
1.689
4.602
6
3.552
45.02
11/1161
41 39 42 36 38 40 38 36 37 40
39.15
2.033
5.194
6
2.951
49.88
11/1162
43 42 44 41 40 40 44 43 44 40
42.25
1.552
3.673
4
2.578
55.26
11/1163
32 35 33 30 32 35 36 30 34 30
34.00
2.675
7.869
6
2.243
35.88
11/1164
32 34 37 36 36 37 33 34 35 36
33.20
2.587
7.793
5
1.932
37.88
11/1165
35 35 34 36 35 35 35 35 35 36
34.80
0.894
2.570
2
2.236
39.78
11/1166
38 38 41 36 36 37 36 38 37 37
37.30
1.490
3.995
5
3.355
50.99
11/1167
38 38 37 38 39 39 38 36 36 37
37.50
0.946
2.522
3
3.172
43.90
11/1168
42 40 44 44 44 44 41 41 41 42
42.65
1.424
3.340
4
2.808
62.76
11/1169
38 35 39 36 37 38 36 40 39 40
36.80
1.824
4.956
5
2.742
46.12
11/1170
42 39 42 37 38 36 38 40 36 36
38.75
2.197
5.671
6
2.730
49.88
11/1171
39 42 42 39 41 39 38 40 40 41
40.15
1.182
2.944
4
3.384
56.64
11/1172
31 35 31 33 32 32 35 30 34 31
32.15
1.725
5.366
5
2.898
34.83
11/1173
36 36 34 36 37 34 35 36 36 32
34.30
1.559
4.546
5
3.206
39.17
11/1174
34 36 38 36 35 35 35 33 36 35
34.80
1.240
3.562
5
4.033
38.99
11/1175
40 38 39 38 40 42 41 39 38 43
39.85
2.254
5.657
5
2.218
57.40
11/1176
39 40 39 42 39 39 43 43 38 39
40.15
1.565
3.898
5
3.194
57.18
11/1177
44 44 45 46 46 44 44 42 43 44
43.30
1.559
3.601
4
2.565
63.94
11/1178
40 38 36 36 38 37 41 36 39 38
38.55
2.089
5.420
5
2.393
53.06
11/1179
37 36 40 43 41 36 38 38 38 38
39.10
2.174
5.560
7
3.220
54.39
11/1180
44 40 42 44 41 43 42 43 45 45
43.95
1.701
3.869
5
2.940
69.22
11/1181
36 32 36 33 32 34 35 32 36 32
34.40
1.698
4.937
4
2.355
42.56
11/1182
38 38 39 39 38 39 36 38 41 37
37.70
1.490
3.953
5
3.355
45.31
11/1183
37 40 37 40 39 38 38 40 40 40
38.80
1.322
3.407
3
2.269
54.92
11/1184
37 38 37 40 39 37 36 37 37 39
37.70
0.979
2.596
4
4.087
52.58
11/1185
42 42 44 40 44 42 40 44 42 40
43.00
1.717
3.993
4
2.330
64.80
11/1186
36 40 40 36 36 36 36 38 36 39
38.25
2.049
5.356
4
1.952
52.51
11/1187
37 42 41 42 40 40 40 42 42 40
41.15
1.725
4.192
5
2.898
59.97
11/1188
44 43 45 43 46 42 46 45 41 40
43.50
2.013
4.628
6
2.980
70.41
11/1189
35 36 34 36 38 35 32 35 36 36
35.15
1.755
4.994
6
3.418
40.71
Test area
R1
11/1137
11/1138
R2
R3
R4
R5
R6
R7
R8
R9
R10
A56
Rm
sR
VR, %
rR
θR
fcm, MPa
38 40 39 38 39 38 37 38 41 39
37.55
1.538
4.096
4
2.601
47.11
40 41 43 42 40 39 41 41 40 42
41.15
1.599
3.885
4
2.502
62.59
11/1192
40 41 40 39 39 39 42 39 39 41
40.20
1.361
3.386
3
2.204
57.57
11/1193
41 43 40 40 39 42 44 40 45 42
41.60
1.818
4.370
6
3.300
67.34
11/1194
43 40 41 41 44 45 43 42 42 43
42.40
1.667
3.932
5
2.999
54.85
11/1195
45 45 43 45 46 42 41 45 42 43
43.80
1.508
3.443
5
3.316
63.85
11/1196
46 47 50 48 49 49 48 48 48 48
48.95
2.064
4.217
4
1.938
78.30
11/1197
39 38 38 39 36 38 40 39 38 42
38.50
1.987
5.161
6
3.020
49.40
11/1198
43 38 39 39 42 38 40 38 39 38
39.55
1.605
4.058
5
3.115
51.16
11/1199
45 45 47 48 46 44 47 43 47 45
45.70
1.867
4.084
5
2.679
53.50
11/1200
42 40 40 38 44 40 41 40 41 42
40.90
1.832
4.480
6
3.274
64.61
11/1201
38 39 40 38 38 38 40 43 39 43
39.70
1.949
4.910
5
2.565
56.49
11/1202
43 42 42 41 40 41 42 41 40 42
40.60
1.501
3.697
3
1.999
67.84
11/1203
37 39 38 39 38 37 38 39 38 38
38.40
1.188
3.093
2
1.684
54.35
11/1204
40 41 45 40 45 40 41 42 43 41
41.60
1.875
4.507
5
2.667
60.09
11/1205
48 47 48 47 50 48 50 47 51 47
48.55
1.356
2.794
4
2.949
77.89
11/1206
38 36 39 43 35 35 36 37 38 38
36.20
2.262
6.248
8
3.537
46.92
11/1207
40 38 34 34 34 36 36 36 36 36
38.00
2.675
7.041
6
2.243
51.33
11/1208
42 42 42 41 41 46 42 42 41 42
42.65
1.309
3.069
5
3.820
53.77
11/1209
42 43 46 45 46 42 44 45 47 45
43.70
2.203
5.041
5
2.270
65.75
11/1210
40 42 44 43 45 40 42 40 39 44
41.55
1.701
4.093
6
3.528
67.85
11/1211
46 45 45 46 46 46 46 45 45 45
46.75
1.803
3.856
1
0.555
84.51
11/1212
39 37 39 38 41 41 37 38 39 39
39.70
1.780
4.484
4
2.247
57.29
11/1213
45 45 40 45 43 43 44 46 44 41
43.15
2.007
4.652
6
2.989
62.83
11/1214
49 48 52 50 49 52 48 49 52 53
50.50
2.283
4.520
5
2.190
85.37
11/1215
38 37 36 39 38 38 37 38 36 39
37.65
0.933
2.479
3
3.214
51.36
11/1216
33 36 35 36 36 37 36 36 35 34
35.15
1.137
3.234
4
3.519
54.08
11/1217
37 38 36 36 37 38 36 36 35 36
38.00
2.406
6.332
3
1.247
59.47
11/1218
42 45 44 43 40 42 41 45 46 43
42.65
2.059
4.828
6
2.914
68.87
11/1219
42 43 41 40 45 42 39 41 42 41
41.25
1.682
4.077
6
3.567
64.55
11/1220
46 45 45 46 48 47 45 49 48 49
46.55
1.605
3.448
4
2.492
75.07
11/1221
40 41 41 39 39 41 40 40 41 41
40.85
1.814
4.442
2
1.102
60.42
11/1222
42 40 45 43 43 43 44 44 43 44
43.55
1.731
3.975
5
2.888
68.90
11/1223
50 48 47 54 50 49 48 50 48 48
48.75
1.888
3.873
7
3.707
81.49
11/1224
39 40 39 38 38 40 39 39 38 40
39.50
1.395
3.533
2
1.433
52.85
11/1225
33 38 37 37 37 34 38 39 34 36
37.75
2.573
6.815
6
2.332
55.48
11/1226
33 30 34 36 32 33 32 32 33 32
33.20
2.167
6.526
6
2.769
58.08
11/1227
46 48 46 46 43 44 45 45 42 45
44.40
2.257
5.084
6
2.658
70.56
11/1228
44 43 44 42 44 45 42 42 45 45
43.35
1.785
4.118
3
1.681
69.19
11/1229
51 49 47 47 46 47 48 50 52 54
48.20
2.441
5.064
8
3.278
80.13
11/1230
39 38 41 39 38 40 40 42 37 40
39.80
1.735
4.360
5
2.882
61.55
11/1231
40 39 41 38 43 40 39 43 44 46
42.85
2.661
6.210
8
3.006
71.90
11/1232
50 51 51 48 50 49 47 52 53 50
50.10
1.619
3.231
6
3.706
88.15
11/1233
39 39 37 40 40 42 40 38 40 37
39.45
1.356
3.438
5
3.687
54.73
11/1234
41 42 42 40 39 43 43 42 40 43
41.90
2.075
4.952
4
1.928
59.16
11/1235
42 43 44 44 42 42 45 41 41 44
42.45
1.959
4.616
4
2.041
60.57
11/1236
43 46 47 47 45 46 47 43 44 45
45.40
1.759
3.875
4
2.274
71.00
11/1237
48 47 45 44 44 44 44 40 43 40
44.45
2.188
4.922
8
3.656
70.32
11/1238
46 46 49 46 47 47 44 47 46 47
47.00
1.622
3.452
5
3.082
90.10
11/1239
42 39 38 42 40 39 41 40 40 38
39.60
1.729
4.366
4
2.313
62.03
11/1240
48 44 46 42 43 43 44 42 45 47
43.20
2.726
6.310
6
2.201
67.32
11/1241
51 48 49 50 53 52 51 50 49 50
50.10
1.553
3.099
5
3.220
87.72
11/1242
39 39 40 41 38 39 37 42 40 40
39.30
1.302
3.313
5
3.841
52.88
Test area
R1
11/1190
11/1191
R2
R3
R4
R5
R6
R7
R8
R9
R10
A57
Rm
sR
VR, %
rR
θR
fcm, MPa
42 40 40 45 43 46 40 40 42 45
42.55
1.959
4.605
6
3.062
58.55
45 43 43 42 43 45 46 43 42 43
42.90
1.714
3.995
4
2.334
58.65
11/1245
29 32 30 30 33 32 31 29 32 33
30.35
2.084
6.868
4
1.919
33.55
11/1246
32 33 32 30 32 28 28 30 29 30
30.50
1.638
5.372
5
3.052
36.02
11/1247
32 32 34 32 33 32 32 36 32 30
33.55
1.761
5.250
6
3.406
37.76
11/1248
25 26 24 25 25 26 24 26 24 24
25.40
1.569
6.179
2
1.274
23.25
11/1249
32 30 29 30 28 28 32 29 29 33
29.90
1.744
5.833
5
2.867
36.77
11/1250
34 32 31 30 33 28 30 26 32 27
30.75
2.291
7.451
8
3.491
34.08
11/1251
23 21 22 20 20 20 21 22 23 22
22.25
1.943
8.734
3
1.544
15.26
11/1252
22 22 23 21 22 23 21 25 24 23
23.35
1.631
6.985
4
2.452
19.38
11/1253
28 29 25 26 27 27 25 28 25 26
26.30
1.218
4.632
4
3.283
21.70
11/1254
33 31 31 30 32 32 33 30 32 27
30.75
1.860
6.050
6
3.225
32.21
11/1255
33 31 31 32 30 33 33 33 32 33
31.75
1.209
3.806
3
2.482
37.57
11/1256
36 35 35 35 35 33 32 35 35 34
35.10
1.210
3.446
4
3.307
40.68
11/1257
22 25 20 20 24 25 23 21 23 24
23.45
2.704
11.532
5
1.849
23.17
11/1258
30 31 30 30 31 33 30 30 32 30
31.00
1.414
4.562
3
2.121
35.95
11/1259
29 31 33 27 29 30 33 34 30 29
31.10
2.150
6.912
7
3.256
33.54
11/1260
20 21 21 23 23 21 22 22 21 21
21.45
0.945
4.403
3
3.176
15.66
11/1261
23 22 25 24 23 22 26 25 26 23
24.40
1.698
6.960
4
2.355
20.28
11/1262
30 30 30 32 29 30 25 33 30 27
28.20
2.353
8.344
8
3.400
24.38
11/1263
37 34 36 34 36 38 34 36 35 34
33.90
2.245
6.624
4
1.781
40.48
11/1264
40 39 38 39 36 38 39 40 38 42
38.75
1.552
4.004
6
3.867
51.44
11/1265
42 37 37 38 40 41 38 43 43 42
40.00
2.128
5.319
6
2.820
49.28
11/1266
29 33 33 35 28 32 31 35 35 34
31.60
2.210
6.994
7
3.167
31.97
11/1267
37 33 35 34 36 34 35 34 36 38
35.65
1.663
4.665
5
3.006
40.66
11/1268
42 35 39 37 38 38 40 39 38 38
37.20
1.908
5.130
7
3.668
45.50
11/1269
32 31 33 30 30 30 30 30 29 29
32.20
2.353
7.308
4
1.700
22.82
11/1270
33 33 38 37 34 32 33 34 36 32
34.30
2.364
6.893
6
2.538
28.55
11/1271
35 36 33 38 33 31 32 32 38 36
35.75
2.653
7.422
7
2.638
30.01
11/1272
35 37 35 36 34 36 35 37 35 36
35.60
1.392
3.909
3
2.156
39.41
11/1273
37 36 40 37 39 39 40 36 41 36
38.35
1.755
4.577
5
2.848
49.77
11/1274
46 43 40 42 42 38 44 40 41 39
40.90
2.292
5.604
8
3.491
50.89
11/1275
29 30 31 32 36 32 31 34 33 30
30.55
2.188
7.162
7
3.199
31.49
11/1276
35 32 34 34 35 32 33 37 37 33
35.90
2.882
8.028
5
1.735
40.43
11/1277
38 40 37 38 36 36 38 37 40 36
37.30
1.593
4.270
4
2.511
43.53
11/1278
29 34 29 30 30 30 29 29 28 33
30.20
1.508
4.993
6
3.979
22.35
11/1279
32 33 36 31 32 32 32 33 34 32
32.90
1.651
5.019
5
3.028
28.05
11/1280
35 34 34 36 37 34 38 37 35 37
35.90
1.518
4.229
4
2.635
36.60
11/1281
37 38 37 35 34 36 34 35 35 36
35.70
1.380
3.866
4
2.898
47.10
11/1282
40 39 38 42 41 39 43 42 43 41
40.35
1.725
4.276
5
2.898
55.83
11/1283
41 43 41 42 44 42 39 43 40 39
41.65
1.899
4.560
5
2.632
60.76
11/1284
36 38 35 35 35 36 37 34 36 36
36.10
1.334
3.695
4
2.999
38.42
11/1285
39 38 41 40 38 37 37 37 37 38
38.60
1.429
3.702
4
2.799
51.84
11/1286
43 38 40 39 40 39 42 41 43 41
40.50
1.878
4.637
5
2.663
49.40
11/1287
40 36 35 37 34 41 35 40 36 34
36.60
1.930
5.274
7
3.626
29.01
11/1288
36 34 36 34 36 39 37 34 35 36
36.65
2.134
5.823
5
2.343
36.90
11/1289
38 39 37 39 41 36 37 38 40 41
38.55
1.959
5.083
5
2.552
43.06
11/1290
36 34 38 35 38 34 36 34 38 33
35.35
1.631
4.614
5
3.065
47.29
11/1291
40 40 39 38 43 38 39 39 44 39
40.40
1.984
4.911
6
3.024
56.72
11/1292
42 39 43 42 40 42 41 39 39 41
40.55
1.395
3.439
4
2.868
59.53
11/1293
36 35 34 35 39 36 34 38 35 39
35.95
1.905
5.299
5
2.625
38.71
11/1294
41 42 44 38 40 39 38 43 40 42
39.15
2.231
5.698
6
2.690
49.55
11/1295
40 41 41 40 39 39 41 40 41 39
40.40
1.231
3.047
2
1.624
54.55
Test area
R1
11/1243
11/1244
R2
R3
R4
R5
R6
R7
R8
R9
R10
A58
Rm
sR
VR, %
rR
θR
fcm, MPa
32 34 35 34 32 33 37 36 35 35
33.40
2.210
6.617
5
2.262
26.51
36 36 34 35 33 37 36 37 36 41
36.25
1.888
5.209
8
4.237
33.72
11/1298
37 34 33 32 35 34 33 35 34 33
35.15
1.725
4.908
5
2.898
38.99
11/1299
39 38 36 37 40 38 37 40 38 43
40.05
2.523
6.300
7
2.774
48.55
11/1300
39 37 40 42 43 42 38 38 35 39
40.20
2.375
5.909
8
3.368
64.77
11/1301
46 46 45 46 46 47 44 46 44 47
46.00
1.214
2.639
3
2.471
65.18
11/1302
37 32 33 31 33 30 32 33 31 34
35.45
3.605
10.170
7
1.942
41.80
11/1303
39 36 39 38 39 39 39 35 38 41
37.00
2.294
6.200
6
2.615
53.90
11/1304
41 45 45 43 41 42 42 44 42 43
41.50
2.013
4.851
4
1.987
59.15
11/1305
37 38 36 36 37 38 37 36 38 37
37.25
0.967
2.595
2
2.069
31.48
11/1306
40 42 38 39 41 37 38 37 40 39
40.15
2.323
5.786
5
2.152
40.43
11/1307
43 39 43 39 40 43 44 41 40 42
39.45
2.460
6.235
5
2.033
45.11
11/1308
39 41 37 38 40 39 39 39 40 39
39.15
1.309
3.343
4
3.056
53.86
11/1309
38 41 44 40 40 41 39 41 42 43
40.95
1.731
4.228
6
3.466
64.06
11/1310
45 45 45 49 50 46 46 45 45 46
47.50
2.283
4.806
5
2.190
71.32
11/1311
37 38 40 40 38 39 37 38 40 41
35.80
3.286
9.180
4
1.217
43.77
11/1312
39 44 44 42 42 42 45 41 43 42
41.70
1.838
4.408
6
3.264
54.39
11/1313
44 46 42 45 45 43 44 42 47 44
44.50
1.792
4.027
5
2.790
61.49
11/1314
34 36 39 35 36 34 42 38 38 39
36.85
1.954
5.303
8
4.094
32.34
11/1315
38 39 43 41 40 39 38 38 37 39
39.20
1.881
4.798
6
3.190
39.85
11/1316
43 39 42 43 42 43 40 41 40 41
40.65
1.755
4.318
4
2.279
45.98
11/1317
44 47 40 46 43 44 48 42 41 40
43.70
2.515
5.756
8
3.181
57.53
11/1318
42 42 46 44 40 45 49 46 43 48
44.70
3.028
6.774
9
2.972
66.39
11/1319
45 44 40 38 47 42 45 45 42 46
42.90
2.573
5.998
9
3.498
73.21
11/1320
37 38 41 35 36 40 40 42 39 39
39.50
3.720
9.419
7
1.881
45.96
11/1321
41 42 40 39 40 41 42 43 39 40
43.70
3.450
7.896
4
1.159
61.62
11/1322
42 42 44 42 49 47 46 44 43 46
45.70
2.638
5.772
7
2.654
64.92
11/1323
36 38 39 37 37 40 35 40 34 34
36.10
2.269
6.285
6
2.645
34.88
11/1324
37 37 40 36 37 37 38 37 38 40
38.35
1.694
4.418
4
2.361
43.47
11/1325
43 42 43 44 45 46 44 44 47 43
43.30
1.750
4.042
5
2.857
47.46
11/1326
44 41 41 43 39 40 41 44 43 39
42.10
2.222
5.278
5
2.250
54.60
11/1327
43 43 45 44 44 48 46 46 48 48
45.80
1.824
3.982
5
2.742
67.99
11/1328
43 44 42 41 44 41 40 39 44 45
43.55
2.164
4.968
6
2.773
72.36
11/1329
39 42 38 42 38 37 37 35 38 37
38.60
1.957
5.071
7
3.576
41.98
11/1330
44 47 48 45 46 44 48 45 45 44
44.90
1.553
3.458
4
2.576
62.43
11/1331
46 44 42 47 42 46 42 47 45 46
46.85
2.907
6.205
5
1.720
62.41
11/1332
35 39 38 37 38 34 38 37 37 39
35.60
2.521
7.083
5
1.983
35.34
11/1333
35 37 37 41 39 43 40 40 40 37
37.90
2.511
6.625
8
3.186
41.70
11/1334
39 42 41 42 40 44 42 43 41 40
42.15
2.159
5.122
5
2.316
52.16
11/1335
41 40 43 38 43 41 42 39 43 40
39.60
2.521
6.367
5
1.983
59.25
11/1336
42 44 46 44 43 42 43 42 44 43
41.70
2.080
4.988
4
1.923
75.41
11/1337
45 46 41 45 48 41 43 46 43 44
44.30
1.922
4.339
7
3.642
80.21
11/1338
41 39 38 41 40 40 42 39 38 39
40.25
1.618
4.020
4
2.472
50.65
11/1339
45 47 44 45 47 46 45 47 47 44
45.10
1.832
4.063
3
1.637
68.68
11/1340
36 38 36 36 35 38 36 35 36 38
36.30
1.720
4.738
3
1.744
37.89
11/1341
37 40 37 34 35 39 40 37 36 35
37.20
2.067
5.557
6
2.902
45.50
11/1342
42 42 43 44 42 44 40 41 42 41
43.10
2.100
4.873
4
1.905
58.82
11/1343
42 44 44 46 46 40 42 39 41 40
40.95
2.704
6.604
7
2.588
58.81
11/1344
43 40 42 42 39 40 42 42 46 44
42.15
2.323
5.512
7
3.013
73.39
11/1345
46 47 48 47 44 47 47 44 46 48
46.10
1.683
3.650
4
2.377
73.48
11/1346
38 37 38 40 42 40 40 42 38 40
39.65
1.663
4.194
5
3.006
51.84
11/1347
45 46 45 44 46 48 44 44 48 48
44.85
1.899
4.235
4
2.106
61.72
11/1348
37 34 37 39 36 36 37 36 35 34
36.10
1.553
4.301
5
3.220
36.60
Test area
R1
11/1296
11/1297
R2
R3
R4
R5
R6
R7
R8
R9
R10
A59
Rm
sR
VR, %
rR
θR
fcm, MPa
33 33 33 33 37 34 33 37 34 36
34.75
1.552
4.465
4
2.578
43.45
40 42 44 46 42 40 44 43 44 46
44.45
2.328
5.237
6
2.578
55.02
11/1351
35 36 40 38 38 36 36 34 35 37
37.20
1.508
4.053
6
3.979
47.40
11/1352
41 38 40 38 42 41 42 42 40 40
40.40
1.759
4.354
4
2.274
48.21
11/1353
40 42 40 42 42 43 43 42 40 42
41.15
1.182
2.873
3
2.538
56.53
11/1354
33 31 31 31 32 31 32 29 30 32
32.15
1.565
4.869
4
2.556
40.37
11/1355
30 33 30 30 32 31 30 30 30 32
30.85
1.531
4.964
3
1.959
39.59
11/1356
38 36 35 36 38 38 34 36 36 34
35.60
1.698
4.770
4
2.355
44.98
11/1357
22 26 24 20 24 23 20 22 25 24
23.15
1.954
8.441
6
3.071
21.85
11/1358
27 24 26 24 25 26 22 24 26 26
25.50
1.850
7.253
5
2.703
25.52
11/1359
26 25 30 31 32 30 30 30 27 27
28.95
2.212
7.640
7
3.165
35.15
11/1360
37 35 37 36 37 38 38 38 36 35
36.75
1.070
2.911
3
2.804
47.77
11/1361
39 41 37 41 38 39 38 38 38 39
39.35
1.226
3.115
4
3.263
47.70
11/1362
43 39 44 40 44 44 44 42 42 44
42.35
1.631
3.852
5
3.065
55.27
11/1363
30 31 32 32 30 32 32 31 34 33
31.15
1.309
4.202
4
3.056
37.85
11/1364
32 28 32 33 31 33 28 28 30 29
29.55
2.282
7.723
5
2.191
39.90
11/1365
36 34 34 33 36 33 37 34 34 34
34.65
1.226
3.538
4
3.263
44.02
11/1366
24 24 24 27 20 25 25 24 20 20
23.45
2.114
9.017
7
3.310
21.70
11/1367
26 25 24 23 26 24 26 25 25 24
25.00
1.487
5.947
3
2.018
23.79
11/1368
30 30 30 28 30 29 30 28 30 29
29.15
1.182
4.055
2
1.692
31.92
11/1369
40 38 35 37 40 35 38 36 40 37
37.25
2.381
6.393
5
2.100
59.46
11/1370
42 41 41 41 42 42 42 44 42 40
42.00
1.451
3.455
4
2.757
67.11
11/1371
44 44 46 46 45 44 45 46 44 46
45.00
0.858
1.908
2
2.330
74.21
11/1372
38 40 39 40 35 35 36 35 39 37
37.70
1.780
4.722
5
2.809
52.67
11/1373
38 38 41 39 39 38 38 37 39 39
39.00
0.973
2.496
4
4.110
54.18
11/1374
40 42 37 38 42 39 39 41 42 38
39.65
1.725
4.351
5
2.898
66.02
11/1375
30 29 29 29 31 28 33 32 29 31
28.10
2.553
9.084
5
1.959
31.26
11/1376
41 38 37 38 40 39 37 37 37 37
38.90
1.889
4.856
4
2.117
42.88
11/1377
39 38 38 40 39 38 38 37 36 43
39.40
1.930
4.899
7
3.626
57.56
11/1378
41 42 42 39 39 41 41 38 41 38
41.40
2.257
5.452
4
1.772
62.97
11/1379
42 44 44 40 42 42 42 41 45 41
42.50
1.606
3.779
5
3.113
66.12
11/1380
43 43 46 43 44 44 47 46 45 45
44.45
1.234
2.777
4
3.241
73.52
11/1381
40 42 34 42 35 33 37 33 34 34
35.50
3.103
8.742
9
2.900
52.58
11/1382
37 39 39 38 39 38 38 39 38 39
38.25
0.910
2.380
2
2.197
55.22
11/1383
41 39 41 43 40 39 41 41 41 40
40.15
1.424
3.548
4
2.808
62.20
11/1384
30 30 33 34 33 30 29 31 33 32
30.15
2.254
7.477
5
2.218
34.42
11/1385
38 36 36 42 40 38 37 36 39 42
37.90
1.774
4.681
6
3.382
43.84
11/1386
39 41 39 43 38 40 41 38 39 42
39.45
1.432
3.629
5
3.492
55.84
11/1387
43 42 43 43 42 45 43 43 45 42
43.40
1.536
3.538
3
1.954
74.08
11/1388
43 46 45 44 46 43 44 42 41 46
43.30
1.838
4.245
5
2.720
75.79
11/1389
49 46 49 48 50 49 49 47 49 48
48.50
1.573
3.243
4
2.543
82.40
11/1390
42 43 40 39 44 43 43 40 44 42
41.20
1.881
4.565
5
2.659
61.94
11/1391
41 44 40 42 43 42 41 41 39 40
41.55
1.932
4.651
5
2.587
67.30
11/1392
47 46 42 47 48 43 48 47 46 46
45.05
2.012
4.467
6
2.981
74.71
11/1393
34 34 34 33 34 33 33 35 34 35
35.15
2.110
6.001
2
0.948
42.51
11/1394
35 35 35 36 38 35 38 37 37 38
37.30
1.720
4.611
3
1.744
51.89
11/1395
42 38 38 40 41 37 42 43 38 43
41.35
2.621
6.339
6
2.289
60.61
11/1396
43 45 43 40 45 43 44 45 45 45
43.40
1.875
4.320
5
2.667
68.60
11/1397
42 45 44 46 40 45 43 44 40 44
43.40
2.210
5.092
6
2.715
74.65
11/1398
51 50 47 48 47 49 47 50 49 49
48.25
1.410
2.921
4
2.838
81.66
11/1399
41 43 41 39 38 40 39 42 39 39
40.25
1.916
4.760
5
2.610
61.86
11/1400
39 38 42 43 40 40 39 38 37 39
40.35
1.954
4.843
6
3.071
65.03
11/1401
39 39 40 43 42 40 45 43 43 38
41.40
2.371
5.727
7
2.952
73.47
Test area
R1
11/1349
11/1350
R2
R3
R4
R5
R6
R7
R8
R9
R10
A60
Rm
sR
VR, %
rR
θR
fcm, MPa
33 33 34 38 36 34 38 36 36 37
35.75
2.023
5.658
5
2.472
40.52
37 38 44 37 42 38 38 36 35 37
37.55
2.438
6.493
9
3.691
52.54
11/1404
46 41 42 39 40 43 46 39 41 46
42.15
2.796
6.634
7
2.503
68.28
11/1405
42 40 47 45 48 43 47 45 41 45
44.45
2.188
4.922
8
3.656
78.90
11/1406
44 47 48 47 47 46 44 50 50 44
46.85
2.207
4.711
6
2.719
82.61
11/1407
46 50 47 45 47 52 47 48 50 51
48.45
2.114
4.364
7
3.310
94.38
11/1408
43 42 41 46 44 40 42 40 42 39
42.45
1.877
4.422
7
3.729
68.92
11/1409
44 44 44 46 44 47 42 45 48 40
44.00
2.534
5.759
8
3.157
70.43
11/1410
42 46 43 45 48 45 40 41 46 41
44.85
2.455
5.475
8
3.258
80.35
11/1411
33 37 32 34 36 35 36 36 34 38
35.60
2.062
5.793
6
2.910
46.52
11/1412
46 39 44 42 41 43 39 43 38 46
41.70
2.638
6.326
8
3.033
57.05
11/1413
46 44 43 47 42 44 45 47 48 44
44.15
2.110
4.778
6
2.844
71.31
11/1414
46 40 46 45 46 46 48 46 42 44
45.05
2.605
5.783
8
3.071
80.01
11/1415
44 44 45 50 48 47 46 48 45 49
46.90
2.337
4.984
6
2.567
79.38
11/1416
49 46 49 47 47 47 47 51 49 46
48.25
1.552
3.216
5
3.222
93.31
11/1417
42 46 39 42 42 40 44 43 45 44
42.30
1.809
4.277
7
3.869
70.29
11/1418
43 46 42 44 45 40 47 43 40 44
43.65
2.390
5.476
7
2.929
71.67
11/1419
48 46 46 41 40 40 40 48 42 49
44.20
3.189
7.214
9
2.822
82.21
11/1420
34 33 39 33 34 38 36 31 34 35
35.40
2.664
7.524
8
3.003
49.99
11/1421
37 40 41 40 35 39 41 45 39 40
39.05
2.089
5.351
10
4.786
56.06
11/1422
46 42 42 44 40 44 40 42 42 40
41.40
1.957
4.728
6
3.065
65.78
11/1423
42 44 45 40 42 40 47 47 43 45
43.75
2.314
5.289
7
3.025
78.24
11/1424
37 44 43 38 44 40 41 40 45 41
40.85
2.434
5.958
8
3.287
84.63
11/1425
49 47 47 49 48 54 50 53 55 49
49.50
2.351
4.749
8
3.403
94.15
11/1426
43 43 42 42 46 47 42 43 46 43
43.40
1.698
3.913
5
2.944
74.93
11/1427
38 41 39 40 40 42 44 45 40 44
40.55
2.038
5.027
7
3.434
78.34
11/1428
45 43 43 44 44 45 45 47 48 44
44.85
1.424
3.176
5
3.510
83.62
11/1429
39 40 38 38 37 39 40 40 39 36
38.35
1.387
3.617
4
2.884
53.28
11/1430
45 47 42 44 43 44 46 45 44 45
44.90
1.483
3.303
5
3.371
59.58
11/1431
45 42 46 43 44 42 45 41 45 44
43.20
2.042
4.726
5
2.449
71.64
11/1432
40 42 44 45 45 45 42 48 42 41
43.90
2.075
4.726
8
3.856
83.11
11/1433
44 45 48 45 44 43 44 45 45 44
44.70
2.364
5.289
5
2.115
87.59
11/1434
48 52 48 46 46 46 48 50 49 49
48.35
1.954
4.042
6
3.071
94.67
11/1435
46 42 43 42 44 43 42 42 43 44
42.90
1.586
3.697
4
2.522
75.90
11/1436
41 40 41 45 43 43 40 42 42 40
41.65
1.461
3.508
5
3.423
74.45
11/1437
48 47 43 44 46 48 45 44 47 47
45.35
1.694
3.736
5
2.951
86.41
11/1438
35 36 36 39 41 35 35 38 39 39
36.65
1.981
5.405
6
3.029
49.36
11/1439
40 45 41 42 43 45 41 45 43 40
42.35
1.927
4.550
5
2.595
60.52
11/1440
45 41 43 44 46 43 40 42 42 44
42.65
1.755
4.116
6
3.418
71.21
11/1441
49 48 45 45 46 46 46 48 47 46
46.35
1.461
3.152
4
2.738
101.64
11/1442
41 45 42 39 41 45 48 42 39 40
41.80
2.441
5.839
9
3.687
76.55
11/1443
40 41 42 45 45 46 48 46 45 49
43.95
2.481
5.645
9
3.628
92.37
11/1444
35 36 38 36 35 35 35 34 35 35
36.25
1.618
4.464
4
2.472
50.75
11/1445
37 38 41 40 43 37 36 35 38 38
37.15
2.183
5.876
8
3.665
62.11
11/1446
44 44 43 43 42 44 42 44 40 41
41.70
2.342
5.616
4
1.708
81.19
11/1447
50 50 47 44 50 46 45 49 48 46
46.35
2.300
4.963
6
2.608
103.09
11/1448
44 43 44 43 44 44 45 45 44 43
43.05
1.932
4.489
2
1.035
76.86
11/1449
42 40 42 45 47 41 40 46 43 43
41.95
2.305
5.495
7
3.037
87.08
11/1450
36 38 38 35 34 36 37 37 35 39
36.30
1.302
3.586
5
3.841
53.08
11/1451
38 37 43 38 43 42 40 38 39 42
39.70
2.273
5.726
6
2.639
60.54
11/1452
44 42 42 40 45 43 45 46 46 44
43.45
1.638
3.769
6
3.664
76.50
11/1453
31 32 36 36 31 30 33 34 35 32
33.05
1.877
5.680
6
3.196
36.37
11/1454
26 28 27 28 30 32 27 30 28 27
32.85
4.902
14.922
6
1.224
47.31
Test area
R1
11/1402
11/1403
R2
R3
R4
R5
R6
R7
R8
R9
R10
A61
Test area
R1
11/1455
11/1456
R2
R3
R4
R5
R6
R7
R8
R9
R10
sR
37 35 38 36 41 37 35 38 36 35
37.40
2.415
6.457
6
2.485
52.61
35 34 29 32 28 33 34 27 29 28
31.40
3.440
10.954
8
2.326
34.60
11/1457
24 25 23 28 27 27 24 23 25 26
25.20
1.704
6.764
5
2.933
27.30
11/1458
32 35 33 34 30 32 35 37 31 30
32.95
2.038
6.186
7
3.434
38.90
11/1459
28 30 32 30 29 30 34 32 33 36
30.75
2.099
6.828
8
3.810
37.59
11/1460
29 30 32 34 28 27 29 30 32 30
30.20
2.093
6.929
7
3.345
49.50
11/1461
41 39 43 42 37 39 35 37 39 40
38.85
2.207
5.681
8
3.625
54.62
11/1462
32 32 31 30 27 29 31 32 34 29
31.75
2.425
7.638
7
2.886
36.66
11/1463
23 22 25 25 24 26 25 25 27 23
24.80
1.542
6.219
5
3.242
26.04
11/1464
32 32 31 30 31 31 34 33 35 35
32.05
1.638
5.109
5
3.053
37.58
11/1465
39 36 35 40 37 37 38 36 41 38
37.30
2.203
5.906
6
2.724
42.48
11/1466
43 45 42 40 40 40 42 41 41 40
42.25
2.221
5.258
5
2.251
57.09
11/1467
41 42 46 40 41 42 43 43 44 40
42.40
2.186
5.156
6
2.745
63.72
11/1468
36 35 36 36 35 36 34 39 38 33
36.65
1.954
5.332
6
3.071
46.43
11/1469
33 33 30 30 29 28 31 30 29 30
32.35
2.498
7.721
5
2.002
35.26
11/1470
38 37 40 35 39 38 39 41 35 36
37.15
2.159
5.811
6
2.779
51.97
11/1471
37 36 42 38 36 38 38 37 36 36
37.70
1.809
4.799
6
3.316
44.12
11/1472
45 40 41 40 38 44 39 38 43 40
40.35
1.981
4.909
7
3.534
57.85
11/1473
45 44 41 46 42 43 44 46 40 42
42.60
2.010
4.719
6
2.984
63.94
11/1474
37 35 34 31 33 33 33 34 33 32
35.10
2.382
6.786
6
2.519
42.63
11/1475
34 33 34 34 34 34 33 34 35 39
33.90
2.174
6.413
6
2.760
35.59
11/1476
38 37 37 41 36 37 38 36 42 39
37.35
1.725
4.619
6
3.478
48.80
11/1477
38 44 38 38 40 45 44 45 48 47
42.75
3.370
7.882
10
2.968
50.72
11/1478
43 43 50 50 46 48 44 43 50 43
45.25
2.954
6.527
7
2.370
63.58
11/1479
46 45 46 44 43 48 43 45 44 43
44.70
1.559
3.488
5
3.206
68.94
11/1480
36 38 35 38 40 36 35 40 37 35
36.85
1.981
5.375
5
2.524
50.29
11/1481
33 36 35 37 37 37 37 37 35 36
34.45
2.089
6.065
4
1.914
38.93
11/1482
38 38 37 36 43 38 33 38 33 35
37.50
2.585
6.894
10
3.868
55.38
11/1483
40 36 36 36 42 40 36 43 38 38
39.05
2.235
5.725
7
3.131
51.30
11/1484
44 42 43 45 43 48 44 46 47 45
44.10
2.125
4.819
6
2.823
63.55
11/1485
46 45 44 46 41 44 43 44 45 44
44.55
1.877
4.214
5
2.664
68.41
11/1486
37 36 35 33 38 33 33 34 34 39
36.00
2.077
5.771
6
2.888
48.69
11/1487
36 33 38 33 33 33 34 35 36 35
34.85
2.207
6.333
5
2.265
39.28
11/1488
37 38 43 37 37 38 40 37 39 38
38.05
2.212
5.813
6
2.713
54.22
11/1489
43 40 45 44 44 47 42 42 42 42
43.60
2.371
5.438
7
2.952
56.90
11/1490
49 45 49 47 50 45 44 46 47 44
46.50
2.606
5.604
6
2.303
70.17
11/1491
47 45 47 44 46 45 46 51 47 44
46.20
2.331
5.045
7
3.004
72.73
11/1492
44 42 39 40 39 38 37 44 38 44
39.65
2.434
6.138
7
2.876
52.35
11/1493
36 37 39 36 37 41 37 39 42 38
37.90
2.490
6.570
6
2.410
42.80
11/1494
39 40 41 40 38 42 40 40 38 40
40.95
2.350
5.739
4
1.702
62.97
11/1495
38 42 43 38 40 40 42 37 39 38
40.40
2.371
5.869
6
2.531
51.86
11/1496
46 42 42 48 45 45 45 43 43 42
43.70
2.029
4.642
6
2.957
67.44
11/1497
47 46 44 46 50 46 45 50 46 47
47.15
2.207
4.681
6
2.719
73.50
11/1498
38 44 43 39 40 41 38 39 41 37
39.75
2.593
6.523
7
2.700
55.09
11/1499
39 43 41 40 44 39 38 41 39 38
39.95
2.188
5.477
6
2.742
45.25
11/1500
37 42 42 44 40 39 42 45 46 45
41.35
2.758
6.670
9
3.263
63.31
11/1501
43 42 43 46 45 44 43 44 50 46
44.90
2.125
4.733
8
3.765
55.48
11/1502
50 49 46 46 44 45 46 49 48 48
47.65
1.755
3.684
6
3.418
69.69
11/1503
45 46 46 47 49 48 49 49 46 48
47.55
1.317
2.769
4
3.037
82.62
11/1504
45 47 43 43 44 40 41 43 45 46
43.65
1.927
4.415
7
3.633
56.79
11/1505
38 40 41 39 38 37 40 39 41 38
39.00
1.124
2.882
4
3.559
46.35
11/1506
46 40 42 43 44 43 41 42 42 41
42.95
1.701
3.960
6
3.528
66.37
11/1507
40 42 40 45 45 40 42 48 43 41
42.50
2.164
5.092
8
3.696
54.32
A62
VR, %
rR
θR
Rm
fcm, MPa
Rm
sR
VR, %
rR
θR
fcm, MPa
50 45 48 45 48 45 47 48 48 48
47.20
1.508
3.195
5
3.316
72.50
47 48 50 47 47 50 48 49 47 48
48.00
1.338
2.787
3
2.243
78.68
11/1510
39 44 39 40 41 42 39 37 38 40
39.35
1.694
4.306
7
4.131
53.94
11/1511
42 37 39 38 40 42 41 39 40 40
39.45
1.504
3.811
5
3.326
47.85
11/1512
41 42 41 40 39 38 42 41 42 41
40.80
1.824
4.470
4
2.193
63.50
11/1513
38 42 39 42 42 43 36 42 38 40
39.10
2.360
6.035
7
2.966
59.29
11/1514
48 47 46 46 45 49 49 46 44 46
46.00
1.806
3.927
5
2.768
76.24
11/1515
44 44 46 46 48 45 45 44 47 43
45.20
2.262
5.004
5
2.211
80.97
11/1516
44 42 42 46 43 44 46 39 43 40
41.90
2.490
5.943
7
2.811
69.41
11/1517
42 43 43 45 40 44 46 46 44 43
42.05
2.438
5.798
6
2.461
58.61
11/1518
45 44 42 43 45 43 43 42 40 43
43.25
1.552
3.588
5
3.222
75.13
11/1519
46 42 45 45 45 45 44 43 44 48
45.15
1.927
4.268
6
3.114
80.72
11/1520
36 37 35 40 36 38 38 35 39 38
37.65
1.814
4.819
5
2.756
65.58
12/1
25 40 36 30 30 30 28 30 34 29
31.20
4.315
13.831
15
3.476
22.60
12/2
26 37 35 28 30 32 31 28 28 26
30.10
3.695
12.277
11
2.977
22.20
12/3
26 28 20 29 20 27 30 31 28 30
26.90
3.929
14.604
11
2.800
23.50
12/4
28 29 32 27 30 32 28 26 28 26
28.60
2.171
7.589
6
2.764
23.30
12/5
40 30 28 27 25 28 28 28 26 30
29.00
4.163
14.356
15
3.603
22.60
12/6
30 24 20 28 26 22 29 27 27 27
26.00
3.127
12.027
10
3.198
22.70
12/7
34 36 40 34 32 35 37 36 38 34
35.60
2.319
6.514
8
3.450
29.70
12/8
36 34 36 36 34 34 30 32 36 37
34.50
2.173
6.299
7
3.221
29.30
12/9
37 39 39 40 38 39 37 34 32 40
37.50
2.635
7.027
8
3.036
31.20
12/10
33 35 30 35 28 40 36 36 40 34
34.70
3.802
10.957
12
3.156
31.90
12/11
38 34 32 32 36 36 40 30 32 32
34.20
3.190
9.328
10
3.135
30.30
Test area
R1
11/1508
11/1509
R2
R3
R4
R5
R6
R7
R8
R9
R10
12/12
34 32 36 34 36 32 30 30 28 31
32.30
2.669
8.262
8
2.998
30.30
12/13
34 32 44 40 35 36 38 42 38 43
38.20
4.022
10.529
12
2.983
31.70
12/14
42 44 39 41 44 34 39 36 34 37
39.00
3.742
9.594
10
2.673
33.70
12/15
40 38 36 40 39 34 39 34 32 40
37.20
2.974
7.995
8
2.690
33.20
12/16
38 36 39 36 42 35 39 34 32 38
36.90
2.885
7.818
10
3.466
32.20
12/17
38 37 41 36 36 39 36 36 40 42
38.10
2.283
5.992
6
2.628
34.90
12/18
40 36 42 42 40 36 37 38 35 41
38.70
2.627
6.788
7
2.665
36.30
12/19
45 42 45 45 41 40 46 47 40 44
43.50
2.550
5.861
7
2.746
34.90
12/20
44 39 38 44 41 41 44 41 39 38
40.90
2.424
5.928
6
2.475
32.80
12/21
44 42 37 43 44 40 44 45 38 36
41.30
3.302
7.994
9
2.726
32.80
12/22
44 40 46 46 47 40 44 45 40 47
43.90
2.885
6.571
7
2.426
32.30
12/23
40 46 44 48 46 40 40 42 40 44
43.00
3.018
7.020
8
2.650
32.90
12/24
40 46 42 40 45 40 41 42 40 43
41.90
2.183
5.211
6
2.748
33.80
12/25
44 44 47 47 44 48 44 46 48 47
45.90
1.729
3.767
4
2.314
45.40
12/26
44 40 46 45 45 45 48 48 45 44
45.00
2.261
5.024
8
3.539
42.00
12/27
40 47 47 44 46 46 45 44 45 44
44.80
2.044
4.562
7
3.425
40.50
12/28
47 46 46 44 50 50 46 44 47 49
46.90
2.183
4.655
6
2.748
40.20
12/29
51 47 40 46 50 46 47 47 47 51
47.20
3.190
6.759
11
3.448
38.00
12/30
49 48 47 52 47 47 46 46 46 44
47.20
2.150
4.555
8
3.721
39.90
12/31
43 47 41 48 46 43 50 49 48 56
47.10
4.280
9.088
15
3.504
50.50
12/32
46 46 47 46 48 48 56 49 43 43
47.20
3.676
7.788
13
3.537
48.30
12/33
45 48 46 48 48 44 46 40 51 46
46.20
2.936
6.356
11
3.746
46.80
12/34
47 48 45 45 46 45 44 47 50 46
46.30
1.767
3.816
6
3.396
48.00
12/35
47 46 48 44 45 48 47 50 53 50
47.80
2.658
5.561
9
3.386
50.30
12/36
52 47 38 47 50 48 45 43 54 46
47.00
4.546
9.672
16
3.520
52.00
12/37
38 30 38 40 37 33 36 27 32 27
33.80
4.709
13.933
13
2.760
21.10
12/38
29 32 30 40 44 30 27 34 29 27
32.20
5.653
17.556
17
3.007
20.60
12/39
34 31 33 32 31 36 32 30 34 29
32.20
2.098
6.514
7
3.337
21.80
A63
Rm
sR
VR, %
rR
θR
fcm, MPa
36 34 33 34 34 30 30 34 32 35
33.20
1.989
5.991
6
3.017
20.70
34 38 38 30 29 34 32 33 36 30
33.40
3.239
9.697
9
2.779
28.90
12/42
30 38 40 35 32 34 40 33 38 34
35.40
3.438
9.713
10
2.908
29.50
12/43
36 40 32 37 38 35 30 33 37 32
35.00
3.162
9.035
10
3.162
23.20
12/44
42 40 37 39 38 38 37 34 32 34
37.10
3.035
8.181
10
3.295
26.10
12/45
45 39 43 33 36 38 38 34 43 33
38.20
4.341
11.364
12
2.764
30.20
12/46
36 37 39 47 36 32 38 38 45 44
39.20
4.686
11.953
15
3.201
31.20
12/47
37 39 40 35 36 42 39 35 40 38
38.10
2.331
6.118
7
3.003
30.90
12/48
36 38 40 35 36 44 38 37 35 34
37.30
2.946
7.898
10
3.395
29.70
12/49
29 38 48 44 37 35 38 48 38 42
39.70
5.908
14.881
19
3.216
30.30
12/50
38 37 35 36 42 38 50 38 36 42
39.20
4.467
11.396
15
3.358
31.20
12/51
40 36 44 34 40 36 38 37 36 37
37.80
2.860
7.565
10
3.497
31.70
12/52
36 50 38 32 36 44 34 35 42 34
38.10
5.587
14.663
18
3.222
32.70
12/53
34 36 40 35 44 38 42 40 39 37
38.50
3.136
8.145
10
3.189
34.50
12/54
38 38 35 34 40 40 37 40 35 35
37.20
2.348
6.311
6
2.556
37.20
12/55
35 37 42 40 43 36 36 34 40 33
37.60
3.438
9.145
10
2.908
33.30
12/56
34 40 38 34 40 36 36 32 40 35
36.50
2.877
7.883
8
2.781
33.70
12/57
44 47 44 47 47 48 44 42 42 42
44.70
2.359
5.278
6
2.543
39.90
12/58
44 48 42 43 48 48 42 48 47 47
45.70
2.627
5.748
6
2.284
41.80
12/59
48 42 48 42 48 48 46 42 44 46
45.40
2.675
5.892
6
2.243
42.80
12/60
48 45 44 45 42 48 42 42 40 43
43.90
2.644
6.022
8
3.026
39.10
12/61
52 58 50 50 44 45 44 40 45 44
47.20
5.245
11.113
18
3.432
46.80
12/62
57 46 47 52 48 52 50 52 49 48
50.10
3.247
6.481
11
3.388
44.10
12/63
49 51 48 42 42 44 46 48 47 46
46.30
2.946
6.362
9
3.055
43.40
12/64
54 51 47 48 47 45 50 47 49 48
48.60
2.547
5.241
9
3.533
44.60
12/65
19 20 22 20 18 19 19 19 22 21
19.90
1.370
6.886
4
2.919
8.50
12/66
20 20 20 20 24 18 17 18 19 20
19.60
1.897
9.680
7
3.689
8.00
12/67
19 20 19 20 20 19 18 18 18 17
18.80
1.033
5.494
3
2.905
8.40
12/68
20 22 18 18 18 18 18 18 20 18
18.80
1.398
7.438
4
2.860
8.40
12/69
18 18 21 18 19 22 20 19 20 20
19.50
1.354
6.944
4
2.954
8.70
12/70
18 20 20 17 20 18 19 20 22 22
19.60
1.647
8.401
5
3.037
9.40
12/71
26 26 30 28 31 29 28 27 25 25
27.50
2.068
7.521
6
2.901
15.60
12/72
26 31 29 30 26 27 25 29 31 26
28.00
2.261
8.074
6
2.654
15.90
12/73
30 28 27 27 30 27 27 30 25 24
27.50
2.068
7.521
6
2.901
15.50
Test area
R1
12/40
12/41
R2
R3
R4
R5
R6
R7
R8
R9
R10
12/74
24 26 26 26 27 24 27 29 29 27
26.50
1.716
6.475
5
2.914
15.70
12/75
28 28 25 30 26 27 27 30 31 20
27.20
3.155
11.600
11
3.486
15.40
12/76
28 26 26 30 26 30 28 30 28 25
27.70
1.889
6.818
5
2.648
14.60
12/77
30 33 29 32 31 32 31 36 36 33
32.30
2.312
7.157
7
3.028
20.80
12/78
32 32 35 32 35 34 32 36 35 36
33.90
1.729
5.100
4
2.314
22.60
12/79
32 32 30 30 32 30 36 33 31 31
31.70
1.829
5.769
6
3.281
20.70
12/80
34 29 30 27 30 30 30 33 30 29
30.20
1.989
6.586
7
3.520
20.10
12/81
32 36 30 32 32 32 32 29 35 35
32.50
2.224
6.842
7
3.148
20.10
12/82
36 34 32 31 30 34 32 34 31 37
33.10
2.283
6.897
7
3.066
20.00
12/83
34 40 42 37 42 32 35 34 40 32
36.80
3.938
10.702
10
2.539
29.20
12/84
42 37 37 36 42 34 36 36 40 40
38.00
2.789
7.339
8
2.869
27.40
12/85
37 34 35 30 37 32 38 40 37 38
35.80
3.048
8.513
10
3.281
26.30
12/86
35 44 37 37 38 36 34 39 34 34
36.80
3.084
8.380
10
3.243
26.80
12/87
35 37 34 34 34 34 33 35 36 34
34.60
1.174
3.392
4
3.408
25.10
12/88
37 35 32 36 38 34 40 37 35 35
35.90
2.234
6.222
8
3.582
25.20
12/89
44 38 37 39 38 39 37 35 37 39
38.30
2.359
6.160
9
3.815
36.50
12/90
43 38 36 37 39 38 37 36 36 37
37.70
2.111
5.599
7
3.316
32.20
12/91
40 43 36 42 39 41 36 37 41 38
39.30
2.497
6.353
7
2.804
34.70
12/92
39 37 41 43 37 37 43 39 35 43
39.40
2.951
7.491
8
2.711
36.90
A64
Rm
sR
VR, %
rR
θR
fcm, MPa
37 40 46 44 38 44 43 46 38 35
41.10
3.985
9.695
11
2.761
32.60
37 35 35 38 36 36 42 37 39 38
37.30
2.111
5.659
7
3.316
32.80
12/95
39 48 39 44 42 48 46 46 44 50
44.60
3.748
8.403
11
2.935
44.50
12/96
49 48 44 46 43 44 45 46 47 42
45.40
2.221
4.892
7
3.152
41.30
12/97
48 48 44 41 47 49 48 46 45 48
46.40
2.459
5.299
8
3.254
43.50
12/98
40 44 41 44 37 46 48 50 50 40
44.00
4.497
10.220
13
2.891
41.80
Test area
R1
12/93
12/94
R2
R3
R4
R5
R6
R7
R8
R9
R10
12/99
37 36 34 38 39 36 34 40 38 38
37.00
2.000
5.405
6
3.000
28.60
12/100
38 36 36 35 38 36 35 35 36 38
36.30
1.252
3.448
3
2.397
31.00
12/101
40 38 38 44 37 38 37 38 35 48
39.30
3.860
9.822
13
3.368
27.60
12/102
31 35 36 40 31 38 39 36 37 36
35.90
2.998
8.351
9
3.002
28.60
12/103
34 36 35 38 36 38 38 36 36 40
36.70
1.767
4.815
6
3.396
30.30
12/104
46 38 32 28 44 37 43 36 46 40
39.00
6.000
15.385
18
3.000
30.00
12/105
41 30 32 40 36 50 36 32 36 42
37.50
5.949
15.864
20
3.362
39.60
12/106
39 45 37 48 40 37 37 38 45 40
40.60
3.978
9.797
11
2.765
37.40
12/107
41 38 33 39 41 40 33 39 36 36
37.60
2.989
7.949
8
2.677
37.50
12/108
44 38 45 37 37 46 37 40 36 41
40.10
3.725
9.290
10
2.684
37.80
12/109
39 38 38 41 44 40 47 36 44 38
40.50
3.472
8.573
11
3.168
35.80
12/110
42 35 35 41 38 41 36 34 37 36
37.50
2.877
7.672
8
2.781
35.60
12/111
40 42 43 41 42 43 42 41 41 41
41.60
0.966
2.322
3
3.105
42.70
12/112
47 45 40 40 43 47 44 42 47 43
43.80
2.700
6.164
7
2.593
43.20
12/113
45 43 42 42 43 40 44 42 44 45
43.00
1.563
3.636
5
3.198
42.70
12/114
39 41 45 39 41 46 40 38 41 44
41.40
2.716
6.561
8
2.945
43.10
12/115
44 43 46 43 45 42 44 44 46 45
44.20
1.317
2.979
4
3.038
44.30
12/116
40 39 39 42 38 38 38 38 42 43
39.70
1.947
4.903
5
2.569
42.00
12/117
43 48 43 43 45 44 43 42 44 45
44.00
1.700
3.863
6
3.530
48.10
12/118
44 44 42 44 48 40 40 46 40 45
43.30
2.751
6.353
8
2.908
47.00
12/119
45 46 44 43 43 44 42 41 43 46
43.70
1.636
3.745
5
3.056
45.50
12/120
44 42 46 43 45 40 46 44 48 45
44.30
2.263
5.109
8
3.535
47.50
12/121
46 48 48 42 46 44 44 42 47 42
44.90
2.424
5.400
6
2.475
45.20
12/122
48 47 48 50 48 46 46 50 47 46
47.60
1.506
3.163
4
2.657
45.60
12/123
48 46 47 46 47 46 50 50 49 49
47.80
1.619
3.388
4
2.470
53.60
12/124
46 52 47 46 46 48 48 47 47 50
47.70
1.947
4.081
6
3.082
55.30
12/125
48 50 49 51 47 50 47 48 52 50
49.20
1.687
3.428
5
2.965
50.20
12/126
46 51 50 47 50 49 49 51 50 50
49.30
1.636
3.319
5
3.056
57.80
12/127
48 48 50 48 48 50 46 50 52 48
48.80
1.687
3.456
6
3.558
52.10
12/128
49 49 53 48 49 50 53 49 52 52
50.40
1.897
3.765
5
2.635
50.30
12/129
50 48 50 50 54 50 52 52 52 50
50.80
1.687
3.320
6
3.558
56.30
12/130
52 51 56 59 50 55 46 56 41 45
51.10
5.705
11.164
18
3.155
49.50
12/131
51 48 51 55 52 51 49 51 49 52
50.90
1.969
3.869
7
3.555
54.80
12/132
51 51 50 52 48 50 47 57 50 41
49.70
4.057
8.162
16
3.944
52.50
12/133
36 37 42 37 40 38 40 38 39 36
38.30
1.947
5.082
6
3.082
25.40
12/134
36 44 36 36 39 42 30 36 35 36
37.00
3.887
10.506
14
3.601
29.20
12/135
37 37 30 36 43 46 37 37 35 45
38.30
4.923
12.853
16
3.250
28.80
12/136
40 38 40 46 38 30 34 40 36 38
38.00
4.216
11.096
16
3.795
26.30
12/137
38 44 42 35 42 38 39 39 38 37
39.20
2.700
6.887
9
3.334
29.60
12/138
37 37 50 38 39 38 38 32 42 42
39.30
4.692
11.938
18
3.837
29.40
12/139
34 46 37 38 53 40 36 40 39 46
40.90
5.763
14.090
19
3.297
27.10
12/140
44 34 48 42 44 42 48 40 38 36
41.60
4.695
11.286
14
2.982
26.10
12/141
34 32 38 41 41 42 36 39 45 44
39.20
4.237
10.810
13
3.068
35.30
12/142
46 48 43 44 54 44 40 46 38 49
45.20
4.566
10.101
16
3.504
35.00
12/143
42 44 40 34 37 35 42 37 42 45
39.80
3.824
9.608
11
2.877
34.90
12/144
36 40 33 37 41 43 47 44 37 38
39.60
4.222
10.661
14
3.316
35.30
12/145
44 40 40 41 40 36 37 32 42 39
39.10
3.381
8.648
12
3.549
35.50
A65
Test area
R1
12/146
12/147
R2
R3
R4
R5
R6
R7
R8
R9
R10
sR
42 40 45 47 44 36 36 37 40 38
40.50
3.894
9.616
11
2.825
35.30
43 46 46 38 50 37 45 50 38 40
43.30
4.877
11.264
13
2.665
37.40
12/148
42 46 42 40 44 41 46 48 42 41
43.20
2.658
6.154
8
3.009
40.00
12/149
47 46 44 47 54 45 42 43 46 49
46.30
3.401
7.346
12
3.528
38.80
12/150
42 42 40 42 50 41 37 40 38 46
41.80
3.795
9.078
13
3.426
40.90
12/151
40 43 39 44 49 35 50 48 44 43
43.50
4.696
10.796
15
3.194
37.80
12/152
46 50 46 46 46 44 41 46 47 47
45.90
2.283
4.973
9
3.943
36.80
12/153
40 48 48 49 52 50 50 50 48 49
48.40
3.204
6.620
12
3.745
36.50
12/154
44 46 44 46 45 44 40 46 48 46
44.90
2.132
4.748
8
3.753
37.50
12/155
48 44 52 49 47 50 48 48 40 43
46.90
3.573
7.618
12
3.358
37.80
12/156
50 44 50 48 47 50 48 45 44 48
47.40
2.366
4.992
6
2.535
38.40
12/157
48 48 50 49 40 50 45 50 44 47
47.10
3.247
6.894
10
3.080
39.50
12/158
50 58 52 51 54 54 52 50 54 55
53.00
2.494
4.706
8
3.207
41.00
12/159
46 50 49 48 50 48 48 52 50 52
49.30
1.889
3.831
6
3.177
48.30
12/160
48 52 48 47 47 49 54 53 55 50
50.30
2.983
5.931
8
2.682
42.20
12/161
56 52 57 50 51 50 53 51 50 53
52.30
2.497
4.774
7
2.804
43.00
12/162
47 47 49 47 50 49 47 46 49 49
48.00
1.333
2.778
4
3.000
41.80
12/163
48 44 52 48 48 50 50 46 51 40
47.70
3.592
7.530
12
3.341
39.60
12/164
54 53 56 51 56 49 53 50 52 55
52.90
2.424
4.583
7
2.887
58.30
12/165
55 52 52 52 50 55 50 54 53 53
52.60
1.776
3.377
5
2.815
51.50
12/166
52 50 50 52 55 50 52 50 52 52
51.50
1.581
3.070
5
3.162
53.50
12/167
53 58 60 57 56 51 54 56 53 56
55.40
2.675
4.828
9
3.365
61.80
13/1
31 32 29 23 26 20 26 30 26 26
26.90
3.695
13.737
12
3.247
47.11
13/2
33 31 32 34 33 27 34 32 33 33
32.20
2.044
6.348
7
3.425
46.58
13/3
24 23 19 20 22 22 18 22 18 23
21.10
2.183
10.347
6
2.748
28.40
13/4
22 23 23 21 23 21 20 21 24 21
21.90
1.287
5.875
4
3.109
27.69
13/5
21 17 17 23 16 26 22 22 16 21
20.10
3.414
16.985
10
2.929
14.89
13/6
19 20 24 19 18 19 18 21 21 22
20.10
1.912
9.512
6
3.138
14.22
13/7
39 40 44 41 43 44 42 44 39 40
41.60
2.066
4.965
5
2.421
59.91
13/8
45 39 47 42 45 42 38 45 40 38
42.10
3.281
7.794
9
2.743
60.31
13/9
28 26 29 31 29 26 30 29 27 29
28.40
1.647
5.798
5
3.037
42.36
13/10
28 29 26 24 24 28 29 26 26 26
26.60
1.838
6.909
5
2.721
44.09
13/11
20 23 19 23 22 22 22 21 23 25
22.00
1.700
7.726
6
3.530
25.02
13/12
18 19 21 18 17 21 20 19 17 18
18.80
1.476
7.850
4
2.711
21.20
13/13
48 50 48 49 47 48 43 48 49 47
47.70
1.889
3.959
7
3.707
73.64
13/14
40 42 43 43 42 47 41 39 43 43
42.30
2.163
5.113
8
3.699
74.09
13/15
32 37 35 37 33 33 32 31 33 35
33.80
2.098
6.206
6
2.860
54.09
13/16
33 29 33 34 33 33 31 35 30 34
32.50
1.900
5.847
6
3.157
53.38
13/17
27 33 35 30 36 27 35 33 30 32
31.80
3.225
10.141
9
2.791
40.80
13/18
27 28 32 26 31 30 30 31 29 32
29.60
2.066
6.978
6
2.905
43.47
13/19
37 34 35 40 44 41 44 37 41 42
39.50
3.567
9.030
10
2.804
80.44
13/20
45 42 40 39 36 45 46 43 44 44
42.40
3.169
7.475
10
3.155
80.62
13/21
30 32 28 35 34 34 36 34 36 33
33.20
2.573
7.751
8
3.109
64.22
13/22
34 37 39 41 42 38 41 40 42 42
39.60
2.633
6.649
8
3.038
61.20
13/23
24 25 24 29 29 30 29 27 28 30
27.50
2.369
8.614
6
2.533
40.80
13/24
31 29 23 23 24 26 28 28 26 28
26.60
2.675
10.056
8
2.991
43.47
13/25
49 49 46 47 49 45 48 45 45 44
46.70
1.947
4.168
5
2.569
86.49
13/26
51 49 51 49 50 48 50 51 47 51
49.70
1.418
2.853
4
2.821
82.58
13/27
46 45 39 45 41 46 47 45 46 41
44.10
2.726
6.182
8
2.934
69.38
13/28
49 40 45 41 48 39 43 46 40 40
43.10
3.665
8.504
10
2.728
65.47
13/29
32 34 37 39 36 35 34 35 32 32
34.60
2.319
6.702
7
3.019
46.89
13/30
37 38 36 38 37 39 38 36 38 38
37.50
0.972
2.592
3
3.087
45.87
A66
VR, %
rR
θR
Rm
fcm, MPa
Rm
sR
VR, %
rR
θR
fcm, MPa
46 46 43 44 45 45 46 46 46 45
45.20
1.033
2.285
3
2.905
79.87
45 43 45 44 49 48 47 49 46 48
46.40
2.119
4.566
6
2.832
81.87
13/33
34 32 40 40 36 41 32 37 36 34
36.20
3.293
9.097
9
2.733
68.76
13/34
39 38 36 42 42 39 41 40 39 36
39.20
2.150
5.485
6
2.791
69.91
13/35
36 36 41 37 41 40 42 37 41 39
39.00
2.309
5.922
6
2.598
49.82
13/36
37 36 38 36 32 37 36 40 39 38
36.90
2.183
5.917
8
3.664
45.07
13/37
41 46 50 47 46 48 51 46 50 49
47.40
2.914
6.147
10
3.432
82.93
13/38
52 56 55 57 53 50 52 53 54 52
53.40
2.119
3.968
7
3.304
80.71
13/39
42 43 44 45 43 43 43 40 43 40
42.60
1.578
3.703
5
3.169
68.93
13/40
41 46 45 46 46 46 44 45 45 41
44.50
1.958
4.400
5
2.554
71.11
13/41
40 40 45 40 46 45 42 43 42 43
42.60
2.221
5.214
6
2.701
46.84
13/42
40 43 42 43 40 41 41 39 43 39
41.10
1.595
3.881
4
2.508
45.64
13/43
50 55 50 50 48 52 52 50 55 51
51.30
2.263
4.412
7
3.093
-
13/44
46 54 50 54 48 46 48 49 52 46
49.30
3.129
6.346
8
2.557
-
13/45
51 51 52 52 51 53 52 50 54 49
51.50
1.434
2.784
5
3.487
-
13/46
50 50 52 51 50 52 50 51 52 50
50.80
0.919
1.809
2
2.176
-
13/47
47 49 49 50 47 39 45 42 46 50
46.40
3.596
7.751
11
3.059
-
13/48
47 50 50 49 49 50 49 48 51 49
49.20
1.135
2.308
4
3.523
-
13/49
26 28 28 25 29 28 30 24 24 28
27.00
2.108
7.808
6
2.846
47.11
13/50
32 33 36 35 30 28 30 35 35 37
33.10
2.998
9.058
9
3.002
46.58
13/51
18 22 18 22 24 23 22 19 21 22
21.10
2.079
9.853
6
2.886
28.40
13/52
23 22 24 26 22 25 24 23 23 24
23.60
1.265
5.360
4
3.162
27.69
13/53
17 20 18 19 19 16 16 21 18 20
18.40
1.713
9.308
5
2.919
14.89
13/54
21 18 17 20 20 16 18 19 18 17
18.40
1.578
8.574
5
3.169
14.22
13/55
45 39 44 39 42 41 36 43 43 41
41.30
2.710
6.562
9
3.321
59.91
13/56
47 42 43 40 45 46 46 44 46 44
44.30
2.163
4.882
7
3.237
60.31
13/57
29 27 28 32 30 34 30 31 28 33
30.20
2.300
7.615
7
3.044
42.36
13/58
29 26 28 28 27 29 28 27 33 34
28.90
2.601
9.001
8
3.075
44.09
13/59
21 22 24 21 21 22 21 22 24 22
22.00
1.155
5.249
3
2.598
25.02
13/60
21 19 19 21 17 20 19 15 19 19
18.90
1.792
9.481
6
3.348
21.20
13/61
49 49 49 51 43 49 45 51 45 47
47.80
2.700
5.648
8
2.963
73.64
13/62
39 42 45 43 46 39 43 36 43 43
41.90
3.035
7.243
10
3.295
74.09
13/63
37 32 30 31 31 31 33 30 33 29
31.70
2.263
7.140
8
3.535
54.09
13/64
34 35 36 30 37 35 38 33 30 37
34.50
2.799
8.112
8
2.858
53.38
13/65
30 28 33 34 33 33 31 31 32 31
31.60
1.776
5.621
6
3.378
40.80
13/66
31 28 28 29 31 29 29 27 30 29
29.10
1.287
4.422
4
3.109
43.47
13/67
45 43 42 42 40 45 43 44 42 42
42.80
1.549
3.620
5
3.227
80.44
13/68
41 43 47 44 41 42 44 42 43 40
42.70
2.003
4.690
7
3.495
80.62
13/69
34 30 36 32 33 36 32 36 33 36
33.80
2.150
6.361
6
2.791
64.22
13/70
44 44 41 43 44 38 38 41 41 37
41.10
2.685
6.534
7
2.607
61.20
13/71
29 27 27 28 28 25 27 33 29 30
28.30
2.163
7.642
8
3.699
40.80
13/72
27 26 25 24 33 25 26 28 28 26
26.80
2.530
9.440
9
3.558
43.47
13/73
51 49 52 53 55 51 49 49 50 48
50.70
2.163
4.266
7
3.237
86.49
13/74
49 55 56 51 51 51 53 49 51 50
51.60
2.366
4.586
7
2.958
82.58
Test area
R1
13/31
13/32
R2
R3
R4
R5
R6
R7
R8
R9
R10
13/75
46 42 43 41 42 43 47 41 45 42
43.20
2.098
4.856
6
2.860
69.38
13/76
49 45 40 41 39 40 43 41 49 45
43.20
3.676
8.509
10
2.721
65.47
13/77
34 30 32 30 33 34 37 36 38 34
33.80
2.700
7.988
8
2.963
46.89
13/78
39 37 34 32 34 34 33 34 33 32
34.20
2.201
6.436
7
3.180
45.87
13/79
43 45 45 38 43 43 47 43 40 45
43.20
2.616
6.056
9
3.440
79.87
13/80
50 48 48 49 49 49 46 48 48 50
48.50
1.179
2.430
4
3.394
81.87
13/81
37 42 39 44 33 39 42 39 40 41
39.60
3.062
7.733
11
3.592
68.76
13/82
40 39 41 41 41 44 41 39 40 42
40.80
1.476
3.617
5
3.388
69.91
13/83
39 37 36 37 36 37 37 38 38 36
37.10
0.994
2.680
3
3.017
49.82
A67
Rm
sR
VR, %
rR
θR
fcm, MPa
36 37 36 37 39 37 32 39 39 33
36.50
2.415
6.617
7
2.898
45.07
44 49 47 51 50 47 48 49 52 44
48.10
2.685
5.583
8
2.979
82.93
13/86
52 49 49 51 53 51 50 52 50 49
50.60
1.430
2.826
4
2.798
80.71
13/87
52 49 47 48 49 47 48 50 47 47
48.40
1.647
3.402
5
3.037
68.93
13/88
44 46 48 46 46 42 48 41 46 45
45.20
2.300
5.088
7
3.044
71.11
13/89
39 40 42 42 41 40 40 40 39 40
40.30
1.059
2.629
3
2.832
46.84
13/90
40 42 40 40 40 40 42 43 43 41
41.10
1.287
3.131
3
2.332
45.64
13/91
50 56 53 50 46 54 47 46 50 52
50.40
3.406
6.758
10
2.936
-
13/92
50 46 49 49 48 50 50 46 51 45
48.40
2.066
4.268
6
2.905
-
13/93
54 53 52 50 53 52 49 50 52 52
51.70
1.567
3.031
5
3.191
-
13/94
52 51 52 54 50 50 52 53 52 51
51.70
1.252
2.421
4
3.196
-
13/95
50 47 40 52 53 49 52 49 49 47
48.80
3.706
7.594
13
3.508
-
13/96
47 49 46 51 52 51 49 52 49 48
49.40
2.066
4.181
6
2.905
-
13/97
46 47 48 45 46 47 46 47 46 47
46.50
0.850
1.828
3
3.530
73.64
13/98
44 46 43 43 45 44 45 43 42 43
43.80
1.229
2.807
4
3.254
74.09
Test area
R1
13/84
13/85
R2
R3
R4
R5
R6
R7
R8
R9
R10
13/99
31 29 34 31 29 34 31 29 31 31
31.00
1.826
5.889
5
2.739
40.80
13/100
33 28 28 30 28 29 28 26 30 29
28.90
1.853
6.412
7
3.778
43.47
13/101
32 36 34 32 34 34 34 34 35 35
34.00
1.247
3.668
4
3.207
45.87
14/1
-
-
-
-
-
-
-
-
-
-
30.11
2.260
7.506
-
-
39.70
14/2
-
-
-
-
-
-
-
-
-
-
30.66
2.276
7.423
-
-
36.20
14/3
-
-
-
-
-
-
-
-
-
-
29.35
1.839
6.266
-
-
33.70
14/4
-
-
-
-
-
-
-
-
-
-
30.29
1.847
6.098
-
-
35.20
14/5
-
-
-
-
-
-
-
-
-
-
29.55
1.729
5.851
-
-
35.00
14/6
-
-
-
-
-
-
-
-
-
-
30.57
1.809
5.918
-
-
33.50
14/7
-
-
-
-
-
-
-
-
-
-
30.21
2.019
6.683
-
-
34.00
14/8
-
-
-
-
-
-
-
-
-
-
29.49
1.771
6.005
-
-
34.70
14/9
-
-
-
-
-
-
-
-
-
-
29.58
1.944
6.572
-
-
38.20
14/10
-
-
-
-
-
-
-
-
-
-
30.98
2.757
8.899
-
-
36.70
14/11
-
-
-
-
-
-
-
-
-
-
30.08
2.109
7.011
-
-
35.70
14/12
-
-
-
-
-
-
-
-
-
-
29.16
2.292
7.860
-
-
33.20
14/13
-
-
-
-
-
-
-
-
-
-
26.85
2.689
10.015
-
-
30.10
14/14
-
-
-
-
-
-
-
-
-
-
27.33
2.372
8.679
-
-
32.60
14/15
-
-
-
-
-
-
-
-
-
-
27.97
3.065
10.958
-
-
33.00
14/16
-
-
-
-
-
-
-
-
-
-
28.70
2.671
9.307
-
-
27.90
14/17
-
-
-
-
-
-
-
-
-
-
27.80
2.834
10.194
-
-
31.90
14/18
-
-
-
-
-
-
-
-
-
-
27.87
2.350
8.432
-
-
33.50
14/19
-
-
-
-
-
-
-
-
-
-
27.77
2.809
10.115
-
-
33.20
14/20
-
-
-
-
-
-
-
-
-
-
27.94
2.889
10.340
-
-
30.20
14/21
-
-
-
-
-
-
-
-
-
-
27.71
2.967
10.707
-
-
34.80
14/22
-
-
-
-
-
-
-
-
-
-
27.91
2.764
9.903
-
-
32.00
14/23
-
-
-
-
-
-
-
-
-
-
27.74
2.595
9.355
-
-
34.80
14/24
-
-
-
-
-
-
-
-
-
-
29.16
2.510
8.608
-
-
30.80
14/25
-
-
-
-
-
-
-
-
-
-
29.35
2.591
8.828
-
-
33.00
14/26
-
-
-
-
-
-
-
-
-
-
29.23
2.348
8.033
-
-
39.00
14/27
-
-
-
-
-
-
-
-
-
-
28.70
2.757
9.606
-
-
28.80
14/28
-
-
-
-
-
-
-
-
-
-
30.00
2.757
9.190
-
-
32.60
14/29
-
-
-
-
-
-
-
-
-
-
29.58
2.733
9.239
-
-
35.40
14/30
-
-
-
-
-
-
-
-
-
-
28.92
2.835
9.803
-
-
35.10
14/31
-
-
-
-
-
-
-
-
-
-
28.62
2.483
8.676
-
-
34.10
14/32
-
-
-
-
-
-
-
-
-
-
29.33
2.232
7.610
-
-
34.10
14/33
-
-
-
-
-
-
-
-
-
-
29.06
2.646
9.105
-
-
33.80
14/34
-
-
-
-
-
-
-
-
-
-
24.69
2.344
9.494
-
-
22.20
A68
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
14/35
-
-
-
-
-
-
-
-
-
-
24.35
2.452
10.070
-
-
20.20
14/36
-
-
-
-
-
-
-
-
-
-
24.89
2.303
9.253
-
-
18.70
14/37
-
-
-
-
-
-
-
-
-
-
22.96
2.143
9.334
-
-
19.00
14/38
-
-
-
-
-
-
-
-
-
-
25.35
2.588
10.209
-
-
18.70
14/39
-
-
-
-
-
-
-
-
-
-
24.61
2.380
9.671
-
-
19.20
14/40
-
-
-
-
-
-
-
-
-
-
23.94
2.402
10.033
-
-
21.20
14/41
-
-
-
-
-
-
-
-
-
-
23.87
2.256
9.451
-
-
21.20
14/42
-
-
-
-
-
-
-
-
-
-
23.52
2.206
9.379
-
-
22.70
14/43
-
-
-
-
-
-
-
-
-
-
24.11
2.275
9.436
-
-
20.70
14/44
-
-
-
-
-
-
-
-
-
-
24.23
2.421
9.992
-
-
20.40
14/45
-
-
-
-
-
-
-
-
-
-
32.04
2.487
7.762
-
-
35.30
14/46
-
-
-
-
-
-
-
-
-
-
27.89
3.354
12.026
-
-
25.50
14/47
-
-
-
-
-
-
-
-
-
-
32.05
2.980
9.298
-
-
37.50
14/48
-
-
-
-
-
-
-
-
-
-
32.62
3.152
9.663
-
-
31.20
14/49
-
-
-
-
-
-
-
-
-
-
31.87
2.649
8.312
-
-
32.70
14/50
-
-
-
-
-
-
-
-
-
-
31.88
2.378
7.459
-
-
34.20
14/51
-
-
-
-
-
-
-
-
-
-
30.18
2.037
6.750
-
-
30.50
14/52
-
-
-
-
-
-
-
-
-
-
30.98
2.329
7.518
-
-
28.20
14/53
-
-
-
-
-
-
-
-
-
-
31.96
2.436
7.622
-
-
35.70
14/54
-
-
-
-
-
-
-
-
-
-
31.94
2.682
8.397
-
-
36.50
14/55
-
-
-
-
-
-
-
-
-
-
31.34
2.973
9.486
-
-
32.70
14/56
-
-
-
-
-
-
-
-
-
-
31.09
3.164
10.177
-
-
30.20
14/57
-
-
-
-
-
-
-
-
-
-
27.08
3.622
13.375
-
-
23.50
14/58
-
-
-
-
-
-
-
-
-
-
27.96
2.391
8.552
-
-
26.50
14/59
-
-
-
-
-
-
-
-
-
-
28.74
3.198
11.127
-
-
27.50
14/60
-
-
-
-
-
-
-
-
-
-
30.01
3.728
12.423
-
-
28.00
14/61
-
-
-
-
-
-
-
-
-
-
29.37
3.162
10.766
-
-
25.70
14/62
-
-
-
-
-
-
-
-
-
-
25.76
2.032
7.888
-
-
26.70
14/63
-
-
-
-
-
-
-
-
-
-
28.13
3.598
12.791
-
-
27.20
14/64
-
-
-
-
-
-
-
-
-
-
26.26
2.273
8.656
-
-
25.50
14/65
-
-
-
-
-
-
-
-
-
-
24.36
2.809
11.531
-
-
23.50
14/66
-
-
-
-
-
-
-
-
-
-
27.88
3.611
12.952
-
-
26.40
14/67
-
-
-
-
-
-
-
-
-
-
27.38
2.800
10.226
-
-
26.00
14/68
-
-
-
-
-
-
-
-
-
-
28.81
2.625
9.111
-
-
30.20
14/69
-
-
-
-
-
-
-
-
-
-
27.65
3.016
10.908
-
-
26.70
14/70
-
-
-
-
-
-
-
-
-
-
27.57
2.609
9.463
-
-
27.00
14/71
-
-
-
-
-
-
-
-
-
-
26.80
2.983
11.131
-
-
25.50
14/72
-
-
-
-
-
-
-
-
-
-
27.40
2.541
9.274
-
-
26.00
14/73
-
-
-
-
-
-
-
-
-
-
27.97
2.407
8.606
-
-
26.70
14/74
-
-
-
-
-
-
-
-
-
-
27.13
2.759
10.170
-
-
23.00
14/75
-
-
-
-
-
-
-
-
-
-
28.49
2.479
8.701
-
-
27.20
14/76
-
-
-
-
-
-
-
-
-
-
27.25
2.649
9.721
-
-
26.50
14/77
-
-
-
-
-
-
-
-
-
-
27.65
2.746
9.931
-
-
26.50
14/78
-
-
-
-
-
-
-
-
-
-
34.65
2.727
7.870
-
-
36.20
14/79
-
-
-
-
-
-
-
-
-
-
34.59
3.395
9.815
-
-
36.70
14/80
-
-
-
-
-
-
-
-
-
-
35.32
3.114
8.817
-
-
38.50
14/81
-
-
-
-
-
-
-
-
-
-
35.56
3.586
10.084
-
-
36.50
14/82
-
-
-
-
-
-
-
-
-
-
35.43
3.304
9.325
-
-
36.00
14/83
-
-
-
-
-
-
-
-
-
-
35.29
3.284
9.306
-
-
38.20
14/84
-
-
-
-
-
-
-
-
-
-
36.11
3.018
8.358
-
-
39.00
14/85
-
-
-
-
-
-
-
-
-
-
35.57
3.262
9.171
-
-
38.70
14/86
-
-
-
-
-
-
-
-
-
-
35.58
3.317
9.323
-
-
35.20
14/87
-
-
-
-
-
-
-
-
-
-
35.47
4.268
12.033
-
-
39.20
Test area
A69
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
14/88
-
-
-
-
-
-
-
-
-
-
35.36
3.363
9.511
-
-
37.40
14/89
-
-
-
-
-
-
-
-
-
-
29.96
2.350
7.844
-
-
30.20
14/90
-
-
-
-
-
-
-
-
-
-
30.02
2.490
8.294
-
-
31.00
14/91
-
-
-
-
-
-
-
-
-
-
28.69
2.250
7.842
-
-
28.70
14/92
-
-
-
-
-
-
-
-
-
-
29.30
2.602
8.881
-
-
26.70
14/93
-
-
-
-
-
-
-
-
-
-
28.70
2.660
9.268
-
-
29.70
14/94
-
-
-
-
-
-
-
-
-
-
30.13
2.484
8.244
-
-
30.20
14/95
-
-
-
-
-
-
-
-
-
-
29.61
1.635
5.522
-
-
29.00
14/96
-
-
-
-
-
-
-
-
-
-
29.16
2.566
8.800
-
-
30.70
14/97
-
-
-
-
-
-
-
-
-
-
28.88
2.631
9.110
-
-
26.50
14/98
-
-
-
-
-
-
-
-
-
-
30.16
2.513
8.332
-
-
28.20
14/99
-
-
-
-
-
-
-
-
-
-
29.46
2.490
8.452
-
-
29.10
14/100
-
-
-
-
-
-
-
-
-
-
28.79
2.552
8.864
-
-
30.00
14/101
-
-
-
-
-
-
-
-
-
-
29.95
2.869
9.579
-
-
26.50
14/102
-
-
-
-
-
-
-
-
-
-
31.31
2.698
8.617
-
-
32.50
14/103
-
-
-
-
-
-
-
-
-
-
29.86
2.363
7.914
-
-
28.50
14/104
-
-
-
-
-
-
-
-
-
-
32.05
2.953
9.214
-
-
31.50
14/105
-
-
-
-
-
-
-
-
-
-
29.51
2.751
9.322
-
-
27.70
14/106
-
-
-
-
-
-
-
-
-
-
31.11
2.927
9.409
-
-
28.50
14/107
-
-
-
-
-
-
-
-
-
-
29.36
2.336
7.956
-
-
26.20
14/108
-
-
-
-
-
-
-
-
-
-
30.99
2.517
8.122
-
-
31.50
14/109
-
-
-
-
-
-
-
-
-
-
33.54
2.882
8.593
-
-
33.70
14/110
-
-
-
-
-
-
-
-
-
-
30.65
3.011
9.824
-
-
29.70
14/111
-
-
-
-
-
-
-
-
-
-
37.51
3.390
9.038
-
-
37.50
14/112
-
-
-
-
-
-
-
-
-
-
38.32
2.929
7.644
-
-
45.20
14/113
-
-
-
-
-
-
-
-
-
-
38.04
3.220
8.465
-
-
52.50
14/114
-
-
-
-
-
-
-
-
-
-
39.11
2.601
6.650
-
-
48.00
14/115
-
-
-
-
-
-
-
-
-
-
38.62
2.410
6.240
-
-
46.00
14/116
-
-
-
-
-
-
-
-
-
-
38.77
3.334
8.599
-
-
48.20
14/117
-
-
-
-
-
-
-
-
-
-
38.59
2.619
6.787
-
-
50.20
14/118
-
-
-
-
-
-
-
-
-
-
39.06
3.076
7.875
-
-
48.00
14/119
-
-
-
-
-
-
-
-
-
-
38.45
2.891
7.519
-
-
48.20
14/120
-
-
-
-
-
-
-
-
-
-
38.98
2.744
7.040
-
-
55.70
14/121
-
-
-
-
-
-
-
-
-
-
38.54
2.964
7.691
-
-
47.90
14/122
-
-
-
-
-
-
-
-
-
-
29.29
2.608
8.904
-
-
35.20
14/123
-
-
-
-
-
-
-
-
-
-
28.38
2.582
9.098
-
-
32.20
14/124
-
-
-
-
-
-
-
-
-
-
27.18
2.662
9.794
-
-
32.50
14/125
-
-
-
-
-
-
-
-
-
-
28.44
2.539
8.928
-
-
32.70
14/126
-
-
-
-
-
-
-
-
-
-
27.91
2.670
9.566
-
-
31.70
14/127
-
-
-
-
-
-
-
-
-
-
28.46
2.423
8.514
-
-
32.20
14/128
-
-
-
-
-
-
-
-
-
-
28.19
2.448
8.684
-
-
32.70
14/129
-
-
-
-
-
-
-
-
-
-
28.71
2.811
9.791
-
-
31.70
14/130
-
-
-
-
-
-
-
-
-
-
27.83
2.578
9.263
-
-
33.20
14/131
-
-
-
-
-
-
-
-
-
-
28.78
2.400
8.339
-
-
24.70
14/132
-
-
-
-
-
-
-
-
-
-
28.32
2.624
9.266
-
-
32.00
14/133
-
-
-
-
-
-
-
-
-
-
27.52
2.674
9.717
-
-
22.20
14/134
-
-
-
-
-
-
-
-
-
-
27.75
2.477
8.926
-
-
26.20
14/135
-
-
-
-
-
-
-
-
-
-
27.90
2.777
9.953
-
-
26.50
14/136
-
-
-
-
-
-
-
-
-
-
28.00
3.142
11.221
-
-
25.20
14/137
-
-
-
-
-
-
-
-
-
-
26.97
3.270
12.125
-
-
26.70
14/138
-
-
-
-
-
-
-
-
-
-
27.91
2.988
10.706
-
-
26.20
14/139
-
-
-
-
-
-
-
-
-
-
26.92
2.851
10.591
-
-
26.70
14/140
-
-
-
-
-
-
-
-
-
-
27.71
3.072
11.086
-
-
27.20
Test area
A70
Test area
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
14/141
-
-
-
-
-
-
-
-
-
-
28.53
3.207
11.241
-
-
28.50
14/142
-
-
-
-
-
-
-
-
-
-
27.63
2.935
10.623
-
-
29.00
14/143
-
-
-
-
-
-
-
-
-
-
27.69
2.973
10.737
-
-
26.40
14/144
-
-
-
-
-
-
-
-
-
-
32.24
2.773
8.601
-
-
32.50
14/145
-
-
-
-
-
-
-
-
-
-
32.56
2.677
8.222
-
-
33.20
14/146
-
-
-
-
-
-
-
-
-
-
32.77
3.235
9.872
-
-
28.50
14/147
-
-
-
-
-
-
-
-
-
-
32.12
2.872
8.941
-
-
34.50
14/148
-
-
-
-
-
-
-
-
-
-
33.31
3.737
11.219
-
-
37.00
14/149
-
-
-
-
-
-
-
-
-
-
33.58
3.336
9.934
-
-
36.20
14/150
-
-
-
-
-
-
-
-
-
-
33.74
2.952
8.749
-
-
37.70
14/151
-
-
-
-
-
-
-
-
-
-
33.45
3.096
9.256
-
-
36.20
14/152
-
-
-
-
-
-
-
-
-
-
32.96
3.314
10.055
-
-
36.20
14/153
-
-
-
-
-
-
-
-
-
-
32.74
3.092
9.444
-
-
34.00
14/154
-
-
-
-
-
-
-
-
-
-
32.95
3.156
9.578
-
-
34.60
14/155
-
-
-
-
-
-
-
-
-
-
25.47
2.863
11.241
-
-
26.20
14/156
-
-
-
-
-
-
-
-
-
-
26.54
2.744
10.339
-
-
30.00
14/157
-
-
-
-
-
-
-
-
-
-
26.07
2.581
9.900
-
-
30.50
14/158
-
-
-
-
-
-
-
-
-
-
27.09
2.200
8.121
-
-
28.70
14/159
-
-
-
-
-
-
-
-
-
-
27.82
2.791
10.032
-
-
30.50
14/160
-
-
-
-
-
-
-
-
-
-
27.19
2.517
9.257
-
-
29.70
14/161
-
-
-
-
-
-
-
-
-
-
27.06
3.116
11.515
-
-
29.00
14/162
-
-
-
-
-
-
-
-
-
-
26.59
2.608
9.808
-
-
30.00
14/163
-
-
-
-
-
-
-
-
-
-
27.19
3.036
11.166
-
-
26.00
14/164
-
-
-
-
-
-
-
-
-
-
27.33
2.716
9.938
-
-
26.50
14/165
-
-
-
-
-
-
-
-
-
-
26.83
2.793
10.410
-
-
28.70
14/166
-
-
-
-
-
-
-
-
-
-
25.04
2.597
10.371
-
-
24.20
14/167
-
-
-
-
-
-
-
-
-
-
25.41
3.048
11.995
-
-
28.70
14/168
-
-
-
-
-
-
-
-
-
-
27.27
2.386
8.750
-
-
27.70
14/169
-
-
-
-
-
-
-
-
-
-
25.54
2.547
9.973
-
-
25.70
14/170
-
-
-
-
-
-
-
-
-
-
25.49
2.356
9.243
-
-
27.20
14/171
-
-
-
-
-
-
-
-
-
-
26.90
2.329
8.658
-
-
28.70
14/172
-
-
-
-
-
-
-
-
-
-
26.99
2.720
10.078
-
-
28.00
14/173
-
-
-
-
-
-
-
-
-
-
26.17
2.238
8.552
-
-
27.00
14/174
-
-
-
-
-
-
-
-
-
-
27.85
2.864
10.284
-
-
37.50
14/175
-
-
-
-
-
-
-
-
-
-
25.66
2.982
11.621
-
-
28.70
14/176
-
-
-
-
-
-
-
-
-
-
25.53
2.748
10.764
-
-
30.70
14/177
-
-
-
-
-
-
-
-
-
-
27.73
3.315
11.955
-
-
36.00
14/178
-
-
-
-
-
-
-
-
-
-
25.99
3.109
11.962
-
-
31.70
14/179
-
-
-
-
-
-
-
-
-
-
25.90
2.741
10.583
-
-
27.70
14/180
-
-
-
-
-
-
-
-
-
-
25.13
2.603
10.358
-
-
25.00
14/181
-
-
-
-
-
-
-
-
-
-
28.18
2.672
9.482
-
-
36.20
14/182
-
-
-
-
-
-
-
-
-
-
27.50
2.980
10.836
-
-
33.20
14/183
-
-
-
-
-
-
-
-
-
-
27.66
3.170
11.461
-
-
34.20
14/184
-
-
-
-
-
-
-
-
-
-
26.71
3.113
11.655
-
-
32.10
14/185
-
-
-
-
-
-
-
-
-
-
26.67
2.338
8.766
-
-
34.20
14/186
-
-
-
-
-
-
-
-
-
-
26.15
2.794
10.685
-
-
29.00
14/187
-
-
-
-
-
-
-
-
-
-
26.54
2.616
9.857
-
-
28.70
14/188
-
-
-
-
-
-
-
-
-
-
24.66
2.542
10.308
-
-
29.20
14/189
-
-
-
-
-
-
-
-
-
-
24.94
2.530
10.144
-
-
28.70
14/190
-
-
-
-
-
-
-
-
-
-
26.03
2.880
11.064
-
-
27.50
14/191
-
-
-
-
-
-
-
-
-
-
27.29
3.089
11.319
-
-
30.00
14/192
-
-
-
-
-
-
-
-
-
-
27.67
2.868
10.365
-
-
30.00
14/193
-
-
-
-
-
-
-
-
-
-
25.64
2.654
10.351
-
-
25.50
A71
Test area
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
14/194
-
-
-
-
-
-
-
-
-
-
26.06
3.123
11.984
-
-
29.70
14/195
-
-
-
-
-
-
-
-
-
-
26.17
2.885
11.024
-
-
29.20
15/1
-
-
-
-
-
-
-
-
-
-
34.8
2.7144
7.800
-
-
30.50
15/2
-
-
-
-
-
-
-
-
-
-
37.3
4.103
11.000
-
-
31.00
15/3
-
-
-
-
-
-
-
-
-
-
40.8
6.12
15.000
-
-
34.00
15/4
-
-
-
-
-
-
-
-
-
-
35.7
2.5347
7.100
-
-
32.00
15/5
-
-
-
-
-
-
-
-
-
-
35.7
2.7489
7.700
-
-
32.50
15/6
-
-
-
-
-
-
-
-
-
-
40.8
4.6104
11.300
-
-
37.00
15/7
-
-
-
-
-
-
-
-
-
-
44.1
3.0429
6.900
-
-
58.00
15/8
-
-
-
-
-
-
-
-
-
-
46.5
3.2085
6.900
-
-
54.50
15/9
-
-
-
-
-
-
-
-
-
-
46.6
2.563
5.500
-
-
60.00
71.00
15/10
-
-
-
-
-
-
-
-
-
-
45
2.34
5.200
-
-
15/11
-
-
-
-
-
-
-
-
-
-
46
2.162
4.700
-
-
71.00
15/12
-
-
-
-
-
-
-
-
-
-
46.3
2.1298
4.600
-
-
73.50
15/13
-
-
-
-
-
-
-
-
-
-
33.3
3.2301
9.700
-
-
28.00
15/14
-
-
-
-
-
-
-
-
-
-
33.7
2.8645
8.500
-
-
28.00
15/15
-
-
-
-
-
-
-
-
-
-
33.6
2.8224
8.400
-
-
30.00
15/16
-
-
-
-
-
-
-
-
-
-
41.4
2.484
6.000
-
-
58.00
15/17
-
-
-
-
-
-
-
-
-
-
42.3
1.8612
4.400
-
-
60.00
15/18
-
-
-
-
-
-
-
-
-
-
42.4
2.8408
6.700
-
-
61.00
15/19
-
-
-
-
-
-
-
-
-
-
39.8
3.0248
7.600
-
-
66.00
15/20
-
-
-
-
-
-
-
-
-
-
40.5
3.483
8.600
-
-
67.00
15/21
-
-
-
-
-
-
-
-
-
-
40.2
2.2512
5.600
-
-
65.00
15/22
-
-
-
-
-
-
-
-
-
-
42.9
3.2175
7.500
-
-
55.00
15/23
-
-
-
-
-
-
-
-
-
-
43.3
3.2475
7.500
-
-
58.00
15/24
-
-
-
-
-
-
-
-
-
-
42.3
2.4111
5.700
-
-
55.00
16/1
-
-
-
-
-
-
-
-
-
-
20.3
1.4819
7.300
-
-
13.00
16/2
-
-
-
-
-
-
-
-
-
-
22.2
1.5096
6.800
-
-
16.00
16/3
-
-
-
-
-
-
-
-
-
-
25.4
3.1496
12.400
-
-
18.90
16/4
-
-
-
-
-
-
-
-
-
-
24.9
2.7639
11.100
-
-
21.80
16/5
-
-
-
-
-
-
-
-
-
-
26.1
1.6965
6.500
-
-
25.40
16/6
-
-
-
-
-
-
-
-
-
-
29.5
1.7995
6.100
-
-
28.80
16/7
-
-
-
-
-
-
-
-
-
-
25.3
2.0493
8.100
-
-
14.40
16/8
-
-
-
-
-
-
-
-
-
-
26.8
1.7956
6.700
-
-
21.40
16/9
-
-
-
-
-
-
-
-
-
-
29.3
1.8752
6.400
-
-
24.40
16/10
-
-
-
-
-
-
-
-
-
-
30
1.83
6.100
-
-
27.00
16/11
-
-
-
-
-
-
-
-
-
-
32.3
3.2946
10.200
-
-
30.20
16/12
-
-
-
-
-
-
-
-
-
-
34.5
1.6905
4.900
-
-
36.90
16/13
-
-
-
-
-
-
-
-
-
-
12.3
2.1156
17.200
-
-
6.10
16/14
-
-
-
-
-
-
-
-
-
-
18.9
2.3247
12.300
-
-
12.20
16/15
-
-
-
-
-
-
-
-
-
-
20.1
2.3718
11.800
-
-
16.10
16/16
-
-
-
-
-
-
-
-
-
-
25
3.15
12.600
-
-
18.70
16/17
-
-
-
-
-
-
-
-
-
-
26.3
1.7621
6.700
-
-
20.30
16/18
-
-
-
-
-
-
-
-
-
-
30.9
2.781
9.000
-
-
23.10
16/19
-
-
-
-
-
-
-
-
-
-
17.7
2.301
13.000
-
-
7.30
16/20
-
-
-
-
-
-
-
-
-
-
22.6
3.2544
14.400
-
-
16.00
16/21
-
-
-
-
-
-
-
-
-
-
26.2
1.703
6.500
-
-
21.60
16/22
-
-
-
-
-
-
-
-
-
-
30.5
1.9825
6.500
-
-
25.60
16/23
-
-
-
-
-
-
-
-
-
-
30.6
2.7234
8.900
-
-
27.50
16/24
-
-
-
-
-
-
-
-
-
-
30.1
2.8294
9.400
-
-
31.50
16/25
-
-
-
-
-
-
-
-
-
-
21.9
2.0367
9.300
-
-
12.80
A72
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
16/26
-
-
-
-
-
-
-
-
-
-
27.4
2.4386
8.900
-
-
19.10
16/27
-
-
-
-
-
-
-
-
-
-
29.7
2.4354
8.200
-
-
25.50
Test area
16/28
-
-
-
-
-
-
-
-
-
-
29.9
3.3787
11.300
-
-
28.10
16/29
-
-
-
-
-
-
-
-
-
-
31.4
2.6376
8.400
-
-
30.30
16/30
-
-
-
-
-
-
-
-
-
-
32.4
3.9852
12.300
-
-
32.80
16/31
-
-
-
-
-
-
-
-
-
-
13.4
1.5142
11.300
-
-
6.70
16/32
-
-
-
-
-
-
-
-
-
-
15.9
2.0193
12.700
-
-
11.90
16/33
-
-
-
-
-
-
-
-
-
-
20.1
2.2713
11.300
-
-
14.70
16/34
-
-
-
-
-
-
-
-
-
-
24.2
1.7182
7.100
-
-
18.60
16/35
-
-
-
-
-
-
-
-
-
-
26.8
2.3852
8.900
-
-
19.80
16/36
-
-
-
-
-
-
-
-
-
-
28
1.764
6.300
-
-
24.50
16/37
-
-
-
-
-
-
-
-
-
-
18.4
1.9688
10.700
-
-
10.60
16/38
-
-
-
-
-
-
-
-
-
-
21.8
2.18
10.000
-
-
15.40
16/39
-
-
-
-
-
-
-
-
-
-
24.7
2.9393
11.900
-
-
17.30
16/40
-
-
-
-
-
-
-
-
-
-
25
3.25
13.000
-
-
19.40
16/41
-
-
-
-
-
-
-
-
-
-
27.3
3.549
13.000
-
-
23.20
16/42
-
-
-
-
-
-
-
-
-
-
29.2
2.7448
9.400
-
-
26.30
17/1
-
-
-
-
-
-
-
-
-
-
48.1
1.44
2.994
-
-
54.90
17/2
-
-
-
-
-
-
-
-
-
-
48.2
0.58
1.203
-
-
69.40
17/3
-
-
-
-
-
-
-
-
-
-
50
0.7
1.400
-
-
72.60
17/4
-
-
-
-
-
-
-
-
-
-
51.3
1.92
3.743
-
-
76.50
17/5
-
-
-
-
-
-
-
-
-
-
48.6
1.65
3.395
-
-
72.80
17/6
-
-
-
-
-
-
-
-
-
-
51.2
0.43
0.840
-
-
81.80
17/7
-
-
-
-
-
-
-
-
-
-
47.2
1.26
2.669
-
-
73.90
17/8
-
-
-
-
-
-
-
-
-
-
51.8
1.58
3.050
-
-
79.60
17/9
-
-
-
-
-
-
-
-
-
-
54.8
0.83
1.515
-
-
83.10
17/10
-
-
-
-
-
-
-
-
-
-
51.6
1.3
2.519
-
-
77.20
17/11
-
-
-
-
-
-
-
-
-
-
51.4
0.99
1.926
-
-
87.60
17/12
-
-
-
-
-
-
-
-
-
-
51.6
0.89
1.725
-
-
83.20
17/13
-
-
-
-
-
-
-
-
-
-
45.8
0.91
1.987
-
-
56.40
17/14
-
-
-
-
-
-
-
-
-
-
46.1
1.97
4.273
-
-
65.30
17/15
-
-
-
-
-
-
-
-
-
-
47.8
0.59
1.234
-
-
67.10
17/16
-
-
-
-
-
-
-
-
-
-
47.8
0.68
1.423
-
-
66.80
17/17
-
-
-
-
-
-
-
-
-
-
49.2
1.21
2.459
-
-
70.00
17/18
-
-
-
-
-
-
-
-
-
-
49.6
0.56
1.129
-
-
73.60
17/19
-
-
-
-
-
-
-
-
-
-
48
0.7
1.458
-
-
61.50
17/20
-
-
-
-
-
-
-
-
-
-
46.2
1.24
2.684
-
-
70.60
17/21
-
-
-
-
-
-
-
-
-
-
48.1
0.39
0.811
-
-
67.70
17/22
-
-
-
-
-
-
-
-
-
-
48
0.54
1.125
-
-
69.70
17/23
-
-
-
-
-
-
-
-
-
-
51.6
0.93
1.802
-
-
88.30
17/24
-
-
-
-
-
-
-
-
-
-
51.1
0.66
1.292
-
-
66.70
17/25
-
-
-
-
-
-
-
-
-
-
47.4
0.9
1.899
-
-
61.30
17/26
-
-
-
-
-
-
-
-
-
-
53.2
0.92
1.729
-
-
72.40
17/27
-
-
-
-
-
-
-
-
-
-
47.5
1.08
2.274
-
-
67.80
17/28
-
-
-
-
-
-
-
-
-
-
48.8
1.01
2.070
-
-
72.50
17/29
-
-
-
-
-
-
-
-
-
-
49
1.14
2.327
-
-
70.70
17/30
-
-
-
-
-
-
-
-
-
-
51.2
0.62
1.211
-
-
68.40
17/31
-
-
-
-
-
-
-
-
-
-
46.7
0.8
1.713
-
-
56.30
17/32
-
-
-
-
-
-
-
-
-
-
47.7
1.15
2.411
-
-
64.30
17/33
-
-
-
-
-
-
-
-
-
-
47.3
1.05
2.220
-
-
66.30
17/34
-
-
-
-
-
-
-
-
-
-
47
1.02
2.170
-
-
64.60
17/35
-
-
-
-
-
-
-
-
-
-
49.7
0.58
1.167
-
-
67.90
A73
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
17/36
-
-
-
-
-
-
-
-
-
-
49.7
0.79
1.590
-
-
67.10
17/37
-
-
-
-
-
-
-
-
-
-
49.9
1.01
2.024
-
-
76.80
17/38
-
-
-
-
-
-
-
-
-
-
50
1.33
2.660
-
-
80.90
17/39
-
-
-
-
-
-
-
-
-
-
50.6
0.97
1.917
-
-
78.00
17/40
-
-
-
-
-
-
-
-
-
-
50.1
1.39
2.774
-
-
77.70
17/41
-
-
-
-
-
-
-
-
-
-
50.3
1.3
2.584
-
-
78.80
17/42
-
-
-
-
-
-
-
-
-
-
53.9
1.39
2.579
-
-
90.40
17/43
-
-
-
-
-
-
-
-
-
-
45.1
0.77
1.707
-
-
57.90
17/44
-
-
-
-
-
-
-
-
-
-
48
1.3
2.708
-
-
61.00
17/45
-
-
-
-
-
-
-
-
-
-
48.7
0.99
2.033
-
-
70.40
17/46
-
-
-
-
-
-
-
-
-
-
48.6
1.14
2.346
-
-
73.20
17/47
-
-
-
-
-
-
-
-
-
-
50.1
1.34
2.675
-
-
76.70
17/48
-
-
-
-
-
-
-
-
-
-
49.6
1.6
3.226
-
-
80.00
17/49
-
-
-
-
-
-
-
-
-
-
45.7
0.91
1.991
-
-
49.20
17/50
-
-
-
-
-
-
-
-
-
-
45.9
0.93
2.026
-
-
52.00
17/51
-
-
-
-
-
-
-
-
-
-
46
0.77
1.674
-
-
63.20
17/52
-
-
-
-
-
-
-
-
-
-
50.5
0.53
1.050
-
-
63.00
17/53
-
-
-
-
-
-
-
-
-
-
51
0.75
1.471
-
-
66.50
17/54
-
-
-
-
-
-
-
-
-
-
53.9
0.23
0.427
-
-
77.40
17/55
-
-
-
-
-
-
-
-
-
-
48.3
0.26
0.538
-
-
56.20
17/56
-
-
-
-
-
-
-
-
-
-
51.5
1.59
3.087
-
-
61.30
17/57
-
-
-
-
-
-
-
-
-
-
46.2
2.55
5.519
-
-
57.30
17/58
-
-
-
-
-
-
-
-
-
-
53.2
2.5
4.699
-
-
70.20
17/59
-
-
-
-
-
-
-
-
-
-
50.9
0.9
1.768
-
-
72.10
17/60
-
-
-
-
-
-
-
-
-
-
54.3
1.1
2.026
-
-
73.00
17/61
-
-
-
-
-
-
-
-
-
-
45
0.8
1.778
-
-
51.60
17/62
-
-
-
-
-
-
-
-
-
-
45
0.6
1.333
-
-
50.90
17/63
-
-
-
-
-
-
-
-
-
-
50.1
1.76
3.513
-
-
61.40
17/64
-
-
-
-
-
-
-
-
-
-
50.4
0.76
1.508
-
-
60.80
17/65
-
-
-
-
-
-
-
-
-
-
51.5
1.02
1.981
-
-
58.90
17/66
-
-
-
-
-
-
-
-
-
-
50
1.31
2.620
-
-
62.80
17/67
-
-
-
-
-
-
-
-
-
-
46.8
0.99
2.115
-
-
46.20
17/68
-
-
-
-
-
-
-
-
-
-
48.2
1.03
2.137
-
-
55.00
17/69
-
-
-
-
-
-
-
-
-
-
48.7
1.42
2.916
-
-
55.90
17/70
-
-
-
-
-
-
-
-
-
-
49.3
0.76
1.542
-
-
62.10
17/71
-
-
-
-
-
-
-
-
-
-
50.7
1.11
2.189
-
-
61.20
17/72
-
-
-
-
-
-
-
-
-
-
48.9
0.34
0.695
-
-
63.80
17/73
-
-
-
-
-
-
-
-
-
-
44.4
1.34
3.018
-
-
43.90
17/74
-
-
-
-
-
-
-
-
-
-
46.1
1.49
3.232
-
-
59.10
17/75
-
-
-
-
-
-
-
-
-
-
48.7
0.96
1.971
-
-
57.60
17/76
-
-
-
-
-
-
-
-
-
-
44.7
0.86
1.924
-
-
50.40
Test area
17/77
-
-
-
-
-
-
-
-
-
-
46
0.83
1.804
-
-
52.60
17/78
-
-
-
-
-
-
-
-
-
-
47.6
1
2.101
-
-
61.10
17/79
-
-
-
-
-
-
-
-
-
-
48
1.05
2.188
-
-
65.50
17/80
-
-
-
-
-
-
-
-
-
-
49
1.03
2.102
-
-
76.20
17/81
-
-
-
-
-
-
-
-
-
-
49.2
0.71
1.443
-
-
80.40
17/82
-
-
-
-
-
-
-
-
-
-
52.8
1.21
2.292
-
-
85.00
17/83
-
-
-
-
-
-
-
-
-
-
54.7
0.72
1.316
-
-
93.20
17/84
-
-
-
-
-
-
-
-
-
-
47
2.83
6.021
-
-
65.50
17/85
-
-
-
-
-
-
-
-
-
-
48.5
1.75
3.608
-
-
76.20
17/86
-
-
-
-
-
-
-
-
-
-
50.3
1.3
2.584
-
-
80.40
17/87
-
-
-
-
-
-
-
-
-
-
50.9
1.41
2.770
-
-
85.00
17/88
-
-
-
-
-
-
-
-
-
-
51.2
1.12
2.188
-
-
93.20
A74
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
17/89
-
-
-
-
-
-
-
-
-
-
46.5
0.85
1.828
-
-
43.90
17/90
-
-
-
-
-
-
-
-
-
-
46.1
1.49
3.232
-
-
59.10
17/91
-
-
-
-
-
-
-
-
-
-
49.1
1.71
3.483
-
-
57.60
17/92
-
-
-
-
-
-
-
-
-
-
49
1.88
3.837
-
-
50.40
17/93
-
-
-
-
-
-
-
-
-
-
49.7
0.93
1.871
-
-
52.60
17/94
-
-
-
-
-
-
-
-
-
-
51.5
1.76
3.417
-
-
61.10
17/95
-
-
-
-
-
-
-
-
-
-
43.7
1.75
4.005
-
-
46.20
17/96
-
-
-
-
-
-
-
-
-
-
45.8
0.63
1.376
-
-
55.00
17/97
-
-
-
-
-
-
-
-
-
-
43.7
1.03
2.357
-
-
55.90
17/98
-
-
-
-
-
-
-
-
-
-
47.3
0.72
1.522
-
-
62.10
17/99
-
-
-
-
-
-
-
-
-
-
49.1
0.63
1.283
-
-
61.20
17/100
-
-
-
-
-
-
-
-
-
-
50.8
1.54
3.031
-
-
63.80
17/101
-
-
-
-
-
-
-
-
-
-
47.9
0.98
2.046
-
-
51.60
17/102
-
-
-
-
-
-
-
-
-
-
48
0.96
2.000
-
-
50.90
17/103
-
-
-
-
-
-
-
-
-
-
48.2
0.95
1.971
-
-
61.40
17/104
-
-
-
-
-
-
-
-
-
-
47.1
1.37
2.909
-
-
60.80
17/105
-
-
-
-
-
-
-
-
-
-
49.9
1.3
2.605
-
-
58.90
17/106
-
-
-
-
-
-
-
-
-
-
52.6
1.47
2.795
-
-
62.80
17/107
-
-
-
-
-
-
-
-
-
-
46.1
0.69
1.497
-
-
56.20
17/108
-
-
-
-
-
-
-
-
-
-
48.4
1.14
2.355
-
-
61.30
17/109
-
-
-
-
-
-
-
-
-
-
48.5
0.82
1.691
-
-
57.30
17/110
-
-
-
-
-
-
-
-
-
-
49.2
0.57
1.159
-
-
70.20
17/111
-
-
-
-
-
-
-
-
-
-
53.6
0.95
1.772
-
-
72.10
17/112
-
-
-
-
-
-
-
-
-
-
53.6
1.61
3.004
-
-
73.00
17/113
-
-
-
-
-
-
-
-
-
-
42.5
2.18
5.129
-
-
76.80
17/114
-
-
-
-
-
-
-
-
-
-
43.5
1.71
3.931
-
-
80.90
17/115
-
-
-
-
-
-
-
-
-
-
43.5
1.45
3.333
-
-
78.00
17/116
-
-
-
-
-
-
-
-
-
-
47
1.29
2.745
-
-
77.70
Test area
17/117
-
-
-
-
-
-
-
-
-
-
44.9
2.2
4.900
-
-
56.30
17/118
-
-
-
-
-
-
-
-
-
-
46.4
0.52
1.121
-
-
64.30
17/119
-
-
-
-
-
-
-
-
-
-
47.7
0.59
1.237
-
-
66.30
17/120
-
-
-
-
-
-
-
-
-
-
48
0.64
1.333
-
-
64.60
17/121
-
-
-
-
-
-
-
-
-
-
46.9
1.51
3.220
-
-
61.30
17/122
-
-
-
-
-
-
-
-
-
-
48
1.56
3.250
-
-
72.40
17/123
-
-
-
-
-
-
-
-
-
-
46.5
2.58
5.548
-
-
56.40
17/124
-
-
-
-
-
-
-
-
-
-
47.2
1.57
3.326
-
-
65.30
17/125
-
-
-
-
-
-
-
-
-
-
47.5
1.08
2.274
-
-
67.10
17/126
-
-
-
-
-
-
-
-
-
-
49.8
2.52
5.060
-
-
73.90
17/127
-
-
-
-
-
-
-
-
-
-
50.6
2.51
4.960
-
-
79.60
17/128
-
-
-
-
-
-
-
-
-
-
51.9
1.5
2.890
-
-
83.10
17/129
-
-
-
-
-
-
-
-
-
-
53
2.17
4.094
-
-
77.20
17/130
-
-
-
-
-
-
-
-
-
-
46.2
2
4.329
-
-
54.90
18/1
-
-
-
-
-
-
-
-
-
-
36.10
3.350
9.280
-
-
-
18/2
-
-
-
-
-
-
-
-
-
-
41.80
2.660
6.364
-
-
-
18/3
-
-
-
-
-
-
-
-
-
-
41.10
1.660
4.039
-
-
-
18/4
-
-
-
-
-
-
-
-
-
-
40.30
2.360
5.856
-
-
-
18/5
-
-
-
-
-
-
-
-
-
-
40.10
2.280
5.686
-
-
-
18/6
-
-
-
-
-
-
-
-
-
-
39.30
2.410
6.132
-
-
-
18/7
-
-
-
-
-
-
-
-
-
-
43.60
1.170
2.683
-
-
-
18/8
-
-
-
-
-
-
-
-
-
-
47.70
2.790
5.849
-
-
-
18/9
-
-
-
-
-
-
-
-
-
-
44.80
1.230
2.746
-
-
-
18/10
-
-
-
-
-
-
-
-
-
-
41.00
3.590
8.756
-
-
-
A75
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
18/11
-
-
-
-
-
-
-
-
-
-
40.50
2.270
5.605
-
-
-
18/12
-
-
-
-
-
-
-
-
-
-
40.90
2.420
5.917
-
-
-
18/13
-
-
-
-
-
-
-
-
-
-
40.80
1.030
2.525
-
-
-
18/14
-
-
-
-
-
-
-
-
-
-
41.10
2.420
5.888
-
-
-
18/15
-
-
-
-
-
-
-
-
-
-
32.30
4.220
13.065
-
-
-
18/16
-
-
-
-
-
-
-
-
-
-
46.80
3.700
7.906
-
-
-
18/17
-
-
-
-
-
-
-
-
-
-
44.50
4.100
9.213
-
-
-
18/18
-
-
-
-
-
-
-
-
-
-
44.90
4.100
9.131
-
-
-
18/19
-
-
-
-
-
-
-
-
-
-
43.20
4.000
9.259
-
-
-
18/20
-
-
-
-
-
-
-
-
-
-
43.20
3.700
8.565
-
-
-
18/21
-
-
-
-
-
-
-
-
-
-
42.80
3.000
7.009
-
-
-
18/22
-
-
-
-
-
-
-
-
-
-
41.60
3.100
7.452
-
-
-
18/23
-
-
-
-
-
-
-
-
-
-
41.70
3.500
8.393
-
-
-
18/24
-
-
-
-
-
-
-
-
-
-
41.90
3.600
8.592
-
-
-
18/25
-
-
-
-
-
-
-
-
-
-
43.10
3.600
8.353
-
-
-
18/26
-
-
-
-
-
-
-
-
-
-
42.20
3.400
8.057
-
-
-
18/27
-
-
-
-
-
-
-
-
-
-
43.80
3.600
8.219
-
-
-
18/28
-
-
-
-
-
-
-
-
-
-
42.80
3.100
7.243
-
-
-
18/29
-
-
-
-
-
-
-
-
-
-
41.20
2.000
4.854
-
-
-
18/30
-
-
-
-
-
-
-
-
-
-
42.50
3.000
7.059
-
-
-
18/31
-
-
-
-
-
-
-
-
-
-
39.60
2.700
6.818
-
-
-
18/32
-
-
-
-
-
-
-
-
-
-
40.30
2.800
6.948
-
-
-
18/33
-
-
-
-
-
-
-
-
-
-
40.40
3.000
7.426
-
-
-
18/34
-
-
-
-
-
-
-
-
-
-
39.90
2.200
5.514
-
-
-
18/35
-
-
-
-
-
-
-
-
-
-
40.20
2.400
5.970
-
-
-
18/36
-
-
-
-
-
-
-
-
-
-
41.10
2.900
7.056
-
-
-
18/37
-
-
-
-
-
-
-
-
-
-
41.00
2.900
7.073
-
-
-
18/38
-
-
-
-
-
-
-
-
-
-
40.80
2.900
7.108
-
-
-
18/39
-
-
-
-
-
-
-
-
-
-
40.90
3.200
7.824
-
-
-
18/40
-
-
-
-
-
-
-
-
-
-
47.50
3.900
8.211
-
-
-
18/41
-
-
-
-
-
-
-
-
-
-
44.80
4.000
8.929
-
-
-
18/42
-
-
-
-
-
-
-
-
-
-
45.10
4.100
9.091
-
-
-
18/43
-
-
-
-
-
-
-
-
-
-
43.90
3.900
8.884
-
-
-
18/44
-
-
-
-
-
-
-
-
-
-
43.50
3.800
8.736
-
-
-
18/45
-
-
-
-
-
-
-
-
-
-
43.10
2.900
6.729
-
-
-
18/46
-
-
-
-
-
-
-
-
-
-
42.50
3.100
7.294
-
-
-
18/47
-
-
-
-
-
-
-
-
-
-
42.20
3.600
8.531
-
-
-
18/48
-
-
-
-
-
-
-
-
-
-
42.30
3.700
8.747
-
-
-
18/49
-
-
-
-
-
-
-
-
-
-
42.80
3.200
7.477
-
-
-
18/50
-
-
-
-
-
-
-
-
-
-
41.90
3.300
7.876
-
-
-
18/51
-
-
-
-
-
-
-
-
-
-
43.40
3.700
8.525
-
-
-
18/52
-
-
-
-
-
-
-
-
-
-
42.30
2.900
6.856
-
-
-
18/53
-
-
-
-
-
-
-
-
-
-
40.30
1.500
3.722
-
-
-
18/54
-
-
-
-
-
-
-
-
-
-
42.00
2.600
6.190
-
-
-
18/55
-
-
-
-
-
-
-
-
-
-
39.70
2.600
6.549
-
-
-
18/56
-
-
-
-
-
-
-
-
-
-
39.90
2.500
6.266
-
-
-
18/57
-
-
-
-
-
-
-
-
-
-
39.80
2.600
6.533
-
-
-
18/58
-
-
-
-
-
-
-
-
-
-
39.90
2.000
5.013
-
-
-
18/59
-
-
-
-
-
-
-
-
-
-
40.70
2.300
5.651
-
-
-
18/60
-
-
-
-
-
-
-
-
-
-
41.70
2.800
6.715
-
-
-
18/61
-
-
-
-
-
-
-
-
-
-
40.30
2.400
5.955
-
-
-
18/62
-
-
-
-
-
-
-
-
-
-
40.40
2.500
6.188
-
-
-
18/63
-
-
-
-
-
-
-
-
-
-
40.80
3.200
7.843
-
-
-
Test area
A76
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
18/64
-
-
-
-
-
-
-
-
-
-
47.90
3.800
7.933
-
-
-
18/65
-
-
-
-
-
-
-
-
-
-
44.90
4.000
8.909
-
-
-
18/66
-
-
-
-
-
-
-
-
-
-
46.40
4.400
9.483
-
-
-
18/67
-
-
-
-
-
-
-
-
-
-
44.40
3.500
7.883
-
-
-
18/68
-
-
-
-
-
-
-
-
-
-
43.90
3.800
8.656
-
-
-
18/69
-
-
-
-
-
-
-
-
-
-
43.10
2.400
5.568
-
-
-
18/70
-
-
-
-
-
-
-
-
-
-
44.00
3.200
7.273
-
-
-
18/71
-
-
-
-
-
-
-
-
-
-
43.10
3.700
8.585
-
-
-
18/72
-
-
-
-
-
-
-
-
-
-
43.30
3.500
8.083
-
-
-
18/73
-
-
-
-
-
-
-
-
-
-
42.90
3.000
6.993
-
-
-
18/74
-
-
-
-
-
-
-
-
-
-
42.70
3.500
8.197
-
-
-
18/75
-
-
-
-
-
-
-
-
-
-
43.40
3.700
8.525
-
-
-
18/76
-
-
-
-
-
-
-
-
-
-
42.70
3.100
7.260
-
-
-
18/77
-
-
-
-
-
-
-
-
-
-
40.70
1.600
3.931
-
-
-
18/78
-
-
-
-
-
-
-
-
-
-
43.40
2.500
5.760
-
-
-
18/79
-
-
-
-
-
-
-
-
-
-
39.90
2.500
6.266
-
-
-
18/80
-
-
-
-
-
-
-
-
-
-
39.30
2.200
5.598
-
-
-
18/81
-
-
-
-
-
-
-
-
-
-
39.90
2.500
6.266
-
-
-
18/82
-
-
-
-
-
-
-
-
-
-
39.70
1.500
3.778
-
-
-
18/83
-
-
-
-
-
-
-
-
-
-
40.40
2.600
6.436
-
-
-
18/84
-
-
-
-
-
-
-
-
-
-
41.40
3.100
7.488
-
-
-
18/85
-
-
-
-
-
-
-
-
-
-
40.10
2.300
5.736
-
-
-
18/86
-
-
-
-
-
-
-
-
-
-
39.40
2.300
5.838
-
-
-
18/87
-
-
-
-
-
-
-
-
-
-
40.30
3.000
7.444
-
-
-
18/88
-
-
-
-
-
-
-
-
-
-
46.50
4.200
9.032
-
-
-
18/89
-
-
-
-
-
-
-
-
-
-
44.60
3.900
8.744
-
-
-
18/90
-
-
-
-
-
-
-
-
-
-
43.10
3.800
8.817
-
-
-
18/91
-
-
-
-
-
-
-
-
-
-
43.20
4.600
10.648
-
-
-
18/92
-
-
-
-
-
-
-
-
-
-
42.90
3.800
8.858
-
-
-
18/93
-
-
-
-
-
-
-
-
-
-
43.00
3.700
8.605
-
-
-
18/94
-
-
-
-
-
-
-
-
-
-
40.20
3.100
7.711
-
-
-
18/95
-
-
-
-
-
-
-
-
-
-
40.70
3.600
8.845
-
-
-
18/96
-
-
-
-
-
-
-
-
-
-
40.90
4.000
9.780
-
-
-
18/97
-
-
-
-
-
-
-
-
-
-
42.50
3.400
8.000
-
-
-
18/98
-
-
-
-
-
-
-
-
-
-
40.50
2.700
6.667
-
-
-
18/99
-
-
-
-
-
-
-
-
-
-
43.30
3.700
8.545
-
-
-
18/100
-
-
-
-
-
-
-
-
-
-
41.50
2.300
5.542
-
-
-
18/101
-
-
-
-
-
-
-
-
-
-
39.60
1.400
3.535
-
-
-
18/102
-
-
-
-
-
-
-
-
-
-
39.20
2.900
7.398
-
-
-
18/103
-
-
-
-
-
-
-
-
-
-
39.40
2.700
6.853
-
-
-
18/104
-
-
-
-
-
-
-
-
-
-
40.70
2.900
7.125
-
-
-
18/105
-
-
-
-
-
-
-
-
-
-
39.70
2.800
7.053
-
-
-
18/106
-
-
-
-
-
-
-
-
-
-
40.10
2.700
6.733
-
-
-
18/107
-
-
-
-
-
-
-
-
-
-
41.20
1.900
4.612
-
-
-
18/108
-
-
-
-
-
-
-
-
-
-
42.10
2.200
5.226
-
-
-
18/109
-
-
-
-
-
-
-
-
-
-
40.50
2.600
6.420
-
-
-
18/110
-
-
-
-
-
-
-
-
-
-
42.40
3.000
7.075
-
-
-
18/111
-
-
-
-
-
-
-
-
-
-
41.90
3.600
8.592
-
-
-
18/112
-
-
-
-
-
-
-
-
-
-
43.60
2.900
6.651
-
-
-
18/113
-
-
-
-
-
-
-
-
-
-
43.60
4.600
10.550
-
-
-
18/114
-
-
-
-
-
-
-
-
-
-
44.20
4.000
9.050
-
-
-
18/115
-
-
-
-
-
-
-
-
-
-
39.40
4.100
10.406
-
-
-
18/116
-
-
-
-
-
-
-
-
-
-
42.00
3.200
7.619
-
-
-
Test area
A77
Test area
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
18/117
-
-
-
-
-
-
-
-
-
-
41.10
3.700
9.002
-
-
-
18/118
-
-
-
-
-
-
-
-
-
-
37.40
2.900
7.754
-
-
-
18/119
-
-
-
-
-
-
-
-
-
-
39.40
2.900
7.360
-
-
-
18/120
-
-
-
-
-
-
-
-
-
-
37.80
2.700
7.143
-
-
-
18/121
-
-
-
-
-
-
-
-
-
-
42.40
4.100
9.670
-
-
-
18/122
-
-
-
-
-
-
-
-
-
-
40.40
2.000
4.950
-
-
-
18/123
-
-
-
-
-
-
-
-
-
-
41.60
3.000
7.212
-
-
-
18/124
-
-
-
-
-
-
-
-
-
-
36.60
4.300
11.749
-
-
-
18/125
-
-
-
-
-
-
-
-
-
-
36.10
2.900
8.033
-
-
-
18/126
-
-
-
-
-
-
-
-
-
-
36.30
2.500
6.887
-
-
-
18/127
-
-
-
-
-
-
-
-
-
-
39.70
4.600
11.587
-
-
-
18/128
-
-
-
-
-
-
-
-
-
-
37.80
3.800
10.053
-
-
-
18/129
-
-
-
-
-
-
-
-
-
-
36.20
3.800
10.497
-
-
-
18/130
-
-
-
-
-
-
-
-
-
-
36.90
2.900
7.859
-
-
-
18/131
-
-
-
-
-
-
-
-
-
-
39.80
3.900
9.799
-
-
-
18/132
-
-
-
-
-
-
-
-
-
-
36.90
3.900
10.569
-
-
-
18/133
-
-
-
-
-
-
-
-
-
-
38.90
3.100
7.969
-
-
-
18/134
-
-
-
-
-
-
-
-
-
-
43.90
3.600
8.200
-
-
-
18/135
-
-
-
-
-
-
-
-
-
-
45.50
5.600
12.308
-
-
-
18/136
-
-
-
-
-
-
-
-
-
-
44.10
4.600
10.431
-
-
-
18/137
-
-
-
-
-
-
-
-
-
-
45.80
2.900
6.332
-
-
-
18/138
-
-
-
-
-
-
-
-
-
-
45.40
4.200
9.251
-
-
-
18/139
-
-
-
-
-
-
-
-
-
-
44.80
3.600
8.036
-
-
-
18/140
-
-
-
-
-
-
-
-
-
-
48.00
4.300
8.958
-
-
-
18/141
-
-
-
-
-
-
-
-
-
-
42.30
3.000
7.092
-
-
-
18/142
-
-
-
-
-
-
-
-
-
-
44.60
4.200
9.417
-
-
-
18/143
-
-
-
-
-
-
-
-
-
-
43.80
3.500
7.991
-
-
-
18/144
-
-
-
-
-
-
-
-
-
-
42.30
2.100
4.965
-
-
-
18/145
-
-
-
-
-
-
-
-
-
-
41.40
1.700
4.106
-
-
-
18/146
-
-
-
-
-
-
-
-
-
-
42.00
3.200
7.619
-
-
-
18/147
-
-
-
-
-
-
-
-
-
-
43.30
4.000
9.238
-
-
-
18/148
-
-
-
-
-
-
-
-
-
-
43.20
3.500
8.102
-
-
-
18/149
-
-
-
-
-
-
-
-
-
-
41.60
3.200
7.692
-
-
-
19/1
-
-
-
-
-
-
-
-
-
-
26
1.9
7.308
-
-
-
19/2
-
-
-
-
-
-
-
-
-
-
28.5
1.15
4.035
-
-
-
19/3
-
-
-
-
-
-
-
-
-
-
30.4
1.88
6.184
-
-
-
19/4
-
-
-
-
-
-
-
-
-
-
31
1.6
5.161
-
-
-
19/5
-
-
-
-
-
-
-
-
-
-
30.5
1.23
4.033
-
-
-
19/6
-
-
-
-
-
-
-
-
-
-
32.4
1.51
4.660
-
-
-
19/7
-
-
-
-
-
-
-
-
-
-
33.9
1.87
5.516
-
-
-
19/8
-
-
-
-
-
-
-
-
-
-
33.8
1.06
3.136
-
-
-
19/9
-
-
-
-
-
-
-
-
-
-
33
1.97
5.970
-
-
-
19/10
-
-
-
-
-
-
-
-
-
-
32.8
1.14
3.476
-
-
-
19/11
-
-
-
-
-
-
-
-
-
-
30.3
2.62
8.647
-
-
-
19/12
-
-
-
-
-
-
-
-
-
-
39.1
0.83
2.123
-
-
-
19/13
-
-
-
-
-
-
-
-
-
-
38.3
1.58
4.125
-
-
-
19/14
-
-
-
-
-
-
-
-
-
-
30.2
1.15
3.808
-
-
-
19/15
-
-
-
-
-
-
-
-
-
-
29.9
1.12
3.746
-
-
-
19/16
-
-
-
-
-
-
-
-
-
-
22
1.16
5.273
-
-
-
19/17
-
-
-
-
-
-
-
-
-
-
26.9
1.56
5.799
-
-
-
19/18
-
-
-
-
-
-
-
-
-
-
25.9
1.45817
5.630
-
-
-
A78
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
20/1
-
-
-
-
-
-
-
-
-
-
12.2
2.1
17.213
-
-
-
20/2
-
-
-
-
-
-
-
-
-
-
13.5
1.5
11.111
-
-
-
20/3
-
-
-
-
-
-
-
-
-
-
16
2
12.500
-
-
-
20/4
-
-
-
-
-
-
-
-
-
-
17.8
2.3
12.921
-
-
-
20/5
-
-
-
-
-
-
-
-
-
-
19
2.3
12.105
-
-
-
20/6
-
-
-
-
-
-
-
-
-
-
18.4
1.9
10.326
-
-
-
20/7
-
-
-
-
-
-
-
-
-
-
20
2.3
11.500
-
-
-
20/8
-
-
-
-
-
-
-
-
-
-
20
2.4
12.000
-
-
-
20/9
-
-
-
-
-
-
-
-
-
-
22.5
3.25
14.444
-
-
-
Test area
20/10
-
-
-
-
-
-
-
-
-
-
21.8
2.2
10.092
-
-
-
20/11
-
-
-
-
-
-
-
-
-
-
22
2.1
9.545
-
-
-
20/12
-
-
-
-
-
-
-
-
-
-
24
1.7
7.083
-
-
-
20/13
-
-
-
-
-
-
-
-
-
-
24.5
2.9
11.837
-
-
-
20/14
-
-
-
-
-
-
-
-
-
-
25
3.25
13.000
-
-
-
20/15
-
-
-
-
-
-
-
-
-
-
25
3.15
12.600
-
-
-
20/16
-
-
-
-
-
-
-
-
-
-
26.7
2.4
8.989
-
-
-
20/17
-
-
-
-
-
-
-
-
-
-
26.4
1.75
6.629
-
-
-
20/18
-
-
-
-
-
-
-
-
-
-
26.2
1.7
6.489
-
-
-
20/19
-
-
-
-
-
-
-
-
-
-
28
1.8
6.429
-
-
-
20/20
-
-
-
-
-
-
-
-
-
-
27.3
2.42
8.864
-
-
-
20/21
-
-
-
-
-
-
-
-
-
-
29.5
2.5
8.475
-
-
-
20/22
-
-
-
-
-
-
-
-
-
-
30.5
2
6.557
-
-
-
20/23
-
-
-
-
-
-
-
-
-
-
27.2
3.6
13.235
-
-
-
20/24
-
-
-
-
-
-
-
-
-
-
30
3.4
11.333
-
-
-
20/25
-
-
-
-
-
-
-
-
-
-
30
2.8
9.333
-
-
-
20/26
-
-
-
-
-
-
-
-
-
-
29
2.75
9.483
-
-
-
20/27
-
-
-
-
-
-
-
-
-
-
30.5
2.7
8.852
-
-
-
20/28
-
-
-
-
-
-
-
-
-
-
31
2.8
9.032
-
-
-
20/29
-
-
-
-
-
-
-
-
-
-
31.5
2.6
8.254
-
-
-
20/30
-
-
-
-
-
-
-
-
-
-
32.2
3.95
12.267
-
-
-
20/31
-
-
-
-
-
-
-
-
-
-
15
2.5
16.667
-
-
-
20/32
-
-
-
-
-
-
-
-
-
-
20
2.6
13.000
-
-
-
20/33
-
-
-
-
-
-
-
-
-
-
20
2.4
12.000
-
-
-
20/34
-
-
-
-
-
-
-
-
-
-
19
1.9
10.000
-
-
-
20/35
-
-
-
-
-
-
-
-
-
-
20.4
1.85
9.069
-
-
-
20/36
-
-
-
-
-
-
-
-
-
-
20.7
1.9
9.179
-
-
-
20/37
-
-
-
-
-
-
-
-
-
-
21.4
1.8
8.411
-
-
-
20/38
-
-
-
-
-
-
-
-
-
-
22
3.5
15.909
-
-
-
20/39
-
-
-
-
-
-
-
-
-
-
22
3.2
14.545
-
-
-
20/40
-
-
-
-
-
-
-
-
-
-
22
2.6
11.818
-
-
-
20/41
-
-
-
-
-
-
-
-
-
-
21.5
2.2
10.233
-
-
-
20/42
-
-
-
-
-
-
-
-
-
-
21.5
2.3
10.698
-
-
-
20/43
-
-
-
-
-
-
-
-
-
-
19
3.7
19.474
-
-
-
20/44
-
-
-
-
-
-
-
-
-
-
25
2.9
11.600
-
-
-
20/45
-
-
-
-
-
-
-
-
-
-
27
2.6
9.630
-
-
-
20/46
-
-
-
-
-
-
-
-
-
-
27
2.3
8.519
-
-
-
20/47
-
-
-
-
-
-
-
-
-
-
28.4
2.7
9.507
-
-
-
20/48
-
-
-
-
-
-
-
-
-
-
28.7
2.5
8.711
-
-
-
20/49
-
-
-
-
-
-
-
-
-
-
34
5.6
16.471
-
-
-
20/50
-
-
-
-
-
-
-
-
-
-
32
4.9
15.313
-
-
-
20/51
-
-
-
-
-
-
-
-
-
-
34
4.4
12.941
-
-
-
20/52
-
-
-
-
-
-
-
-
-
-
33.5
3.9
11.642
-
-
-
20/53
-
-
-
-
-
-
-
-
-
-
34
3.5
10.294
-
-
-
A79
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
Rm
sR
VR, %
rR
θR
fcm, MPa
20/54
-
-
-
-
-
-
-
-
-
-
34.5
2.9
8.406
-
-
-
20/55
-
-
-
-
-
-
-
-
-
-
35.5
2.5
7.042
-
-
-
Test area
21/1
42 41 39 38 38 37 42 37 38 38
39.0
1.9
5.0
5
2.572
-
21/2
38 38 38 37 38 39 37 40 37 38
38.0
0.9
2.5
3
3.182
-
21/3
38 37 40 41 40 38 39 37 39 38
38.7
1.3
3.5
4
2.991
-
21/4
38 37 37 37 38 37 37 40 40 38
37.9
1.2
3.2
3
2.506
-
21/5
37 37 38 38 37 37 38 37 40 36
37.5
1.1
2.9
4
3.703
-
21/6
39 38 38 37 38 38 38 39 38 38
38.1
0.6
1.5
2
3.523
-
21/7
38 37 38 38 38 40 38 37 39 38
38.1
0.9
2.3
3
3.426
-
21/8
38 39 37 37 37 38 38 40 37 38
37.9
1.0
2.6
3
3.017
-
21/9
39 37 37 36 37 38 40 37 38 38
37.7
1.2
3.1
4
3.450
-
21/10
37 39 36 40 37 40 36 37 39 38
37.9
1.5
4.0
4
2.625
-
21/11
40 38 41 39 38 39 39 39 42 42
39.7
1.5
3.8
4
2.677
-
21/12
38 37 38 40 40 39 38 37 38 39
38.4
1.1
2.8
3
2.791
-
21/13
41 39 40 38 41 39 38 41 39 37
39.3
1.4
3.6
4
2.821
-
21/14
36 37 37 36 40 40 36 37 36 38
37.3
1.6
4.2
4
2.553
-
21/15
36 36 34 33 35 36 38 34 33 35
35.0
1.6
4.5
5
3.198
-
21/16
37 38 36 38 38 38 37 37 36 37
37.2
0.8
2.1
2
2.535
-
21/17
35 38 38 38 37 37 37 37 36 36
36.9
1.0
2.7
3
3.017
-
21/18
37 38 37 40 39 39 36 38 37 37
37.8
1.2
3.3
4
3.254
-
21/19
37 38 39 36 37 39 36 36 34 35
36.7
1.6
4.5
5
3.056
-
21/20
35 38 34 36 34 38 35 38 34 35
35.7
1.7
4.8
4
2.349
-
21/21
34 35 37 37 38 38 34 34 33 36
35.6
1.8
5.2
5
2.721
-
21/22
35 34 34 35 34 38 34 37 34 34
34.9
1.4
4.2
4
2.760
-
21/23
35 35 34 35 36 35 34 34 34 35
34.7
0.7
1.9
2
2.963
-
21/24
34 36 35 37 35 35 35 35 34 37
35.3
1.1
3.0
3
2.832
-
21/25
33 30 31 34 32 30 35 34 34 30
32.3
1.9
6.0
5
2.569
-
21/26
30 30 30 34 30 30 30 30 29 32
30.5
1.4
4.7
5
3.487
-
21/27
30 30 35 30 30 33 32 33 30 28
31.1
2.1
6.7
7
3.367
-
21/28
38 39 40 41 39 38 39 38 40 37
38.9
1.2
3.1
4
3.341
-
21/29
39 38 39 38 37 39 39 39 42 39
38.9
1.3
3.3
5
3.886
-
21/30
41 42 39 42 40 42 38 42 39 42
40.7
1.6
3.9
4
2.553
-
21/31
39 40 39 39 41 41 37 42 40 37
39.5
1.6
4.2
5
3.030
-
21/32
42 41 40 42 43 43 41 39 38 38
40.7
1.9
4.6
5
2.648
-
21/33
42 43 40 40 43 44 43 42 40 40
41.7
1.6
3.8
4
2.553
-
21/34
38 37 37 37 38 37 36 41 39 39
37.9
1.4
3.8
5
3.450
-
21/35
38 37 39 38 38 39 37 39 39 41
38.5
1.2
3.1
4
3.394
-
21/36
38 40 37 36 37 38 39 39 37 36
37.7
1.3
3.5
4
2.991
-
21/37
38 37 37 41 38 38 41 37 41 38
38.6
1.7
4.4
4
2.335
-
21/38
42 38 38 41 40 39 41 40 41 39
39.9
1.4
3.4
4
2.919
-
21/39
40 40 41 39 37 38 40 40 42 41
39.8
1.5
3.7
5
3.388
-
21/40
40 38 42 38 41 37 40 39 41 41
39.7
1.6
4.1
5
3.056
-
21/41
37 39 37 38 39 37 38 40 37 38
38.0
1.1
2.8
3
2.846
-
21/42
38 39 38 37 36 38 39 39 38 37
37.9
1.0
2.6
3
3.017
-
21/43
35 37 36 36 36 36 35 37 37 36
36.1
0.7
2.0
2
2.711
-
21/44
36 40 36 36 38 37 37 35 37 36
36.8
1.4
3.8
5
3.575
-
21/45
38 37 36 36 38 37 36 36 36 36
36.6
0.8
2.3
2
2.372
-
21/46
36 33 35 35 33 36 35 37 37 35
35.2
1.4
4.0
4
2.860
-
21/47
34 36 35 34 34 33 35 35 34 38
34.8
1.4
4.0
5
3.575
-
21/48
36 36 36 37 36 36 36 34 34 36
35.7
0.9
2.7
3
3.162
-
21/49
31 30 34 32 33 32 32 34 30 34
32.2
1.5
4.8
4
2.582
-
21/50
30 30 31 30 30 34 30 30 31 30
30.6
1.3
4.1
4
3.162
-
A80
Rm
sR
VR, %
rR
θR
fcm, MPa
32 33 32 34 32 32 33 30 32 32
32.2
1.0
3.2
4
3.873
-
22/1
33 33 34 33 32 33 34 34 32 33
33.1
0.7
2.2
2
2.711
-
22/2
34 34 33 32 32 35 34 33 34 32
33.3
1.1
3.2
3
2.832
-
22/3
32 36 35 35 33 33 34 34 34 32
33.8
1.3
3.9
4
3.038
-
22/4
34 35 33 35 33 35 35 33 32 32
33.7
1.3
3.7
3
2.397
-
22/5
34 35 34 33 34 33 33 34 35 33
33.8
0.8
2.3
2
2.535
-
22/6
32 34 34 35 33 33 32 34 33 33
33.3
0.9
2.8
3
3.162
-
22/7
31 32 31 34 33 34 32 32 31 34
32.4
1.3
3.9
3
2.372
-
22/8
32 34 33 35 34 32 32 33 32 34
33.1
1.1
3.3
3
2.726
-
22/9
33 33 35 35 34 32 33 31 34 34
33.4
1.3
3.8
4
3.162
-
22/10
34 35 33 36 32 32 33 33 32 32
33.2
1.4
4.2
4
2.860
-
22/11
35 36 35 36 34 36 34 35 33 36
35.0
1.1
3.0
3
2.846
-
22/12
34 34 35 33 36 35 34 36 33 33
34.3
1.2
3.4
3
2.587
-
22/13
34 35 35 36 34 34 36 36 32 32
34.4
1.5
4.4
4
2.657
-
22/14
34 34 35 33 35 36 36 34 34 36
34.7
1.1
3.1
3
2.832
-
22/15
35 35 35 33 34 36 35 34 35 34
34.6
0.8
2.4
3
3.558
-
22/16
35 34 34 33 32 36 36 34 35 35
34.4
1.3
3.7
4
3.162
-
22/17
34 36 36 32 35 34 33 33 34 35
34.2
1.3
3.8
4
3.038
-
22/18
35 36 37 36 36 34 35 34 35 36
35.4
1.0
2.7
3
3.105
-
22/19
36 36 35 37 35 34 34 36 35 34
35.2
1.0
2.9
3
2.905
-
22/20
37 36 37 35 34 33 35 35 33 35
35.0
1.4
4.0
4
2.828
-
22/21
33 33 35 35 34 34 33 36 33 34
34.0
1.1
3.1
3
2.846
-
22/22
35 32 36 35 36 34 33 33 35 35
34.4
1.3
3.9
4
2.963
-
22/23
33 34 34 35 35 34 33 34 32 34
33.8
0.9
2.7
3
3.265
-
22/24
31 33 33 35 35 34 32 32 31 35
33.1
1.6
4.8
4
2.508
-
22/25
32 33 34 34 36 36 35 36 35 34
34.5
1.4
3.9
4
2.954
-
22/26
33 34 33 34 35 35 34 37 36 35
34.6
1.3
3.7
4
3.162
-
22/27
35 34 35 32 32 34 34 34 35 33
33.8
1.1
3.4
3
2.642
-
22/28
32 33 34 33 33 36 36 35 32 34
33.8
1.5
4.4
4
2.711
-
22/29
32 34 35 32 34 33 35 35 36 36
34.2
1.5
4.3
4
2.711
-
22/30
34 34 33 33 32 33 34 32 31 31
32.7
1.2
3.5
3
2.587
-
22/31
32 33 34 34 34 36 36 34 34 35
34.2
1.2
3.6
4
3.254
-
22/32
36 35 36 35 34 34 35 33 33 34
34.5
1.1
3.1
3
2.777
-
22/33
33 35 33 32 35 35 34 35 35 34
34.1
1.1
3.2
3
2.726
-
22/34
34 32 35 35 34 34 35 35 36 34
34.4
1.1
3.1
4
3.721
-
22/35
35 37 36 37 35 34 35 35 34 33
35.1
1.3
3.7
4
3.109
-
22/36
34 34 36 36 35 34 37 33 34 36
34.9
1.3
3.7
4
3.109
-
22/37
34 35 34 36 36 33 34 36 36 36
35.0
1.2
3.3
3
2.598
-
22/38
33 35 33 34 36 33 36 35 35 32
34.2
1.4
4.1
4
2.860
-
22/39
34 36 34 33 33 35 32 36 35 34
34.2
1.3
3.8
4
3.038
-
22/40
35 35 34 34 35 32 33 33 36 36
34.3
1.3
3.9
4
2.991
-
22/41
30 34 35 32 33 30 32 34 33 35
32.8
1.8
5.5
5
2.757
-
22/42
35 35 32 31 33 35 35 32 32 31
33.1
1.7
5.2
4
2.314
-
22/43
36 35 35 34 34 36 35 34 32 32
34.3
1.4
4.1
4
2.821
-
22/44
30 30 34 34 32 33 35 35 33 33
32.9
1.8
5.4
5
2.790
-
22/45
30 34 34 35 32 32 31 32 34 30
32.4
1.8
5.5
5
2.815
-
22/46
32 34 35 35 33 31 32 33 34 31
33.0
1.5
4.5
4
2.683
-
22/47
36 35 34 34 32 33 34 33 32 34
33.7
1.3
3.7
4
3.196
-
22/48
34 33 34 33 35 31 34 35 35 32
33.6
1.3
4.0
4
2.963
-
22/49
33 36 36 34 35 33 34 36 36 32
34.5
1.5
4.4
4
2.650
-
22/50
34 30 31 33 32 34 36 36 35 34
33.5
2.0
6.0
6
2.979
-
22/51
32 32 32 34 36 34 33 35 33 35
33.6
1.4
4.3
4
2.798
-
Test area
R1
21/51
R2
R3
R4
R5
R6
R7
R8
R9
R10
A81
Rm
sR
VR, %
rR
θR
fcm, MPa
33 33 36 36 31 32 34 33 32 36
33.6
1.8
5.5
5
2.721
-
34 36 34 33 35 35 36 36 33 33
34.5
1.3
3.7
3
2.364
-
22/54
35 34 35 33 34 32 32 32 34 36
33.7
1.4
4.2
4
2.821
-
22/55
36 36 35 37 36 36 35 34 33 33
35.1
1.4
3.9
4
2.919
-
22/56
34 34 32 35 36 35 36 35 31 32
34.0
1.8
5.2
5
2.835
-
22/57
31 30 33 34 33 35 32 35 35 34
33.2
1.8
5.3
5
2.855
-
22/58
33 33 36 36 34 33 36 37 32 32
34.2
1.9
5.5
5
2.668
-
22/59
33 30 34 35 33 34 32 34 36 33
33.4
1.6
4.9
6
3.644
-
22/60
35 34 33 36 32 34 32 36 35 34
34.1
1.4
4.2
4
2.760
-
22/61
32 35 31 34 36 34 33 36 34 36
34.1
1.7
5.1
5
2.892
-
22/62
32 36 36 31 35 33 35 32 32 34
33.6
1.8
5.5
5
2.721
-
22/63
30 34 30 34 33 32 34 33 30 31
32.1
1.7
5.4
4
2.314
-
22/64
34 31 33 32 32 30 29 32 33 33
31.9
1.5
4.8
5
3.281
-
22/65
33 37 36 35 34 33 33 35 34 32
34.2
1.5
4.5
5
3.227
-
22/66
33 36 35 36 34 32 35 35 32 31
33.9
1.8
5.3
5
2.790
-
22/67
31 30 35 36 34 33 33 32 32 34
33.0
1.8
5.5
6
3.286
-
22/68
35 32 35 34 32 35 33 32 35 35
33.8
1.4
4.1
3
2.145
-
22/69
34 34 33 36 31 36 35 34 34 34
34.1
1.4
4.2
5
3.450
-
22/70
33 35 35 33 33 32 33 34 34 32
33.4
1.1
3.2
3
2.791
-
22/71
34 36 36 37 38 34 36 36 34 35
35.6
1.3
3.8
4
2.963
-
22/72
33 33 34 36 36 32 34 33 32 36
33.9
1.6
4.7
4
2.508
-
22/73
37 36 39 35 35 36 33 35 35 33
35.4
1.8
5.0
6
3.378
-
22/74
34 34 36 37 33 32 33 36 36 34
34.5
1.6
4.8
5
3.030
-
22/75
33 33 36 36 35 37 34 34 33 33
34.4
1.5
4.4
4
2.657
-
22/76
34 36 34 37 35 35 34 34 32 32
34.3
1.6
4.6
5
3.191
-
22/77
33 34 34 36 37 34 34 35 33 36
34.6
1.3
3.9
4
2.963
-
22/78
34 36 36 32 32 34 33 32 36 36
34.1
1.8
5.3
4
2.232
-
22/79
31 32 32 35 34 34 32 35 32 36
33.3
1.7
5.1
5
2.936
-
22/80
32 36 36 35 31 33 35 33 36 35
34.2
1.8
5.3
5
2.757
-
22/81
31 30 29 29 31 33 32 30 32 30
30.7
1.3
4.4
4
2.991
-
22/82
30 32 32 31 33 33 30 30 29 34
31.4
1.6
5.2
5
3.037
-
22/83
32 31 33 33 30 34 34 32 35 33
32.7
1.5
4.6
5
3.346
-
22/84
34 35 33 34 32 35 35 33 33 31
33.5
1.4
4.0
4
2.954
-
22/85
32 30 32 31 31 34 34 31 35 35
32.5
1.8
5.7
5
2.716
-
22/86
36 32 31 33 33 32 34 34 33 31
32.9
1.5
4.6
5
3.281
-
22/87
34 30 32 34 32 33 35 31 33 33
32.7
1.5
4.6
5
3.346
-
22/88
33 34 32 32 31 31 35 33 34 32
32.7
1.3
4.1
4
2.991
-
22/89
30 30 34 32 32 31 34 34 34 32
32.3
1.6
5.1
4
2.444
-
22/90
31 33 33 35 34 34 33 32 32 34
33.1
1.2
3.6
4
3.341
-
22/91
34 34 35 32 32 35 32 31 33 34
33.2
1.4
4.2
4
2.860
-
22/92
33 36 36 31 33 34 34 35 32 32
33.6
1.7
5.1
5
2.919
-
22/93
32 34 34 32 34 33 31 31 34 35
33.0
1.4
4.3
4
2.828
-
22/94
33 35 33 32 36 36 34 35 34 36
34.4
1.4
4.2
4
2.798
-
22/95
34 33 32 32 31 35 34 34 33 35
33.3
1.3
4.0
4
2.991
-
22/96
33 32 32 34 34 32 36 36 32 31
33.2
1.8
5.3
5
2.855
-
22/97
32 35 34 35 33 33 32 34 34 33
33.5
1.1
3.2
3
2.777
-
22/98
34 36 36 35 36 33 34 33 35 32
34.4
1.4
4.2
4
2.798
-
Test area
R1
22/52
22/53
R2
R3
R4
R5
R6
R7
R8
R9
R10
22/99
33 33 35 32 34 34 31 34 34 35
33.5
1.3
3.8
4
3.151
-
22/100
34 31 31 33 35 33 36 34 36 32
33.5
1.8
5.5
5
2.716
-
22/101
30 31 34 34 33 32 34 32 32 31
32.3
1.4
4.4
4
2.821
-
22/102
30 29 33 33 32 34 33 32 34 34
32.4
1.7
5.3
5
2.919
-
22/103
31 34 33 32 35 34 32 34 32 33
33.0
1.2
3.8
4
3.207
-
22/104
32 35 31 32 31 34 33 32 34 31
32.5
1.4
4.4
4
2.790
-
A82
Rm
sR
VR, %
rR
θR
fcm, MPa
34 32 32 36 35 34 32 32 31 34
33.2
1.6
4.9
5
3.088
-
33 36 34 32 35 33 34 32 32 35
33.6
1.4
4.3
4
2.798
-
22/107
32 35 34 31 33 34 31 35 34 34
33.3
1.5
4.5
4
2.677
-
22/108
31 34 32 33 32 35 35 34 33 36
33.5
1.6
4.7
5
3.162
-
22/109
33 34 31 32 34 35 34 32 32 34
33.1
1.3
3.9
4
3.109
-
22/110
34 30 31 32 31 34 35 32 33 33
32.5
1.6
4.9
5
3.162
-
22/111
32 34 32 33 36 34 37 34 33 32
33.7
1.7
5.1
5
2.936
-
22/112
32 35 31 34 34 32 35 32 31 33
32.9
1.5
4.6
4
2.625
-
22/113
34 33 34 35 32 33 32 35 32 31
33.1
1.4
4.1
4
2.919
-
22/114
33 33 31 32 33 34 34 32 35 33
33.0
1.2
3.5
4
3.464
-
22/115
32 34 34 31 35 35 34 35 32 32
33.4
1.5
4.5
4
2.657
-
22/116
33 33 31 34 34 35 32 36 32 31
33.1
1.7
5.0
5
3.006
-
22/117
32 32 35 34 31 36 35 36 33 32
33.6
1.8
5.5
5
2.721
-
22/118
34 33 32 36 32 33 32 32 36 31
33.1
1.7
5.2
5
2.892
-
22/119
35 34 33 34 33 32 34 34 32 32
33.3
1.1
3.2
3
2.832
-
22/120
35 33 34 33 36 36 32 32 33 33
33.7
1.5
4.4
4
2.677
-
22/121
34 37 36 35 33 35 35 34 32 32
34.3
1.6
4.8
5
3.056
-
22/122
33 36 35 32 35 34 32 32 36 36
34.1
1.7
5.1
4
2.314
-
22/123
35 33 35 33 32 36 36 32 34 35
34.1
1.5
4.5
4
2.625
-
22/124
33 36 36 32 34 32 36 31 34 33
33.7
1.8
5.4
5
2.734
-
22/125
34 34 32 35 33 32 35 35 31 33
33.4
1.4
4.3
4
2.798
-
22/126
36 36 34 35 33 36 35 34 34 32
34.5
1.4
3.9
4
2.954
-
22/127
33 35 32 32 35 35 34 32 36 35
33.9
1.5
4.5
4
2.625
-
22/128
32 36 36 34 34 32 35 35 33 35
34.2
1.5
4.3
4
2.711
-
22/129
34 35 33 32 36 36 37 35 33 36
34.7
1.6
4.7
5
3.056
-
22/130
35 34 36 36 34 35 36 34 32 32
34.4
1.5
4.4
4
2.657
-
22/131
32 33 33 31 34 34 31 33 32 35
32.8
1.3
4.0
4
3.038
-
22/132
33 32 33 34 32 36 35 33 33 36
33.7
1.5
4.4
4
2.677
-
22/133
34 35 36 32 36 36 32 32 34 32
33.9
1.8
5.3
4
2.232
-
22/134
35 33 35 33 36 36 35 32 32 34
34.1
1.5
4.5
4
2.625
-
22/135
32 32 36 34 31 31 35 33 33 34
33.1
1.7
5.0
5
3.006
-
22/136
34 34 34 31 32 35 32 31 34 34
33.1
1.4
4.4
4
2.760
-
22/137
36 36 33 33 34 37 37 34 34 32
34.6
1.8
5.1
5
2.815
-
22/138
36 35 36 32 32 34 32 35 32 36
34.0
1.8
5.4
4
2.191
-
22/139
34 36 32 37 32 33 33 36 34 34
34.1
1.7
5.1
5
2.892
-
22/140
35 35 34 35 33 32 33 34 32 32
33.5
1.3
3.8
3
2.364
-
22/141
31 31 34 34 33 30 32 33 34 31
32.3
1.5
4.6
4
2.677
-
22/142
29 30 32 33 34 31 33 34 34 32
32.2
1.8
5.4
5
2.855
-
22/143
32 32 34 34 31 32 35 32 36 36
33.4
1.8
5.5
5
2.721
-
22/144
36 35 32 33 34 33 32 35 34 32
33.6
1.4
4.3
4
2.798
-
22/145
30 31 32 32 35 35 34 34 35 31
32.9
1.9
5.8
5
2.615
-
22/146
33 33 35 34 32 32 34 36 36 33
33.8
1.5
4.4
4
2.711
-
22/147
35 34 33 32 34 35 32 31 33 31
33.0
1.5
4.5
4
2.683
-
22/148
34 33 33 30 31 31 33 34 32 34
32.5
1.4
4.4
4
2.790
-
22/149
33 35 34 34 35 36 32 32 35 35
34.1
1.4
4.0
4
2.919
-
22/150
34 34 36 32 36 34 34 32 32 36
34.0
1.6
4.8
4
2.449
-
22/151
34 35 34 34 35 35 33 33 36 33
34.2
1.0
3.0
3
2.905
-
22/152
32 31 34 32 33 33 33 32 35 34
32.9
1.2
3.6
4
3.341
-
22/153
36 33 33 33 34 33 36 34 35 34
34.1
1.2
3.5
3
2.506
-
22/154
31 33 34 35 32 32 33 34 33 31
32.8
1.3
4.0
4
3.038
-
22/155
34 33 35 35 36 35 36 32 33 33
34.2
1.4
4.1
4
2.860
-
22/156
35 37 33 35 34 32 33 35 33 31
33.8
1.8
5.2
6
3.426
-
22/157
34 35 33 34 36 36 35 36 35 36
35.0
1.1
3.0
3
2.846
-
Test area
R1
22/105
22/106
R2
R3
R4
R5
R6
R7
R8
R9
R10
A83
Rm
sR
VR, %
rR
θR
fcm, MPa
32 33 32 33 33 34 33 33 34 33
33.0
0.7
2.0
2
3.000
-
36 33 34 36 35 34 35 33 33 34
34.3
1.2
3.4
3
2.587
-
22/160
32 32 36 33 35 34 35 35 36 35
34.3
1.5
4.4
4
2.677
-
22/161
33 32 31 34 35 34 32 34 35 36
33.6
1.6
4.7
5
3.169
-
22/162
32 36 32 31 35 36 32 37 35 34
34.0
2.1
6.2
6
2.846
-
22/163
37 35 32 33 32 34 34 31 34 34
33.6
1.7
5.1
6
3.503
-
22/164
36 35 35 32 33 34 32 32 33 35
33.7
1.5
4.4
4
2.677
-
22/165
36 32 36 34 34 33 36 32 34 31
33.8
1.8
5.4
5
2.757
-
22/166
35 35 34 32 32 31 35 34 35 34
33.7
1.5
4.4
4
2.677
-
22/167
34 33 33 35 32 35 34 34 36 32
33.8
1.3
3.9
4
3.038
-
22/168
36 35 34 33 32 35 34 32 32 34
33.7
1.4
4.2
4
2.821
-
22/169
35 34 32 32 33 32 34 36 37 33
33.8
1.8
5.2
5
2.855
-
22/170
34 36 34 32 35 35 33 34 36 34
34.3
1.3
3.6
4
3.196
-
22/171
34 30 33 32 31 30 32 35 32 33
32.2
1.6
5.0
5
3.088
-
22/172
33 34 33 32 33 35 33 33 34 35
33.5
1.0
2.9
3
3.087
-
22/173
35 35 34 34 33 33 35 35 36 33
34.3
1.1
3.1
3
2.832
-
22/174
33 32 34 33 32 34 32 32 32 32
32.6
0.8
2.6
2
2.372
-
22/175
34 34 34 36 33 34 35 34 34 33
34.1
0.9
2.6
3
3.426
-
22/176
34 36 35 36 36 35 34 32 33 33
34.4
1.4
4.2
4
2.798
-
22/177
32 34 34 32 32 33 36 34 35 35
33.7
1.4
4.2
4
2.821
-
22/178
34 34 32 32 33 34 34 34 33 35
33.5
1.0
2.9
3
3.087
-
22/179
31 32 32 34 33 32 32 34 34 34
32.8
1.1
3.5
3
2.642
-
22/180
36 34 34 34 35 32 34 36 37 32
34.4
1.6
4.8
5
3.037
-
22/181
34 33 32 35 35 37 34 36 36 34
34.6
1.5
4.4
5
3.321
-
22/182
36 36 37 34 34 34 32 32 32 35
34.2
1.8
5.3
5
2.757
-
22/183
34 31 35 33 32 35 36 36 32 36
34.0
1.9
5.5
5
2.652
-
22/184
35 37 37 36 33 35 34 32 32 35
34.6
1.8
5.3
5
2.721
-
22/185
37 33 32 34 36 34 36 34 35 32
34.3
1.7
5.0
5
2.936
-
22/186
32 32 33 31 33 34 35 33 34 35
33.2
1.3
4.0
4
3.038
-
22/187
36 36 34 36 33 35 33 32 34 32
34.1
1.6
4.7
4
2.508
-
22/188
34 34 35 32 32 36 36 35 33 33
34.0
1.5
4.4
4
2.683
-
22/189
36 35 35 32 33 34 34 35 34 34
34.2
1.1
3.3
4
3.523
-
22/190
34 34 37 33 35 32 36 36 37 33
34.7
1.8
5.1
5
2.830
-
22/191
34 27 31 28 27 31 27 29 29 30
29.3
2.3
7.7
7
3.093
-
22/192
31 26 29 27 29 32 31 29 28 31
29.3
1.9
6.6
6
3.082
-
22/193
31 28 27 29 27 29 31 30 28 27
28.7
1.6
5.5
4
2.553
-
22/194
28 26 31 27 28 27 28 26 30 30
28.1
1.7
6.2
5
2.892
-
22/195
26 29 30 28 30 26 28 28 27 26
27.8
1.5
5.6
4
2.582
-
22/196
31 30 30 31 31 30 32 30 33 32
31.0
1.1
3.4
3
2.846
-
22/197
32 32 34 31 33 33 33 32 34 30
32.4
1.3
3.9
4
3.162
-
22/198
27 28 28 28 27 27 28 30 29 26
27.8
1.1
4.1
4
3.523
-
22/199
27 26 26 27 30 32 29 30 30 27
28.4
2.1
7.3
6
2.905
-
22/200
28 30 27 29 27 27 31 30 28 29
28.6
1.4
5.0
4
2.798
-
22/201
32 34 31 31 34 35 34 32 31 32
32.6
1.5
4.6
4
2.657
-
22/202
32 32 33 30 29 32 34 32 31 30
31.5
1.5
4.8
5
3.313
-
22/203
34 32 32 31 32 31 31 34 34 31
32.2
1.3
4.1
3
2.279
-
22/204
33 32 34 30 30 35 31 31 32 30
31.8
1.8
5.5
5
2.855
-
22/205
32 32 31 30 34 33 31 31 30 34
31.8
1.5
4.6
4
2.711
-
22/206
31 33 34 34 31 30 32 32 30 31
31.8
1.5
4.6
4
2.711
-
22/207
30 32 31 31 33 30 32 32 34 30
31.5
1.4
4.3
4
2.954
-
22/208
32 34 30 32 32 30 31 30 33 30
31.4
1.4
4.6
4
2.798
-
22/209
31 33 31 30 29 30 31 31 32 33
31.1
1.3
4.1
4
3.109
-
22/210
31 34 32 33 32 30 33 34 33 32
32.4
1.3
3.9
4
3.162
-
Test area
R1
22/158
22/159
R2
R3
R4
R5
R6
R7
R8
R9
R10
A84
Rm
sR
VR, %
rR
θR
fcm, MPa
33 34 34 34 35 35 35 33 36 33
34.2
1.0
3.0
3
2.905
-
34 40 33 36 32 36 33 33 35 35
34.7
2.3
6.7
8
3.460
-
22/213
34 34 34 35 36 32 32 36 37 36
34.6
1.7
4.9
5
2.919
-
22/214
36 31 36 33 34 29 32 36 39 36
34.2
3.0
8.7
10
3.363
-
22/215
35 31 36 36 33 35 36 36 34 36
34.8
1.7
4.8
5
2.965
-
22/216
35 35 36 37 36 34 34 34 34 36
35.1
1.1
3.1
3
2.726
-
22/217
31 33 34 32 34 32 32 33 34 36
33.1
1.4
4.4
5
3.450
-
22/218
36 35 32 33 32 34 35 36 36 33
34.2
1.6
4.7
4
2.470
-
22/219
36 37 35 35 36 36 34 37 34 34
35.4
1.2
3.3
3
2.556
-
22/220
35 35 34 33 32 34 35 35 36 33
34.2
1.2
3.6
4
3.254
-
22/221
30 32 31 32 33 34 32 34 35 35
32.8
1.7
5.1
5
2.965
-
22/222
34 34 36 36 34 32 32 35 34 34
34.1
1.4
4.0
4
2.919
-
22/223
31 30 35 34 31 35 34 35 31 32
32.8
2.0
6.1
5
2.514
-
22/224
33 32 34 32 32 32 34 33 35 35
33.2
1.2
3.7
3
2.440
-
22/225
34 34 35 33 35 33 33 37 36 34
34.4
1.3
3.9
4
2.963
-
22/226
35 32 32 37 37 34 33 34 32 32
33.8
2.0
5.9
5
2.514
-
22/227
32 34 35 34 34 35 32 33 34 32
33.5
1.2
3.5
3
2.546
-
22/228
33 31 32 35 31 36 36 34 33 33
33.4
1.8
5.5
5
2.721
-
22/229
35 32 31 34 34 33 32 34 34 33
33.2
1.2
3.7
4
3.254
-
22/230
33 35 34 33 36 32 36 34 35 35
34.3
1.3
3.9
4
2.991
-
22/231
37 35 36 35 36 35 35 36 36 36
35.7
0.7
1.9
2
2.963
-
22/232
36 34 36 35 35 34 37 37 35 36
35.5
1.1
3.0
3
2.777
-
22/233
35 37 35 37 35 36 37 38 37 35
36.2
1.1
3.1
3
2.642
-
22/234
35 36 35 37 35 37 37 35 37 38
36.2
1.1
3.1
3
2.642
-
22/235
36 35 37 36 37 35 36 37 37 35
36.1
0.9
2.4
2
2.284
-
22/236
34 36 36 35 34 36 35 37 35 35
35.3
0.9
2.7
3
3.162
-
22/237
36 36 32 36 36 35 36 37 37 37
35.8
1.5
4.1
5
3.388
-
22/238
36 36 37 37 35 36 38 37 35 37
36.4
1.0
2.7
3
3.105
-
22/239
36 38 38 34 35 35 36 35 37 37
36.1
1.4
3.8
4
2.919
-
22/240
36 38 37 37 35 36 35 35 35 35
35.9
1.1
3.1
3
2.726
-
22/241
33 34 32 36 35 36 37 36 33 35
34.7
1.6
4.7
5
3.056
-
22/242
37 36 37 34 37 34 33 34 35 32
34.9
1.8
5.1
5
2.790
-
22/243
35 32 34 33 34 35 35 34 36 36
34.4
1.3
3.7
4
3.162
-
22/244
34 35 34 36 33 33 34 32 35 34
34.0
1.2
3.4
4
3.464
-
22/245
35 33 35 33 36 33 34 32 32 36
33.9
1.5
4.5
4
2.625
-
22/246
34 32 35 36 36 34 35 33 36 36
34.7
1.4
4.1
4
2.821
-
22/247
34 37 37 35 37 34 34 35 35 34
35.2
1.3
3.7
3
2.279
-
22/248
36 36 35 37 38 36 37 35 36 37
36.3
0.9
2.6
3
3.162
-
22/249
33 34 34 32 34 36 35 36 34 33
34.1
1.3
3.8
4
3.109
-
22/250
36 32 34 35 35 36 37 34 34 35
34.8
1.4
4.0
5
3.575
-
22/251
33 35 30 32 31 32 33 31 30 32
31.9
1.5
4.8
5
3.281
-
22/252
33 33 32 31 33 34 35 33 34 34
33.2
1.1
3.4
4
3.523
-
22/253
32 30 30 32 33 30 30 32 33 31
31.3
1.3
4.0
3
2.397
-
22/254
32 33 33 32 34 30 32 32 33 32
32.3
1.1
3.3
4
3.776
-
22/255
33 30 32 30 32 33 32 30 32 33
31.7
1.3
3.9
3
2.397
-
22/256
33 34 32 34 33 35 36 35 33 32
33.7
1.3
4.0
4
2.991
-
22/257
31 32 30 32 33 34 34 32 33 32
32.3
1.3
3.9
4
3.196
-
22/258
30 33 30 30 33 32 33 30 32 31
31.4
1.3
4.3
3
2.222
-
22/259
33 33 34 35 35 36 35 35 34 33
34.3
1.1
3.1
3
2.832
-
22/260
30 32 31 34 34 34 30 33 34 35
32.7
1.8
5.6
5
2.734
-
22/261
34 32 32 36 37 34 33 35 36 34
34.3
1.7
5.0
5
2.936
-
22/262
33 36 32 33 36 36 35 34 35 36
34.6
1.5
4.4
4
2.657
-
22/263
35 34 34 32 36 34 33 34 33 36
34.1
1.3
3.8
4
3.109
-
Test area
R1
22/211
22/212
R2
R3
R4
R5
R6
R7
R8
R9
R10
A85
Rm
sR
VR, %
rR
θR
fcm, MPa
32 35 33 34 33 34 35 36 34 36
34.2
1.3
3.8
4
3.038
-
32 34 36 36 34 35 38 36 34 33
34.8
1.8
5.0
6
3.426
-
22/266
34 34 35 34 33 34 33 36 33 33
33.9
1.0
2.9
3
3.017
-
22/267
37 34 33 35 37 38 34 35 36 37
35.6
1.6
4.6
5
3.037
-
22/268
36 32 34 34 33 34 35 34 34 36
34.2
1.2
3.6
4
3.254
-
22/269
35 35 33 32 36 36 32 35 35 34
34.3
1.5
4.4
4
2.677
-
22/270
33 34 36 34 37 37 37 34 35 34
35.1
1.5
4.3
4
2.625
-
22/271
31 33 35 32 30 34 34 34 32 30
32.5
1.8
5.5
5
2.810
-
22/272
34 32 36 34 33 34 34 32 31 31
33.1
1.6
4.8
5
3.135
-
22/273
30 30 32 32 34 33 31 30 35 34
32.1
1.9
5.8
5
2.698
-
22/274
31 31 32 31 34 33 34 34 35 35
33.0
1.6
4.9
4
2.449
-
22/275
31 32 34 31 34 34 35 34 32 34
33.1
1.4
4.4
4
2.760
-
22/276
30 30 30 33 34 32 34 31 30 32
31.6
1.6
5.2
4
2.429
-
22/277
30 30 32 31 31 32 34 31 33 31
31.5
1.3
4.0
4
3.151
-
22/278
30 33 30 34 34 34 30 30 32 33
32.0
1.8
5.7
4
2.191
-
22/279
32 32 34 35 35 35 34 36 32 33
33.8
1.5
4.4
4
2.711
-
22/280
34 34 36 35 36 37 32 30 30 33
33.7
2.5
7.3
7
2.855
-
22/281
36 34 35 35 36 37 34 34 34 36
35.1
1.1
3.1
3
2.726
-
22/282
33 32 32 33 37 34 34 37 36 36
34.4
2.0
5.7
5
2.557
-
22/283
34 35 34 32 32 33 35 34 35 34
33.8
1.1
3.4
3
2.642
-
22/284
34 37 33 36 33 34 34 33 36 34
34.4
1.4
4.2
4
2.798
-
22/285
32 34 34 37 34 32 32 34 34 34
33.7
1.5
4.4
5
3.346
-
22/286
34 34 33 36 34 36 36 37 34 33
34.7
1.4
4.1
4
2.821
-
22/287
35 34 37 34 34 35 36 37 34 33
34.9
1.4
3.9
4
2.919
-
22/288
36 32 34 34 35 35 32 33 34 34
33.9
1.3
3.8
4
3.109
-
22/289
36 36 37 33 36 32 33 32 34 33
34.2
1.9
5.5
5
2.668
-
22/290
33 37 34 34 36 35 32 34 34 31
34.0
1.8
5.2
6
3.402
-
22/291
32 33 33 30 32 31 30 32 31 30
31.4
1.2
3.7
3
2.556
-
22/292
30 29 28 28 29 30 30 30 30 31
29.5
1.0
3.3
3
3.087
-
22/293
28 29 29 30 29 29 30 29 30 30
29.3
0.7
2.3
2
2.963
-
22/294
33 31 32 32 32 31 33 34 30 30
31.8
1.3
4.1
4
3.038
-
22/295
28 28 32 32 30 33 30 30 29 32
30.4
1.8
5.8
5
2.815
-
22/296
30 32 28 30 29 30 32 30 34 34
30.9
2.0
6.6
6
2.963
-
22/297
30 31 30 28 33 34 33 30 30 33
31.2
1.9
6.2
6
3.105
-
22/298
30 32 31 34 30 28 30 31 31 30
30.7
1.6
5.1
6
3.829
-
22/299
32 33 31 33 35 32 34 31 32 31
32.4
1.3
4.2
4
2.963
-
22/300
30 30 31 30 31 30 34 33 30 32
31.1
1.4
4.7
4
2.760
-
22/301
38 37 35 32 36 38 33 36 35 37
35.7
2.0
5.6
6
2.996
-
22/302
35 36 36 35 36 36 35 34 32 34
34.9
1.3
3.7
4
3.109
-
22/303
35 36 36 37 37 37 34 36 35 35
35.8
1.0
2.9
3
2.905
-
22/304
36 37 35 36 36 35 36 37 36 35
35.9
0.7
2.1
2
2.711
-
22/305
35 35 35 36 34 35 36 35 34 34
34.9
0.7
2.1
2
2.711
-
22/306
36 35 36 35 34 36 35 36 34 35
35.2
0.8
2.2
2
2.535
-
22/307
37 35 35 36 37 35 36 37 37 35
36.0
0.9
2.6
2
2.121
-
22/308
36 38 36 36 37 39 35 36 34 34
36.1
1.6
4.4
5
3.135
-
22/309
39 37 37 37 35 36 36 35 36 37
36.5
1.2
3.2
4
3.394
-
22/310
38 36 35 34 35 35 38 37 35 35
35.8
1.4
3.9
4
2.860
-
22/311
34 37 36 35 35 37 36 34 34 36
35.4
1.2
3.3
3
2.556
-
22/312
37 37 35 35 34 35 33 38 33 32
34.9
2.0
5.6
6
3.047
-
22/313
34 33 33 34 32 35 33 33 35 36
33.8
1.2
3.6
4
3.254
-
22/314
37 34 36 33 36 34 34 33 33 34
34.4
1.4
4.2
4
2.798
-
22/315
36 34 31 32 34 34 33 34 36 37
34.1
1.9
5.4
6
3.238
-
22/316
38 36 37 34 35 37 38 36 35 36
36.2
1.3
3.6
4
3.038
-
Test area
R1
22/264
22/265
R2
R3
R4
R5
R6
R7
R8
R9
R10
A86
Rm
sR
VR, %
rR
θR
fcm, MPa
37 35 35 34 34 36 36 33 34 35
34.9
1.2
3.4
4
3.341
-
34 36 36 34 35 37 34 36 36 33
35.1
1.3
3.7
4
3.109
-
22/319
34 33 37 37 33 35 36 36 34 37
35.2
1.6
4.6
4
2.470
-
22/320
37 35 37 37 34 36 36 35 34 36
35.7
1.2
3.2
3
2.587
-
22/321
37 35 35 37 36 36 38 35 35 36
36.0
1.1
2.9
3
2.846
-
22/322
38 39 38 40 36 38 37 34 36 36
37.2
1.8
4.7
6
3.426
-
22/323
36 36 37 36 36 39 36 35 36 37
36.4
1.1
3.0
4
3.721
-
22/324
36 34 34 34 33 36 35 36 36 35
34.9
1.1
3.2
3
2.726
-
22/325
35 36 35 35 36 35 35 38 35 37
35.7
1.1
3.0
3
2.832
-
22/326
37 38 37 38 36 36 36 37 36 36
36.7
0.8
2.2
2
2.429
-
22/327
37 36 37 36 38 36 37 38 37 39
37.1
1.0
2.7
3
3.017
-
22/328
37 38 38 37 36 37 36 35 35 35
36.4
1.2
3.2
3
2.556
-
22/329
38 38 38 36 37 36 34 34 35 36
36.2
1.5
4.3
4
2.582
-
22/330
37 35 36 36 36 37 38 39 38 36
36.8
1.2
3.3
4
3.254
-
22/331
36 37 36 35 34 38 38 36 37 34
36.1
1.4
4.0
4
2.760
-
22/332
35 34 37 37 36 36 34 37 37 35
35.8
1.2
3.4
3
2.440
-
22/333
36 38 37 36 38 34 36 36 35 35
36.1
1.3
3.6
4
3.109
-
22/334
37 36 37 35 34 35 33 36 35 34
35.2
1.3
3.7
4
3.038
-
22/335
33 35 35 36 35 36 37 34 34 33
34.8
1.3
3.8
4
3.038
-
22/336
35 37 34 36 35 37 36 33 36 35
35.4
1.3
3.6
4
3.162
-
22/337
38 38 36 37 35 35 36 34 35 37
36.1
1.4
3.8
4
2.919
-
22/338
33 38 37 34 34 36 34 36 36 34
35.2
1.6
4.6
5
3.088
-
22/339
38 36 38 34 36 36 34 37 35 34
35.8
1.5
4.3
4
2.582
-
22/340
35 36 35 37 36 37 35 34 33 35
35.3
1.3
3.5
4
3.196
-
22/341
35 34 33 31 32 35 36 34 34 34
33.8
1.5
4.4
5
3.388
-
22/342
34 33 32 32 34 35 32 33 34 34
33.3
1.1
3.2
3
2.832
-
22/343
35 33 31 32 34 34 32 32 35 34
33.2
1.4
4.2
4
2.860
-
22/344
31 31 33 35 33 34 34 35 35 34
33.5
1.5
4.5
4
2.650
-
22/345
34 35 36 35 36 34 35 35 33 32
34.5
1.3
3.7
4
3.151
-
22/346
34 33 31 32 32 34 36 34 32 31
32.9
1.6
4.8
5
3.135
-
22/347
35 34 32 36 36 33 35 34 33 35
34.3
1.3
3.9
4
2.991
-
22/348
36 34 36 35 34 33 36 34 35 32
34.5
1.4
3.9
4
2.954
-
22/349
34 32 31 31 34 32 34 35 32 33
32.8
1.4
4.3
4
2.860
-
22/350
36 34 33 35 34 34 35 33 34 34
34.2
0.9
2.7
3
3.265
-
22/351
33 35 30 36 32 35 34 33 34 30
33.2
2.0
6.2
6
2.935
-
22/352
34 36 36 32 31 35 34 36 31 33
33.8
2.0
5.9
5
2.514
-
22/353
33 34 33 36 34 34 35 32 34 35
34.0
1.2
3.4
4
3.464
-
22/354
31 31 33 32 34 33 31 34 31 30
32.0
1.4
4.4
4
2.828
-
22/355
30 30 33 34 33 32 34 34 35 30
32.5
1.9
5.8
5
2.631
-
22/356
33 31 33 35 36 31 34 31 30 32
32.6
2.0
6.0
6
3.069
-
22/357
33 35 33 32 30 32 33 33 34 32
32.7
1.3
4.1
5
3.738
-
22/358
30 31 32 30 32 30 30 33 30 34
31.2
1.5
4.7
4
2.711
-
22/359
31 32 33 33 31 32 31 33 31 31
31.8
0.9
2.9
2
2.176
-
22/360
34 31 33 34 33 33 31 33 32 33
32.7
1.1
3.2
3
2.832
-
22/361
32 36 34 34 33 35 32 32 34 31
33.3
1.6
4.7
5
3.191
-
22/362
35 34 32 34 35 36 34 33 33 34
34.0
1.2
3.4
4
3.464
-
22/363
33 34 33 35 35 32 32 34 35 35
33.8
1.2
3.6
3
2.440
-
22/364
35 33 36 36 34 34 36 32 32 32
34.0
1.7
5.0
4
2.353
-
22/365
37 36 35 34 32 34 33 32 35 35
34.3
1.6
4.8
5
3.056
-
22/366
34 33 36 35 35 36 35 34 35 31
34.4
1.5
4.4
5
3.321
-
22/367
35 35 32 33 32 36 34 33 35 36
34.1
1.5
4.5
4
2.625
-
22/368
37 35 36 33 34 32 33 32 34 32
33.8
1.8
5.2
5
2.855
-
22/369
34 32 36 33 35 33 32 33 34 34
33.6
1.3
3.8
4
3.162
-
Test area
R1
22/317
22/318
R2
R3
R4
R5
R6
R7
R8
R9
R10
A87
Rm
sR
VR, %
rR
θR
fcm, MPa
37 35 37 35 38 35 34 36 36 35
35.8
1.2
3.4
4
3.254
-
31 34 35 34 34 34 36 36 35 36
34.5
1.5
4.4
5
3.313
-
22/372
36 33 33 32 33 33 34 34 32 33
33.3
1.2
3.5
4
3.450
-
22/373
35 35 34 35 33 34 35 36 35 36
34.8
0.9
2.6
3
3.265
-
22/374
34 37 36 36 36 35 35 35 36 37
35.7
0.9
2.7
3
3.162
-
22/375
38 32 35 32 35 36 32 33 32 32
33.7
2.2
6.4
6
2.774
-
22/376
36 35 32 34 35 36 36 36 38 38
35.6
1.8
5.0
6
3.378
-
22/377
35 35 33 35 32 34 34 35 33 34
34.0
1.1
3.1
3
2.846
-
22/378
33 34 35 32 35 34 36 35 33 33
34.0
1.2
3.7
4
3.207
-
22/379
35 32 35 35 34 34 35 35 30 34
33.9
1.7
4.9
5
3.006
-
22/380
34 35 32 32 36 36 37 35 36 36
34.9
1.7
5.0
5
2.892
-
22/381
31 33 36 36 33 35 32 36 33 35
34.0
1.8
5.4
5
2.739
-
22/382
32 34 36 35 36 37 36 34 36 36
35.2
1.5
4.2
5
3.388
-
22/383
36 36 34 34 36 37 38 34 34 34
35.3
1.5
4.2
4
2.677
-
22/384
33 34 34 33 35 33 36 34 33 32
33.7
1.2
3.4
4
3.450
-
22/385
34 36 36 35 34 36 37 37 36 35
35.6
1.1
3.0
3
2.791
-
22/386
37 34 33 34 35 34 35 35 36 33
34.6
1.3
3.7
4
3.162
-
22/387
33 36 37 33 34 35 33 34 32 34
34.1
1.5
4.5
5
3.281
-
22/388
34 35 35 34 33 35 34 36 35 36
34.7
0.9
2.7
3
3.162
-
22/389
34 33 37 36 37 34 36 34 35 36
35.2
1.4
4.0
4
2.860
-
22/390
37 34 32 33 36 37 34 33 33 37
34.6
2.0
5.7
5
2.557
-
22/391
32 34 31 33 35 35 35 34 34 32
33.5
1.4
4.3
4
2.790
-
22/392
33 34 33 34 33 36 36 34 32 32
33.7
1.4
4.2
4
2.821
-
22/393
32 32 34 33 33 34 32 33 32 33
32.8
0.8
2.4
2
2.535
-
22/394
34 35 36 35 36 37 35 36 36 36
35.6
0.8
2.4
3
3.558
-
22/395
34 34 33 33 34 30 34 36 36 37
34.1
2.0
5.8
7
3.555
-
22/396
32 32 33 33 32 33 33 34 34 32
32.8
0.8
2.4
2
2.535
-
22/397
32 33 33 34 32 34 34 36 36 36
34.0
1.6
4.6
4
2.558
-
22/398
35 36 35 35 36 34 34 35 35 35
35.0
0.7
1.9
2
3.000
-
22/399
36 32 32 33 34 34 31 36 36 34
33.8
1.8
5.4
5
2.757
-
22/400
32 30 35 32 33 33 32 34 33 33
32.7
1.3
4.1
5
3.738
-
22/401
30 29 31 31 32 33 32 34 29 33
31.4
1.7
5.5
5
2.919
-
22/402
32 33 31 33 33 34 32 31 34 35
32.8
1.3
4.0
4
3.038
-
22/403
34 31 33 34 34 32 32 31 35 33
32.9
1.4
4.2
4
2.919
-
22/404
32 33 35 36 32 32 31 33 33 35
33.2
1.6
4.9
5
3.088
-
22/405
30 31 34 33 32 34 34 33 35 32
32.8
1.5
4.7
5
3.227
-
22/406
32 35 34 35 32 31 33 31 33 34
33.0
1.5
4.5
4
2.683
-
22/407
33 35 36 34 34 32 32 31 34 35
33.6
1.6
4.7
5
3.169
-
22/408
31 30 32 34 34 32 34 33 34 34
32.8
1.5
4.5
4
2.711
-
22/409
34 32 33 32 33 35 31 33 35 31
32.9
1.4
4.4
4
2.760
-
22/410
35 32 32 33 34 33 31 35 33 32
33.0
1.3
4.0
4
3.000
-
22/411
30 30 33 34 30 32 32 31 31 31
31.4
1.3
4.3
4
2.963
-
22/412
35 36 34 32 33 32 31 33 30 30
32.6
2.0
6.2
6
2.983
-
22/413
32 32 30 30 31 32 32 32 30 31
31.2
0.9
2.9
2
2.176
-
22/414
30 32 31 32 31 30 30 30 33 30
30.9
1.1
3.6
3
2.726
-
22/415
31 31 30 31 29 29 30 30 31 30
30.2
0.8
2.6
2
2.535
-
22/416
36 34 34 35 32 32 33 30 36 36
33.8
2.0
6.0
6
2.935
-
22/417
35 38 32 30 34 30 36 31 33 31
33.0
2.7
8.2
8
2.954
-
22/418
30 34 36 34 34 34 35 34 35 34
34.0
1.6
4.6
6
3.838
-
22/419
34 33 34 33 34 33 34 33 38 35
34.1
1.5
4.5
5
3.281
-
22/420
35 36 34 33 35 32 35 32 33 36
34.1
1.5
4.5
4
2.625
-
22/421
35 34 33 32 36 32 34 32 31 33
33.2
1.5
4.7
5
3.227
-
22/422
32 34 35 35 36 32 31 33 34 34
33.6
1.6
4.7
5
3.169
-
Test area
R1
22/370
22/371
R2
R3
R4
R5
R6
R7
R8
R9
R10
A88
Rm
sR
VR, %
rR
θR
fcm, MPa
34 33 31 33 31 32 33 32 33 34
32.6
1.1
3.3
3
2.791
-
32 34 30 30 31 32 33 32 34 31
31.9
1.4
4.5
4
2.760
-
22/425
32 34 30 33 33 33 36 32 31 32
32.6
1.6
5.1
6
3.644
-
22/426
32 33 31 31 35 34 34 33 33 32
32.8
1.3
4.0
4
3.038
-
22/427
34 34 31 32 32 33 33 35 36 34
33.4
1.5
4.5
5
3.321
-
22/428
34 34 32 35 32 35 32 34 35 33
33.6
1.3
3.8
3
2.372
-
22/429
35 35 34 34 32 35 32 33 32 33
33.5
1.3
3.8
3
2.364
-
22/430
32 36 33 34 32 36 35 35 34 34
34.1
1.4
4.2
4
2.760
-
22/431
32 34 32 34 32 32 34 33 31 36
33.0
1.5
4.5
5
3.354
-
22/432
32 36 30 34 31 33 31 31 36 36
33.0
2.4
7.1
6
2.546
-
22/433
33 33 34 34 31 36 32 32 36 35
33.6
1.7
5.1
5
2.919
-
22/434
35 33 32 35 35 34 33 33 33 31
33.4
1.3
4.0
4
2.963
-
22/435
30 33 30 30 30 31 30 33 33 35
31.5
1.8
5.8
5
2.716
-
22/436
32 34 35 36 38 36 36 36 37 35
35.5
1.6
4.6
6
3.637
-
22/437
34 36 36 37 30 37 32 33 35 33
34.3
2.3
6.7
7
3.028
-
22/438
37 32 31 32 33 32 33 31 37 33
33.1
2.2
6.6
6
2.748
-
22/439
33 32 32 34 34 37 32 34 34 32
33.4
1.6
4.7
5
3.169
-
22/440
35 34 33 32 31 34 34 34 33 36
33.6
1.4
4.3
5
3.497
-
22/441
33 34 35 31 32 33 30 30 34 33
32.5
1.7
5.3
5
2.914
-
22/442
35 35 32 35 32 35 31 35 31 31
33.2
1.9
5.8
4
2.070
-
22/443
31 30 30 31 33 33 34 33 30 30
31.5
1.6
5.0
4
2.530
-
22/444
34 35 36 31 30 34 34 33 33 34
33.4
1.8
5.3
6
3.378
-
22/445
34 33 35 34 34 34 34 30 31 33
33.2
1.5
4.7
5
3.227
-
22/446
30 32 30 31 30 33 30 33 34 31
31.4
1.5
4.8
4
2.657
-
22/447
33 31 30 32 32 32 33 30 33 31
31.7
1.2
3.7
3
2.587
-
22/448
34 35 35 33 32 34 34 35 32 34
33.8
1.1
3.4
3
2.642
-
22/449
34 33 32 30 34 33 30 34 33 32
32.5
1.5
4.6
4
2.650
-
22/450
31 31 33 33 31 34 31 32 30 30
31.6
1.3
4.3
4
2.963
-
22/451
32 34 31 36 35 33 32 36 35 33
33.7
1.8
5.2
5
2.830
-
22/452
38 34 33 34 34 33 34 33 32 34
33.9
1.6
4.7
6
3.761
-
22/453
33 32 34 36 35 34 36 35 33 35
34.3
1.3
3.9
4
2.991
-
22/454
34 37 36 34 34 38 33 32 36 36
35.0
1.9
5.4
6
3.182
-
22/455
37 33 32 34 35 35 34 36 34 32
34.2
1.6
4.7
5
3.088
-
22/456
33 36 32 37 34 33 36 37 33 36
34.7
1.9
5.4
5
2.648
-
22/457
37 37 38 33 37 34 34 35 36 36
35.7
1.6
4.6
5
3.056
-
22/458
36 32 34 36 32 35 37 34 34 33
34.3
1.7
5.0
5
2.936
-
22/459
34 31 32 34 34 35 32 31 33 34
33.0
1.4
4.3
4
2.828
-
22/460
35 34 35 33 36 32 34 34 32 34
33.9
1.3
3.8
4
3.109
-
22/461
31 31 29 32 34 34 31 32 33 33
32.0
1.6
4.9
5
3.198
-
22/462
32 34 30 30 35 35 34 33 32 32
32.7
1.8
5.6
5
2.734
-
22/463
30 31 34 35 34 33 32 34 30 35
32.8
1.9
5.9
5
2.588
-
22/464
35 34 34 33 32 34 32 33 36 32
33.5
1.4
4.0
4
2.954
-
22/465
34 32 35 31 32 32 35 31 32 36
33.0
1.8
5.5
5
2.739
-
22/466
32 31 34 31 33 36 32 30 32 35
32.6
1.9
5.8
6
3.162
-
22/467
31 34 32 36 33 31 31 35 35 34
33.2
1.9
5.6
5
2.668
-
22/468
32 33 31 34 30 31 35 35 33 32
32.6
1.7
5.3
5
2.919
-
22/469
33 34 32 34 35 32 31 35 34 33
33.3
1.3
4.0
4
2.991
-
22/470
35 36 32 36 35 37 34 36 33 35
34.9
1.5
4.4
5
3.281
-
22/471
32 36 36 37 36 34 36 35 32 36
35.0
1.8
5.0
5
2.835
-
22/472
30 30 35 35 33 35 35 35 35 34
33.7
2.1
6.1
5
2.430
-
22/473
33 35 35 32 36 33 36 33 35 32
34.0
1.6
4.6
4
2.558
-
22/474
36 35 35 35 33 34 36 34 35 33
34.6
1.1
3.1
3
2.791
-
22/475
33 34 34 34 33 32 33 36 34 32
33.5
1.2
3.5
4
3.394
-
Test area
R1
22/423
22/424
R2
R3
R4
R5
R6
R7
R8
R9
R10
A89
Rm
sR
VR, %
rR
θR
fcm, MPa
33 33 34 34 33 34 35 33 35 35
33.9
0.9
2.6
2
2.284
-
32 32 32 32 33 33 34 36 35 33
33.2
1.4
4.2
4
2.860
-
22/478
36 35 35 33 35 33 33 32 33 32
33.7
1.4
4.2
4
2.821
-
22/479
34 33 35 36 33 32 33 32 36 32
33.6
1.6
4.7
4
2.535
-
22/480
35 32 35 32 34 32 32 34 36 34
33.6
1.5
4.5
4
2.657
-
22/481
34 36 32 35 36 34 37 35 33 36
34.8
1.5
4.5
5
3.227
-
22/482
33 32 34 34 32 33 35 35 32 32
33.2
1.2
3.7
3
2.440
-
22/483
31 35 32 33 34 35 36 34 34 33
33.7
1.5
4.4
5
3.346
-
22/484
34 34 32 32 36 34 34 36 36 35
34.3
1.5
4.4
4
2.677
-
22/485
35 35 36 36 32 35 34 35 33 32
34.3
1.5
4.4
4
2.677
-
22/486
32 37 34 33 35 36 35 34 36 35
34.7
1.5
4.3
5
3.346
-
22/487
35 35 34 32 33 35 35 33 33 32
33.7
1.3
3.7
3
2.397
-
22/488
34 36 36 35 35 34 36 37 33 34
35.0
1.2
3.6
4
3.207
-
22/489
36 35 32 34 34 36 36 32 34 32
34.1
1.7
4.9
4
2.405
-
22/490
34 34 36 35 36 36 34 37 33 33
34.8
1.4
4.0
4
2.860
-
22/491
35 33 33 34 32 34 36 33 34 35
33.9
1.2
3.5
4
3.341
-
22/492
33 34 34 33 33 34 35 33 33 36
33.8
1.0
3.1
3
2.905
-
22/493
35 37 34 34 32 36 35 35 36 35
34.9
1.4
3.9
5
3.649
-
22/494
36 34 32 32 35 36 33 33 36 34
34.1
1.6
4.7
4
2.508
-
22/495
37 36 35 35 34 35 36 36 34 35
35.3
0.9
2.7
3
3.162
-
22/496
35 34 33 33 36 34 36 34 33 35
34.3
1.2
3.4
3
2.587
-
22/497
36 36 34 36 34 35 36 32 34 36
34.9
1.4
3.9
4
2.919
-
22/498
35 33 36 37 37 34 33 35 34 34
34.8
1.5
4.2
4
2.711
-
22/499
33 37 37 33 36 35 35 35 36 34
35.1
1.4
4.1
4
2.760
-
22/500
32 32 35 33 34 32 35 36 35 35
33.9
1.5
4.5
4
2.625
-
22/501
34 37 36 34 33 33 37 38 37 34
35.3
1.9
5.4
5
2.648
-
22/502
38 34 36 34 37 35 32 36 34 33
34.9
1.9
5.3
6
3.238
-
22/503
33 34 33 36 37 36 37 36 34 34
35.0
1.6
4.5
4
2.558
-
22/504
35 35 34 33 36 35 32 35 34 36
34.5
1.3
3.7
4
3.151
-
22/505
35 36 36 36 37 34 34 33 36 35
35.2
1.2
3.5
4
3.254
-
22/506
32 36 34 35 36 37 34 36 35 34
34.9
1.4
4.2
5
3.450
-
22/507
34 35 33 36 33 34 37 34 35 35
34.6
1.3
3.7
4
3.162
-
22/508
35 36 35 36 35 31 33 35 35 36
34.7
1.6
4.5
5
3.191
-
22/509
34 34 35 34 36 36 33 36 35 37
35.0
1.2
3.6
4
3.207
-
22/510
35 34 34 35 33 37 36 36 36 35
35.1
1.2
3.4
4
3.341
-
22/511
34 35 32 33 37 35 36 34 34 33
34.3
1.5
4.4
5
3.346
-
22/512
36 37 36 36 32 35 31 35 34 34
34.6
1.9
5.5
6
3.162
-
22/513
37 36 36 38 35 34 35 34 35 37
35.7
1.3
3.7
4
2.991
-
22/514
34 33 35 35 34 34 36 36 35 33
34.5
1.1
3.1
3
2.777
-
22/515
32 33 36 37 34 35 34 33 37 36
34.7
1.8
5.1
5
2.830
-
22/516
33 34 31 35 33 34 32 32 35 34
33.3
1.3
4.0
4
2.991
-
22/517
35 35 36 33 35 34 34 36 34 33
34.5
1.1
3.1
3
2.777
-
22/518
36 35 34 36 36 34 37 34 34 35
35.1
1.1
3.1
3
2.726
-
22/519
38 37 35 36 35 36 34 36 35 35
35.7
1.2
3.2
4
3.450
-
22/520
34 36 37 35 37 36 34 34 33 35
35.1
1.4
3.9
4
2.919
-
22/521
37 32 37 37 35 36 36 35 35 36
35.6
1.5
4.2
5
3.321
-
22/522
35 36 33 34 35 36 36 37 35 35
35.2
1.1
3.2
4
3.523
-
22/523
35 36 36 33 36 34 32 34 32 36
34.4
1.6
4.8
4
2.429
-
22/524
35 36 35 34 34 36 34 37 37 38
35.6
1.4
4.0
4
2.798
-
22/525
36 37 32 33 35 36 36 34 34 35
34.8
1.5
4.5
5
3.227
-
22/526
35 36 36 36 38 38 38 35 35 37
36.4
1.3
3.5
3
2.372
-
22/527
36 35 34 34 33 34 36 36 37 37
35.2
1.4
4.0
4
2.860
-
22/528
33 33 33 34 36 34 36 34 35 34
34.2
1.1
3.3
3
2.642
-
Test area
R1
22/476
22/477
R2
R3
R4
R5
R6
R7
R8
R9
R10
A90
Rm
sR
VR, %
rR
θR
fcm, MPa
35 34 36 36 35 36 37 34 34 35
35.2
1.0
2.9
3
2.905
-
36 34 34 37 36 34 35 33 33 36
34.8
1.4
4.0
4
2.860
-
23/1
30 33 28 32 33 30 32 33 31 31
31.3
1.6
5.2
5
3.056
-
23/2
29 29 31 33 34 28 36 33 29 32
31.4
2.6
8.4
8
3.038
-
23/3
30 31 31 33 34 30 34 35 29 29
31.6
2.2
7.0
6
2.701
-
23/4
30 31 32 33 34 32 32 35 28 31
31.8
2.0
6.3
7
3.520
-
23/5
28 32 31 32 34 30 31 33 32 31
31.4
1.6
5.2
6
3.644
-
23/6
29 30 31 32 33 33 33 31 27 32
31.1
2.0
6.3
6
3.047
-
23/7
27 32 32 33 35 30 33 33 27 33
31.5
2.7
8.5
8
2.988
-
23/8
30 32 34 32 33 30 31 33 26 34
31.5
2.4
7.7
8
3.312
-
23/9
33 30 28 33 36 38 31 32 29 29
31.9
3.2
10.1
10
3.113
-
23/10
27 28 33 32 35 30 32 34 29 33
31.3
2.7
8.5
8
2.998
-
24/1
47 49 49 48 46 49 49 48 49 47
48.1
1.1
2.3
3
2.726
-
24/2
50 50 49 48 48 51 48 49 48 48
48.9
1.1
2.3
3
2.726
-
24/3
48 48 47 47 48 46 47 48 47 49
47.5
0.8
1.8
3
3.530
-
24/4
46 49 49 46 48 46 46 47 44 47
46.8
1.5
3.3
5
3.227
-
24/5
47 49 46 45 47 48 47 49 47 45
47.0
1.4
3.0
4
2.828
-
24/6
44 44 45 43 46 45 43 47 46 45
44.8
1.3
2.9
4
3.038
-
24/7
47 46 44 48 48 46 49 48 48 48
47.2
1.5
3.1
5
3.388
-
24/8
47 46 44 48 48 46 49 48 48 48
47.2
1.5
3.1
5
3.388
-
24/9
44 46 44 43 46 44 46 47 45 44
44.9
1.3
2.9
4
3.109
-
24/10
55 51 50 50 51 51 50 55 51 51
51.5
1.9
3.7
5
2.631
-
24/11
48 52 49 52 50 47 54 49 48 54
50.3
2.5
5.1
7
2.755
-
24/12
52 46 48 45 46 53 48 47 47 48
48.0
2.6
5.4
8
3.098
-
24/13
49 47 44 47 48 45 48 47 47 46
46.8
1.5
3.2
5
3.388
-
24/14
41 47 46 42 48 46 47 46 46 46
45.5
2.2
4.9
7
3.148
-
24/15
47 48 46 44 46 47 46 46 45 46
46.1
1.1
2.4
4
3.635
-
24/16
42 45 42 46 46 46 46 43 47 45
44.8
1.8
4.0
5
2.757
-
24/17
47 47 43 43 43 42 37 48 47 48
44.5
3.5
7.9
11
3.111
-
24/18
54 48 47 50 50 50 48 51 50 48
49.6
2.0
4.1
7
3.481
-
24/19
50 51 50 49 50 49 49 49 48 45
49.0
1.6
3.3
6
3.674
-
24/20
42 46 46 45 44 48 48 47 48 38
45.2
3.2
7.1
10
3.135
-
24/21
33 33 33 34 37 37 35 36 34 34
34.6
1.6
4.6
4
2.535
-
24/22
34 36 38 36 35 33 36 37 35 34
35.4
1.5
4.3
5
3.321
-
24/23
37 36 36 38 37 37 36 38 39 36
37.0
1.1
2.8
3
2.846
-
24/24
34 38 40 38 40 34 35 38 33 40
37.0
2.7
7.4
7
2.547
-
24/25
39 38 38 37 40 38 39 36 38 34
37.7
1.7
4.5
6
3.523
-
24/26
35 34 38 37 40 40 35 35 32 34
36.0
2.7
7.4
8
3.000
-
24/27
42 37 44 39 39 39 37 38 41 39
39.5
2.2
5.6
7
3.148
-
24/28
38 37 38 35 37 33 36 38 34 38
36.4
1.8
5.0
5
2.721
-
24/29
38 37 38 38 39 40 38 37 38 37
38.0
0.9
2.5
3
3.182
-
24/30
38 36 36 41 39 39 38 39 39 37
38.2
1.5
4.1
5
3.227
-
24/31
37 36 39 41 36 39 42 36 39 38
38.3
2.1
5.5
6
2.842
-
24/32
35 38 35 34 39 34 38 39 35 39
36.6
2.2
5.9
5
2.304
-
24/33
38 41 35 35 39 34 36 37 35 37
36.7
2.2
5.9
7
3.237
-
24/34
34 35 38 37 36 36 34 39 40 37
36.6
2.0
5.5
6
2.983
-
24/35
36 36 37 38 38 36 39 39 37 36
37.2
1.2
3.3
3
2.440
-
24/36
36 37 39 37 35 36 36 39 38 35
36.8
1.5
4.0
4
2.711
-
24/37
37 38 35 35 38 39 35 38 36 36
36.7
1.5
4.1
4
2.677
-
24/38
36 38 37 37 36 38 37 36 38 39
37.2
1.0
2.8
3
2.905
-
24/39
36 38 40 39 38 37 35 38 39 36
37.6
1.6
4.2
5
3.169
-
Test area
R1
22/529
22/530
R2
R3
R4
R5
R6
R7
R8
R9
R10
A91
Rm
sR
VR, %
rR
θR
fcm, MPa
46 51 53 53 54 49 48 46 49 49
49.8
2.9
5.7
8
2.798
-
51 51 47 49 51 51 54 48 46 50
49.8
2.3
4.7
8
3.408
-
24/42
50 48 49 51 48 48 47 49 49 50
48.9
1.2
2.4
4
3.341
-
24/43
48 47 51 50 50 48 47 51 49 48
48.9
1.5
3.1
4
2.625
-
24/44
47 51 50 46 49 48 50 50 54 50
49.5
2.2
4.5
8
3.598
-
24/45
51 49 48 52 54 53 48 53 53 54
51.5
2.4
4.6
6
2.533
-
24/46
51 43 42 52 47 51 53 50 53 48
49.0
3.9
8.0
11
2.789
-
24/47
53 54 55 52 56 56 55 52 48 48
52.9
3.0
5.6
8
2.702
-
24/48
48 48 49 48 48 45 47 46 44 46
46.9
1.6
3.4
5
3.135
-
24/49
49 48 50 49 46 50 48 45 48 45
47.8
1.9
3.9
5
2.668
-
24/50
45 45 50 48 42 50 52 49 52 50
48.3
3.3
6.8
10
3.029
-
24/51
44 54 53 48 49 53 50 47 47 48
49.3
3.2
6.5
10
3.126
-
24/52
45 50 54 48 50 48 44 46 48 44
47.7
3.1
6.6
10
3.196
-
24/53
54 50 54 51 49 48 50 50 50 50
50.6
2.0
3.9
6
3.069
-
24/54
48 46 47 47 47 44 47 48 45 47
46.6
1.3
2.7
4
3.162
-
24/55
48 46 46 47 47 47 48 44 44 47
46.4
1.4
3.1
4
2.798
-
24/56
45 48 46 44 48 47 46 48 48 50
47.0
1.8
3.8
6
3.402
-
24/57
45 47 48 47 50 47 46 48 48 46
47.2
1.4
3.0
5
3.575
-
24/58
48 46 46 48 44 46 46 48 47 47
46.6
1.3
2.7
4
3.162
-
24/59
48 51 50 48 50 49 47 48 48 49
48.8
1.2
2.5
4
3.254
-
24/60
47 49 48 48 50 51 48 48 47 49
48.5
1.3
2.6
4
3.151
-
24/61
49 51 50 51 47 50 52 47 48 49
49.4
1.7
3.5
5
2.919
-
24/62
50 48 49 49 48 49 48 46 50 50
48.7
1.3
2.6
4
3.196
-
24/63
46 48 49 50 50 49 44 51 52 50
48.9
2.4
4.9
8
3.364
-
24/64
49 50 48 52 50 48 47 47 48 50
48.9
1.6
3.3
5
3.135
-
24/65
48 47 50 50 48 48 47 48 46 49
48.1
1.3
2.7
4
3.109
-
24/66
47 47 48 47 49 50 46 49 49 48
48.0
1.2
2.6
4
3.207
-
24/67
53 53 50 52 51 48 48 54 52 52
51.3
2.1
4.0
6
2.916
-
24/68
40 48 48 47 42 52 47 47 50 44
46.5
3.6
7.7
12
3.335
-
24/69
50 49 51 50 48 48 50 47 48 48
48.9
1.3
2.6
4
3.109
-
24/70
46 48 49 46 49 49 47 49 49 47
47.9
1.3
2.7
3
2.332
-
24/71
37 36 47 37 37 40 47 38 37 34
39.0
4.5
11.5
13
2.907
-
24/72
47 47 45 47 38 42 45 47 43 42
44.3
3.0
6.8
9
2.980
-
24/73
44 43 43 45 47 44 49 48 45 45
45.3
2.1
4.5
6
2.916
-
24/74
45 39 44 44 48 47 44 48 46 50
45.5
3.1
6.7
11
3.590
-
24/75
47 47 44 48 45 47 46 42 40 43
44.9
2.6
5.8
8
3.075
-
24/76
47 52 46 47 49 50 47 49 48 47
48.2
1.8
3.8
6
3.308
-
24/77
50 47 45 49 48 48 52 51 49 50
48.9
2.0
4.1
7
3.457
-
24/78
47 44 42 41 49 49 44 47 48 47
45.8
2.9
6.2
8
2.798
-
24/79
49 48 47 48 48 47 48 50 51 43
47.9
2.1
4.5
8
3.753
-
24/80
40 39 40 45 46 49 47 46 49 46
44.7
3.7
8.3
10
2.693
-
24/81
50 47 48 46 49 49 45 46 44 47
47.1
1.9
4.1
6
3.138
-
24/82
55 55 54 55 55 54 53 55 50 55
54.1
1.6
2.9
5
3.135
-
24/83
49 47 51 47 47 50 49 51 50 49
49.0
1.6
3.2
4
2.558
-
24/84
48 47 49 50 52 51 49 49 48 49
49.2
1.5
3.0
5
3.388
-
24/85
51 47 48 45 48 49 49 50 51 51
48.9
2.0
4.0
6
3.047
-
24/86
48 47 45 49 47 51 45 45 47 51
47.5
2.3
4.8
6
2.640
-
24/87
48 49 42 49 51 49 50 46 49 49
48.2
2.5
5.2
9
3.558
-
24/88
49 55 51 51 47 47 50 54 50 51
50.5
2.6
5.1
8
3.086
-
24/89
51 44 49 49 53 54 52 48 50 50
50.0
2.8
5.7
10
3.536
-
24/90
49 50 51 52 51 52 51 54 51 53
51.4
1.4
2.8
5
3.497
-
24/91
49 49 51 49 47 48 47 47 48 49
48.4
1.3
2.6
4
3.162
-
24/92
45 50 46 45 46 45 49 49 50 45
47.0
2.2
4.7
5
2.261
-
Test area
R1
24/40
24/41
R2
R3
R4
R5
R6
R7
R8
R9
R10
A92
Rm
sR
VR, %
rR
θR
fcm, MPa
48 51 48 46 47 48 50 49 48 50
48.5
1.5
3.1
5
3.313
-
51 48 48 51 50 51 50 49 49 49
49.6
1.2
2.4
3
2.556
-
24/95
50 50 48 49 49 51 48 50 52 50
49.7
1.3
2.5
4
3.196
-
24/96
47 50 50 51 47 50 49 47 46 46
48.3
1.9
3.9
5
2.648
-
24/97
48 47 48 47 49 47 50 47 49 50
48.2
1.2
2.6
3
2.440
-
24/98
47 47 50 51 50 50 52 50 50 50
49.7
1.6
3.2
5
3.191
-
Test area
R1
24/93
24/94
R2
R3
R4
R5
R6
R7
R8
R9
R10
24/99
48 52 51 49 50 52 50 50 50 50
50.2
1.2
2.4
4
3.254
-
24/100
50 51 48 51 47 49 47 48 50 49
49.0
1.5
3.0
4
2.683
-
24/101
51 49 48 48 50 48 51 47 48 48
48.8
1.4
2.9
4
2.860
-
24/102
50 51 49 48 48 49 47 50 49 48
48.9
1.2
2.4
4
3.341
-
24/103
51 50 50 51 50 52 48 47 50 50
49.9
1.4
2.9
5
3.450
-
24/104
52 54 56 53 56 52 54 57 52 56
54.2
1.9
3.6
5
2.588
-
24/105
56 51 48 53 48 53 53 51 49 51
51.3
2.5
5.0
8
3.149
-
24/106
46 48 48 47 46 49 44 48 47 47
47.0
1.4
3.0
5
3.536
-
24/107
47 51 49 48 48 47 50 48 47 49
48.4
1.3
2.8
4
2.963
-
24/108
48 47 51 51 50 46 48 50 50 47
48.8
1.8
3.7
5
2.757
-
24/109
47 49 46 48 48 51 48 50 50 48
48.5
1.5
3.1
5
3.313
-
24/110
47 46 48 48 47 46 47 46 48 46
46.9
0.9
1.9
2
2.284
-
24/111
44 47 47 49 48 44 46 47 49 46
46.7
1.8
3.8
5
2.830
-
24/112
46 48 44 48 47 48 48 47 46 47
46.9
1.3
2.7
4
3.109
-
25/1
52 55 58 52 57 54 56 54 56 56
55.0
2.0
3.6
6
3.000
-
25/2
52 55 59 52 50 50 50 49 57 51
52.5
3.4
6.4
10
2.963
-
25/3
58 53 51 53 49 57 50 53 49 48
52.1
3.4
6.5
10
2.957
-
25/4
60 57 56 52 59 55 61 60 57 63
58.0
3.2
5.6
11
3.404
-
25/5
59 57 57 55 55 59 55 51 59 53
56.0
2.7
4.8
8
2.954
-
25/6
54 53 53 50 53 49 58 50 48 52
52.0
2.9
5.6
10
3.441
-
25/7
49 50 50 51 49 49 53 52 55 50
50.8
2.0
3.9
6
3.017
-
25/8
56 54 53 52 50 51 50 48 50 50
51.4
2.4
4.6
8
3.381
-
25/9
49 50 58 49 55 51 55 55 53 51
52.6
3.1
5.8
9
2.939
-
25/10
54 53 51 55 50 50 53 53 48 50
51.7
2.2
4.3
7
3.162
-
25/11
53 54 54 51 55 56 55 55 54 51
53.8
1.7
3.1
5
2.965
-
25/12
51 53 53 56 57 53 49 55 54 50
53.1
2.6
4.8
8
3.127
-
25/13
54 52 53 52 53 53 53 52 50 50
52.2
1.3
2.5
4
3.038
-
25/14
55 56 53 48 49 48 48 50 45 53
50.5
3.6
7.1
11
3.084
-
25/15
49 47 50 52 50 45 51 52 55 53
50.4
2.9
5.8
10
3.432
-
25/16
53 54 51 49 50 53 53 51 48 55
51.7
2.3
4.4
7
3.093
-
25/17
53 51 50 58 53 57 55 51 50 53
53.1
2.8
5.3
8
2.850
-
25/18
51 49 50 53 53 50 49 49 51 47
50.2
1.9
3.7
6
3.202
-
25/19
51 56 55 55 55 58 50 51 51 55
53.7
2.7
5.0
8
2.952
-
25/20
53 48 48 49 53 50 49 50 50 50
50.0
1.8
3.5
5
2.835
-
25/21
46 54 53 56 50 47 47 50 52 48
50.3
3.4
6.7
10
2.969
-
25/22
53 49 55 56 57 56 52 55 51 53
53.7
2.5
4.7
8
3.149
-
25/23
57 57 56 56 55 57 59 56 57 53
56.3
1.6
2.8
6
3.829
-
25/24
57 58 54 55 56 53 57 56 52 54
55.2
1.9
3.5
6
3.105
-
25/25
53 55 48 51 52 51 55 51 49 52
51.7
2.3
4.4
7
3.093
-
25/26
55 53 48 47 53 51 50 50 51 50
50.8
2.4
4.7
8
3.341
-
25/27
53 50 57 53 53 53 56 57 49 56
53.7
2.8
5.2
8
2.867
-
25/28
55 51 48 56 53 51 47 52 51 55
51.9
3.0
5.7
9
3.040
-
25/29
54 53 55 59 58 51 56 58 56 57
55.7
2.5
4.5
8
3.204
-
25/30
57 51 54 52 49 55 55 57 55 48
53.3
3.2
5.9
9
2.844
-
25/31
51 58 58 55 50 56 53 55 53 53
54.2
2.7
5.0
8
2.963
-
25/32
49 50 51 53 58 58 57 59 55 53
54.3
3.6
6.7
10
2.761
-
A93
Rm
sR
VR, %
rR
θR
fcm, MPa
54 56 53 54 54 49 57 55 55 56
54.3
2.2
4.1
8
3.614
-
58 55 57 57 56 59 57 57 54 55
56.5
1.5
2.7
5
3.313
-
25/35
62 56 54 56 52 51 58 55 57 56
55.7
3.1
5.6
11
3.556
-
25/36
49 53 54 53 53 53 55 51 55 58
53.4
2.4
4.5
9
3.730
-
25/37
53 52 58 51 53 54 50 48 49 49
51.7
3.0
5.8
10
3.352
-
25/38
53 49 52 52 47 51 51 47 51 47
50.0
2.3
4.6
6
2.598
-
25/39
48 51 51 48 49 48 50 51 47 47
49.0
1.6
3.3
4
2.449
-
25/40
49 47 51 48 50 49 48 48 51 53
49.4
1.8
3.7
6
3.265
-
25/41
56 54 50 50 57 50 48 47 52 51
51.5
3.3
6.4
10
3.054
-
26/1
52 54 52 49 55 52 55 54 53 54
53.0
1.8
3.4
6
3.286
-
26/2
55 51 49 50 50 55 52 53 54 50
51.9
2.2
4.3
6
2.686
-
26/3
50 48 52 52 49 49 52 54 51 53
51.0
1.9
3.8
6
3.087
-
26/4
45 42 43 44 45 42 48 43 48 45
44.5
2.2
4.9
6
2.761
-
26/5
47 42 44 45 48 47 45 42 44 48
45.2
2.3
5.0
6
2.666
-
26/6
50 47 50 46 51 48 43 51 42 48
47.6
3.2
6.7
9
2.840
-
26/7
52 49 50 47 51 49 52 44 50 50
49.4
2.4
4.9
8
3.315
-
26/8
40 46 42 48 45 42 44 40 47 44
43.8
2.8
6.3
8
2.877
-
26/9
45 48 49 42 43 43 46 41 42 47
44.6
2.8
6.3
8
2.860
-
26/10
45 40 46 47 49 40 40 49 47 45
44.8
3.6
8.0
9
2.511
-
26/11
51 46 44 43 44 42 52 49 49 42
46.2
3.8
8.2
10
2.656
-
26/12
50 49 42 52 50 45 40 44 51 52
47.5
4.4
9.2
12
2.741
-
26/13
46 42 42 40 47 43 50 44 50 45
44.9
3.4
7.5
10
2.957
-
26/14
55 50 55 51 50 51 50 53 47 51
51.3
2.5
4.8
8
3.263
-
26/15
44 42 48 45 44 46 47 47 44 42
44.9
2.1
4.6
6
2.886
-
26/16
42 44 48 46 45 42 48 46 42 45
44.8
2.3
5.1
6
2.609
-
26/17
43 50 48 42 50 46 44 50 49 47
46.9
3.0
6.5
8
2.636
-
26/18
44 42 50 42 44 46 46 46 44 50
45.4
2.8
6.2
8
2.821
-
26/19
42 42 40 42 38 43 37 38 46 40
40.8
2.7
6.7
9
3.284
-
26/20
40 36 34 38 40 40 42 34 32 32
36.8
3.7
10.0
10
2.721
-
26/21
42 40 32 34 42 36 32 30 38 36
36.2
4.3
11.8
12
2.815
-
26/22
50 48 52 52 49 49 52 54 51 46
50.3
2.4
4.7
8
3.391
-
26/23
52 49 50 51 50 44 51 52 50 52
50.1
2.4
4.7
8
3.364
-
26/24
42 44 42 48 40 40 44 43 47 41
43.1
2.7
6.3
8
2.934
-
26/25
40 41 40 46 41 38 45 40 36 42
40.9
3.0
7.2
10
3.377
-
26/26
50 48 54 55 54 53 52 54 50 52
52.2
2.3
4.3
7
3.110
-
26/27
54 50 53 56 51 48 49 52 49 47
50.9
2.8
5.6
9
3.162
-
26/28
45 42 40 52 40 53 42 42 42 51
44.9
5.1
11.4
13
2.545
-
26/29
47 48 44 40 42 51 50 42 51 50
46.5
4.2
9.0
11
2.638
-
26/30
44 51 43 48 42 40 41 50 47 49
45.5
4.0
8.7
11
2.764
-
26/31
48 45 42 45 52 49 45 43 51 45
46.5
3.3
7.2
10
2.993
-
26/32
52 53 49 52 53 52 49 53 48 50
51.1
1.9
3.7
5
2.615
-
26/33
55 52 51 50 53 52 55 48 50 52
51.8
2.2
4.2
7
3.180
-
26/34
52 53 55 51 49 55 49 52 53 54
52.3
2.2
4.1
6
2.774
-
26/35
49 49 52 43 43 40 39 37 38 40
43.0
5.2
12.2
15
2.858
-
26/36
47 53 52 42 43 41 49 42 48 47
46.4
4.3
9.2
12
2.808
-
26/37
52 52 47 46 47 49 46 50 44 43
47.6
3.1
6.5
9
2.905
-
26/38
45 50 48 52 47 40 51 46 43 50
47.2
3.8
8.0
12
3.162
-
26/39
52 53 46 48 52 45 44 48 43 41
47.2
4.1
8.8
12
2.905
-
26/40
50 47 52 45 43 51 43 48 44 41
46.4
3.8
8.1
11
2.912
-
26/41
53 49 45 49 48 41 46 45 48 41
46.5
3.7
8.0
12
3.226
-
26/42
49 46 47 49 50 49 43 43 42 50
46.8
3.1
6.7
8
2.564
-
26/43
50 50 51 48 44 48 44 48 45 48
47.6
2.5
5.3
7
2.796
-
Test area
R1
25/33
25/34
R2
R3
R4
R5
R6
R7
R8
R9
R10
A94
Rm
sR
VR, %
rR
θR
fcm, MPa
54 50 49 53 53 47 51 52 51 48
50.8
2.3
4.5
7
3.044
-
48 54 48 53 52 50 51 53 55 54
51.8
2.5
4.8
7
2.816
-
26/46
49 51 52 49 48 51 48 46 52 49
49.5
2.0
4.0
6
3.065
-
27/1
35 39 35 36 35 35 32 37 35 35
35.4
1.8
5.0
7
3.941
-
27/2
39 35 34 37 36 34 36 35 39 37
36.2
1.8
5.0
5
2.757
-
27/3
35 33 33 33 34 34 39 35 34 33
34.3
1.8
5.3
6
3.281
-
27/4
36 39 35 35 37 32 35 33 39 34
35.5
2.3
6.5
7
3.015
-
27/5
32 37 33 33 33 33 34 33 32 34
33.4
1.4
4.3
5
3.497
-
27/6
39 35 37 34 33 35 36 35 35 34
35.3
1.7
4.8
6
3.523
-
27/7
38 35 35 35 34 34 33 33 33 33
34.3
1.6
4.6
5
3.191
-
27/8
32 32 37 33 33 31 33 35 36 34
33.6
1.9
5.6
6
3.162
-
27/9
35 33 33 35 33 33 38 39 35 36
35.0
2.2
6.2
6
2.777
-
27/10
33 33 33 34 34 37 34 35 35 34
34.2
1.2
3.6
4
3.254
-
27/11
34 35 36 33 37 39 37 37 33 36
35.7
1.9
5.5
6
3.082
-
27/12
33 34 36 35 33 33 34 35 36 37
34.6
1.4
4.1
4
2.798
-
27/13
37 37 36 36 37 36 35 37 37 36
36.4
0.7
1.9
2
2.860
-
27/14
33 37 33 32 35 33 33 34 32 32
33.4
1.6
4.7
5
3.169
-
27/15
37 33 35 36 37 37 36 37 35 34
35.7
1.4
4.0
4
2.821
-
27/16
31 32 31 31 35 31 35 36 35 32
32.9
2.1
6.3
5
2.405
-
27/17
34 32 36 33 36 37 33 36 37 33
34.7
1.9
5.4
5
2.648
-
27/18
31 34 34 36 35 34 34 37 35 34
34.4
1.6
4.6
6
3.803
-
27/19
37 32 37 35 37 31 34 36 35 36
35.0
2.1
6.0
6
2.846
-
27/20
31 31 31 32 31 35 31 31 35 33
32.1
1.7
5.2
4
2.405
-
27/21
31 31 29 29 31 31 30 33 33 34
31.2
1.7
5.4
5
2.965
-
27/22
35 33 31 30 28 29 30 35 29 29
30.9
2.6
8.3
7
2.736
-
27/23
33 31 31 30 28 31 29 34 31 31
30.9
1.7
5.6
6
3.471
-
27/24
29 29 31 29 28 28 31 29 30 31
29.5
1.2
4.0
3
2.546
-
27/25
31 33 33 33 32 31 33 30 34 32
32.2
1.2
3.8
4
3.254
-
28/1
36 35 40 36 37 36 37 34 37 39
36.7
1.8
4.8
6
3.396
-
28/2
37 34 32 35 36 35 37 34 34 35
34.9
1.5
4.4
5
3.281
-
28/3
31 32 34 33 34 35 37 32 35 38
34.1
2.2
6.6
7
3.134
-
28/4
34 35 39 34 30 37 30 32 36 38
34.5
3.1
9.1
9
2.870
-
28/5
30 31 30 30 30 31 30 34 31 30
30.7
1.3
4.1
4
3.196
-
28/6
30 34 33 34 32 32 32 30 30 34
32.1
1.7
5.2
4
2.405
-
28/7
32 33 34 34 34 33 30 32 31 32
32.5
1.4
4.2
4
2.954
-
28/8
31 30 29 30 30 28 30 28 26 30
29.2
1.5
5.1
5
3.388
-
28/9
25 24 22 28 28 29 29 26 25 26
26.2
2.3
8.8
7
3.044
-
28/10
30 32 29 30 34 30 32 36 30 35
31.8
2.4
7.7
7
2.868
-
28/11
32 35 33 31 36 38 34 38 33 36
34.6
2.4
7.0
7
2.901
-
28/12
31 30 28 30 33 30 26 30 29 28
29.5
1.9
6.4
7
3.684
-
28/13
32 31 30 33 28 36 28 33 34 28
31.3
2.8
8.9
8
2.867
-
28/14
31 30 30 32 31 30 30 31 32 30
30.7
0.8
2.7
2
2.429
-
28/15
38 32 36 31 31 35 36 33 34 33
33.9
2.3
6.9
7
3.003
-
28/16
32 35 34 35 36 35 32 36 36 34
34.5
1.5
4.4
4
2.650
-
28/17
33 37 32 36 34 33 31 32 30 32
33.0
2.2
6.5
7
3.240
-
28/18
31 33 30 32 27 29 31 31 33 35
31.2
2.3
7.2
8
3.554
-
28/19
34 37 35 30 33 30 31 35 30 33
32.8
2.5
7.6
7
2.816
-
28/20
32 32 31 33 34 28 33 30 34 29
31.6
2.1
6.5
6
2.905
-
28/21
28 29 29 34 28 26 27 29 29 30
28.9
2.1
7.4
8
3.753
-
29/1
37 32 33 35 33 37 32 40 36 39
35.4
2.9
8.1
8
2.782
-
Test area
R1
26/44
26/45
R2
R3
R4
R5
R6
R7
R8
R9
R10
A95
Rm
sR
VR, %
rR
θR
fcm, MPa
39 38 36 36 39 40 39 38 37 38
38.0
1.3
3.5
4
3.000
-
36 35 33 34 32 37 36 37 39 33
35.2
2.2
6.3
7
3.180
-
29/4
34 35 35 36 36 36 32 35 37 36
35.2
1.4
4.0
5
3.575
-
29/5
38 36 34 34 33 31 32 32 35 38
34.3
2.5
7.1
7
2.855
-
29/6
34 37 34 37 35 36 39 31 38 34
35.5
2.4
6.7
8
3.377
-
29/7
36 37 37 38 35 35 37 37 36 34
36.2
1.2
3.4
4
3.254
-
29/8
38 35 35 35 34 36 38 40 37 32
36.0
2.3
6.4
8
3.464
-
29/9
36 37 38 33 34 36 35 35 36 32
35.2
1.8
5.2
6
3.308
-
29/10
32 32 34 35 32 31 33 36 36 32
33.3
1.8
5.5
5
2.734
-
29/11
36 37 38 38 36 33 36 38 34 35
36.1
1.7
4.8
5
2.892
-
29/12
33 30 31 29 38 39 30 37 34 39
34.0
4.0
11.7
10
2.518
-
29/13
34 33 38 37 41 37 35 37 40 34
36.6
2.6
7.2
8
3.038
-
29/14
37 34 35 36 34 36 37 34 34 38
35.5
1.5
4.3
4
2.650
-
29/15
36 38 34 33 37 36 34 38 36 35
35.7
1.7
4.8
5
2.936
-
29/16
35 34 32 33 34 35 39 33 39 40
35.4
2.9
8.1
8
2.782
-
29/17
38 38 40 36 39 36 33 34 36 38
36.8
2.2
6.0
7
3.180
-
29/18
32 38 33 31 38 32 33 37 32 35
34.1
2.7
7.9
7
2.607
-
29/19
35 33 31 33 32 38 32 33 31 32
33.0
2.1
6.4
7
3.320
-
29/20
30 34 35 36 34 34 32 33 33 32
33.3
1.7
5.1
6
3.523
-
29/21
35 35 35 35 31 37 34 35 35 35
34.7
1.5
4.3
6
4.015
-
29/22
37 38 34 33 34 32 36 36 30 32
34.2
2.5
7.4
8
3.162
-
29/23
37 35 38 38 40 38 40 34 37 36
37.3
1.9
5.2
6
3.082
-
29/24
33 32 33 30 32 36 36 32 36 36
33.6
2.2
6.6
6
2.701
-
29/25
34 36 36 34 38 35 34 37 36 37
35.7
1.4
4.0
4
2.821
-
29/26
31 36 32 31 31 31 33 36 34 38
33.3
2.6
7.8
7
2.709
-
29/27
37 33 36 35 36 35 38 33 40 33
35.6
2.3
6.5
7
3.019
-
29/28
32 32 36 35 33 32 34 32 34 35
33.5
1.5
4.5
4
2.650
-
29/29
30 31 30 30 34 33 36 31 38 32
32.5
2.8
8.5
8
2.900
-
29/30
34 32 33 32 37 35 34 32 31 34
33.4
1.8
5.3
6
3.378
-
29/31
38 33 38 36 33 38 36 39 32 36
35.9
2.5
6.9
7
2.834
-
29/32
33 32 38 32 38 36 37 36 36 35
35.3
2.3
6.4
6
2.651
-
29/33
37 32 33 33 36 34 32 37 32 34
34.0
2.0
5.9
5
2.500
-
29/34
32 32 32 34 31 31 37 34 35 35
33.3
2.0
6.0
6
2.996
-
29/35
32 31 32 33 31 30 32 34 31 32
31.8
1.1
3.6
4
3.523
-
29/36
36 38 33 33 33 33 35 38 37 33
34.9
2.2
6.3
5
2.290
-
29/37
32 36 33 36 30 32 30 34 30 30
32.3
2.4
7.4
6
2.494
-
29/38
34 34 30 34 35 36 35 34 30 37
33.9
2.3
6.7
7
3.066
-
29/39
30 30 32 37 32 33 31 32 33 37
32.7
2.5
7.6
7
2.804
-
29/40
34 32 32 35 35 37 32 32 36 32
33.7
1.9
5.8
5
2.569
-
29/41
33 34 35 35 37 33 34 38 36 38
35.3
1.9
5.4
5
2.648
-
29/42
32 34 35 38 34 36 37 34 35 32
34.7
1.9
5.6
6
3.082
-
29/43
30 36 34 36 32 32 37 31 33 31
33.2
2.4
7.4
7
2.868
-
29/44
37 37 37 36 32 33 33 30 30 30
33.5
3.0
9.0
7
2.312
-
29/45
37 32 33 34 35 35 35 33 32 30
33.6
2.0
6.0
7
3.481
-
29/46
36 31 32 33 32 35 34 31 31 37
33.2
2.2
6.6
6
2.726
-
29/47
38 34 38 37 33 38 33 33 35 37
35.6
2.2
6.2
5
2.251
-
29/48
34 33 31 31 33 32 31 33 35 34
32.7
1.4
4.3
4
2.821
-
29/49
36 32 32 35 30 34 38 32 31 31
33.1
2.6
7.7
8
3.127
-
29/50
37 34 38 32 32 32 32 32 33 33
33.5
2.2
6.6
6
2.698
-
29/51
34 35 34 33 32 32 32 32 32 33
32.9
1.1
3.3
3
2.726
-
29/52
32 33 33 36 32 33 33 36 32 32
33.2
1.5
4.7
4
2.582
-
29/53
35 33 32 33 34 32 32 33 33 38
33.5
1.8
5.5
6
3.259
-
29/54
32 36 34 35 32 37 35 37 31 35
34.4
2.1
6.2
6
2.832
-
Test area
R1
29/2
29/3
R2
R3
R4
R5
R6
R7
R8
R9
R10
A96
Rm
sR
VR, %
rR
θR
fcm, MPa
31 35 33 33 37 34 37 35 33 37
34.5
2.1
6.0
6
2.901
-
33 33 35 32 32 31 32 33 34 32
32.7
1.2
3.5
4
3.450
-
29/57
31 36 35 33 32 32 33 33 34 32
33.1
1.5
4.6
5
3.281
-
29/58
33 33 34 36 36 36 38 36 33 33
34.8
1.8
5.2
5
2.757
-
29/59
32 35 34 31 32 32 38 33 35 34
33.6
2.1
6.1
7
3.389
-
29/60
32 32 31 32 33 31 33 32 34 32
32.2
0.9
2.9
3
3.265
-
29/61
35 35 34 34 31 32 37 32 37 34
34.1
2.0
5.9
6
2.963
-
29/62
30 31 33 32 34 35 30 35 34 33
32.7
1.9
5.8
5
2.648
-
29/63
30 32 32 34 33 33 34 34 32 34
32.8
1.3
4.0
4
3.038
-
29/64
38 32 40 40 36 35 36 38 38 38
37.1
2.4
6.5
8
3.300
-
29/65
33 32 31 32 30 36 32 33 31 33
32.3
1.6
5.1
6
3.667
-
29/66
37 37 35 32 38 32 32 36 33 36
34.8
2.3
6.7
6
2.556
-
29/67
35 32 33 38 32 34 35 33 30 34
33.6
2.2
6.5
8
3.686
-
29/68
31 30 33 30 30 30 36 30 31 31
31.2
1.9
6.2
6
3.105
-
29/69
34 32 30 32 32 30 32 36 35 33
32.6
2.0
6.0
6
3.069
-
29/70
30 33 30 30 33 30 33 30 31 31
31.1
1.4
4.4
3
2.189
-
29/71
31 35 32 33 39 32 31 37 40 35
34.5
3.3
9.5
9
2.749
-
29/72
41 37 38 36 33 32 34 35 35 36
35.7
2.6
7.2
9
3.483
-
29/73
39 38 40 35 42 35 30 34 30 33
35.6
4.1
11.5
12
2.935
-
29/74
31 32 39 30 36 31 32 30 30 36
32.7
3.2
9.7
9
2.844
-
29/75
32 35 36 33 35 33 33 33 32 37
33.9
1.7
5.1
5
2.892
-
29/76
32 30 30 33 31 35 37 35 31 35
32.9
2.5
7.5
7
2.834
-
29/77
40 38 38 37 35 32 38 38 37 36
36.9
2.2
5.9
8
3.664
-
29/78
32 31 34 31 34 32 36 38 32 34
33.4
2.3
6.8
7
3.083
-
29/79
34 32 38 32 35 30 33 32 30 35
33.1
2.5
7.5
8
3.239
-
29/80
32 30 30 31 32 32 31 31 32 30
31.1
0.9
2.8
2
2.284
-
29/81
38 36 38 37 40 37 36 34 35 40
37.1
2.0
5.3
6
3.047
-
29/82
38 33 39 34 33 32 32 33 32 35
34.1
2.5
7.4
7
2.784
-
29/83
36 33 37 40 37 35 37 37 32 38
36.2
2.3
6.5
8
3.408
-
29/84
37 35 37 33 33 34 33 32 35 32
34.1
1.9
5.4
5
2.698
-
29/85
32 36 33 34 35 37 33 33 37 34
34.4
1.8
5.2
5
2.815
-
29/86
37 32 36 31 34 35 33 37 32 34
34.1
2.1
6.3
6
2.815
-
29/87
35 32 37 32 38 32 33 37 31 32
33.9
2.6
7.7
7
2.691
-
29/88
35 32 37 38 34 37 34 35 36 38
35.6
2.0
5.5
6
3.069
-
29/89
32 32 35 33 35 37 36 36 32 31
33.9
2.1
6.3
6
2.815
-
29/90
38 37 36 38 36 36 37 37 37 35
36.7
0.9
2.6
3
3.162
-
29/91
33 38 33 32 39 31 39 34 38 33
35.0
3.1
8.9
8
2.558
-
29/92
33 31 38 34 30 30 35 30 30 35
32.6
2.8
8.7
8
2.821
-
29/93
33 38 38 36 35 35 35 37 34 38
35.9
1.8
5.0
5
2.790
-
29/94
37 33 37 36 36 38 31 33 32 34
34.7
2.4
6.9
7
2.909
-
29/95
31 32 34 32 35 34 34 32 32 34
33.0
1.3
4.0
4
3.000
-
29/96
36 32 36 31 36 33 31 33 37 31
33.6
2.4
7.2
6
2.487
-
29/97
35 33 34 34 32 33 38 35 35 30
33.9
2.1
6.3
8
3.753
-
29/98
36 32 36 37 34 34 36 34 35 35
34.9
1.4
4.2
5
3.450
-
Test area
R1
29/55
29/56
R2
R3
R4
R5
R6
R7
R8
R9
R10
29/99
33 34 31 34 30 32 35 32 31 35
32.7
1.8
5.4
5
2.830
-
29/100
36 34 35 32 33 32 32 30 34 37
33.5
2.1
6.3
7
3.300
-
30/1
56 60 59 59 61 61 55 54 52 55
57.2
3.2
5.6
9
2.821
-
30/2
42 52 45 52 54 55 51 49 48 56
50.4
4.5
8.8
14
3.145
-
30/3
59 51 54 53 54 59 58 55 54 56
55.3
2.7
4.8
8
2.998
-
30/4
62 56 59 56 54 43 60 51 62 54
55.7
5.8
10.3
19
3.301
-
30/5
55 53 47 58 54 54 57 55 55 54
54.2
2.9
5.4
11
3.746
-
30/6
57 59 53 47 51 51 47 53 59 57
53.4
4.5
8.4
12
2.666
-
A97
Rm
sR
VR, %
rR
θR
fcm, MPa
54 56 51 59 58 62 58 57 56 59
57.0
3.0
5.3
11
3.644
-
57 51 51 51 45 57 56 53 56 57
53.4
3.9
7.4
12
3.038
-
30/9
57 61 61 59 54 55 54 58 54 58
57.1
2.8
4.8
7
2.530
-
30/10
60 62 57 56 57 63 53 60 58 55
58.1
3.1
5.4
10
3.182
-
30/11
56 57 58 56 50 59 53 46 57 55
54.7
4.0
7.3
13
3.249
-
30/12
59 46 45 50 46 51 57 56 49 48
50.7
5.0
9.8
14
2.806
-
30/13
50 45 59 52 49 55 45 57 57 54
52.3
5.0
9.5
14
2.818
-
30/14
49 55 54 52 53 49 53 42 56 52
51.5
4.0
7.8
14
3.470
-
31/1
30 29 30 30 28 29 27 30 33 27
29.3
1.8
6.0
6
3.396
-
31/2
33 29 31 31 32 30 32 32 30 28
30.8
1.5
5.0
5
3.227
-
31/3
28 31 31 32 31 31 32 34 28 33
31.1
1.9
6.1
6
3.138
-
31/4
32 33 33 33 32 32 33 32 33 32
32.5
0.5
1.6
1
1.897
-
31/5
33 34 34 34 34 33 35 33 36 35
34.1
1.0
2.9
3
3.017
-
31/6
30 28 30 32 30 33 30 30 38 30
31.1
2.8
8.9
10
3.614
-
31/7
32 36 34 32 31 33 33 31 31 32
32.5
1.6
4.9
5
3.162
-
31/8
33 33 35 35 33 31 33 33 32 34
33.2
1.2
3.7
4
3.254
-
31/9
31 29 29 28 32 27 27 26 29 29
28.7
1.8
6.4
6
3.281
-
31/10
31 32 29 31 31 32 33 34 29 33
31.5
1.6
5.2
5
3.030
-
31/11
28 28 28 27 28 34 29 30 30 27
28.9
2.1
7.2
7
3.367
-
31/12
30 30 28 31 30 30 31 29 28 34
30.1
1.7
5.7
6
3.471
-
32/1
34 30 39 38 32 37 31 35 31 33
34.0
3.2
9.3
9
2.846
-
32/2
31 32 29 32 35 30 30 32 31 36
31.8
2.2
6.9
7
3.180
-
32/3
34 36 33 32 38 36 31 33 30 32
33.5
2.5
7.5
8
3.193
-
32/4
36 34 30 34 37 33 31 33 35 31
33.4
2.3
6.8
7
3.083
-
32/5
33 30 30 34 30 31 36 33 38 34
32.9
2.7
8.3
8
2.934
-
32/6
34 31 32 32 33 29 28 36 32 33
32.0
2.3
7.2
8
3.464
-
32/7
32 29 36 35 34 28 36 33 36 32
33.1
2.9
8.7
8
2.773
-
33/1
40 33 35 40 44 39 33 36 36 32
36.8
3.9
10.5
12
3.115
-
33/2
37 43 43 38 41 34 47 34 42 41
40.0
4.2
10.5
13
3.103
-
33/3
29 36 39 33 36 38 39 39 38 30
35.7
3.8
10.6
10
2.651
-
33/4
48 47 42 52 52 54 50 51 51 54
50.1
3.6
7.3
12
3.302
-
33/5
49 48 56 54 44 45 43 42 48 56
48.5
5.3
10.8
14
2.664
-
33/6
45 48 47 42 41 39 38 41 39 38
41.8
3.7
8.8
10
2.721
-
33/7
38 39 42 39 39 34 40 39 39 33
38.2
2.7
7.1
9
3.334
-
33/8
41 39 41 39 38 40 30 33 43 44
38.8
4.3
11.1
14
3.244
-
33/9
56 54 49 50 50 50 48 52 56 58
52.3
3.5
6.6
10
2.885
-
33/10
48 45 47 52 47 47 48 50 49 49
48.2
1.9
4.0
7
3.623
-
33/11
38 40 44 39 44 42 45 37 40 39
40.8
2.8
6.8
8
2.877
-
33/12
41 40 41 40 38 41 41 41 42 46
41.1
2.0
4.9
8
3.951
-
33/13
42 41 41 42 40 40 42 41 40 46
41.5
1.8
4.3
6
3.372
-
33/14
55 43 56 46 40 53 43 43 40 52
47.1
6.3
13.3
16
2.555
-
33/15
42 42 43 40 39 35 35 40 39 40
39.5
2.7
6.9
8
2.943
-
33/16
50 52 44 53 49 55 49 51 45 42
49.0
4.2
8.5
13
3.122
-
33/17
40 45 42 44 52 44 40 41 43 40
43.1
3.6
8.4
12
3.302
-
33/18
42 40 40 42 40 39 43 42 49 46
42.3
3.1
7.3
10
3.233
-
33/19
50 60 55 43 60 54 54 50 57 56
53.9
5.2
9.6
17
3.300
-
33/20
49 42 42 41 44 37 48 40 45 50
43.8
4.2
9.6
13
3.087
-
34/1
40 41 45 45 47 42 46 40 42 47
43.5
2.8
6.4
7
2.501
-
34/2
44 48 41 41 40 39 39 42 44 46
42.4
3.0
7.1
9
2.974
-
Test area
R1
30/7
30/8
R2
R3
R4
R5
R6
R7
R8
R9
R10
A98
Rm
sR
VR, %
rR
θR
fcm, MPa
44 42 42 45 40 42 48 44 43 39
42.9
2.6
6.0
9
3.518
-
38 46 44 44 43 46 47 44 46 41
43.9
2.7
6.2
9
3.301
-
34/5
41 38 40 45 42 46 39 40 40 39
41.0
2.6
6.4
8
3.048
-
34/6
43 42 43 44 48 38 44 46 41 40
42.9
2.9
6.7
10
3.466
-
34/7
42 41 41 43 47 47 39 38 46 41
42.5
3.2
7.5
9
2.807
-
34/8
41 46 41 47 39 48 45 46 44 46
44.3
3.0
6.7
9
3.017
-
34/9
41 42 42 38 39 40 41 40 39 38
40.0
1.5
3.7
4
2.683
-
34/10
42 43 46 46 41 43 39 46 43 44
43.3
2.3
5.3
7
3.028
-
34/11
44 41 43 43 46 40 47 42 41 47
43.4
2.5
5.9
7
2.748
-
34/12
43 43 40 38 37 42 41 44 37 41
40.6
2.5
6.3
7
2.748
-
34/13
38 42 46 38 41 36 39 40 43 40
40.3
2.9
7.1
10
3.485
-
34/14
39 44 46 44 38 40 44 44 40 41
42.0
2.7
6.4
8
2.954
-
34/15
38 38 38 42 40 41 40 39 43 41
40.0
1.8
4.4
5
2.835
-
34/16
42 46 46 47 38 42 46 42 41 45
43.5
2.9
6.7
9
3.087
-
34/17
47 46 39 39 41 39 45 40 41 42
41.9
3.0
7.2
8
2.636
-
34/18
39 40 40 38 43 43 38 45 38 44
40.8
2.7
6.6
7
2.593
-
34/19
47 46 40 39 45 46 46 45 42 41
43.7
2.9
6.7
8
2.751
-
34/20
40 43 44 41 42 41 46 44 48 41
43.0
2.5
5.9
8
3.151
-
35/1
40 43 40 41 44 41 41 40 39 40
40.9
1.5
3.7
5
3.281
-
35/2
41 40 40 41 42 40 42 43 40 41
41.0
1.1
2.6
3
2.846
-
35/3
40 41 40 41 42 39 39 39 42 42
40.5
1.3
3.1
3
2.364
-
35/4
40 41 40 39 39 40 41 43 40 41
40.4
1.2
2.9
4
3.408
-
35/5
40 42 42 40 41 42 42 40 42 41
41.2
0.9
2.2
2
2.176
-
35/6
38 41 40 37 42 41 40 40 38 38
39.5
1.6
4.2
5
3.030
-
35/7
38 38 40 39 41 41 40 38 38 40
39.3
1.3
3.2
3
2.397
-
35/8
35 36 39 40 40 38 36 37 40 37
37.8
1.9
5.0
5
2.668
-
35/9
36 37 40 41 39 41 41 42 39 40
39.6
1.9
4.8
6
3.162
-
35/10
39 39 41 41 42 39 38 39 41 37
39.6
1.6
4.0
5
3.169
-
35/11
38 38 38 40 38 39 39 38 38 38
38.4
0.7
1.8
2
2.860
-
35/12
39 42 39 41 38 40 40 38 40 39
39.6
1.3
3.2
4
3.162
-
35/13
39 40 39 42 43 39 40 41 40 40
40.3
1.3
3.3
4
2.991
-
35/14
38 38 38 38 37 38 38 40 40 38
38.3
0.9
2.5
3
3.162
-
35/15
40 39 42 41 40 39 39 42 40 40
40.2
1.1
2.8
3
2.642
-
35/16
41 36 36 36 42 37 36 37 37 37
37.5
2.2
5.8
6
2.761
-
35/17
41 40 42 40 39 39 41 41 40 39
40.2
1.0
2.6
3
2.905
-
35/18
39 41 40 40 41 39 40 39 40 40
39.9
0.7
1.8
2
2.711
-
35/19
40 38 39 40 38 39 40 40 41 41
39.6
1.1
2.7
3
2.791
-
35/20
40 41 40 41 43 38 38 37 39 39
39.6
1.8
4.5
6
3.378
-
35/21
42 42 40 39 40 40 40 39 40 42
40.4
1.2
2.9
3
2.556
-
35/22
38 39 39 42 42 40 39 37 38 38
39.2
1.7
4.3
5
2.965
-
35/23
38 36 40 41 38 38 42 39 37 39
38.8
1.8
4.7
6
3.308
-
35/24
38 37 38 39 36 37 38 36 36 39
37.4
1.2
3.1
3
2.556
-
35/25
42 40 42 43 38 41 39 41 43 40
40.9
1.7
4.1
5
3.006
-
35/26
42 42 41 40 42 44 42 46 45 41
42.5
1.9
4.5
6
3.157
-
35/27
41 40 42 40 40 43 40 43 41 42
41.2
1.2
3.0
3
2.440
-
35/28
41 42 42 40 39 41 40 39 39 40
40.3
1.2
2.9
3
2.587
-
35/29
40 40 40 40 37 40 41 41 41 40
40.0
1.2
2.9
4
3.464
-
35/30
41 39 38 40 42 39 39 40 39 40
39.7
1.2
2.9
4
3.450
-
35/31
39 41 40 43 39 39 39 42 41 43
40.6
1.6
4.1
4
2.429
-
35/32
40 40 38 39 38 41 38 38 40 40
39.2
1.1
2.9
3
2.642
-
35/33
38 40 43 38 39 40 41 40 39 40
39.8
1.5
3.7
5
3.388
-
35/34
40 42 40 40 39 39 40 39 38 39
39.6
1.1
2.7
4
3.721
-
Test area
R1
34/3
34/4
R2
R3
R4
R5
R6
R7
R8
R9
R10
A99
Rm
sR
VR, %
rR
θR
fcm, MPa
38 38 42 40 39 40 39 39 37 41
39.3
1.5
3.8
5
3.346
-
38 39 39 40 39 40 38 39 38 39
38.9
0.7
1.9
2
2.711
-
35/37
40 39 40 41 37 39 38 37 37 38
38.6
1.4
3.7
4
2.798
-
35/38
41 40 39 39 38 40 39 40 41 38
39.5
1.1
2.7
3
2.777
-
35/39
38 40 37 43 44 38 38 42 40 42
40.2
2.4
6.1
7
2.868
-
35/40
39 39 39 37 38 37 39 41 39 42
39.0
1.6
4.0
5
3.198
-
35/41
38 38 37 37 42 38 40 38 39 38
38.5
1.5
3.9
5
3.313
-
35/42
42 39 42 42 42 42 38 38 42 40
40.7
1.8
4.3
4
2.264
-
35/43
38 42 38 39 39 38 42 39 38 39
39.2
1.5
4.0
4
2.582
-
35/44
38 40 40 42 39 38 39 39 39 38
39.2
1.2
3.1
4
3.254
-
35/45
39 38 38 38 38 37 38 39 40 39
38.4
0.8
2.2
3
3.558
-
35/46
38 38 37 39 41 38 39 37 40 38
38.5
1.3
3.3
4
3.151
-
35/47
38 36 37 40 37 37 39 37 40 40
38.1
1.5
4.0
4
2.625
-
35/48
40 39 40 39 38 40 38 37 37 38
38.6
1.2
3.0
3
2.556
-
35/49
40 40 39 40 40 38 40 38 37 42
39.4
1.4
3.6
5
3.497
-
35/50
37 42 37 37 38 38 41 38 39 38
38.5
1.7
4.5
5
2.914
-
35/51
40 38 42 38 38 35 36 36 37 38
37.8
2.0
5.4
7
3.425
-
35/52
40 39 39 41 39 42 36 39 40 41
39.6
1.6
4.2
6
3.644
-
35/53
38 44 38 38 36 40 40 39 36 42
39.1
2.5
6.4
8
3.182
-
35/54
38 36 38 37 36 38 38 37 39 42
37.9
1.7
4.6
6
3.471
-
35/55
37 38 37 41 40 39 37 37 37 39
38.2
1.5
3.9
4
2.711
-
35/56
40 41 36 40 40 39 39 38 41 40
39.4
1.5
3.8
5
3.321
-
35/57
36 40 36 35 38 37 39 36 37 37
37.1
1.5
4.1
5
3.281
-
35/58
42 38 39 36 41 39 39 39 36 36
38.5
2.1
5.4
6
2.901
-
35/59
39 37 35 38 38 36 40 40 38 40
38.1
1.7
4.5
5
2.892
-
35/60
39 41 35 36 37 41 40 35 39 42
38.5
2.6
6.7
7
2.700
-
35/61
40 40 38 39 36 42 42 36 38 40
39.1
2.1
5.5
6
2.815
-
35/62
38 38 42 37 40 40 38 39 39 38
38.9
1.4
3.7
5
3.450
-
35/63
40 38 43 38 37 40 40 38 39 39
39.2
1.7
4.3
6
3.558
-
35/64
37 39 39 37 39 38 38 37 38 42
38.4
1.5
3.9
5
3.321
-
35/65
42 41 37 40 35 37 35 38 40 38
38.3
2.4
6.3
7
2.909
-
35/66
40 42 37 36 38 38 40 37 40 35
38.3
2.2
5.6
7
3.237
-
35/67
39 38 39 37 38 38 37 37 36 38
37.7
0.9
2.5
3
3.162
-
35/68
37 38 40 37 35 38 40 38 38 38
37.9
1.4
3.8
5
3.450
-
35/69
38 37 37 36 39 36 37 38 37 36
37.1
1.0
2.7
3
3.017
-
35/70
38 37 38 38 38 37 37 42 38 38
38.1
1.4
3.8
5
3.450
-
35/71
40 36 38 37 41 45 38 39 38 39
39.1
2.5
6.4
9
3.579
-
35/72
39 38 38 38 43 40 40 40 43 39
39.8
1.9
4.7
5
2.668
-
35/73
42 38 36 40 37 36 39 38 35 38
37.9
2.1
5.5
7
3.367
-
35/74
42 38 38 42 38 37 42 39 41 40
39.7
1.9
4.9
5
2.569
-
35/75
38 39 36 38 38 37 36 37 38 35
37.2
1.2
3.3
4
3.254
-
35/76
38 38 38 39 40 38 40 42 41 41
39.5
1.5
3.8
4
2.650
-
35/77
42 39 39 40 40 38 41 37 40 41
39.7
1.5
3.8
5
3.346
-
35/78
40 38 38 39 39 38 37 39 41 40
38.9
1.2
3.1
4
3.341
-
35/79
39 42 40 40 41 40 39 40 39 40
40.0
0.9
2.4
3
3.182
-
35/80
42 40 39 42 43 39 42 42 41 44
41.4
1.6
4.0
5
3.037
-
35/81
37 38 43 39 41 40 41 37 40 41
39.7
1.9
4.9
6
3.082
-
35/82
38 40 38 39 38 37 39 38 36 36
37.9
1.3
3.4
4
3.109
-
35/83
38 38 37 40 35 41 38 36 39 36
37.8
1.9
5.0
6
3.202
-
35/84
39 40 40 42 39 39 37 42 40 39
39.7
1.5
3.8
5
3.346
-
35/85
40 38 36 38 38 42 39 39 37 38
38.5
1.6
4.3
6
3.637
-
35/86
44 42 42 40 42 43 39 44 41 40
41.7
1.7
4.1
5
2.936
-
35/87
38 43 38 40 42 40 41 42 41 42
40.7
1.7
4.2
5
2.936
-
Test area
R1
35/35
35/36
R2
R3
R4
R5
R6
R7
R8
R9
R10
A100
Rm
sR
VR, %
rR
θR
fcm, MPa
39 40 44 40 42 41 39 42 41 40
40.8
1.5
3.8
5
3.227
-
39 38 38 38 41 42 38 39 38 37
38.8
1.5
4.0
5
3.227
-
35/90
37 35 40 38 38 36 37 36 37 38
37.2
1.4
3.8
5
3.575
-
35/91
40 38 41 41 45 43 39 39 39 40
40.5
2.1
5.2
7
3.300
-
35/92
39 39 36 40 38 39 40 39 39 39
38.8
1.1
2.9
4
3.523
-
35/93
40 40 41 38 38 40 44 39 40 38
39.8
1.8
4.6
6
3.308
-
35/94
42 41 41 40 39 41 45 39 45 43
41.6
2.2
5.2
6
2.764
-
35/95
42 40 40 39 40 40 38 38 40 39
39.6
1.2
3.0
4
3.408
-
35/96
38 42 38 45 40 37 39 39 38 41
39.7
2.4
6.1
8
3.325
-
35/97
40 39 38 39 41 40 41 41 39 39
39.7
1.1
2.7
3
2.832
-
35/98
38 38 40 40 37 40 42 39 38 41
39.3
1.6
4.0
5
3.191
-
35/99
41 40 37 40 38 40 43 40 44 39
40.2
2.1
5.2
7
3.337
-
36/1
36 35 37 38 37 37 36 36 35 36
36.3
0.9
2.6
3
3.162
-
36/2
37 38 34 36 34 37 32 36 38 34
35.6
2.0
5.6
6
2.983
-
36/3
36 40 38 42 40 38 40 39 37 36
38.6
2.0
5.1
6
3.069
-
36/4
40 42 42 43 41 42 39 43 41 41
41.4
1.3
3.1
4
3.162
-
36/5
39 39 39 41 42 42 40 40 42 38
40.2
1.5
3.7
4
2.711
-
36/6
40 40 40 39 42 42 42 40 40 39
40.4
1.2
2.9
3
2.556
-
36/7
40 40 41 39 40 41 42 38 41 41
40.3
1.2
2.9
4
3.450
-
36/8
41 41 40 39 40 41 42 38 41 41
40.4
1.2
2.9
4
3.408
-
36/9
42 40 39 38 38 37 42 40 41 41
39.8
1.8
4.4
5
2.855
-
36/10
41 40 39 41 39 42 38 41 40 40
40.1
1.2
3.0
4
3.341
-
36/11
37 37 40 40 36 39 36 40 41 37
38.3
1.9
4.9
5
2.648
-
36/12
40 38 38 38 36 36 37 37 36 37
37.3
1.3
3.4
4
3.196
-
36/13
40 39 40 36 39 40 37 39 40 40
39.0
1.4
3.6
4
2.828
-
36/14
34 34 36 34 36 38 38 37 36 38
36.1
1.7
4.6
4
2.405
-
36/15
39 40 39 36 37 39 36 39 39 39
38.3
1.4
3.7
4
2.821
-
36/16
37 36 35 40 36 37 41 38 38 39
37.7
1.9
5.0
6
3.177
-
36/17
38 37 38 37 38 40 40 38 39 40
38.5
1.2
3.1
3
2.546
-
36/18
38 40 40 39 40 38 40 40 38 40
39.3
0.9
2.4
2
2.108
-
36/19
41 43 40 40 42 40 40 43 41 43
41.3
1.3
3.2
3
2.243
-
36/20
40 40 38 40 41 39 42 42 39 40
40.1
1.3
3.2
4
3.109
-
36/21
42 43 41 42 42 41 41 44 43 42
42.1
1.0
2.4
3
3.017
-
36/22
42 41 43 38 42 44 41 43 40 43
41.7
1.8
4.2
6
3.396
-
36/23
40 42 40 40 39 41 41 38 39 37
39.7
1.5
3.8
5
3.346
-
36/24
42 42 41 42 43 42 42 44 42 42
42.2
0.8
1.9
3
3.803
-
36/25
42 41 40 40 39 43 42 41 40 41
40.9
1.2
2.9
4
3.341
-
36/26
42 40 42 42 40 40 40 40 41 41
40.8
0.9
2.3
2
2.176
-
36/27
41 40 42 42 42 40 41 40 39 40
40.7
1.1
2.6
3
2.832
-
36/28
37 37 40 41 39 37 41 38 39 40
38.9
1.6
4.1
4
2.508
-
36/29
38 41 39 40 39 39 38 40 41 40
39.5
1.1
2.7
3
2.777
-
36/30
40 40 38 41 40 41 40 40 37 38
39.5
1.4
3.4
4
2.954
-
36/31
41 42 37 38 41 39 37 41 39 38
39.3
1.8
4.7
5
2.734
-
36/32
38 40 38 41 41 40 41 38 39 41
39.7
1.3
3.4
3
2.243
-
36/33
37 38 39 41 39 38 40 41 41 42
39.6
1.6
4.2
5
3.037
-
36/34
42 40 41 43 42 40 41 42 41 42
41.4
1.0
2.3
3
3.105
-
36/35
42 41 40 42 42 41 43 42 41 42
41.6
0.8
2.0
3
3.558
-
36/36
42 43 42 42 43 42 42 40 42 40
41.8
1.0
2.5
3
2.905
-
36/37
42 37 38 35 36 41 38 38 38 37
38.0
2.1
5.5
7
3.320
-
36/38
37 38 37 38 38 39 40 38 37 40
38.2
1.1
3.0
3
2.642
-
36/39
37 38 40 40 38 38 40 38 37 40
38.6
1.3
3.3
3
2.372
-
36/40
39 38 41 40 42 40 40 41 39 38
39.8
1.3
3.3
4
3.038
-
Test area
R1
35/88
35/89
R2
R3
R4
R5
R6
R7
R8
R9
R10
A101
Rm
sR
VR, %
rR
θR
fcm, MPa
40 40 41 40 42 40 40 41 39 38
40.1
1.1
2.7
4
3.635
-
42 40 41 42 38 38 38 42 38 40
39.9
1.8
4.5
4
2.232
-
36/43
36 36 40 37 37 37 39 39 41 38
38.0
1.7
4.5
5
2.942
-
36/44
38 40 37 38 38 39 38 38 39 38
38.3
0.8
2.1
3
3.644
-
36/45
38 38 41 41 40 38 40 38 39 41
39.4
1.3
3.4
3
2.222
-
36/46
38 40 37 40 42 38 37 40 38 39
38.9
1.6
4.1
5
3.135
-
36/47
40 40 39 40 40 41 40 40 38 40
39.8
0.8
2.0
3
3.803
-
36/48
40 40 39 40 40 38 39 38 38 38
39.0
0.9
2.4
2
2.121
-
36/49
40 40 41 41 40 41 39 38 41 41
40.2
1.0
2.6
3
2.905
-
36/50
38 40 38 38 37 38 36 37 37 38
37.7
1.1
2.8
4
3.776
-
36/51
40 38 38 37 38 38 40 38 38 38
38.3
0.9
2.5
3
3.162
-
36/52
38 40 40 37 37 41 38 37 40 42
39.0
1.8
4.7
5
2.739
-
36/53
40 38 38 37 40 40 40 42 38 40
39.3
1.5
3.8
5
3.346
-
36/54
38 40 41 38 38 39 38 38 39 40
38.9
1.1
2.8
3
2.726
-
36/55
41 41 42 42 42 43 40 41 40 40
41.2
1.0
2.5
3
2.905
-
36/56
42 40 41 42 42 43 40 41 40 40
41.1
1.1
2.7
3
2.726
-
36/57
43 43 42 43 42 44 43 44 42 42
42.8
0.8
1.8
2
2.535
-
36/58
42 44 44 45 42 45 42 40 44 44
43.2
1.6
3.7
5
3.088
-
36/59
40 40 40 42 43 43 44 44 41 40
41.7
1.7
4.1
4
2.349
-
36/60
44 42 44 41 44 40 45 44 45 44
43.3
1.7
3.9
5
2.936
-
36/61
36 37 35 39 40 35 39 38 36 41
37.6
2.1
5.6
6
2.832
-
36/62
40 38 37 38 41 40 36 35 40 37
38.2
2.0
5.2
6
3.017
-
36/63
35 39 37 39 38 35 36 38 40 39
37.6
1.8
4.7
5
2.815
-
36/64
39 39 37 36 35 40 38 37 36 37
37.4
1.6
4.2
5
3.169
-
36/65
36 40 37 36 35 40 38 37 36 37
37.2
1.7
4.5
5
2.965
-
36/66
40 39 36 38 41 40 41 41 37 42
39.5
2.0
5.0
6
3.065
-
36/67
41 39 36 38 41 40 41 41 37 42
39.6
2.0
5.1
6
2.983
-
36/68
38 40 42 41 43 44 41 41 41 40
41.1
1.7
4.0
6
3.607
-
36/69
42 44 43 43 42 45 42 41 42 41
42.5
1.3
3.0
4
3.151
-
36/70
40 43 39 38 40 40 37 36 38 39
39.0
1.9
5.0
7
3.601
-
36/71
40 42 36 35 41 42 42 38 41 44
40.1
2.9
7.2
9
3.120
-
36/72
42 40 42 41 43 40 40 43 44 40
41.5
1.5
3.6
4
2.650
-
36/73
42 42 40 39 43 42 44 39 39 40
41.0
1.8
4.5
5
2.739
-
36/74
42 40 42 39 42 40 42 43 39 42
41.1
1.4
3.5
4
2.760
-
36/75
42 39 42 43 44 40 42 43 44 42
42.1
1.6
3.8
5
3.135
-
36/76
35 35 40 37 34 39 39 37 36 39
37.1
2.1
5.6
6
2.886
-
36/77
41 39 38 40 40 36 41 39 40 41
39.5
1.6
4.0
5
3.162
-
36/78
39 37 40 36 36 36 36 37 37 41
37.5
1.8
4.9
5
2.716
-
36/79
39 40 40 40 39 36 40 39 41 39
39.3
1.3
3.4
5
3.738
-
36/80
40 40 40 39 38 39 41 42 38 40
39.7
1.3
3.2
4
3.196
-
36/81
42 40 43 40 40 38 40 40 39 42
40.4
1.5
3.7
5
3.321
-
36/82
40 41 38 42 41 40 40 38 40 40
40.0
1.2
3.1
4
3.207
-
36/83
44 43 42 42 44 40 40 42 40 41
41.8
1.5
3.7
4
2.582
-
36/84
40 43 41 41 42 43 41 43 44 44
42.2
1.4
3.3
4
2.860
-
36/85
39 40 39 39 38 37 37 39 39 38
38.5
1.0
2.5
3
3.087
-
36/86
38 40 37 39 39 40 42 42 39 38
39.4
1.6
4.2
5
3.037
-
36/87
40 41 43 41 38 41 42 39 40 40
40.5
1.4
3.5
5
3.487
-
36/88
38 36 36 37 35 36 35 34 39 35
36.1
1.5
4.2
5
3.281
-
36/89
40 36 35 39 39 40 40 40 36 38
38.3
1.9
5.1
5
2.569
-
36/90
40 40 39 38 39 36 40 39 39 37
38.7
1.3
3.5
4
2.991
-
36/91
40 37 40 41 41 40 39 40 40 40
39.8
1.1
2.9
4
3.523
-
36/92
39 41 41 40 40 40 39 40 39 42
40.1
1.0
2.5
3
3.017
-
36/93
40 42 42 41 41 40 42 40 43 41
41.2
1.0
2.5
3
2.905
-
Test area
R1
36/41
36/42
R2
R3
R4
R5
R6
R7
R8
R9
R10
A102
Rm
sR
VR, %
rR
θR
fcm, MPa
38 35 36 35 40 42 39 40 38 40
38.3
2.4
6.2
7
2.967
-
37 36 38 37 40 38 36 35 37 40
37.4
1.6
4.4
5
3.037
-
36/96
37 36 36 37 37 40 40 41 37 39
38.0
1.8
4.8
5
2.739
-
36/97
34 33 33 34 32 38 34 36 35 36
34.5
1.8
5.2
6
3.372
-
36/98
35 32 34 33 36 34 33 36 39 38
35.0
2.3
6.5
7
3.096
-
36/99
40 36 40 37 36 40 36 37 38 37
37.7
1.7
4.5
4
2.349
-
36/100
40 42 40 39 40 38 40 42 39 39
39.9
1.3
3.2
4
3.109
-
36/101
38 38 39 42 40 42 40 39 37 41
39.6
1.7
4.3
5
2.919
-
36/102
40 41 42 41 41 43 41 42 43 40
41.4
1.1
2.6
3
2.791
-
36/103
41 40 42 38 37 40 40 41 42 39
40.0
1.6
4.1
5
3.062
-
36/104
40 36 35 36 42 39 40 40 41 38
38.7
2.4
6.1
7
2.967
-
36/105
43 43 44 45 42 43 41 42 40 43
42.6
1.4
3.4
5
3.497
-
36/106
40 39 38 36 39 37 39 38 36 37
37.9
1.4
3.6
4
2.919
-
36/107
34 38 35 38 38 35 34 37 37 37
36.3
1.6
4.5
4
2.444
-
36/108
36 35 35 39 38 39 38 37 35 38
37.0
1.6
4.4
4
2.449
-
36/109
36 38 39 37 37 39 36 36 42 39
37.9
1.9
5.0
6
3.138
-
36/110
42 42 40 41 38 40 40 40 41 38
40.2
1.4
3.5
4
2.860
-
36/111
42 38 40 40 41 41 42 40 42 40
40.6
1.3
3.1
4
3.162
-
36/112
39 39 36 40 42 42 39 40 39 38
39.4
1.8
4.5
6
3.378
-
36/113
36 38 40 38 37 40 37 37 38 40
38.1
1.4
3.8
4
2.760
-
36/114
41 43 40 43 40 40 43 40 40 40
41.0
1.4
3.4
3
2.121
-
36/115
38 37 37 37 36 38 37 39 39 38
37.6
1.0
2.6
3
3.105
-
36/116
38 39 38 39 39 40 38 39 41 40
39.1
1.0
2.5
3
3.017
-
36/117
39 38 41 42 40 39 42 41 39 40
40.1
1.4
3.4
4
2.919
-
36/118
42 40 43 44 45 45 41 44 45 41
43.0
1.9
4.4
5
2.652
-
36/119
42 42 43 42 43 42 41 42 42 41
42.0
0.7
1.6
2
3.000
-
36/120
42 44 43 42 44 45 44 43 44 44
43.5
1.0
2.2
3
3.087
-
36/121
42 44 42 43 41 41 45 44 42 41
42.5
1.4
3.4
4
2.790
-
36/122
42 42 41 43 44 44 44 44 44 43
43.1
1.1
2.6
3
2.726
-
36/123
44 43 42 44 42 43 45 44 44 43
43.4
1.0
2.2
3
3.105
-
36/124
44 42 45 42 43 43 42 40 42 41
42.4
1.4
3.4
5
3.497
-
36/125
44 44 43 44 44 45 44 43 42 42
43.5
1.0
2.2
3
3.087
-
36/126
43 42 43 42 44 45 44 45 44 43
43.5
1.1
2.5
3
2.777
-
36/127
42 42 44 45 43 46 43 41 42 45
43.3
1.6
3.8
5
3.056
-
36/128
44 44 45 42 43 43 43 44 43 44
43.5
0.8
2.0
3
3.530
-
36/129
44 44 43 42 43 43 43 44 43 44
43.3
0.7
1.6
2
2.963
-
36/130
41 42 41 44 41 42 41 45 40 42
41.9
1.5
3.6
5
3.281
-
36/131
43 44 43 42 43 45 42 43 44 42
43.1
1.0
2.3
3
3.017
-
36/132
42 43 42 44 45 44 42 44 43 44
43.3
1.1
2.4
3
2.832
-
36/133
45 43 39 44 44 45 40 41 42 43
42.6
2.1
4.8
6
2.905
-
36/134
42 41 40 40 40 39 42 40 42 42
40.8
1.1
2.8
3
2.642
-
36/135
42 42 40 42 42 41 42 41 39 41
41.2
1.0
2.5
3
2.905
-
36/136
42 43 44 45 45 44 45 43 44 43
43.8
1.0
2.4
3
2.905
-
36/137
42 42 43 44 44 41 42 44 44 43
42.9
1.1
2.6
3
2.726
-
36/138
42 42 43 44 43 44 42 42 42 43
42.7
0.8
1.9
2
2.429
-
36/139
41 42 43 43 44 44 42 40 44 42
42.5
1.4
3.2
4
2.954
-
36/140
43 44 44 45 44 43 44 44 43 43
43.7
0.7
1.5
2
2.963
-
36/141
42 43 43 42 42 43 42 44 41 43
42.5
0.8
2.0
3
3.530
-
36/142
44 43 40 40 45 46 43 42 45 42
43.0
2.1
4.8
6
2.920
-
36/143
42 42 44 42 43 43 44 44 43 44
43.1
0.9
2.0
2
2.284
-
36/144
42 42 43 44 43 44 45 44 44 45
43.6
1.1
2.5
3
2.791
-
36/145
43 43 44 45 42 44 41 41 40 42
42.5
1.6
3.7
5
3.162
-
36/146
45 44 43 42 42 44 41 41 40 42
42.4
1.6
3.7
5
3.169
-
Test area
R1
36/94
36/95
R2
R3
R4
R5
R6
R7
R8
R9
R10
A103
Rm
sR
VR, %
rR
θR
fcm, MPa
39 42 42 42 44 42 42 42 43 44
42.2
1.4
3.3
5
3.575
-
38 40 41 40 40 40 41 39 40 40
39.9
0.9
2.2
3
3.426
-
36/149
38 40 41 38 40 42 38 40 39 39
39.5
1.4
3.4
4
2.954
-
36/150
39 40 41 41 42 40 41 40 40 41
40.5
0.8
2.1
3
3.530
-
36/151
40 38 39 38 39 40 41 39 41 39
39.4
1.1
2.7
3
2.791
-
36/152
38 41 41 41 40 40 41 42 40 41
40.5
1.1
2.7
4
3.703
-
36/153
40 42 40 42 42 40 41 40 40 39
40.6
1.1
2.6
3
2.791
-
36/154
38 36 38 38 37 37 37 39 39 37
37.6
1.0
2.6
3
3.105
-
36/155
41 38 39 38 39 39 39 40 39 38
39.0
0.9
2.4
3
3.182
-
36/156
40 38 40 42 40 39 40 40 39 40
39.8
1.0
2.6
4
3.873
-
36/157
37 38 40 39 40 39 37 38 39 40
38.7
1.2
3.0
3
2.587
-
36/158
40 39 41 40 38 40 38 40 38 38
39.2
1.1
2.9
3
2.642
-
36/159
41 40 42 40 40 40 40 39 41 41
40.4
0.8
2.1
3
3.558
-
36/160
36 37 37 39 38 40 39 39 40 38
38.3
1.3
3.5
4
2.991
-
36/161
40 38 38 42 41 41 39 39 38 39
39.5
1.4
3.6
4
2.790
-
36/162
40 40 39 40 42 41 42 40 40 42
40.6
1.1
2.6
3
2.791
-
36/163
40 37 36 39 37 37 36 40 37 38
37.7
1.5
4.0
4
2.677
-
36/164
38 38 38 40 38 39 38 39 38 38
38.4
0.7
1.8
2
2.860
-
36/165
40 38 39 40 40 38 38 38 39 39
38.9
0.9
2.3
2
2.284
-
36/166
38 37 37 38 37 37 37 38 38 38
37.5
0.5
1.4
1
1.897
-
36/167
40 39 38 37 38 38 40 39 39 39
38.7
0.9
2.5
3
3.162
-
36/168
36 42 40 40 37 42 37 40 39 40
39.3
2.1
5.2
6
2.916
-
36/169
37 38 38 38 40 39 39 39 39 40
38.7
0.9
2.5
3
3.162
-
36/170
38 38 37 40 42 40 42 40 41 42
40.0
1.8
4.6
5
2.739
-
36/171
38 38 40 37 38 38 37 36 37 40
37.9
1.3
3.4
4
3.109
-
36/172
39 38 38 40 38 38 40 38 40 41
39.0
1.2
3.0
3
2.598
-
36/173
38 40 38 42 38 38 40 38 38 38
38.8
1.4
3.6
4
2.860
-
36/174
39 38 38 39 39 38 37 39 39 38
38.4
0.7
1.8
2
2.860
-
36/175
39 41 38 38 40 38 38 40 39 41
39.2
1.2
3.1
3
2.440
-
36/176
42 40 40 41 40 42 42 40 40 42
40.9
1.0
2.4
2
2.011
-
36/177
37 39 38 38 37 39 37 38 37 38
37.8
0.8
2.1
2
2.535
-
36/178
40 40 41 39 39 38 38 38 37 38
38.8
1.2
3.2
4
3.254
-
36/179
37 38 38 37 37 39 40 39 40 40
38.5
1.3
3.3
3
2.364
-
36/180
40 40 41 42 40 42 42 40 40 42
40.9
1.0
2.4
2
2.011
-
36/181
40 40 38 42 42 41 42 42 41 42
41.0
1.3
3.3
4
3.000
-
36/182
39 36 39 40 39 36 37 41 39 38
38.4
1.6
4.3
5
3.037
-
36/183
38 38 39 38 39 39 36 38 38 38
38.1
0.9
2.3
3
3.426
-
36/184
42 38 40 38 40 38 40 39 38 39
39.2
1.3
3.4
4
3.038
-
36/185
40 36 39 40 40 40 37 36 38 39
38.5
1.6
4.3
4
2.424
-
36/186
39 38 39 35 38 38 39 37 39 39
38.1
1.3
3.4
4
3.109
-
36/187
40 38 38 36 36 38 40 38 40 41
38.5
1.7
4.5
5
2.914
-
36/188
39 37 37 39 38 41 38 41 38 38
38.6
1.4
3.7
4
2.798
-
36/189
40 40 41 40 40 42 40 40 41 41
40.5
0.7
1.7
2
2.828
-
36/190
40 40 41 42 40 41 42 41 41 42
41.0
0.8
2.0
2
2.449
-
36/191
40 40 39 39 41 39 38 39 40 39
39.4
0.8
2.1
3
3.558
-
36/192
42 42 42 40 40 41 39 39 40 39
40.4
1.3
3.1
3
2.372
-
36/193
38 38 40 38 38 40 40 39 41 40
39.2
1.1
2.9
3
2.642
-
36/194
39 39 38 38 39 38 41 38 37 38
38.5
1.1
2.8
4
3.703
-
36/195
40 40 39 40 38 40 38 41 39 40
39.5
1.0
2.5
3
3.087
-
36/196
42 38 42 42 41 38 38 42 39 41
40.3
1.8
4.5
4
2.187
-
36/197
40 41 40 41 42 41 40 39 40 41
40.5
0.8
2.1
3
3.530
-
36/198
41 42 41 42 41 38 38 42 39 40
40.4
1.6
3.9
4
2.535
-
36/199
42 42 41 42 40 42 42 42 41 41
41.5
0.7
1.7
2
2.828
-
Test area
R1
36/147
36/148
R2
R3
R4
R5
R6
R7
R8
R9
R10
A104
Rm
sR
VR, %
rR
θR
fcm, MPa
39 40 40 41 40 38 41 41 39 38
39.7
1.2
2.9
3
2.587
-
44 40 39 40 40 42 40 42 40 39
40.6
1.6
3.9
5
3.169
-
36/202
38 42 40 42 40 40 40 40 41 38
40.1
1.4
3.4
4
2.919
-
36/203
42 41 39 39 40 42 41 39 40 39
40.2
1.2
3.1
3
2.440
-
36/204
38 38 37 38 39 38 36 38 37 36
37.5
1.0
2.6
3
3.087
-
36/205
38 40 42 42 41 40 40 40 40 40
40.3
1.2
2.9
4
3.450
-
36/206
40 41 42 42 39 38 39 38 39 41
39.9
1.5
3.8
4
2.625
-
36/207
40 40 42 42 39 38 39 38 39 41
39.8
1.5
3.7
4
2.711
-
36/208
40 40 41 38 38 40 38 40 38 38
39.1
1.2
3.1
3
2.506
-
36/209
40 40 41 42 42 40 38 40 38 38
39.9
1.5
3.8
4
2.625
-
36/210
38 38 38 39 40 41 39 39 40 40
39.2
1.0
2.6
3
2.905
-
36/211
40 40 40 39 39 41 40 39 42 40
40.0
0.9
2.4
3
3.182
-
36/212
39 40 40 39 40 39 39 40 39 39
39.4
0.5
1.3
1
1.936
-
36/213
38 38 40 39 37 37 40 39 37 39
38.4
1.2
3.1
3
2.556
-
36/214
40 40 41 40 38 42 38 38 40 42
39.9
1.5
3.8
4
2.625
-
36/215
38 39 36 37 36 37 34 38 39 39
37.3
1.6
4.4
5
3.056
-
36/216
38 38 40 38 39 38 39 38 36 38
38.2
1.0
2.7
4
3.873
-
36/217
40 40 38 41 36 38 40 37 41 40
39.1
1.7
4.4
5
2.892
-
36/218
35 36 38 36 35 38 36 39 36 36
36.5
1.4
3.7
4
2.954
-
36/219
36 36 40 34 34 37 38 34 37 35
36.1
2.0
5.5
6
3.047
-
36/220
34 36 34 39 34 38 35 39 34 38
36.1
2.2
6.0
5
2.290
-
36/221
39 41 37 39 39 38 37 39 38 37
38.4
1.3
3.3
4
3.162
-
36/222
40 37 38 36 39 38 38 38 39 38
38.1
1.1
2.9
4
3.635
-
36/223
38 39 36 34 39 36 36 36 37 39
37.0
1.7
4.6
5
2.942
-
36/224
38 37 36 37 36 34 36 36 36 36
36.2
1.0
2.9
4
3.873
-
36/225
39 35 39 40 34 39 36 37 37 38
37.4
2.0
5.2
6
3.069
-
36/226
35 36 37 40 37 36 37 39 36 35
36.8
1.6
4.4
5
3.088
-
36/227
38 35 37 36 38 39 37 39 36 35
37.0
1.5
4.0
4
2.683
-
36/228
40 40 39 36 37 38 35 38 36 36
37.5
1.8
4.7
5
2.810
-
36/229
41 39 39 37 36 38 39 38 38 37
38.2
1.4
3.7
5
3.575
-
36/230
40 40 39 39 40 40 38 37 39 36
38.8
1.4
3.6
4
2.860
-
36/231
38 40 40 38 39 37 38 40 37 37
38.4
1.3
3.3
3
2.372
-
36/232
38 38 38 39 39 37 38 37 38 38
38.0
0.7
1.8
2
3.000
-
36/233
38 36 36 39 38 36 39 37 38 37
37.4
1.2
3.1
3
2.556
-
36/234
38 40 37 40 41 40 40 40 39 38
39.3
1.3
3.2
4
3.196
-
36/235
37 34 36 38 36 37 38 37 37 36
36.6
1.2
3.2
4
3.408
-
36/236
35 35 38 35 34 38 37 36 36 35
35.9
1.4
3.8
4
2.919
-
36/237
34 33 34 33 34 38 37 36 36 35
35.0
1.7
4.9
5
2.942
-
36/238
37 38 39 37 39 38 37 40 38 39
38.2
1.0
2.7
3
2.905
-
36/239
38 38 39 38 39 39 38 38 37 37
38.1
0.7
1.9
2
2.711
-
36/240
40 40 41 37 36 37 34 36 37 40
37.8
2.3
6.1
7
3.044
-
36/241
36 38 39 37 35 37 37 36 39 37
37.1
1.3
3.5
4
3.109
-
36/242
36 40 34 40 41 36 36 39 36 39
37.7
2.4
6.3
7
2.967
-
36/243
38 38 36 36 37 36 38 38 36 38
37.1
1.0
2.7
2
2.011
-
36/244
38 36 39 36 36 38 39 36 37 37
37.2
1.2
3.3
3
2.440
-
36/245
36 35 36 34 35 36 34 34 36 34
35.0
0.9
2.7
2
2.121
-
36/246
37 38 34 35 38 35 38 36 35 37
36.3
1.5
4.1
4
2.677
-
36/247
37 37 38 38 36 36 37 37 34 36
36.6
1.2
3.2
4
3.408
-
36/248
39 40 37 38 36 36 40 36 40 37
37.9
1.7
4.6
4
2.314
-
36/249
36 36 37 36 38 34 34 33 36 35
35.5
1.5
4.3
5
3.313
-
36/250
38 36 34 34 32 33 32 32 34 34
33.9
1.9
5.6
6
3.138
-
36/251
34 36 34 36 37 37 36 34 35 36
35.5
1.2
3.3
3
2.546
-
36/252
34 37 33 33 35 32 35 36 36 33
34.4
1.6
4.8
5
3.037
-
Test area
R1
36/200
36/201
R2
R3
R4
R5
R6
R7
R8
R9
R10
A105
Rm
sR
VR, %
rR
θR
fcm, MPa
33 33 33 38 33 35 35 36 34 34
34.4
1.6
4.8
5
3.037
-
34 35 33 34 34 36 36 35 36 36
34.9
1.1
3.2
3
2.726
-
36/255
36 38 35 38 37 39 37 38 37 35
37.0
1.3
3.6
4
3.000
-
36/256
38 39 40 40 39 38 38 40 37 38
38.7
1.1
2.7
3
2.832
-
36/257
38 36 39 39 38 37 36 38 36 36
37.3
1.3
3.4
3
2.397
-
36/258
36 39 39 36 36 35 36 36 39 36
36.8
1.5
4.2
4
2.582
-
36/259
38 38 36 36 38 37 39 35 39 37
37.3
1.3
3.6
4
2.991
-
36/260
33 37 36 33 36 34 34 35 33 33
34.4
1.5
4.4
4
2.657
-
36/261
36 34 34 35 36 37 35 34 36 37
35.4
1.2
3.3
3
2.556
-
36/262
33 33 34 36 36 35 36 36 37 36
35.2
1.4
4.0
4
2.860
-
36/263
36 36 35 34 39 37 34 39 35 37
36.2
1.8
5.0
5
2.757
-
36/264
40 36 36 35 34 37 36 36 39 36
36.5
1.8
4.9
6
3.372
-
36/265
36 34 34 37 37 36 37 34 36 35
35.6
1.3
3.6
3
2.372
-
36/266
35 39 38 35 38 36 36 37 36 35
36.5
1.4
3.9
4
2.790
-
36/267
37 39 37 38 37 36 40 40 37 40
38.1
1.5
4.0
4
2.625
-
36/268
36 40 40 40 39 40 40 40 40 36
39.1
1.7
4.3
4
2.405
-
36/269
38 35 38 36 34 38 34 36 37 37
36.3
1.6
4.3
4
2.553
-
36/270
38 39 40 40 39 39 40 41 37 39
39.2
1.1
2.9
4
3.523
-
36/271
36 38 39 40 38 39 39 39 38 38
38.4
1.1
2.8
4
3.721
-
36/272
34 34 35 37 36 38 34 32 38 37
35.5
2.0
5.7
6
2.979
-
36/273
34 36 37 36 37 35 34 36 35 37
35.7
1.2
3.2
3
2.587
-
36/274
36 34 36 38 34 34 35 36 36 35
35.4
1.3
3.6
4
3.162
-
36/275
40 39 39 39 38 39 42 40 40 40
39.6
1.1
2.7
4
3.721
-
36/276
40 39 36 38 40 41 39 36 41 36
38.6
2.0
5.2
5
2.486
-
36/277
39 40 40 38 40 36 40 41 38 36
38.8
1.8
4.5
5
2.855
-
36/278
36 39 40 36 38 40 38 38 40 38
38.3
1.5
3.9
4
2.677
-
36/279
40 37 37 38 40 37 40 38 38 40
38.5
1.4
3.5
3
2.216
-
36/280
35 35 38 36 37 37 38 38 37 37
36.8
1.1
3.1
3
2.642
-
36/281
39 39 38 39 37 38 36 37 40 37
38.0
1.2
3.3
4
3.207
-
36/282
38 37 38 38 40 38 37 37 38 36
37.7
1.1
2.8
4
3.776
-
36/283
38 36 37 38 39 39 38 37 37 38
37.7
0.9
2.5
3
3.162
-
36/284
36 37 37 37 38 39 35 37 37 35
36.8
1.2
3.3
4
3.254
-
36/285
38 40 39 41 38 40 37 40 39 39
39.1
1.2
3.1
4
3.341
-
36/286
37 40 41 40 40 37 39 38 37 39
38.8
1.5
3.8
4
2.711
-
36/287
39 37 38 37 38 39 38 37 39 38
38.0
0.8
2.1
2
2.449
-
36/288
40 41 40 37 38 38 39 38 38 39
38.8
1.2
3.2
4
3.254
-
36/289
36 39 38 38 37 38 39 39 36 38
37.8
1.1
3.0
3
2.642
-
36/290
36 36 39 39 38 35 35 37 33 38
36.6
2.0
5.3
6
3.069
-
36/291
39 40 39 38 36 38 36 41 38 38
38.3
1.6
4.1
5
3.191
-
36/292
41 36 39 38 35 39 39 37 38 39
38.1
1.7
4.5
6
3.471
-
36/293
39 42 38 40 42 40 38 42 38 39
39.8
1.7
4.2
4
2.372
-
36/294
39 39 38 40 38 40 42 36 38 36
38.6
1.8
4.8
6
3.265
-
36/295
39 35 36 38 37 36 36 35 39 34
36.5
1.7
4.7
5
2.914
-
36/296
40 38 38 39 38 38 38 38 38 38
38.3
0.7
1.8
2
2.963
-
36/297
38 40 39 39 41 38 39 40 38 37
38.9
1.2
3.1
4
3.341
-
36/298
35 37 35 39 37 37 35 35 39 35
36.4
1.6
4.5
4
2.429
-
36/299
36 37 36 37 35 36 37 37 38 37
36.6
0.8
2.3
3
3.558
-
36/300
36 38 40 41 40 40 36 40 39 40
39.0
1.8
4.5
5
2.835
-
36/301
40 39 40 39 39 39 38 41 40 39
39.4
0.8
2.1
3
3.558
-
36/302
40 40 39 38 38 40 38 37 36 40
38.6
1.4
3.7
4
2.798
-
36/303
40 41 38 40 38 40 40 39 38 38
39.2
1.1
2.9
3
2.642
-
36/304
40 39 39 38 40 41 38 38 38 40
39.1
1.1
2.8
3
2.726
-
36/305
36 34 36 38 40 35 40 40 38 38
37.5
2.2
5.8
6
2.761
-
Test area
R1
36/253
36/254
R2
R3
R4
R5
R6
R7
R8
R9
R10
A106
Rm
sR
VR, %
rR
θR
fcm, MPa
38 40 38 37 38 39 38 34 36 38
37.6
1.6
4.4
6
3.644
-
38 39 39 39 40 40 38 38 39 40
39.0
0.8
2.1
2
2.449
-
36/308
38 40 38 38 37 36 39 36 36 38
37.6
1.3
3.6
4
2.963
-
36/309
41 40 39 37 39 40 39 39 38 40
39.2
1.1
2.9
4
3.523
-
36/310
39 41 36 37 39 40 39 39 38 40
38.8
1.5
3.8
5
3.388
-
36/311
38 40 40 42 38 42 36 40 37 37
39.0
2.1
5.4
6
2.846
-
36/312
40 40 39 38 40 38 40 39 36 38
38.8
1.3
3.4
4
3.038
-
36/313
39 39 40 39 38 40 39 40 38 37
38.9
1.0
2.6
3
3.017
-
36/314
36 38 36 37 37 40 36 37 39 39
37.5
1.4
3.8
4
2.790
-
36/315
40 42 40 36 40 38 38 40 41 41
39.6
1.8
4.5
6
3.378
-
36/316
40 39 39 38 40 38 40 38 39 38
38.9
0.9
2.3
2
2.284
-
36/317
39 41 40 39 40 38 39 38 40 40
39.4
1.0
2.5
3
3.105
-
36/318
41 39 40 41 39 38 38 37 38 40
39.1
1.4
3.5
4
2.919
-
36/319
36 40 40 39 40 36 37 37 38 38
38.1
1.6
4.2
4
2.508
-
36/320
38 37 37 41 40 38 39 40 38 40
38.8
1.4
3.6
4
2.860
-
36/321
40 41 42 40 40 42 40 41 41 43
41.0
1.1
2.6
3
2.846
-
36/322
40 40 38 42 42 40 41 40 41 42
40.6
1.3
3.1
4
3.162
-
36/323
42 42 41 41 42 42 41 40 40 40
41.1
0.9
2.1
2
2.284
-
36/324
40 41 40 39 40 40 40 41 40 39
40.0
0.7
1.7
2
3.000
-
36/325
41 40 40 42 40 41 40 40 39 40
40.3
0.8
2.0
3
3.644
-
36/326
42 44 42 40 42 40 39 42 41 42
41.4
1.4
3.5
5
3.497
-
36/327
37 39 40 40 42 40 39 42 41 42
40.2
1.6
4.0
5
3.088
-
36/328
40 42 38 37 38 38 38 37 39 40
38.7
1.6
4.0
5
3.191
-
36/329
40 40 38 39 38 38 39 38 39 38
38.7
0.8
2.1
2
2.429
-
36/330
40 40 38 41 40 39 40 42 38 39
39.7
1.3
3.2
4
3.196
-
36/331
38 39 37 38 40 40 39 38 39 40
38.8
1.0
2.7
3
2.905
-
36/332
40 40 39 42 39 40 41 40 41 39
40.1
1.0
2.5
3
3.017
-
36/333
40 36 39 39 38 40 39 40 39 37
38.7
1.3
3.5
4
2.991
-
36/334
40 41 38 38 42 39 40 41 40 39
39.8
1.3
3.3
4
3.038
-
36/335
40 39 39 42 39 40 42 40 42 40
40.3
1.3
3.1
3
2.397
-
36/336
40 39 34 38 39 38 40 41 40 38
38.7
1.9
5.0
7
3.596
-
36/337
40 40 36 40 41 40 38 37 38 38
38.8
1.6
4.2
5
3.088
-
36/338
40 41 38 37 40 38 41 42 42 39
39.8
1.8
4.4
5
2.855
-
36/339
40 37 40 37 37 38 39 37 40 39
38.4
1.3
3.5
3
2.222
-
36/340
36 39 40 40 36 38 37 36 37 37
37.6
1.6
4.2
4
2.535
-
36/341
40 41 39 40 38 39 37 38 41 39
39.2
1.3
3.4
4
3.038
-
36/342
38 37 39 39 36 39 35 37 40 39
37.9
1.6
4.2
5
3.135
-
36/343
35 35 36 39 36 34 34 38 35 36
35.8
1.6
4.5
5
3.088
-
36/344
38 38 40 39 38 38 40 39 39 37
38.6
1.0
2.5
3
3.105
-
36/345
36 36 39 38 39 40 37 37 36 37
37.5
1.4
3.8
4
2.790
-
36/346
37 38 37 36 36 37 36 37 36 38
36.8
0.8
2.1
2
2.535
-
36/347
36 35 38 40 40 36 35 36 38 37
37.1
1.9
5.0
5
2.698
-
36/348
39 38 40 42 40 39 37 38 38 37
38.8
1.5
4.0
5
3.227
-
36/349
36 38 38 38 38 39 41 38 37 39
38.2
1.3
3.4
5
3.798
-
36/350
40 40 39 38 40 40 39 38 38 37
38.9
1.1
2.8
3
2.726
-
36/351
40 37 38 39 41 39 37 39 39 39
38.8
1.2
3.2
4
3.254
-
36/352
36 36 39 40 36 37 39 39 38 36
37.6
1.6
4.2
4
2.535
-
36/353
38 38 39 38 38 40 38 39 39 40
38.7
0.8
2.1
2
2.429
-
36/354
38 38 39 41 39 39 37 39 40 39
38.9
1.1
2.8
4
3.635
-
36/355
38 36 38 40 38 37 38 40 38 38
38.1
1.2
3.1
4
3.341
-
36/356
40 40 38 36 36 37 36 36 34 36
36.9
1.9
5.2
6
3.138
-
36/357
40 41 37 39 38 37 37 40 39 41
38.9
1.6
4.1
4
2.508
-
36/358
37 38 40 38 36 42 35 42 38 38
38.4
2.3
6.0
7
3.019
-
Test area
R1
36/306
36/307
R2
R3
R4
R5
R6
R7
R8
R9
R10
A107
Rm
sR
VR, %
rR
θR
fcm, MPa
38 38 36 40 40 39 38 37 40 38
38.4
1.3
3.5
4
2.963
-
40 39 37 36 39 39 40 37 39 39
38.5
1.4
3.5
4
2.954
-
36/361
40 40 39 41 40 38 37 38 41 40
39.4
1.3
3.4
4
2.963
-
36/362
40 41 39 40 42 41 38 42 41 38
40.2
1.5
3.7
4
2.711
-
36/363
40 41 42 40 39 40 41 40 39 40
40.2
0.9
2.3
3
3.265
-
36/364
40 40 40 41 40 38 42 40 40 41
40.2
1.0
2.6
4
3.873
-
36/365
38 38 40 40 42 42 38 41 40 40
39.9
1.5
3.8
4
2.625
-
36/366
38 38 40 39 37 38 37 35 36 37
37.5
1.4
3.8
5
3.487
-
36/367
38 39 38 40 40 37 40 36 36 37
38.1
1.6
4.2
4
2.508
-
36/368
38 40 39 38 38 40 41 40 40 38
39.2
1.1
2.9
3
2.642
-
36/369
38 40 39 38 38 40 41 40 40 38
39.2
1.1
2.9
3
2.642
-
36/370
38 38 37 39 40 38 40 40 36 38
38.4
1.3
3.5
4
2.963
-
36/371
38 40 37 40 41 37 38 38 39 38
38.6
1.3
3.5
4
2.963
-
36/372
38 35 38 35 37 39 36 38 36 39
37.1
1.5
4.1
4
2.625
-
36/373
38 38 40 41 40 39 40 38 36 37
38.7
1.6
4.0
5
3.191
-
36/374
38 38 37 39 38 39 41 41 41 40
39.2
1.5
3.8
4
2.711
-
36/375
36 38 39 36 38 38 37 39 39 40
38.0
1.3
3.5
4
3.000
-
36/376
38 39 40 38 39 40 36 42 38 38
38.8
1.6
4.2
6
3.705
-
36/377
36 36 38 40 40 41 40 39 41 38
38.9
1.9
4.8
5
2.698
-
36/378
38 39 38 36 35 36 40 36 36 39
37.3
1.7
4.6
5
2.936
-
36/379
40 40 36 38 38 38 36 41 41 39
38.7
1.8
4.7
5
2.734
-
36/380
38 38 39 38 36 36 36 35 37 35
36.8
1.4
3.8
4
2.860
-
36/381
39 35 40 36 40 36 38 39 36 38
37.7
1.8
4.9
5
2.734
-
36/382
36 36 36 38 38 40 34 38 38 40
37.4
1.9
5.1
6
3.162
-
36/383
38 36 38 36 39 40 38 42 38 40
38.5
1.8
4.8
6
3.259
-
36/384
37 37 39 40 38 40 39 38 40 38
38.6
1.2
3.0
3
2.556
-
36/385
36 38 38 36 35 38 36 35 38 36
36.6
1.3
3.5
3
2.372
-
36/386
37 40 36 40 40 36 39 38 36 37
37.9
1.7
4.6
4
2.314
-
36/387
38 36 34 34 35 35 34 35 38 35
35.4
1.5
4.3
4
2.657
-
36/388
36 36 37 36 36 35 33 34 36 34
35.3
1.3
3.5
4
3.196
-
36/389
36 38 40 42 40 36 36 36 37 38
37.9
2.1
5.6
6
2.815
-
36/390
37 41 39 41 40 38 40 41 38 41
39.6
1.5
3.8
4
2.657
-
36/391
35 37 40 35 41 37 42 38 38 39
38.2
2.3
6.1
7
2.982
-
36/392
42 42 41 43 40 42 41 40 40 38
40.9
1.4
3.5
5
3.450
-
36/393
40 40 40 43 41 41 42 43 41 40
41.1
1.2
2.9
3
2.506
-
36/394
40 41 42 42 42 43 40 42 42 39
41.3
1.3
3.0
4
3.196
-
36/395
42 40 42 40 39 40 39 40 41 41
40.4
1.1
2.7
3
2.791
-
36/396
38 40 41 42 40 43 41 41 40 42
40.8
1.4
3.4
5
3.575
-
36/397
39 40 42 40 42 43 42 44 42 40
41.4
1.6
3.8
5
3.169
-
36/398
42 43 41 40 42 43 44 44 42 44
42.5
1.4
3.2
4
2.954
-
36/399
41 41 40 40 40 42 41 42 39 41
40.7
0.9
2.3
3
3.162
-
36/400
42 40 41 44 42 43 42 40 42 40
41.6
1.3
3.2
4
2.963
-
36/401
44 42 42 43 42 42 42 40 41 42
42.0
1.1
2.5
4
3.795
-
36/402
40 40 41 40 41 39 38 40 42 42
40.3
1.3
3.1
4
3.196
-
36/403
40 44 41 41 43 41 44 40 40 40
41.4
1.6
4.0
4
2.429
-
36/404
40 44 42 40 42 42 42 40 42 43
41.7
1.3
3.2
4
2.991
-
36/405
41 42 43 42 40 41 42 43 40 41
41.5
1.1
2.6
3
2.777
-
36/406
42 41 42 39 40 39 41 42 40 41
40.7
1.2
2.8
3
2.587
-
36/407
39 41 42 42 44 42 42 40 42 42
41.6
1.3
3.2
5
3.704
-
36/408
42 43 42 41 42 40 40 40 40 42
41.2
1.1
2.8
3
2.642
-
36/409
44 42 44 40 42 40 42 40 41 41
41.6
1.5
3.6
4
2.657
-
36/410
44 44 43 44 43 42 44 42 43 44
43.3
0.8
1.9
2
2.429
-
36/411
40 42 42 41 42 40 40 41 41 42
41.1
0.9
2.1
2
2.284
-
Test area
R1
36/359
36/360
R2
R3
R4
R5
R6
R7
R8
R9
R10
A108
Rm
sR
VR, %
rR
θR
fcm, MPa
38 40 39 40 42 41 40 42 42 40
40.4
1.3
3.3
4
2.963
-
40 42 39 42 41 39 43 44 43 43
41.6
1.8
4.3
5
2.815
-
36/414
42 40 41 40 40 42 39 42 40 39
40.5
1.2
2.9
3
2.546
-
36/415
40 40 41 42 41 40 40 42 41 40
40.7
0.8
2.0
2
2.429
-
36/416
42 43 41 44 42 42 42 44 43 44
42.7
1.1
2.5
3
2.832
-
36/417
42 42 42 44 42 45 45 41 43 42
42.8
1.4
3.3
4
2.860
-
36/418
42 42 41 42 43 40 42 42 43 42
41.9
0.9
2.1
3
3.426
-
36/419
42 42 41 44 44 43 44 44 42 44
43.0
1.2
2.7
3
2.598
-
36/420
44 46 45 44 42 43 44 45 44 47
44.4
1.4
3.2
5
3.497
-
36/421
42 44 43 44 42 43 44 45 44 44
43.5
1.0
2.2
3
3.087
-
36/422
44 43 44 42 44 44 45 44 44 45
43.9
0.9
2.0
3
3.426
-
36/423
44 43 44 43 42 45 42 42 43 42
43.0
1.1
2.5
3
2.846
-
36/424
40 42 44 42 43 44 43 44 42 41
42.5
1.4
3.2
4
2.954
-
36/425
45 44 46 44 45 48 46 47 46 45
45.6
1.3
2.8
4
3.162
-
36/426
42 41 41 43 43 42 41 41 42 43
41.9
0.9
2.1
2
2.284
-
36/427
40 42 42 42 43 44 42 44 43 45
42.7
1.4
3.3
5
3.526
-
36/428
43 43 44 45 44 44 43 44 44 44
43.8
0.6
1.4
2
3.162
-
36/429
41 40 42 41 42 43 44 41 41 42
41.7
1.2
2.8
4
3.450
-
36/430
40 40 42 40 40 44 43 40 42 41
41.2
1.5
3.6
4
2.711
-
36/431
42 44 45 42 42 45 42 44 43 44
43.3
1.3
2.9
3
2.397
-
36/432
42 44 45 42 42 45 42 44 43 44
43.3
1.3
2.9
3
2.397
-
36/433
42 43 42 42 43 42 42 42 41 42
42.1
0.6
1.3
2
3.523
-
36/434
42 44 44 40 40 44 40 40 43 43
42.0
1.8
4.3
4
2.191
-
36/435
42 42 42 43 42 42 42 43 44 44
42.6
0.8
2.0
2
2.372
-
36/436
41 41 42 44 42 43 42 44 41 42
42.2
1.1
2.7
3
2.642
-
36/437
42 44 44 42 42 40 42 40 42 42
42.0
1.3
3.2
4
3.000
-
36/438
42 44 45 45 44 45 46 44 42 44
44.1
1.3
2.9
4
3.109
-
36/439
44 42 42 43 45 43 44 45 41 44
43.3
1.3
3.1
4
2.991
-
36/440
42 42 43 42 44 42 40 42 43 42
42.2
1.0
2.4
4
3.873
-
36/441
42 44 46 44 42 44 44 42 43 44
43.5
1.3
2.9
4
3.151
-
36/442
42 44 43 44 42 44 42 45 44 42
43.2
1.1
2.6
3
2.642
-
36/443
44 44 43 44 42 44 42 45 44 42
43.4
1.1
2.5
3
2.791
-
36/444
44 46 46 46 45 44 44 44 43 44
44.6
1.1
2.4
3
2.791
-
36/445
40 42 46 44 45 43 44 47 43 46
44.0
2.1
4.8
7
3.320
-
36/446
44 44 42 42 42 43 42 42 41 41
42.3
1.1
2.5
3
2.832
-
36/447
42 42 43 42 42 41 44 43 42 45
42.6
1.2
2.8
4
3.408
-
36/448
42 42 42 44 42 45 43 42 45 41
42.8
1.4
3.3
4
2.860
-
36/449
42 42 43 44 42 42 42 44 44 44
42.9
1.0
2.3
2
2.011
-
36/450
42 42 43 44 43 42 42 42 44 42
42.6
0.8
2.0
2
2.372
-
36/451
43 42 44 44 44 42 43 44 44 45
43.5
1.0
2.2
3
3.087
-
36/452
42 42 43 42 42 43 44 44 44 43
42.9
0.9
2.0
2
2.284
-
36/453
42 43 42 42 41 41 42 40 44 43
42.0
1.2
2.7
4
3.464
-
36/454
45 42 42 44 43 40 42 43 40 43
42.4
1.6
3.7
5
3.169
-
36/455
43 42 43 40 40 42 42 40 42 41
41.5
1.2
2.8
3
2.546
-
36/456
42 42 41 42 42 40 44 40 40 43
41.6
1.3
3.2
4
2.963
-
36/457
38 40 40 41 41 40 39 39 42 41
40.1
1.2
3.0
4
3.341
-
36/458
39 38 37 36 37 38 38 40 38 38
37.9
1.1
2.9
4
3.635
-
36/459
40 40 42 38 38 37 40 40 38 39
39.2
1.5
3.8
5
3.388
-
36/460
43 40 41 42 40 39 42 40 41 40
40.8
1.2
3.0
4
3.254
-
36/461
39 42 42 41 42 40 40 42 40 40
40.8
1.1
2.8
3
2.642
-
36/462
42 42 42 42 42 40 39 40 41 40
41.0
1.2
2.8
3
2.598
-
36/463
39 40 40 39 41 41 42 41 42 40
40.5
1.1
2.7
3
2.777
-
36/464
41 40 41 40 42 42 42 43 41 43
41.5
1.1
2.6
3
2.777
-
Test area
R1
36/412
36/413
R2
R3
R4
R5
R6
R7
R8
R9
R10
A109
Rm
sR
VR, %
rR
θR
fcm, MPa
40 41 41 41 42 43 41 41 41 41
41.2
0.8
1.9
3
3.803
-
40 40 44 40 40 42 41 41 40 41
40.9
1.3
3.1
4
3.109
-
36/467
42 40 39 40 40 39 40 42 40 41
40.3
1.1
2.6
3
2.832
-
36/468
41 41 42 43 41 45 42 43 43 41
42.2
1.3
3.1
4
3.038
-
36/469
40 40 42 42 42 43 40 40 41 40
41.0
1.2
2.8
3
2.598
-
36/470
40 40 42 44 44 43 40 42 41 40
41.6
1.6
4.0
4
2.429
-
36/471
39 38 41 42 43 42 41 42 40 41
40.9
1.5
3.7
5
3.281
-
36/472
39 41 44 42 42 41 39 40 41 42
41.1
1.5
3.7
5
3.281
-
36/473
42 42 42 41 42 40 41 42 43 40
41.5
1.0
2.3
3
3.087
-
36/474
41 41 42 42 42 42 41 42 43 43
41.9
0.7
1.8
2
2.711
-
36/475
42 42 39 44 39 42 44 42 41 42
41.7
1.7
4.1
5
2.936
-
36/476
42 42 42 39 40 40 42 41 40 39
40.7
1.3
3.1
3
2.397
-
36/477
40 40 41 40 40 42 42 44 44 41
41.4
1.6
3.8
4
2.535
-
36/478
44 42 42 42 42 42 44 46 44 45
43.3
1.5
3.5
4
2.677
-
36/479
42 42 43 43 42 42 42 43 43 42
42.4
0.5
1.2
1
1.936
-
36/480
44 44 42 42 42 44 42 42 42 42
42.6
1.0
2.3
2
2.070
-
36/481
44 44 44 44 44 43 43 42 42 42
43.2
0.9
2.1
2
2.176
-
36/482
41 41 41 42 42 41 41 42 42 42
41.5
0.5
1.3
1
1.897
-
36/483
42 42 43 42 42 40 44 42 42 40
41.9
1.2
2.9
4
3.341
-
36/484
42 42 44 43 42 42 45 42 44 44
43.0
1.2
2.7
3
2.598
-
36/485
42 43 40 40 42 40 42 42 41 41
41.3
1.1
2.6
3
2.832
-
36/486
42 40 42 40 40 41 40 40 42 41
40.8
0.9
2.3
2
2.176
-
36/487
42 42 43 42 42 44 44 43 44 44
43.0
0.9
2.2
2
2.121
-
36/488
40 41 42 41 43 41 42 43 41 40
41.4
1.1
2.6
3
2.791
-
36/489
40 42 44 42 44 44 43 41 41 43
42.4
1.4
3.4
4
2.798
-
36/490
42 42 42 43 44 44 44 42 42 41
42.6
1.1
2.5
3
2.791
-
36/491
41 42 43 42 43 39 40 41 42 43
41.6
1.3
3.2
4
2.963
-
36/492
42 42 42 42 42 41 40 40 41 41
41.3
0.8
2.0
2
2.429
-
36/493
40 40 44 42 45 44 44 42 42 44
42.7
1.8
4.1
5
2.830
-
36/494
42 44 42 42 45 42 45 41 44 43
43.0
1.4
3.3
4
2.828
-
36/495
44 42 42 44 42 44 42 42 43 42
42.7
0.9
2.2
2
2.108
-
36/496
40 40 42 41 40 41 43 40 40 41
40.8
1.0
2.5
3
2.905
-
36/497
43 42 43 44 45 43 42 44 45 46
43.7
1.3
3.1
4
2.991
-
36/498
44 42 45 44 44 42 45 42 44 45
43.7
1.3
2.9
3
2.397
-
36/499
44 44 43 44 44 43 43 43 42 43
43.3
0.7
1.6
2
2.963
-
36/500
45 42 43 44 45 44 43 42 40 43
43.1
1.5
3.5
5
3.281
-
36/501
44 42 44 44 42 43 44 42 43 40
42.8
1.3
3.1
4
3.038
-
36/502
42 42 43 42 40 44 45 44 45 44
43.1
1.6
3.7
5
3.135
-
36/503
40 43 41 40 42 41 40 41 40 41
40.9
1.0
2.4
3
3.017
-
36/504
40 40 41 40 42 42 40 40 41 42
40.8
0.9
2.3
2
2.176
-
36/505
41 41 44 44 42 42 39 40 40 39
41.2
1.8
4.4
5
2.757
-
36/506
40 42 43 44 42 44 42 40 40 42
41.9
1.5
3.6
4
2.625
-
36/507
44 43 44 44 43 44 44 43 44 42
43.5
0.7
1.6
2
2.828
-
36/508
44 41 40 40 40 40 43 40 41 42
41.1
1.4
3.5
4
2.760
-
36/509
39 40 42 40 39 41 39 40 40 40
40.0
0.9
2.4
3
3.182
-
36/510
42 43 42 44 42 42 39 41 42 42
41.9
1.3
3.1
5
3.886
-
36/511
42 43 41 43 42 40 42 41 43 40
41.7
1.2
2.8
3
2.587
-
36/512
40 40 41 42 42 40 42 42 41 41
41.1
0.9
2.1
2
2.284
-
36/513
44 43 42 44 44 43 42 43 42 41
42.8
1.0
2.4
3
2.905
-
36/514
39 42 39 41 39 40 41 40 38 39
39.8
1.2
3.1
4
3.254
-
36/515
44 44 43 42 42 43 42 42 41 42
42.5
1.0
2.3
3
3.087
-
36/516
39 38 39 39 40 40 38 39 39 38
38.9
0.7
1.9
2
2.711
-
36/517
40 42 38 38 40 37 42 42 42 38
39.9
2.0
5.1
5
2.469
-
Test area
R1
36/465
36/466
R2
R3
R4
R5
R6
R7
R8
R9
R10
A110
Rm
sR
VR, %
rR
θR
fcm, MPa
40 40 39 40 37 39 38 40 41 42
39.6
1.4
3.6
5
3.497
-
41 42 43 42 44 43 44 43 41 42
42.5
1.1
2.5
3
2.777
-
36/520
39 39 40 38 40 39 41 39 40 41
39.6
1.0
2.4
3
3.105
-
36/521
36 38 41 38 39 38 39 39 40 40
38.8
1.4
3.6
5
3.575
-
36/522
38 38 39 38 40 38 40 40 41 40
39.2
1.1
2.9
3
2.642
-
36/523
39 38 41 37 40 39 38 41 39 40
39.2
1.3
3.4
4
3.038
-
36/524
42 42 39 43 42 42 44 40 40 43
41.7
1.6
3.8
5
3.191
-
36/525
42 40 44 42 40 40 40 39 42 40
40.9
1.5
3.7
5
3.281
-
36/526
46 43 41 40 41 40 41 41 40 42
41.5
1.8
4.4
6
3.259
-
36/527
42 42 40 42 41 41 43 42 43 42
41.8
0.9
2.2
3
3.265
-
36/528
44 44 43 44 43 43 44 43 43 42
43.3
0.7
1.6
2
2.963
-
36/529
43 40 44 40 45 45 45 43 42 46
43.3
2.1
4.9
6
2.842
-
36/530
42 42 42 42 43 44 44 43 41 44
42.7
1.1
2.5
3
2.832
-
36/531
44 45 45 44 44 45 44 43 43 42
43.9
1.0
2.3
3
3.017
-
36/532
41 40 41 42 39 41 40 41 40 39
40.4
1.0
2.4
3
3.105
-
36/533
42 42 43 44 43 42 44 45 44 45
43.4
1.2
2.7
3
2.556
-
36/534
44 43 44 44 44 43 40 42 43 42
42.9
1.3
3.0
4
3.109
-
36/535
40 40 39 40 42 39 41 40 41 39
40.1
1.0
2.5
3
3.017
-
36/536
42 42 43 42 43 42 44 42 42 43
42.5
0.7
1.7
2
2.828
-
36/537
44 43 44 43 44 44 43 45 42 43
43.5
0.8
2.0
3
3.530
-
36/538
42 42 39 39 41 42 41 42 40 39
40.7
1.3
3.3
3
2.243
-
36/539
44 44 43 39 42 42 42 42 43 41
42.2
1.5
3.5
5
3.388
-
36/540
42 42 44 44 45 44 44 43 44 43
43.5
1.0
2.2
3
3.087
-
36/541
43 39 42 39 40 42 42 42 42 43
41.4
1.5
3.6
4
2.657
-
36/542
42 42 41 44 44 42 42 43 41 42
42.3
1.1
2.5
3
2.832
-
36/543
44 44 43 42 43 45 44 44 43 43
43.5
0.8
2.0
3
3.530
-
36/544
42 40 39 42 42 40 42 41 42 40
41.0
1.2
2.8
3
2.598
-
36/545
42 40 42 44 42 42 42 43 42 42
42.1
1.0
2.4
4
4.022
-
36/546
44 43 44 44 42 42 44 43 44 44
43.4
0.8
1.9
2
2.372
-
36/547
40 42 44 41 40 42 40 40 40 41
41.0
1.3
3.3
4
3.000
-
36/548
42 42 43 42 42 41 40 40 41 42
41.5
1.0
2.3
3
3.087
-
36/549
42 43 44 44 44 44 42 43 45 43
43.4
1.0
2.2
3
3.105
-
36/550
42 42 43 44 43 42 44 45 44 43
43.2
1.0
2.4
3
2.905
-
36/551
43 44 43 44 44 45 43 43 45 44
43.8
0.8
1.8
2
2.535
-
36/552
42 41 44 42 41 42 42 43 43 45
42.5
1.3
3.0
4
3.151
-
36/553
44 45 43 44 43 44 44 44 45 44
44.0
0.7
1.5
2
3.000
-
36/554
44 45 44 44 45 44 44 44 45 44
44.3
0.5
1.1
1
2.070
-
36/555
42 42 44 45 42 43 44 41 45 44
43.2
1.4
3.2
4
2.860
-
36/556
42 42 45 44 45 44 44 44 43 45
43.8
1.1
2.6
3
2.642
-
36/557
44 44 44 43 43 44 45 44 45 45
44.1
0.7
1.7
2
2.711
-
36/558
40 41 42 44 40 40 44 43 42 41
41.7
1.6
3.8
4
2.553
-
36/559
45 42 42 45 44 45 44 44 44 42
43.7
1.3
2.9
3
2.397
-
36/560
45 44 44 45 44 45 44 45 46 44
44.6
0.7
1.6
2
2.860
-
36/561
41 39 38 42 40 43 40 40 41 42
40.6
1.5
3.7
5
3.321
-
36/562
42 42 41 44 43 45 44 44 45 45
43.5
1.4
3.3
4
2.790
-
36/563
40 40 41 42 42 43 44 44 43 44
42.3
1.6
3.7
4
2.553
-
36/564
43 41 43 41 42 43 41 41 40 41
41.6
1.1
2.6
3
2.791
-
36/565
45 44 42 42 42 42 43 42 40 40
42.2
1.5
3.7
5
3.227
-
36/566
40 44 43 44 45 45 45 46 45 44
44.1
1.7
3.8
6
3.607
-
36/567
41 41 42 40 40 41 41 42 40 40
40.8
0.8
1.9
2
2.535
-
36/568
39 40 40 42 40 42 43 42 42 42
41.2
1.3
3.2
4
3.038
-
36/569
43 44 42 44 43 45 44 44 43 43
43.5
0.8
2.0
3
3.530
-
36/570
41 42 42 42 43 41 42 43 41 40
41.7
0.9
2.3
3
3.162
-
Test area
R1
36/518
36/519
R2
R3
R4
R5
R6
R7
R8
R9
R10
A111
Rm
sR
VR, %
rR
θR
fcm, MPa
40 42 41 42 42 42 42 42 41 42
41.6
0.7
1.7
2
2.860
-
42 42 40 42 42 41 40 40 41 42
41.2
0.9
2.2
2
2.176
-
36/573
40 41 43 41 42 42 39 40 39 42
40.9
1.4
3.4
4
2.919
-
36/574
42 42 41 43 42 42 42 42 43 43
42.2
0.6
1.5
2
3.162
-
36/575
44 42 43 44 43 44 43 43 42 44
43.2
0.8
1.8
2
2.535
-
36/576
39 40 39 40 38 41 40 41 42 39
39.9
1.2
3.0
4
3.341
-
36/577
40 43 41 42 42 42 43 41 43 41
41.8
1.0
2.5
3
2.905
-
36/578
44 42 42 43 44 43 44 44 43 42
43.1
0.9
2.0
2
2.284
-
36/579
43 44 42 44 44 43 41 43 43 41
42.8
1.1
2.7
3
2.642
-
36/580
41 43 42 43 41 40 44 41 43 41
41.9
1.3
3.1
4
3.109
-
36/581
42 42 43 42 44 42 42 43 42 43
42.5
0.7
1.7
2
2.828
-
36/582
44 42 42 44 42 40 42 43 43 44
42.6
1.3
3.0
4
3.162
-
36/583
42 40 43 40 40 41 42 42 41 43
41.4
1.2
2.8
3
2.556
-
36/584
40 40 42 41 41 40 42 42 41 42
41.1
0.9
2.1
2
2.284
-
36/585
44 44 45 44 44 40 45 44 45 44
43.9
1.4
3.3
5
3.450
-
36/586
42 41 43 43 43 44 41 43 42 41
42.3
1.1
2.5
3
2.832
-
36/587
42 43 40 42 42 40 42 41 41 42
41.5
1.0
2.3
3
3.087
-
36/588
41 40 40 42 42 43 42 43 42 42
41.7
1.1
2.5
3
2.832
-
36/589
40 41 38 42 42 40 39 42 40 41
40.5
1.4
3.3
4
2.954
-
36/590
38 40 39 40 41 39 38 42 40 40
39.7
1.3
3.2
4
3.196
-
36/591
38 42 40 41 42 40 38 40 42 42
40.5
1.6
3.9
4
2.530
-
36/592
40 40 42 40 42 40 43 43 43 42
41.5
1.4
3.3
3
2.216
-
36/593
42 43 42 43 40 44 43 43 42 42
42.4
1.1
2.5
4
3.721
-
36/594
40 41 40 38 38 41 42 38 41 41
40.0
1.5
3.7
4
2.683
-
36/595
40 40 38 42 42 42 42 39 40 39
40.4
1.5
3.7
4
2.657
-
36/596
42 42 41 42 40 42 40 42 42 42
41.5
0.8
2.0
2
2.353
-
36/597
39 40 39 41 42 42 40 41 41 40
40.5
1.1
2.7
3
2.777
-
36/598
40 40 40 42 41 40 42 42 40 42
40.9
1.0
2.4
2
2.011
-
36/599
42 42 41 42 42 43 43 44 42 42
42.3
0.8
1.9
3
3.644
-
36/600
40 40 42 40 41 40 39 41 42 42
40.7
1.1
2.6
3
2.832
-
36/601
42 42 43 44 43 42 41 42 43 42
42.4
0.8
2.0
3
3.558
-
36/602
42 42 41 42 42 43 43 43 42 42
42.2
0.6
1.5
2
3.162
-
36/603
40 41 42 42 42 44 44 44 41 42
42.2
1.4
3.3
4
2.860
-
36/604
44 43 43 42 42 43 44 44 41 44
43.0
1.1
2.5
3
2.846
-
36/605
44 44 42 42 42 44 44 43 44 44
43.3
0.9
2.2
2
2.108
-
36/606
42 40 42 42 39 42 42 40 41 42
41.2
1.1
2.8
3
2.642
-
36/607
44 42 42 43 44 43 42 42 43 42
42.7
0.8
1.9
2
2.429
-
36/608
42 44 44 42 40 43 42 42 43 44
42.6
1.3
3.0
4
3.162
-
36/609
41 44 42 41 42 43 41 42 42 39
41.7
1.3
3.2
5
3.738
-
36/610
44 43 44 42 44 42 42 40 43 43
42.7
1.3
2.9
4
3.196
-
36/611
42 42 43 44 43 42 43 43 42 42
42.6
0.7
1.6
2
2.860
-
36/612
39 41 40 39 39 41 40 41 42 40
40.2
1.0
2.6
3
2.905
-
36/613
39 38 39 39 38 39 39 39 40 40
39.0
0.7
1.7
2
3.000
-
36/614
42 42 42 40 41 43 42 41 42 41
41.6
0.8
2.0
3
3.558
-
36/615
39 38 40 37 39 39 37 37 40 39
38.5
1.2
3.1
3
2.546
-
36/616
38 39 40 40 40 40 40 41 40 40
39.8
0.8
2.0
3
3.803
-
36/617
42 40 40 39 40 40 40 42 39 39
40.1
1.1
2.7
3
2.726
-
36/618
41 38 41 37 37 40 42 40 41 41
39.8
1.8
4.6
5
2.757
-
36/619
39 39 40 41 40 40 41 40 40 40
40.0
0.7
1.7
2
3.000
-
36/620
40 42 40 38 40 42 38 40 39 39
39.8
1.4
3.5
4
2.860
-
36/621
42 42 41 42 42 41 43 42 42 42
41.9
0.6
1.4
2
3.523
-
36/622
42 42 44 44 42 43 40 44 43 42
42.6
1.3
3.0
4
3.162
-
36/623
43 41 42 44 42 40 42 40 41 41
41.6
1.3
3.0
4
3.162
-
Test area
R1
36/571
36/572
R2
R3
R4
R5
R6
R7
R8
R9
R10
A112
Rm
sR
VR, %
rR
θR
fcm, MPa
40 43 42 43 41 42 40 40 41 43
41.5
1.3
3.1
3
2.364
-
44 44 45 43 43 42 41 42 42 43
42.9
1.2
2.8
4
3.341
-
36/626
43 44 44 44 40 40 42 42 43 44
42.6
1.6
3.7
4
2.535
-
36/627
41 44 43 41 42 40 41 42 41 40
41.5
1.3
3.1
4
3.151
-
36/628
44 44 44 43 43 42 44 42 42 42
43.0
0.9
2.2
2
2.121
-
36/629
42 42 43 43 43 42 44 42 42 42
42.5
0.7
1.7
2
2.828
-
36/630
40 43 43 39 42 41 41 42 41 40
41.2
1.3
3.2
4
3.038
-
36/631
42 44 44 44 44 42 42 42 42 43
42.9
1.0
2.3
2
2.011
-
36/632
43 43 44 42 42 44 44 43 43 42
43.0
0.8
1.9
2
2.449
-
36/633
42 41 43 41 43 41 41 40 42 43
41.7
1.1
2.5
3
2.832
-
36/634
44 44 42 44 43 41 43 41 43 41
42.6
1.3
3.0
3
2.372
-
36/635
42 44 42 43 43 44 44 43 44 44
43.3
0.8
1.9
2
2.429
-
36/636
42 42 43 45 43 39 40 40 42 40
41.6
1.8
4.4
6
3.265
-
36/637
42 44 43 42 43 43 43 42 42 43
42.7
0.7
1.6
2
2.963
-
36/638
43 43 42 42 43 42 42 42 42 42
42.3
0.5
1.1
1
2.070
-
36/639
41 42 42 43 44 40 43 41 42 39
41.7
1.5
3.6
5
3.346
-
36/640
42 43 43 42 42 41 44 44 42 42
42.5
1.0
2.3
3
3.087
-
36/641
45 44 42 44 44 45 44 44 43 44
43.9
0.9
2.0
3
3.426
-
36/642
44 40 43 45 40 39 39 39 41 40
41.0
2.2
5.4
6
2.714
-
36/643
44 44 42 44 44 45 42 42 44 42
43.3
1.2
2.7
3
2.587
-
36/644
42 42 43 42 44 42 42 42 41 42
42.2
0.8
1.9
3
3.803
-
36/645
39 39 41 39 38 42 40 42 40 42
40.2
1.5
3.7
4
2.711
-
36/646
42 42 40 42 42 43 42 44 40 40
41.7
1.3
3.2
4
2.991
-
36/647
44 40 43 42 44 42 40 40 40 42
41.7
1.6
3.9
4
2.444
-
36/648
44 43 42 43 42 40 44 42 41 40
42.1
1.4
3.4
4
2.760
-
36/649
43 42 42 44 42 42 43 43 42 43
42.6
0.7
1.6
2
2.860
-
36/650
42 44 44 43 42 42 44 44 45 43
43.3
1.1
2.4
3
2.832
-
36/651
44 43 43 44 42 44 44 43 45 43
43.5
0.8
2.0
3
3.530
-
36/652
44 42 44 44 44 44 44 44 43 42
43.5
0.8
2.0
2
2.353
-
36/653
44 44 46 43 42 43 43 40 43 44
43.2
1.5
3.6
6
3.873
-
36/654
44 42 42 43 43 44 43 43 44 42
43.0
0.8
1.9
2
2.449
-
36/655
42 42 43 42 44 44 44 43 44 44
43.2
0.9
2.1
2
2.176
-
36/656
43 40 42 42 44 42 42 43 44 41
42.3
1.3
3.0
4
3.196
-
36/657
42 42 42 43 41 43 42 42 43 41
42.1
0.7
1.8
2
2.711
-
36/658
42 42 44 44 44 42 44 44 44 42
43.2
1.0
2.4
2
1.936
-
36/659
44 40 42 42 44 42 42 43 44 41
42.4
1.3
3.2
4
2.963
-
36/660
42 45 44 44 45 45 44 44 43 43
43.9
1.0
2.3
3
3.017
-
36/661
44 44 43 44 45 46 44 45 45 45
44.5
0.8
1.9
3
3.530
-
36/662
42 41 43 43 40 40 44 43 42 44
42.2
1.5
3.5
4
2.711
-
36/663
42 42 43 44 44 42 42 42 43 42
42.6
0.8
2.0
2
2.372
-
36/664
42 42 44 42 44 43 44 43 42 43
42.9
0.9
2.0
2
2.284
-
36/665
42 43 42 44 43 40 44 43 42 43
42.6
1.2
2.8
4
3.408
-
36/666
44 44 43 44 44 43 44 44 45 44
43.9
0.6
1.3
2
3.523
-
36/667
44 44 43 44 44 43 44 40 41 44
43.1
1.4
3.4
4
2.760
-
36/668
42 43 45 44 43 43 44 42 44 43
43.3
0.9
2.2
3
3.162
-
36/669
44 44 45 44 44 44 44 43 45 44
44.1
0.6
1.3
2
3.523
-
36/670
44 45 43 46 43 44 45 44 44 43
44.1
1.0
2.3
3
3.017
-
36/671
45 44 42 44 43 42 43 44 42 43
43.2
1.0
2.4
3
2.905
-
36/672
43 44 44 45 45 44 43 45 45 44
44.2
0.8
1.8
2
2.535
-
36/673
44 45 44 45 44 44 43 43 44 44
44.0
0.7
1.5
2
3.000
-
36/674
44 44 40 42 43 42 43 41 40 43
42.2
1.5
3.5
4
2.711
-
36/675
42 43 45 44 45 45 44 43 44 43
43.8
1.0
2.4
3
2.905
-
36/676
45 43 40 44 44 44 45 43 45 43
43.6
1.5
3.5
5
3.321
-
Test area
R1
36/624
36/625
R2
R3
R4
R5
R6
R7
R8
R9
R10
A113
Rm
sR
VR, %
rR
θR
fcm, MPa
43 42 42 43 42 42 43 43 44 42
42.6
0.7
1.6
2
2.860
-
44 44 43 45 44 45 44 42 42 43
43.6
1.1
2.5
3
2.791
-
36/679
44 43 44 44 45 43 44 44 42 43
43.6
0.8
1.9
3
3.558
-
36/680
44 44 43 44 44 45 44 44 45 43
44.0
0.7
1.5
2
3.000
-
36/681
44 44 45 44 45 43 44 45 45 44
44.3
0.7
1.5
2
2.963
-
36/682
44 42 43 44 41 42 41 42 42 43
42.4
1.1
2.5
3
2.791
-
36/683
43 44 44 44 42 45 42 42 44 43
43.3
1.1
2.4
3
2.832
-
36/684
44 45 43 43 43 44 43 46 44 43
43.8
1.0
2.4
3
2.905
-
36/685
42 45 41 42 42 43 44 42 43 43
42.7
1.2
2.7
4
3.450
-
36/686
43 44 44 45 44 42 43 43 43 43
43.4
0.8
1.9
3
3.558
-
36/687
44 44 43 44 43 44 44 43 44 43
43.6
0.5
1.2
1
1.936
-
36/688
44 43 43 44 40 42 42 44 42 41
42.5
1.4
3.2
4
2.954
-
36/689
44 43 42 45 45 45 45 46 44 44
44.3
1.2
2.6
4
3.450
-
36/690
45 45 44 42 44 44 43 44 45 44
44.0
0.9
2.1
3
3.182
-
36/691
41 44 43 42 43 43 44 43 44 45
43.2
1.1
2.6
4
3.523
-
36/692
45 44 44 44 43 46 44 46 45 44
44.5
1.0
2.2
3
3.087
-
36/693
42 44 45 45 44 46 44 45 46 45
44.6
1.2
2.6
4
3.408
-
36/694
42 42 42 43 41 43 43 41 42 42
42.1
0.7
1.8
2
2.711
-
36/695
45 44 46 44 44 46 44 44 45 44
44.6
0.8
1.9
2
2.372
-
36/696
40 43 44 44 43 42 43 44 45 43
43.1
1.4
3.2
5
3.649
-
36/697
42 44 42 41 41 44 41 42 44 43
42.4
1.3
3.0
3
2.372
-
36/698
46 44 45 42 44 45 42 42 44 43
43.7
1.4
3.2
4
2.821
-
36/699
44 45 43 43 44 45 44 44 43 44
43.9
0.7
1.7
2
2.711
-
36/700
44 44 43 42 42 42 43 43 42 41
42.6
1.0
2.3
3
3.105
-
36/701
44 44 44 43 45 44 45 46 46 44
44.5
1.0
2.2
3
3.087
-
36/702
46 45 44 41 44 47 42 45 44 44
44.2
1.8
4.0
6
3.426
-
36/703
46 43 42 42 45 44 44 45 42 44
43.7
1.4
3.2
4
2.821
-
36/704
44 44 45 44 46 45 46 46 44 44
44.8
0.9
2.1
2
2.176
-
36/705
40 45 44 43 46 45 45 46 45 44
44.3
1.8
4.0
6
3.396
-
36/706
44 40 41 43 44 45 45 44 42 46
43.4
1.9
4.4
6
3.162
-
36/707
42 44 44 46 45 45 46 44 44 44
44.4
1.2
2.6
4
3.408
-
36/708
44 45 44 46 43 44 45 45 45 44
44.5
0.8
1.9
3
3.530
-
36/709
43 44 42 44 45 42 43 42 43 43
43.1
1.0
2.3
3
3.017
-
36/710
44 46 46 44 43 45 43 44 45 44
44.4
1.1
2.4
3
2.791
-
36/711
44 44 43 45 46 45 46 44 46 43
44.6
1.2
2.6
3
2.556
-
36/712
45 46 45 43 45 42 43 46 47 44
44.6
1.6
3.5
5
3.169
-
36/713
44 45 46 43 43 46 46 45 46 46
45.0
1.2
2.8
3
2.405
-
36/714
46 46 45 44 45 44 44 45 45 44
44.8
0.8
1.8
2
2.535
-
36/715
44 43 42 44 42 44 41 45 42 44
43.1
1.3
3.0
4
3.109
-
36/716
44 44 43 44 44 44 44 46 44 45
44.2
0.8
1.8
3
3.803
-
36/717
44 43 40 46 46 45 40 45 46 46
44.1
2.4
5.4
6
2.523
-
36/718
44 41 41 43 42 43 41 42 43 45
42.5
1.4
3.2
4
2.954
-
36/719
46 46 45 46 44 44 44 44 44 44
44.7
0.9
2.1
2
2.108
-
36/720
44 43 45 43 45 43 46 43 43 44
43.9
1.1
2.5
3
2.726
-
36/721
46 43 44 44 43 42 44 43 43 42
43.4
1.2
2.7
4
3.408
-
36/722
46 45 44 43 43 46 44 44 45 44
44.4
1.1
2.4
3
2.791
-
36/723
43 47 43 46 46 45 44 45 45 45
44.9
1.3
2.9
4
3.109
-
36/724
43 43 45 42 43 44 42 42 44 45
43.3
1.2
2.7
3
2.587
-
36/725
43 44 44 45 46 44 44 44 43 44
44.1
0.9
2.0
3
3.426
-
36/726
44 45 45 44 43 46 45 44 46 43
44.5
1.1
2.4
3
2.777
-
36/727
43 44 41 43 43 45 43 44 43 41
43.0
1.2
2.9
4
3.207
-
36/728
45 45 46 42 43 44 40 40 40 42
42.7
2.3
5.3
6
2.651
-
36/729
44 44 45 44 44 46 44 45 44 46
44.6
0.8
1.9
2
2.372
-
Test area
R1
36/677
36/678
R2
R3
R4
R5
R6
R7
R8
R9
R10
A114
Rm
sR
VR, %
rR
θR
fcm, MPa
40 41 43 44 42 43 40 42 40 42
41.7
1.4
3.4
4
2.821
-
42 42 44 40 41 42 42 43 42 43
42.1
1.1
2.6
4
3.635
-
36/732
44 42 43 42 43 42 44 43 43 42
42.8
0.8
1.8
2
2.535
-
36/733
41 42 40 41 40 41 40 40 39 39
40.3
0.9
2.4
3
3.162
-
36/734
42 42 41 42 40 40 39 39 40 38
40.3
1.4
3.5
4
2.821
-
36/735
38 40 40 38 37 38 40 38 42 40
39.1
1.5
3.9
5
3.281
-
36/736
41 40 40 42 41 40 41 42 43 41
41.1
1.0
2.4
3
3.017
-
36/737
43 39 40 40 42 38 40 42 40 40
40.4
1.5
3.7
5
3.321
-
36/738
40 42 40 44 38 41 38 38 40 40
40.1
1.9
4.8
6
3.138
-
36/739
41 41 42 40 42 43 40 41 42 43
41.5
1.1
2.6
3
2.777
-
36/740
40 43 40 39 39 40 43 40 42 40
40.6
1.5
3.7
4
2.657
-
36/741
38 40 40 39 38 39 41 42 40 40
39.7
1.3
3.2
4
3.196
-
36/742
43 41 43 44 42 40 41 42 43 44
42.3
1.3
3.2
4
2.991
-
36/743
42 42 41 44 39 44 45 40 42 42
42.1
1.9
4.4
6
3.238
-
36/744
42 44 38 40 40 39 40 43 42 42
41.0
1.9
4.6
6
3.182
-
36/745
44 42 41 44 42 44 43 40 40 42
42.2
1.5
3.7
4
2.582
-
36/746
43 40 39 44 44 41 43 43 40 41
41.8
1.8
4.3
5
2.757
-
36/747
40 40 41 42 42 44 44 40 42 41
41.6
1.5
3.6
4
2.657
-
36/748
44 44 42 44 44 43 42 41 39 40
42.3
1.8
4.3
5
2.734
-
36/749
39 44 44 40 40 41 42 42 43 41
41.6
1.7
4.1
5
2.919
-
36/750
40 44 40 44 41 43 42 44 43 43
42.4
1.6
3.7
4
2.535
-
36/751
40 44 37 38 42 42 40 42 40 40
40.5
2.1
5.1
7
3.384
-
36/752
40 40 43 42 41 41 40 43 42 40
41.2
1.2
3.0
3
2.440
-
36/753
41 42 41 43 41 41 41 40 41 42
41.3
0.8
2.0
3
3.644
-
36/754
40 41 44 44 42 39 39 40 42 40
41.1
1.9
4.5
5
2.698
-
36/755
43 42 44 42 42 44 45 42 43 43
43.0
1.1
2.5
3
2.846
-
36/756
39 39 40 40 39 43 41 39 41 40
40.1
1.3
3.2
4
3.109
-
36/757
43 42 44 42 42 45 41 44 42 40
42.5
1.5
3.6
5
3.313
-
36/758
40 41 40 39 42 40 44 42 41 41
41.0
1.4
3.4
5
3.536
-
36/759
40 40 41 42 42 41 40 40 42 41
40.9
0.9
2.1
2
2.284
-
36/760
39 38 40 38 42 41 40 42 40 40
40.0
1.4
3.5
4
2.828
-
36/761
38 40 38 37 40 40 38 39 38 40
38.8
1.1
2.9
3
2.642
-
36/762
39 40 41 41 41 40 39 39 40 40
40.0
0.8
2.0
2
2.449
-
36/763
38 38 39 40 40 41 38 39 38 40
39.1
1.1
2.8
3
2.726
-
36/764
40 40 39 38 40 42 42 40 43 40
40.4
1.5
3.7
5
3.321
-
36/765
40 41 40 40 41 42 40 40 39 41
40.4
0.8
2.1
3
3.558
-
36/766
40 38 37 40 41 40 41 40 38 38
39.3
1.4
3.6
4
2.821
-
36/767
42 40 40 43 40 38 40 40 41 38
40.2
1.5
3.9
5
3.227
-
36/768
41 42 42 42 39 40 40 39 41 39
40.5
1.3
3.1
3
2.364
-
36/769
40 41 38 41 40 37 38 40 40 39
39.4
1.3
3.4
4
2.963
-
36/770
36 38 40 41 42 40 40 39 38 40
39.4
1.7
4.3
6
3.503
-
36/771
43 40 41 42 42 42 41 41 40 41
41.3
0.9
2.3
3
3.162
-
36/772
40 41 40 42 42 40 40 41 43 40
40.9
1.1
2.7
3
2.726
-
36/773
42 41 42 40 41 42 40 43 41 41
41.3
0.9
2.3
3
3.162
-
36/774
42 40 41 42 39 41 39 40 41 40
40.5
1.1
2.7
3
2.777
-
36/775
38 40 39 40 40 41 42 38 39 39
39.6
1.3
3.2
4
3.162
-
36/776
42 41 40 41 40 42 38 40 41 42
40.7
1.3
3.1
4
3.196
-
36/777
42 43 42 42 43 42 44 40 44 42
42.4
1.2
2.8
4
3.408
-
36/778
43 42 44 40 43 41 42 43 44 41
42.3
1.3
3.2
4
2.991
-
36/779
42 43 42 44 43 41 43 41 44 43
42.6
1.1
2.5
3
2.791
-
36/780
42 41 41 42 39 38 42 41 41 43
41.0
1.5
3.6
5
3.354
-
36/781
40 42 40 37 38 40 40 42 41 42
40.2
1.7
4.2
5
2.965
-
36/782
40 42 38 40 38 44 42 42 42 40
40.8
1.9
4.7
6
3.105
-
Test area
R1
36/730
36/731
R2
R3
R4
R5
R6
R7
R8
R9
R10
A115
Rm
sR
VR, %
rR
θR
fcm, MPa
40 39 42 43 42 42 43 42 43 42
41.8
1.3
3.1
4
3.038
-
44 44 42 43 42 41 42 42 40 41
42.1
1.3
3.1
4
3.109
-
36/785
42 44 42 40 43 43 42 44 42 41
42.3
1.3
3.0
4
3.196
-
36/786
41 43 42 43 43 40 44 42 44 44
42.6
1.3
3.2
4
2.963
-
36/787
42 40 44 41 40 41 40 42 42 41
41.3
1.3
3.0
4
3.196
-
36/788
40 41 42 42 40 41 42 40 42 43
41.3
1.1
2.6
3
2.832
-
36/789
43 44 41 42 42 41 40 42 42 41
41.8
1.1
2.7
4
3.523
-
36/790
40 40 39 42 42 44 42 43 40 42
41.4
1.6
3.8
5
3.169
-
36/791
42 44 44 40 42 40 39 39 41 42
41.3
1.8
4.4
5
2.734
-
36/792
41 40 42 40 40 41 42 41 43 42
41.2
1.0
2.5
3
2.905
-
36/793
39 42 44 42 42 41 42 41 41 40
41.4
1.3
3.3
5
3.704
-
36/794
40 39 38 39 38 38 40 38 38 39
38.7
0.8
2.1
2
2.429
-
36/795
39 39 42 42 40 38 37 38 40 38
39.3
1.7
4.3
5
2.936
-
36/796
38 40 41 40 41 40 40 42 41 40
40.3
1.1
2.6
4
3.776
-
36/797
41 40 41 40 40 41 41 42 41 41
40.8
0.6
1.6
2
3.162
-
36/798
38 40 37 39 38 42 38 39 40 41
39.2
1.5
4.0
5
3.227
-
36/799
39 40 40 39 41 40 39 41 40 39
39.8
0.8
2.0
2
2.535
-
36/800
37 41 40 41 39 41 41 41 40 41
40.2
1.3
3.3
4
3.038
-
36/801
40 40 38 40 37 37 40 40 38 37
38.7
1.4
3.7
3
2.115
-
36/802
41 38 40 39 38 41 40 42 40 38
39.7
1.4
3.6
4
2.821
-
36/803
42 41 41 43 42 40 43 42 43 43
42.0
1.1
2.5
3
2.846
-
36/804
39 41 40 40 39 42 38 41 42 41
40.3
1.3
3.3
4
2.991
-
36/805
41 40 41 40 42 39 38 39 42 38
40.0
1.5
3.7
4
2.683
-
36/806
40 38 41 39 42 40 39 40 42 39
40.0
1.3
3.3
4
3.000
-
36/807
41 40 38 38 39 38 39 39 39 40
39.1
1.0
2.5
3
3.017
-
36/808
39 41 41 42 41 40 42 41 39 40
40.6
1.1
2.6
3
2.791
-
36/809
39 39 42 42 38 38 38 38 38 39
39.1
1.6
4.1
4
2.508
-
36/810
37 40 40 39 40 40 39 42 40 41
39.8
1.3
3.3
5
3.798
-
36/811
39 38 39 37 36 38 37 41 39 37
38.1
1.4
3.8
5
3.450
-
36/812
35 36 40 36 38 39 40 35 37 36
37.2
1.9
5.2
5
2.588
-
36/813
36 40 36 38 36 38 36 35 35 38
36.8
1.6
4.4
5
3.088
-
36/814
38 37 37 35 40 38 37 37 36 39
37.4
1.4
3.8
5
3.497
-
36/815
33 35 36 36 38 33 33 38 34 34
35.0
1.9
5.6
5
2.572
-
36/816
38 36 37 36 34 36 37 38 37 36
36.5
1.2
3.2
4
3.394
-
36/817
42 40 40 38 38 37 38 42 38 40
39.3
1.8
4.5
5
2.830
-
36/818
38 36 38 37 36 37 40 38 37 36
37.3
1.3
3.4
4
3.196
-
36/819
38 40 40 32 40 40 41 41 40 39
39.1
2.6
6.8
9
3.404
-
36/820
38 39 40 40 40 37 41 40 40 40
39.5
1.2
3.0
4
3.394
-
36/821
40 39 39 36 37 38 42 40 38 36
38.5
1.9
4.9
6
3.157
-
36/822
42 42 41 40 40 39 40 38 39 39
40.0
1.3
3.3
4
3.000
-
36/823
38 40 38 42 38 39 37 39 40 40
39.1
1.4
3.7
5
3.450
-
36/824
38 38 40 40 39 40 44 40 40 39
39.8
1.7
4.2
6
3.558
-
36/825
39 41 40 40 41 38 38 39 38 40
39.4
1.2
3.0
3
2.556
-
36/826
37 38 38 38 39 38 39 38 39 39
38.3
0.7
1.8
2
2.963
-
36/827
39 40 41 42 42 40 40 40 40 39
40.3
1.1
2.6
3
2.832
-
36/828
40 39 40 38 39 40 41 40 38 38
39.3
1.1
2.7
3
2.832
-
36/829
38 40 40 38 40 38 41 42 40 39
39.6
1.3
3.4
4
2.963
-
36/830
38 41 37 38 37 39 40 37 38 38
38.3
1.3
3.5
4
2.991
-
36/831
39 40 39 40 39 39 39 40 40 38
39.3
0.7
1.7
2
2.963
-
36/832
40 40 38 38 40 40 39 39 40 39
39.3
0.8
2.1
2
2.429
-
36/833
40 40 38 41 40 38 38 40 40 39
39.4
1.1
2.7
3
2.791
-
36/834
40 39 39 38 42 42 43 42 41 41
40.7
1.6
4.0
5
3.056
-
36/835
40 41 39 44 44 44 40 43 40 44
41.9
2.1
5.0
5
2.405
-
Test area
R1
36/783
36/784
R2
R3
R4
R5
R6
R7
R8
R9
R10
A116
Rm
sR
VR, %
rR
θR
fcm, MPa
40 44 40 43 40 39 40 44 44 43
41.7
2.1
4.9
5
2.430
-
41 40 39 40 39 41 40 40 40 40
40.0
0.7
1.7
2
3.000
-
36/838
40 38 40 38 39 39 38 38 40 41
39.1
1.1
2.8
3
2.726
-
36/839
40 39 40 43 41 40 42 41 41 42
40.9
1.2
2.9
4
3.341
-
36/840
40 40 39 41 38 41 42 40 40 41
40.2
1.1
2.8
4
3.523
-
36/841
39 38 38 44 39 38 38 38 44 40
39.6
2.4
6.1
6
2.487
-
36/842
40 40 43 41 41 38 41 40 40 42
40.6
1.3
3.3
5
3.704
-
36/843
40 42 40 40 40 41 41 40 40 40
40.4
0.7
1.7
2
2.860
-
36/844
40 40 41 40 40 40 39 40 38 38
39.6
1.0
2.4
3
3.105
-
36/845
42 39 38 38 39 40 41 41 40 41
39.9
1.4
3.4
4
2.919
-
36/846
40 39 38 38 39 40 41 41 40 41
39.7
1.2
2.9
3
2.587
-
36/847
39 38 38 40 38 40 38 42 38 37
38.8
1.5
3.8
5
3.388
-
36/848
38 40 40 40 42 39 43 40 44 44
41.0
2.1
5.1
6
2.846
-
36/849
41 42 40 42 41 41 43 40 40 39
40.9
1.2
2.9
4
3.341
-
36/850
42 40 41 39 40 40 39 41 39 38
39.9
1.2
3.0
4
3.341
-
36/851
38 38 42 39 39 38 39 40 42 40
39.5
1.5
3.8
4
2.650
-
36/852
41 38 39 41 39 40 42 42 41 42
40.5
1.4
3.5
4
2.790
-
36/853
42 38 41 39 40 39 41 41 41 40
40.2
1.2
3.1
4
3.254
-
36/854
42 40 38 42 42 40 40 41 42 42
40.9
1.4
3.4
4
2.919
-
36/855
44 42 42 41 42 41 42 43 44 43
42.4
1.1
2.5
3
2.791
-
36/856
41 42 41 41 44 41 41 42 43 40
41.6
1.2
2.8
4
3.408
-
36/857
42 40 44 40 42 40 43 42 40 41
41.4
1.4
3.5
4
2.798
-
36/858
40 44 40 44 40 43 44 41 43 44
42.3
1.8
4.3
4
2.187
-
36/859
42 42 41 41 42 40 41 42 43 41
41.5
0.8
2.0
3
3.530
-
36/860
41 42 40 43 41 41 43 40 43 40
41.4
1.3
3.1
3
2.372
-
36/861
42 42 40 43 43 44 42 42 41 42
42.1
1.1
2.6
4
3.635
-
36/862
40 43 42 40 40 41 41 42 41 42
41.2
1.0
2.5
3
2.905
-
36/863
40 41 41 40 42 41 40 40 42 40
40.7
0.8
2.0
2
2.429
-
36/864
42 44 43 44 45 42 44 43 42 43
43.2
1.0
2.4
3
2.905
-
36/865
38 42 42 42 44 43 42 45 40 42
42.0
1.9
4.6
7
3.601
-
36/866
43 43 43 42 41 44 44 44 46 46
43.6
1.6
3.6
5
3.169
-
36/867
43 42 42 41 41 42 43 43 44 41
42.2
1.0
2.4
3
2.905
-
36/868
42 44 42 42 38 44 42 44 40 42
42.0
1.9
4.5
6
3.182
-
36/869
42 42 40 42 42 45 45 44 42 43
42.7
1.6
3.7
5
3.191
-
36/870
43 43 43 44 42 42 41 43 43 44
42.8
0.9
2.1
3
3.265
-
36/871
42 40 44 42 40 42 45 42 40 42
41.9
1.7
4.0
5
3.006
-
36/872
44 43 42 45 44 46 44 42 42 42
43.4
1.4
3.3
4
2.798
-
36/873
42 41 41 41 42 43 44 43 42 42
42.1
1.0
2.4
3
3.017
-
36/874
42 44 44 42 40 42 42 43 42 43
42.4
1.2
2.8
4
3.408
-
36/875
42 44 45 44 42 43 44 42 42 43
43.1
1.1
2.6
3
2.726
-
36/876
42 43 41 43 43 42 42 43 42 43
42.4
0.7
1.6
2
2.860
-
36/877
40 40 39 42 42 40 42 41 40 42
40.8
1.1
2.8
3
2.642
-
36/878
42 43 44 42 44 43 42 40 40 42
42.2
1.4
3.3
4
2.860
-
36/879
43 42 40 40 39 39 40 40 39 40
40.2
1.3
3.3
4
3.038
-
36/880
41 40 42 43 44 42 42 41 43 40
41.8
1.3
3.1
4
3.038
-
36/881
43 42 41 42 42 43 43 42 41 41
42.0
0.8
1.9
2
2.449
-
36/882
39 43 40 44 39 44 45 40 40 42
41.6
2.3
5.5
6
2.642
-
36/883
42 43 42 44 42 43 42 41 43 42
42.4
0.8
2.0
3
3.558
-
36/884
42 41 41 41 40 42 42 42 43 41
41.5
0.8
2.0
3
3.530
-
36/885
44 39 42 40 39 40 40 42 42 41
40.9
1.6
3.9
5
3.135
-
36/886
42 40 42 40 41 42 39 40 42 41
40.9
1.1
2.7
3
2.726
-
36/887
41 40 39 40 38 38 40 39 41 39
39.5
1.1
2.7
3
2.777
-
36/888
41 42 39 40 38 38 40 39 41 39
39.7
1.3
3.4
4
2.991
-
Test area
R1
36/836
36/837
R2
R3
R4
R5
R6
R7
R8
R9
R10
A117
Rm
sR
VR, %
rR
θR
fcm, MPa
39 42 40 43 42 42 39 41 42 43
41.3
1.5
3.6
4
2.677
-
41 41 42 41 42 42 40 43 41 40
41.3
0.9
2.3
3
3.162
-
36/891
39 39 42 43 42 41 40 42 42 43
41.3
1.5
3.6
4
2.677
-
36/892
42 42 41 42 43 39 40 42 41 41
41.3
1.2
2.8
4
3.450
-
36/893
39 40 40 39 39 41 40 41 40 41
40.0
0.8
2.0
2
2.449
-
36/894
39 39 38 40 38 40 39 40 39 41
39.3
0.9
2.4
3
3.162
-
36/895
40 42 40 42 41 40 39 42 42 41
40.9
1.1
2.7
3
2.726
-
36/896
41 41 40 40 39 39 40 40 41 42
40.3
0.9
2.4
3
3.162
-
36/897
38 39 40 40 39 39 40 40 41 41
39.7
0.9
2.4
3
3.162
-
36/898
42 40 40 41 42 43 42 41 41 42
41.4
1.0
2.3
3
3.105
-
36/899
40 41 42 39 41 40 41 40 41 42
40.7
0.9
2.3
3
3.162
-
36/900
38 39 40 41 42 42 40 41 39 42
40.4
1.4
3.5
4
2.798
-
36/901
43 41 40 42 41 42 40 39 42 42
41.2
1.2
3.0
4
3.254
-
36/902
41 42 43 43 41 42 42 43 42 44
42.3
0.9
2.2
3
3.162
-
36/903
42 41 42 41 42 43 40 44 44 42
42.1
1.3
3.1
4
3.109
-
36/904
42 41 42 43 40 42 41 41 40 41
41.3
0.9
2.3
3
3.162
-
36/905
41 40 41 42 41 41 42 42 42 43
41.5
0.8
2.0
3
3.530
-
36/906
39 40 42 41 40 42 38 42 41 42
40.7
1.4
3.5
4
2.821
-
36/907
42 40 42 44 41 42 43 41 43 42
42.0
1.2
2.7
4
3.464
-
36/908
42 43 42 44 42 44 42 43 43 43
42.8
0.8
1.8
2
2.535
-
36/909
42 44 42 41 44 40 41 42 42 43
42.1
1.3
3.1
4
3.109
-
36/910
42 44 41 42 44 44 42 40 41 39
41.9
1.7
4.1
5
2.892
-
36/911
44 43 43 41 43 45 43 40 43 44
42.9
1.4
3.4
5
3.450
-
36/912
42 44 44 44 43 44 44 43 42 44
43.4
0.8
1.9
2
2.372
-
36/913
45 43 42 44 43 42 42 43 44 43
43.1
1.0
2.3
3
3.017
-
36/914
42 42 44 43 41 42 42 41 41 40
41.8
1.1
2.7
4
3.523
-
36/915
40 42 42 43 44 42 42 40 42 44
42.1
1.4
3.3
4
2.919
-
36/916
44 42 42 43 40 41 40 42 42 43
41.9
1.3
3.1
4
3.109
-
36/917
41 42 43 41 40 41 40 41 42 43
41.4
1.1
2.6
3
2.791
-
36/918
39 40 40 41 40 42 41 40 42 43
40.8
1.2
3.0
4
3.254
-
36/919
44 42 41 43 40 40 42 41 42 40
41.5
1.4
3.3
4
2.954
-
36/920
43 42 42 42 41 41 42 44 41 42
42.0
0.9
2.2
3
3.182
-
36/921
42 41 40 40 44 42 45 40 40 41
41.5
1.8
4.3
5
2.810
-
36/922
44 40 42 40 41 44 42 41 43 42
41.9
1.4
3.5
4
2.760
-
36/923
41 43 42 43 42 42 42 41 42 42
42.0
0.7
1.6
2
3.000
-
36/924
40 44 42 40 41 42 41 42 43 41
41.6
1.3
3.0
4
3.162
-
36/925
42 40 42 41 43 40 44 44 43 43
42.2
1.5
3.5
4
2.711
-
36/926
41 42 41 42 42 42 40 41 42 41
41.4
0.7
1.7
2
2.860
-
36/927
42 40 41 41 42 40 43 42 41 42
41.4
1.0
2.3
3
3.105
-
36/928
43 44 42 41 44 42 42 43 42 41
42.4
1.1
2.5
3
2.791
-
36/929
41 42 43 41 41 40 42 42 43 43
41.8
1.0
2.5
3
2.905
-
36/930
39 41 41 39 41 44 41 42 41 42
41.1
1.4
3.5
5
3.450
-
36/931
44 41 42 44 43 42 43 44 42 41
42.6
1.2
2.8
3
2.556
-
36/932
43 43 44 43 42 43 44 43 42 41
42.8
0.9
2.1
3
3.265
-
36/933
40 40 39 42 40 45 42 41 40 44
41.3
1.9
4.7
6
3.082
-
36/934
40 42 43 42 41 40 41 42 43 42
41.6
1.1
2.6
3
2.791
-
36/935
41 40 40 40 41 42 42 41 41 41
40.9
0.7
1.8
2
2.711
-
36/936
42 39 41 41 42 40 40 42 43 42
41.2
1.2
3.0
4
3.254
-
36/937
40 42 42 41 41 41 42 42 43 41
41.5
0.8
2.0
3
3.530
-
36/938
43 40 42 44 42 43 44 42 41 41
42.2
1.3
3.1
4
3.038
-
36/939
40 42 40 42 41 42 41 42 41 40
41.1
0.9
2.1
2
2.284
-
36/940
41 42 41 40 42 41 40 40 42 44
41.3
1.3
3.0
4
3.196
-
36/941
42 40 44 40 40 44 42 42 41 43
41.8
1.5
3.7
4
2.582
-
Test area
R1
36/889
36/890
R2
R3
R4
R5
R6
R7
R8
R9
R10
A118
Rm
sR
VR, %
rR
θR
fcm, MPa
42 41 42 42 41 42 43 40 41 41
41.5
0.8
2.0
3
3.530
-
40 41 42 41 40 39 42 43 41 41
41.0
1.2
2.8
4
3.464
-
36/944
40 40 40 42 44 42 43 42 43 41
41.7
1.4
3.4
4
2.821
-
36/945
40 42 41 42 42 41 43 40 41 42
41.4
1.0
2.3
3
3.105
-
36/946
40 42 42 40 41 40 41 42 40 40
40.8
0.9
2.3
2
2.176
-
36/947
40 41 40 42 41 42 40 39 41 40
40.6
1.0
2.4
3
3.105
-
36/948
43 44 43 40 41 42 42 43 42 41
42.1
1.2
2.8
4
3.341
-
36/949
42 40 42 41 42 43 44 42 41 42
41.9
1.1
2.6
4
3.635
-
36/950
43 41 42 43 42 41 42 43 42 40
41.9
1.0
2.4
3
3.017
-
36/951
42 41 41 41 42 42 41 42 43 43
41.8
0.8
1.9
2
2.535
-
36/952
40 42 42 41 40 42 42 41 40 43
41.3
1.1
2.6
3
2.832
-
36/953
42 41 44 41 43 42 41 42 40 40
41.6
1.3
3.0
4
3.162
-
36/954
41 43 43 41 40 41 42 41 40 41
41.3
1.1
2.6
3
2.832
-
36/955
42 41 42 40 41 43 41 42 40 43
41.5
1.1
2.6
3
2.777
-
36/956
42 43 40 41 41 42 43 43 41 41
41.7
1.1
2.5
3
2.832
-
36/957
41 43 45 41 40 41 43 42 43 44
42.3
1.6
3.7
5
3.191
-
36/958
44 44 41 41 43 40 40 41 40 42
41.6
1.6
3.8
4
2.535
-
36/959
40 41 41 42 42 41 41 40 41 42
41.1
0.7
1.8
2
2.711
-
36/960
41 43 40 41 41 40 42 42 41 43
41.4
1.1
2.6
3
2.791
-
36/961
41 41 40 40 42 41 41 44 43 43
41.6
1.3
3.2
4
2.963
-
36/962
41 41 40 40 42 41 41 42 41 41
41.0
0.7
1.6
2
3.000
-
36/963
41 41 41 41 42 41 40 43 43 44
41.7
1.3
3.0
4
3.196
-
36/964
42 40 42 41 40 39 41 42 42 41
41.0
1.1
2.6
3
2.846
-
36/965
42 42 41 41 42 40 41 42 41 42
41.4
0.7
1.7
2
2.860
-
36/966
39 42 41 40 42 40 41 42 40 39
40.6
1.2
2.9
3
2.556
-
36/967
39 41 42 39 40 40 41 41 41 40
40.4
1.0
2.4
3
3.105
-
36/968
42 41 42 43 42 43 44 43 42 44
42.6
1.0
2.3
3
3.105
-
36/969
44 41 42 44 43 44 42 42 43 44
42.9
1.1
2.6
3
2.726
-
36/970
44 43 45 45 44 44 43 42 43 42
43.5
1.1
2.5
3
2.777
-
36/971
39 40 41 41 41 40 40 41 39 40
40.2
0.8
2.0
2
2.535
-
36/972
39 38 40 41 38 39 40 41 40 39
39.5
1.1
2.7
3
2.777
-
36/973
39 39 40 41 40 38 38 38 40 41
39.4
1.2
3.0
3
2.556
-
36/974
41 40 41 41 42 40 42 41 41 41
41.0
0.7
1.6
2
3.000
-
36/975
41 39 40 38 41 40 42 41 41 41
40.4
1.2
2.9
4
3.408
-
36/976
38 39 40 39 42 42 41 41 40 40
40.2
1.3
3.3
4
3.038
-
36/977
42 42 40 41 40 40 41 41 42 41
41.0
0.8
2.0
2
2.449
-
36/978
40 44 42 40 40 42 44 41 40 41
41.4
1.6
3.8
4
2.535
-
36/979
40 42 42 40 39 40 41 40 41 39
40.4
1.1
2.7
3
2.791
-
36/980
39 37 36 38 36 39 37 37 37 38
37.4
1.1
2.9
3
2.791
-
36/981
37 38 40 38 40 40 41 40 40 40
39.4
1.3
3.2
4
3.162
-
36/982
39 39 38 42 40 40 40 40 39 39
39.6
1.1
2.7
4
3.721
-
36/983
41 40 41 40 40 40 39 40 39 39
39.9
0.7
1.8
2
2.711
-
36/984
39 39 42 40 40 39 42 42 40 40
40.3
1.3
3.1
3
2.397
-
36/985
40 40 40 40 39 40 40 41 40 40
40.0
0.5
1.2
2
4.243
-
36/986
39 41 40 41 39 40 40 41 40 40
40.1
0.7
1.8
2
2.711
-
36/987
40 42 42 41 39 38 42 38 39 40
40.1
1.6
4.0
4
2.508
-
36/988
39 42 40 40 40 41 39 41 40 39
40.1
1.0
2.5
3
3.017
-
36/989
40 42 40 39 40 41 41 40 40 42
40.5
1.0
2.4
3
3.087
-
36/990
39 39 39 40 40 39 39 40 38 39
39.2
0.6
1.6
2
3.162
-
36/991
39 40 40 41 42 42 40 41 40 40
40.5
1.0
2.4
3
3.087
-
36/992
39 38 41 41 38 39 40 41 40 39
39.6
1.2
3.0
3
2.556
-
36/993
38 39 41 40 40 39 38 40 40 39
39.4
1.0
2.5
3
3.105
-
36/994
39 40 40 41 40 40 41 40 41 40
40.2
0.6
1.6
2
3.162
-
Test area
R1
36/942
36/943
R2
R3
R4
R5
R6
R7
R8
R9
R10
A119
Rm
sR
VR, %
rR
θR
fcm, MPa
39 40 41 40 40 41 39 42 40 40
40.2
0.9
2.3
3
3.265
-
41 40 42 39 40 40 39 42 42 41
40.6
1.2
2.9
3
2.556
-
36/997
42 39 39 41 41 40 41 41 39 40
40.3
1.1
2.6
3
2.832
-
36/998
39 40 40 42 39 40 40 41 40 40
40.1
0.9
2.2
3
3.426
-
36/999
39 40 41 42 42 39 38 39 41 40
40.1
1.4
3.4
4
2.919
-
36/1000
40 41 41 42 40 43 41 41 42 40
41.1
1.0
2.4
3
3.017
-
36/1001
40 39 40 39 40 41 39 42 41 38
39.9
1.2
3.0
4
3.341
-
36/1002
39 41 40 38 38 39 40 40 41 41
39.7
1.2
2.9
3
2.587
-
36/1003
41 40 39 40 40 39 42 40 42 42
40.5
1.2
2.9
3
2.546
-
36/1004
39 40 41 41 40 38 38 40 41 40
39.8
1.1
2.9
3
2.642
-
36/1005
39 41 40 42 40 42 40 38 38 39
39.9
1.4
3.6
4
2.760
-
36/1006
40 39 40 39 40 42 42 41 40 38
40.1
1.3
3.2
4
3.109
-
36/1007
38 42 42 40 38 39 38 37 39 40
39.3
1.7
4.3
5
2.936
-
36/1008
41 42 40 41 42 43 40 43 42 41
41.5
1.1
2.6
3
2.777
-
36/1009
44 42 42 39 39 42 41 42 42 44
41.7
1.7
4.1
5
2.936
-
36/1010
44 42 42 41 40 40 41 42 41 41
41.4
1.2
2.8
4
3.408
-
36/1011
41 42 40 42 40 42 41 40 39 40
40.7
1.1
2.6
3
2.832
-
36/1012
39 39 42 42 41 40 39 42 42 41
40.7
1.3
3.3
3
2.243
-
36/1013
40 40 42 39 40 41 40 38 42 40
40.2
1.2
3.1
4
3.254
-
36/1014
41 42 41 42 42 41 41 42 41 43
41.6
0.7
1.7
2
2.860
-
36/1015
41 42 40 40 41 38 38 40 39 42
40.1
1.4
3.6
4
2.760
-
36/1016
42 41 40 39 42 44 42 40 41 41
41.2
1.4
3.4
5
3.575
-
36/1017
43 42 41 41 42 43 40 40 42 41
41.5
1.1
2.6
3
2.777
-
36/1018
44 42 40 40 38 39 40 41 40 37
40.1
2.0
4.9
7
3.555
-
36/1019
41 38 42 41 43 42 40 40 41 39
40.7
1.5
3.7
5
3.346
-
36/1020
40 42 43 40 41 43 43 42 42 40
41.6
1.3
3.0
3
2.372
-
36/1021
40 40 42 42 39 40 41 42 43 42
41.1
1.3
3.1
4
3.109
-
36/1022
39 38 40 39 40 38 40 39 38 42
39.3
1.3
3.2
4
3.196
-
36/1023
40 40 42 41 39 41 41 42 41 41
40.8
0.9
2.3
3
3.265
-
36/1024
39 41 40 40 42 39 39 42 40 41
40.3
1.2
2.9
3
2.587
-
36/1025
42 41 41 41 40 41 42 41 39 40
40.8
0.9
2.3
3
3.265
-
36/1026
40 42 43 40 41 40 38 39 41 40
40.4
1.4
3.5
5
3.497
-
36/1027
40 40 43 40 41 40 38 39 41 40
40.2
1.3
3.3
5
3.798
-
36/1028
40 42 40 40 41 41 40 42 42 40
40.8
0.9
2.3
2
2.176
-
36/1029
40 41 42 41 42 40 43 41 42 41
41.3
0.9
2.3
3
3.162
-
36/1030
39 42 42 41 40 39 39 42 42 42
40.8
1.4
3.4
3
2.145
-
36/1031
40 41 41 41 42 40 39 40 40 39
40.3
0.9
2.4
3
3.162
-
36/1032
39 42 40 41 42 41 40 41 40 41
40.7
0.9
2.3
3
3.162
-
36/1033
42 41 40 40 41 40 41 40 40 38
40.3
1.1
2.6
4
3.776
-
36/1034
42 41 40 39 38 40 40 41 40 40
40.1
1.1
2.7
4
3.635
-
36/1035
41 40 39 41 38 41 41 40 40 41
40.2
1.0
2.6
3
2.905
-
36/1036
40 42 41 41 42 39 40 41 40 41
40.7
0.9
2.3
3
3.162
-
36/1037
39 42 41 40 40 42 40 40 42 41
40.7
1.1
2.6
3
2.832
-
36/1038
40 40 41 42 39 39 40 40 41 41
40.3
0.9
2.4
3
3.162
-
36/1039
41 42 41 40 41 39 41 41 40 42
40.8
0.9
2.3
3
3.265
-
36/1040
40 40 39 41 40 42 42 40 40 39
40.3
1.1
2.6
3
2.832
-
36/1041
40 40 42 40 39 42 40 40 41 41
40.5
1.0
2.4
3
3.087
-
36/1042
42 40 42 41 40 42 43 41 41 42
41.4
1.0
2.3
3
3.105
-
36/1043
40 40 42 42 40 40 39 42 42 41
40.8
1.1
2.8
3
2.642
-
36/1044
40 40 41 40 42 41 42 41 40 39
40.6
1.0
2.4
3
3.105
-
36/1045
39 41 39 40 39 41 42 40 39 38
39.8
1.2
3.1
4
3.254
-
36/1046
42 39 40 40 42 38 37 38 38 38
39.2
1.8
4.5
5
2.855
-
36/1047
38 37 37 39 38 38 39 39 38 40
38.3
0.9
2.5
3
3.162
-
Test area
R1
36/995
36/996
R2
R3
R4
R5
R6
R7
R8
R9
R10
A120
Rm
sR
VR, %
rR
θR
fcm, MPa
38 39 40 38 37 39 40 38 38 41
38.8
1.2
3.2
4
3.254
-
42 42 41 40 40 41 42 40 39 39
40.6
1.2
2.9
3
2.556
-
36/1050
41 40 40 39 42 42 39 41 42 39
40.5
1.3
3.1
3
2.364
-
36/1051
40 39 40 41 40 40 39 42 42 40
40.3
1.1
2.6
3
2.832
-
36/1052
40 41 40 42 42 42 40 40 41 41
40.9
0.9
2.1
2
2.284
-
36/1053
41 40 40 42 41 40 39 41 41 42
40.7
0.9
2.3
3
3.162
-
36/1054
41 40 40 42 40 41 42 40 41 38
40.5
1.2
2.9
4
3.394
-
36/1055
41 40 38 42 41 40 38 38 39 41
39.8
1.5
3.7
4
2.711
-
36/1056
39 40 42 40 39 40 42 40 41 39
40.2
1.1
2.8
3
2.642
-
36/1057
42 41 40 40 41 42 42 42 43 40
41.3
1.1
2.6
3
2.832
-
36/1058
42 43 41 40 41 42 40 40 42 42
41.3
1.1
2.6
3
2.832
-
36/1059
40 42 42 40 41 40 41 42 42 40
41.0
0.9
2.3
2
2.121
-
36/1060
42 40 41 40 41 40 42 41 40 42
40.9
0.9
2.1
2
2.284
-
36/1061
40 41 42 42 41 42 41 41 40 40
41.0
0.8
2.0
2
2.449
-
36/1062
41 42 41 41 42 40 41 41 39 40
40.8
0.9
2.3
3
3.265
-
36/1063
41 42 42 41 41 42 41 41 40 42
41.3
0.7
1.6
2
2.963
-
36/1064
42 40 40 39 40 42 42 41 42 42
41.0
1.2
2.8
3
2.598
-
36/1065
39 41 41 40 42 40 42 43 42 44
41.4
1.5
3.6
5
3.321
-
36/1066
40 40 41 42 42 41 41 39 42 41
40.9
1.0
2.4
3
3.017
-
36/1067
42 39 42 41 41 41 40 40 42 40
40.8
1.0
2.5
3
2.905
-
36/1068
40 43 42 41 41 42 43 42 40 41
41.5
1.1
2.6
3
2.777
-
36/1069
40 40 42 40 40 42 42 43 42 42
41.3
1.2
2.8
3
2.587
-
36/1070
42 42 42 42 43 41 42 43 43 41
42.1
0.7
1.8
2
2.711
-
36/1071
41 40 41 39 40 41 42 41 43 40
40.8
1.1
2.8
4
3.523
-
36/1072
42 42 41 42 40 40 40 39 40 40
40.6
1.1
2.6
3
2.791
-
36/1073
40 40 40 42 42 41 42 39 42 42
41.0
1.2
2.8
3
2.598
-
36/1074
41 40 41 39 41 39 42 39 40 41
40.3
1.1
2.6
3
2.832
-
36/1075
40 39 40 40 39 42 40 39 41 40
40.0
0.9
2.4
3
3.182
-
36/1076
41 40 40 40 39 40 39 41 40 40
40.0
0.7
1.7
2
3.000
-
36/1077
42 42 43 42 43 43 40 42 42 43
42.2
0.9
2.2
3
3.265
-
36/1078
40 40 42 42 41 42 42 42 43 41
41.5
1.0
2.3
3
3.087
-
36/1079
40 40 39 41 40 40 42 40 41 41
40.4
0.8
2.1
3
3.558
-
36/1080
41 40 42 40 40 39 40 40 41 42
40.5
1.0
2.4
3
3.087
-
36/1081
42 42 41 42 43 42 40 42 42 40
41.6
1.0
2.3
3
3.105
-
36/1082
43 42 40 42 41 42 42 42 41 43
41.8
0.9
2.2
3
3.265
-
36/1083
42 43 42 42 42 43 42 40 42 40
41.8
1.0
2.5
3
2.905
-
36/1084
42 42 43 41 42 43 43 42 41 42
42.1
0.7
1.8
2
2.711
-
36/1085
41 40 41 40 41 39 40 40 41 42
40.5
0.8
2.1
3
3.530
-
36/1086
40 40 39 42 42 41 40 40 41 41
40.6
1.0
2.4
3
3.105
-
36/1087
40 40 41 42 42 42 40 40 41 42
41.0
0.9
2.3
2
2.121
-
36/1088
41 41 42 41 40 43 40 40 40 42
41.0
1.1
2.6
3
2.846
-
36/1089
40 42 43 42 42 43 40 41 42 41
41.6
1.1
2.6
3
2.791
-
36/1090
42 42 41 41 42 43 40 41 41 41
41.4
0.8
2.0
3
3.558
-
36/1091
42 42 43 42 42 42 41 43 42 41
42.0
0.7
1.6
2
3.000
-
36/1092
42 42 42 43 41 41 41 39 41 40
41.2
1.1
2.8
4
3.523
-
36/1093
40 39 41 41 40 40 39 39 40 41
40.0
0.8
2.0
2
2.449
-
36/1094
38 39 38 39 39 38 39 39 40 39
38.8
0.6
1.6
2
3.162
-
36/1095
38 37 38 38 37 38 38 39 40 40
38.3
1.1
2.8
3
2.832
-
36/1096
39 38 38 39 39 40 40 40 39 40
39.2
0.8
2.0
2
2.535
-
36/1097
40 39 41 40 38 38 38 39 40 41
39.4
1.2
3.0
3
2.556
-
36/1098
40 40 39 42 40 38 40 42 40 41
40.2
1.2
3.1
4
3.254
-
36/1099
39 41 40 41 39 39 39 40 40 38
39.6
1.0
2.4
3
3.105
-
36/1100
38 38 39 39 39 40 40 39 41 39
39.2
0.9
2.3
3
3.265
-
Test area
R1
36/1048
36/1049
R2
R3
R4
R5
R6
R7
R8
R9
R10
A121
Rm
sR
VR, %
rR
θR
fcm, MPa
38 41 41 40 39 38 40 40 39 41
39.7
1.2
2.9
3
2.587
-
41 41 40 39 41 40 39 40 39 41
40.1
0.9
2.2
2
2.284
-
36/1103
40 42 42 40 42 41 41 40 41 40
40.9
0.9
2.1
2
2.284
-
36/1104
41 40 41 40 41 40 42 41 39 41
40.6
0.8
2.1
3
3.558
-
36/1105
44 41 42 43 44 42 41 40 41 42
42.0
1.3
3.2
4
3.000
-
36/1106
42 42 41 42 43 43 42 42 42 42
42.1
0.6
1.3
2
3.523
-
36/1107
40 41 42 41 42 42 40 40 41 40
40.9
0.9
2.1
2
2.284
-
36/1108
40 39 39 40 40 42 41 40 42 41
40.4
1.1
2.7
3
2.791
-
36/1109
39 40 41 40 40 41 40 39 39 40
39.9
0.7
1.8
2
2.711
-
36/1110
42 42 41 41 41 39 41 41 40 41
40.9
0.9
2.1
3
3.426
-
36/1111
40 42 40 41 42 40 41 42 40 40
40.8
0.9
2.3
2
2.176
-
36/1112
40 40 40 40 39 41 40 42 41 41
40.4
0.8
2.1
3
3.558
-
36/1113
39 39 41 40 41 41 40 38 40 46
40.5
2.2
5.4
8
3.681
-
36/1114
41 40 39 41 40 40 41 40 41 42
40.5
0.8
2.1
3
3.530
-
36/1115
40 38 39 40 40 39 38 40 40 40
39.4
0.8
2.1
2
2.372
-
36/1116
41 38 39 40 40 39 40 41 40 40
39.8
0.9
2.3
3
3.265
-
36/1117
40 40 39 40 40 41 40 40 40 40
40.0
0.5
1.2
2
4.243
-
36/1118
41 42 40 43 43 44 42 41 42 41
41.9
1.2
2.9
4
3.341
-
36/1119
42 42 41 42 41 41 42 42 41 41
41.5
0.5
1.3
1
1.897
-
36/1120
43 42 41 42 43 42 42 41 42 41
41.9
0.7
1.8
2
2.711
-
36/1121
42 42 41 40 42 42 40 41 42 43
41.5
1.0
2.3
3
3.087
-
36/1122
42 43 43 43 43 41 42 41 40 42
42.0
1.1
2.5
3
2.846
-
36/1123
43 43 42 44 42 42 40 42 43 43
42.4
1.1
2.5
4
3.721
-
36/1124
41 41 39 40 41 41 41 39 42 42
40.7
1.1
2.6
3
2.832
-
36/1125
39 39 41 39 42 42 41 38 42 41
40.4
1.5
3.7
4
2.657
-
36/1126
38 39 40 41 40 40 39 39 40 41
39.7
0.9
2.4
3
3.162
-
36/1127
42 43 40 40 41 41 41 42 42 43
41.5
1.1
2.6
3
2.777
-
36/1128
43 42 43 42 41 42 41 40 42 42
41.8
0.9
2.2
3
3.265
-
36/1129
40 41 40 40 42 42 41 42 40 42
41.0
0.9
2.3
2
2.121
-
36/1130
40 41 42 40 41 41 41 40 42 40
40.8
0.8
1.9
2
2.535
-
36/1131
42 41 43 40 42 42 40 40 40 41
41.1
1.1
2.7
3
2.726
-
36/1132
41 42 41 39 41 42 40 41 40 42
40.9
1.0
2.4
3
3.017
-
36/1133
40 41 41 42 40 39 40 40 40 41
40.4
0.8
2.1
3
3.558
-
36/1134
38 38 40 40 40 40 40 42 41 40
39.9
1.2
3.0
4
3.341
-
36/1135
42 41 43 42 41 43 41 42 41 43
41.9
0.9
2.1
2
2.284
-
36/1136
40 41 42 42 42 42 41 41 41 40
41.2
0.8
1.9
2
2.535
-
36/1137
40 41 42 41 42 41 42 41 42 40
41.2
0.8
1.9
2
2.535
-
36/1138
41 40 40 41 42 40 41 39 41 40
40.5
0.8
2.1
3
3.530
-
36/1139
42 42 41 42 43 42 42 40 40 40
41.4
1.1
2.6
3
2.791
-
36/1140
40 40 40 42 42 43 41 41 41 42
41.2
1.0
2.5
3
2.905
-
36/1141
42 43 42 43 44 44 43 45 42 41
42.9
1.2
2.8
4
3.341
-
36/1142
42 42 40 42 42 43 42 44 41 44
42.2
1.2
2.9
4
3.254
-
36/1143
45 44 43 44 43 44 43 42 43 44
43.5
0.8
2.0
3
3.530
-
36/1144
43 41 42 42 42 41 43 41 41 42
41.8
0.8
1.9
2
2.535
-
36/1145
42 42 42 41 43 41 42 43 42 41
41.9
0.7
1.8
2
2.711
-
36/1146
41 42 42 39 39 40 38 38 40 40
39.9
1.4
3.6
4
2.760
-
36/1147
43 41 40 39 42 39 41 42 39 41
40.7
1.4
3.5
4
2.821
-
36/1148
40 40 39 41 40 39 42 42 40 41
40.4
1.1
2.7
3
2.791
-
36/1149
38 39 40 40 40 41 41 40 40 41
40.0
0.9
2.4
3
3.182
-
36/1150
41 40 42 40 40 42 41 42 41 40
40.9
0.9
2.1
2
2.284
-
36/1151
40 40 38 38 40 42 41 43 40 40
40.2
1.5
3.9
5
3.227
-
36/1152
42 41 43 42 40 39 41 41 39 39
40.7
1.4
3.5
4
2.821
-
36/1153
41 42 41 42 41 42 42 41 41 40
41.3
0.7
1.6
2
2.963
-
Test area
R1
36/1101
36/1102
R2
R3
R4
R5
R6
R7
R8
R9
R10
A122
Rm
sR
VR, %
rR
θR
fcm, MPa
40 41 41 42 40 39 40 41 40 41
40.5
0.8
2.1
3
3.530
-
43 42 42 43 44 43 44 41 42 43
42.7
0.9
2.2
3
3.162
-
36/1156
41 42 42 43 41 41 40 42 41 43
41.6
1.0
2.3
3
3.105
-
36/1157
42 43 42 42 42 43 42 42 43 42
42.3
0.5
1.1
1
2.070
-
36/1158
42 42 42 42 43 42 43 43 40 42
42.1
0.9
2.1
3
3.426
-
36/1159
42 42 41 41 40 41 40 39 39 40
40.5
1.1
2.7
3
2.777
-
36/1160
38 40 40 40 41 40 41 39 39 39
39.7
0.9
2.4
3
3.162
-
36/1161
42 41 39 42 42 40 41 40 41 42
41.0
1.1
2.6
3
2.846
-
36/1162
42 42 43 41 42 42 41 42 40 41
41.6
0.8
2.0
3
3.558
-
36/1163
43 42 43 42 42 40 40 41 41 42
41.6
1.1
2.6
3
2.791
-
36/1164
40 40 40 41 40 42 41 41 41 40
40.6
0.7
1.7
2
2.860
-
36/1165
39 41 41 38 40 41 41 42 41 40
40.4
1.2
2.9
4
3.408
-
36/1166
38 39 39 38 39 40 41 40 39 38
39.1
1.0
2.5
3
3.017
-
36/1167
40 40 39 38 39 38 39 40 39 41
39.3
0.9
2.4
3
3.162
-
36/1168
40 39 40 41 40 42 41 41 40 40
40.4
0.8
2.1
3
3.558
-
36/1169
39 40 41 39 40 40 41 40 40 39
39.9
0.7
1.8
2
2.711
-
36/1170
41 42 39 40 40 41 39 40 39 39
40.0
1.1
2.6
3
2.846
-
36/1171
41 41 43 44 42 43 44 42 41 40
42.1
1.4
3.3
4
2.919
-
36/1172
40 42 39 42 40 41 42 43 42 40
41.1
1.3
3.1
4
3.109
-
36/1173
43 44 43 42 42 41 42 41 40 42
42.0
1.2
2.7
4
3.464
-
36/1174
40 39 40 38 40 37 37 39 38 38
38.6
1.2
3.0
3
2.556
-
36/1175
38 41 38 39 41 38 41 39 39 38
39.2
1.3
3.4
3
2.279
-
36/1176
40 40 42 40 41 41 40 41 40 41
40.6
0.7
1.7
2
2.860
-
36/1177
40 40 38 40 39 41 40 38 41 41
39.8
1.1
2.9
3
2.642
-
36/1178
37 38 37 38 39 39 37 37 41 39
38.2
1.3
3.4
4
3.038
-
36/1179
36 37 37 36 36 38 38 38 37 38
37.1
0.9
2.4
2
2.284
-
36/1180
37 38 36 36 37 37 38 39 39 38
37.5
1.1
2.9
3
2.777
-
36/1181
40 41 42 41 42 42 43 43 41 42
41.7
0.9
2.3
3
3.162
-
36/1182
40 40 41 42 43 41 40 41 40 41
40.9
1.0
2.4
3
3.017
-
36/1183
42 43 43 42 42 41 42 41 42 41
41.9
0.7
1.8
2
2.711
-
36/1184
40 41 39 40 41 42 40 41 41 40
40.5
0.8
2.1
3
3.530
-
36/1185
42 42 43 42 43 42 41 41 42 41
41.9
0.7
1.8
2
2.711
-
36/1186
42 42 41 41 43 42 43 40 40 41
41.5
1.1
2.6
3
2.777
-
36/1187
40 40 41 43 43 44 43 42 41 43
42.0
1.4
3.4
4
2.828
-
36/1188
42 43 42 42 42 40 42 41 42 42
41.8
0.8
1.9
3
3.803
-
36/1189
42 40 41 40 40 41 42 40 42 43
41.1
1.1
2.7
3
2.726
-
36/1190
40 42 42 42 41 43 42 43 44 42
42.1
1.1
2.6
4
3.635
-
36/1191
44 42 42 41 42 42 43 43 42 43
42.4
0.8
2.0
3
3.558
-
36/1192
42 43 42 42 44 43 44 43 43 43
42.9
0.7
1.7
2
2.711
-
36/1193
38 39 40 38 38 39 40 39 38 38
38.7
0.8
2.1
2
2.429
-
36/1194
38 39 38 38 38 40 38 40 38 38
38.5
0.8
2.2
2
2.353
-
36/1195
38 40 38 39 37 39 37 38 38 40
38.4
1.1
2.8
3
2.791
-
36/1196
38 37 38 38 38 36 36 35 36 38
37.0
1.2
3.1
3
2.598
-
36/1197
38 36 36 39 40 38 39 37 36 35
37.4
1.6
4.4
5
3.037
-
36/1198
39 40 38 37 37 36 40 36 38 36
37.7
1.6
4.2
4
2.553
-
36/1199
38 39 40 37 36 38 37 36 38 36
37.5
1.4
3.6
4
2.954
-
36/1200
39 39 38 39 40 39 40 38 39 38
38.9
0.7
1.9
2
2.711
-
36/1201
40 40 40 38 38 37 36 37 38 38
38.2
1.4
3.7
4
2.860
-
36/1202
42 42 40 38 38 39 38 39 40 38
39.4
1.6
4.0
4
2.535
-
36/1203
37 38 36 39 38 37 38 37 39 39
37.8
1.0
2.7
3
2.905
-
36/1204
37 36 36 36 37 35 35 36 37 36
36.1
0.7
2.0
2
2.711
-
36/1205
40 40 39 39 38 38 38 38 39 40
38.9
0.9
2.3
2
2.284
-
36/1206
39 39 38 37 38 39 38 39 39 38
38.4
0.7
1.8
2
2.860
-
Test area
R1
36/1154
36/1155
R2
R3
R4
R5
R6
R7
R8
R9
R10
A123
Rm
sR
VR, %
rR
θR
fcm, MPa
40 38 39 38 37 38 38 38 37 38
38.1
0.9
2.3
3
3.426
-
38 38 36 36 36 38 37 38 39 38
37.4
1.1
2.9
3
2.791
-
36/1209
37 38 37 38 38 38 37 39 39 40
38.1
1.0
2.6
3
3.017
-
36/1210
38 36 38 36 37 36 36 36 36 38
36.7
0.9
2.6
2
2.108
-
36/1211
40 40 38 38 37 38 39 38 38 37
38.3
1.1
2.8
3
2.832
-
36/1212
40 40 40 41 41 39 40 40 41 42
40.4
0.8
2.1
3
3.558
-
36/1213
40 40 41 38 40 40 41 41 42 42
40.5
1.2
2.9
4
3.394
-
36/1214
42 42 41 40 40 42 40 42 41 40
41.0
0.9
2.3
2
2.121
-
36/1215
40 39 40 38 39 40 41 41 38 40
39.6
1.1
2.7
3
2.791
-
36/1216
38 40 39 38 38 38 41 39 41 40
39.2
1.2
3.1
3
2.440
-
36/1217
40 41 39 40 38 38 39 40 41 38
39.4
1.2
3.0
3
2.556
-
36/1218
40 40 39 39 40 40 40 38 39 39
39.4
0.7
1.8
2
2.860
-
36/1219
43 42 39 38 38 40 40 39 40 40
39.9
1.6
4.0
5
3.135
-
36/1220
40 42 42 41 40 42 42 40 42 40
41.1
1.0
2.4
2
2.011
-
36/1221
42 42 43 43 44 44 43 42 43 44
43.0
0.8
1.9
2
2.449
-
36/1222
42 42 44 43 43 42 43 42 41 43
42.5
0.8
2.0
3
3.530
-
36/1223
41 41 40 39 41 39 40 41 39 41
40.2
0.9
2.3
2
2.176
-
36/1224
42 42 39 41 41 42 42 39 40 38
40.6
1.5
3.7
4
2.657
-
36/1225
42 42 40 41 41 40 41 40 41 42
41.0
0.8
2.0
2
2.449
-
36/1226
41 38 41 40 38 39 39 39 39 38
39.2
1.1
2.9
3
2.642
-
36/1227
40 39 40 41 38 38 38 39 38 37
38.8
1.2
3.2
4
3.254
-
36/1228
40 38 37 36 36 38 40 40 38 38
38.1
1.5
4.0
4
2.625
-
36/1229
39 39 38 38 38 38 39 37 38 39
38.3
0.7
1.8
2
2.963
-
36/1230
40 40 42 41 38 38 39 38 39 40
39.5
1.4
3.4
4
2.954
-
36/1231
40 40 38 38 37 36 38 39 38 40
38.4
1.3
3.5
4
2.963
-
36/1232
41 39 41 41 40 39 40 39 39 41
40.0
0.9
2.4
2
2.121
-
36/1233
37 40 38 37 36 37 37 36 38 38
37.4
1.2
3.1
4
3.408
-
36/1234
40 40 42 39 40 39 38 39 40 40
39.7
1.1
2.7
4
3.776
-
36/1235
38 37 39 36 40 39 39 39 38 40
38.5
1.3
3.3
4
3.151
-
36/1236
42 41 40 40 40 38 40 38 37 38
39.4
1.6
4.0
5
3.169
-
36/1237
39 37 38 36 38 37 39 38 40 40
38.2
1.3
3.4
4
3.038
-
36/1238
41 40 38 38 40 39 39 37 38 37
38.7
1.3
3.5
4
2.991
-
36/1239
38 40 41 37 39 38 38 37 37 38
38.3
1.3
3.5
4
2.991
-
36/1240
38 36 36 36 35 38 37 38 37 36
36.7
1.1
2.9
3
2.832
-
36/1241
39 38 39 38 40 39 39 38 40 41
39.1
1.0
2.5
3
3.017
-
36/1242
37 40 39 37 38 36 38 40 37 38
38.0
1.3
3.5
4
3.000
-
36/1243
40 40 40 37 39 39 38 37 36 36
38.2
1.6
4.2
4
2.470
-
36/1244
41 40 38 39 40 40 38 41 39 38
39.4
1.2
3.0
3
2.556
-
36/1245
36 38 37 41 38 37 37 38 39 37
37.8
1.4
3.7
5
3.575
-
36/1246
36 36 36 36 38 40 36 37 36 38
36.9
1.4
3.7
4
2.919
-
36/1247
38 40 39 41 38 40 39 40 39 41
39.5
1.1
2.7
3
2.777
-
36/1248
40 40 39 41 38 38 36 38 38 40
38.8
1.5
3.8
5
3.388
-
36/1249
38 38 38 38 39 38 39 39 40 40
38.7
0.8
2.1
2
2.429
-
36/1250
40 41 41 40 40 39 40 40 40 39
40.0
0.7
1.7
2
3.000
-
36/1251
42 41 42 39 38 40 41 40 38 40
40.1
1.4
3.6
4
2.760
-
36/1252
40 38 38 40 40 39 38 40 39 38
39.0
0.9
2.4
2
2.121
-
36/1253
41 43 45 40 44 43 42 43 44 42
42.7
1.5
3.5
5
3.346
-
36/1254
40 42 42 41 40 42 42 43 42 40
41.4
1.1
2.6
3
2.791
-
36/1255
42 40 41 41 42 44 42 40 42 40
41.4
1.3
3.1
4
3.162
-
36/1256
45 46 41 44 42 42 43 42 43 44
43.2
1.5
3.6
5
3.227
-
36/1257
42 42 41 42 44 44 42 40 42 42
42.1
1.2
2.8
4
3.341
-
36/1258
41 41 42 43 43 44 44 45 44 44
43.1
1.4
3.2
4
2.919
-
36/1259
43 40 47 46 45 44 44 44 45 46
44.4
2.0
4.4
7
3.580
-
Test area
R1
36/1207
36/1208
R2
R3
R4
R5
R6
R7
R8
R9
R10
A124
Rm
sR
VR, %
rR
θR
fcm, MPa
42 44 44 43 44 43 45 44 44 45
43.8
0.9
2.1
3
3.265
-
42 43 43 42 44 42 44 43 42 43
42.8
0.8
1.8
2
2.535
-
36/1262
40 40 40 43 41 40 41 40 41 39
40.5
1.1
2.7
4
3.703
-
36/1263
40 41 42 38 39 41 40 40 41 41
40.3
1.2
2.9
4
3.450
-
36/1264
42 42 44 41 44 40 42 43 42 44
42.4
1.3
3.2
4
2.963
-
36/1265
39 40 38 40 40 40 38 39 37 39
39.0
1.1
2.7
3
2.846
-
36/1266
40 39 38 40 40 40 41 42 38 39
39.7
1.3
3.2
4
3.196
-
36/1267
39 39 38 40 39 40 40 39 39 40
39.3
0.7
1.7
2
2.963
-
36/1268
38 38 39 40 41 40 40 38 39 37
39.0
1.2
3.2
4
3.207
-
36/1269
38 36 39 38 40 38 40 38 36 36
37.9
1.5
4.0
4
2.625
-
36/1270
39 41 40 43 43 40 42 42 41 42
41.3
1.3
3.2
4
2.991
-
36/1271
42 42 41 43 42 42 41 43 42 42
42.0
0.7
1.6
2
3.000
-
36/1272
43 42 41 42 42 42 41 42 42 44
42.1
0.9
2.1
3
3.426
-
36/1273
41 41 42 40 40 43 42 44 42 42
41.7
1.3
3.0
4
3.196
-
36/1274
42 43 42 43 40 40 42 42 41 41
41.6
1.1
2.6
3
2.791
-
36/1275
42 44 44 43 40 40 42 42 41 41
41.9
1.4
3.5
4
2.760
-
36/1276
41 40 42 43 43 40 40 41 40 43
41.3
1.3
3.2
3
2.243
-
36/1277
40 42 42 43 42 43 42 40 42 42
41.8
1.0
2.5
3
2.905
-
36/1278
42 41 40 42 42 44 43 42 42 43
42.1
1.1
2.6
4
3.635
-
36/1279
43 42 42 41 43 42 41 42 43 41
42.0
0.8
1.9
2
2.449
-
36/1280
43 44 44 42 43 44 42 41 40 40
42.3
1.6
3.7
4
2.553
-
36/1281
40 42 44 41 44 44 45 42 44 44
43.0
1.6
3.8
5
3.062
-
36/1282
43 43 42 41 41 40 41 40 40 41
41.2
1.1
2.8
3
2.642
-
36/1283
40 40 39 38 41 40 42 40 40 42
40.2
1.2
3.1
4
3.254
-
36/1284
40 42 42 43 41 41 42 43 42 44
42.0
1.2
2.7
4
3.464
-
36/1285
43 46 44 45 42 45 46 44 46 45
44.6
1.3
3.0
4
2.963
-
36/1286
44 44 44 43 42 44 42 44 44 45
43.6
1.0
2.2
3
3.105
-
36/1287
44 45 42 44 45 44 44 42 43 40
43.3
1.6
3.6
5
3.191
-
36/1288
40 42 40 41 42 39 42 41 41 40
40.8
1.0
2.5
3
2.905
-
36/1289
42 43 40 40 39 38 40 38 38 39
39.7
1.7
4.3
5
2.936
-
36/1290
40 40 40 38 40 41 40 42 40 41
40.2
1.0
2.6
4
3.873
-
36/1291
40 40 39 42 40 41 42 40 43 43
41.0
1.4
3.4
4
2.828
-
36/1292
43 44 42 41 42 43 40 42 42 43
42.2
1.1
2.7
4
3.523
-
36/1293
42 43 44 44 43 42 42 40 40 42
42.2
1.4
3.3
4
2.860
-
36/1294
39 41 40 41 40 40 41 38 40 41
40.1
1.0
2.5
3
3.017
-
36/1295
38 40 38 38 40 38 36 38 39 39
38.4
1.2
3.1
4
3.408
-
36/1296
38 40 38 40 40 39 38 39 38 38
38.8
0.9
2.4
2
2.176
-
36/1297
40 41 39 40 40 39 41 39 39 40
39.8
0.8
2.0
2
2.535
-
36/1298
36 38 40 39 40 38 36 36 38 40
38.1
1.7
4.4
4
2.405
-
36/1299
38 40 38 39 39 40 41 41 41 40
39.7
1.2
2.9
3
2.587
-
36/1300
39 39 40 40 39 39 40 41 39 38
39.4
0.8
2.1
3
3.558
-
36/1301
36 38 36 38 40 38 38 38 39 38
37.9
1.2
3.2
4
3.341
-
36/1302
38 38 37 37 36 36 36 34 36 37
36.5
1.2
3.2
4
3.394
-
36/1303
38 41 40 39 41 40 40 39 40 39
39.7
0.9
2.4
3
3.162
-
36/1304
40 40 41 39 38 38 37 40 40 37
39.0
1.4
3.6
4
2.828
-
36/1305
38 37 38 37 38 36 38 39 37 38
37.6
0.8
2.2
3
3.558
-
36/1306
38 39 41 40 40 40 41 40 39 41
39.9
1.0
2.5
3
3.017
-
36/1307
37 40 41 39 41 41 39 40 42 39
39.9
1.4
3.6
5
3.450
-
36/1308
38 40 38 40 36 40 40 41 40 39
39.2
1.5
3.8
5
3.388
-
36/1309
42 42 41 39 40 41 42 41 40 39
40.7
1.2
2.8
3
2.587
-
36/1310
41 40 42 39 42 39 42 42 39 38
40.4
1.6
3.9
4
2.535
-
36/1311
42 42 41 41 42 40 43 41 44 41
41.7
1.2
2.8
4
3.450
-
36/1312
44 43 42 42 44 41 42 44 43 42
42.7
1.1
2.5
3
2.832
-
Test area
R1
36/1260
36/1261
R2
R3
R4
R5
R6
R7
R8
R9
R10
A125
Rm
sR
VR, %
rR
θR
fcm, MPa
39 42 42 40 42 39 38 40 38 41
40.1
1.6
4.0
4
2.508
-
41 40 42 43 42 40 41 42 43 40
41.4
1.2
2.8
3
2.556
-
36/1315
39 40 41 39 40 42 42 41 42 40
40.6
1.2
2.9
3
2.556
-
36/1316
42 40 41 40 38 40 42 40 42 41
40.6
1.3
3.1
4
3.162
-
36/1317
41 40 42 41 40 41 40 41 41 42
40.9
0.7
1.8
2
2.711
-
36/1318
40 39 40 40 38 39 41 40 40 41
39.8
0.9
2.3
3
3.265
-
36/1319
41 40 42 40 40 41 42 42 41 42
41.1
0.9
2.1
2
2.284
-
36/1320
41 39 41 40 40 40 41 40 39 40
40.1
0.7
1.8
2
2.711
-
36/1321
38 39 40 40 40 39 38 38 38 39
38.9
0.9
2.3
2
2.284
-
36/1322
42 40 41 42 38 39 40 40 39 37
39.8
1.6
4.1
5
3.088
-
36/1323
38 38 39 40 38 39 41 40 40 38
39.1
1.1
2.8
3
2.726
-
36/1324
40 41 41 38 38 37 42 38 37 38
39.0
1.8
4.7
5
2.739
-
36/1325
43 40 40 41 41 42 42 40 40 42
41.1
1.1
2.7
3
2.726
-
36/1326
38 38 40 41 38 42 40 40 42 42
40.1
1.7
4.1
4
2.405
-
36/1327
42 42 41 40 42 42 43 41 40 40
41.3
1.1
2.6
3
2.832
-
36/1328
41 42 41 40 40 40 39 40 41 40
40.4
0.8
2.1
3
3.558
-
36/1329
42 39 40 38 39 39 40 40 40 38
39.5
1.2
3.0
4
3.394
-
36/1330
42 41 42 42 44 42 40 42 42 42
41.9
1.0
2.4
4
4.022
-
36/1331
40 42 42 41 40 43 43 44 42 42
41.9
1.3
3.1
4
3.109
-
36/1332
42 43 42 44 44 45 44 42 42 42
43.0
1.2
2.7
3
2.598
-
36/1333
42 44 42 44 44 45 44 42 43 42
43.2
1.1
2.6
3
2.642
-
36/1334
41 40 39 41 42 40 40 39 39 39
40.0
1.1
2.6
3
2.846
-
36/1335
40 38 39 40 41 39 42 42 41 41
40.3
1.3
3.3
4
2.991
-
36/1336
42 40 42 39 43 43 40 39 42 42
41.2
1.5
3.8
4
2.582
-
36/1337
36 36 37 35 34 35 35 34 37 34
35.3
1.2
3.3
3
2.587
-
36/1338
35 36 36 38 35 34 34 35 34 33
35.0
1.4
4.0
5
3.536
-
36/1339
34 33 34 33 35 36 37 36 36 35
34.9
1.4
3.9
4
2.919
-
36/1340
38 36 35 37 35 38 36 35 36 36
36.2
1.1
3.1
3
2.642
-
36/1341
36 38 36 37 38 37 36 36 36 35
36.5
1.0
2.7
3
3.087
-
36/1342
34 36 36 35 36 37 34 34 35 36
35.3
1.1
3.0
3
2.832
-
36/1343
40 39 40 39 40 40 39 40 39 38
39.4
0.7
1.8
2
2.860
-
36/1344
38 38 39 39 38 39 40 40 42 38
39.1
1.3
3.3
4
3.109
-
36/1345
38 39 39 40 41 41 40 38 40 41
39.7
1.2
2.9
3
2.587
-
36/1346
40 42 41 42 40 42 42 41 42 41
41.3
0.8
2.0
2
2.429
-
36/1347
40 42 41 39 38 38 40 40 40 41
39.9
1.3
3.2
4
3.109
-
36/1348
39 41 40 42 42 40 42 42 40 40
40.8
1.1
2.8
3
2.642
-
36/1349
39 41 39 39 40 40 40 39 39 41
39.7
0.8
2.1
2
2.429
-
36/1350
38 38 40 41 40 39 38 41 42 39
39.6
1.4
3.6
4
2.798
-
36/1351
38 38 40 38 39 40 36 40 40 38
38.7
1.3
3.5
4
2.991
-
36/1352
40 40 39 41 38 40 41 40 42 42
40.3
1.3
3.1
4
3.196
-
36/1353
42 42 40 40 41 40 39 38 40 41
40.3
1.3
3.1
4
3.196
-
36/1354
42 40 40 39 39 40 40 42 39 38
39.9
1.3
3.2
4
3.109
-
36/1355
40 42 39 40 40 40 41 42 40 40
40.4
1.0
2.4
3
3.105
-
36/1356
40 42 42 40 41 40 40 39 38 40
40.2
1.2
3.1
4
3.254
-
36/1357
42 41 40 39 39 41 42 42 43 41
41.0
1.3
3.3
4
3.000
-
36/1358
42 40 41 42 42 39 38 40 42 42
40.8
1.5
3.6
4
2.711
-
36/1359
42 41 40 41 42 42 42 40 40 42
41.2
0.9
2.2
2
2.176
-
36/1360
42 42 42 41 40 41 40 41 41 40
41.0
0.8
2.0
2
2.449
-
36/1361
42 41 42 40 42 40 42 40 42 43
41.4
1.1
2.6
3
2.791
-
36/1362
43 42 42 40 41 41 40 38 39 40
40.6
1.5
3.7
5
3.321
-
36/1363
40 40 40 41 39 39 39 39 40 40
39.7
0.7
1.7
2
2.963
-
36/1364
39 41 40 42 41 42 40 38 40 39
40.2
1.3
3.3
4
3.038
-
36/1365
42 41 38 42 40 40 38 40 41 40
40.2
1.4
3.5
4
2.860
-
Test area
R1
36/1313
36/1314
R2
R3
R4
R5
R6
R7
R8
R9
R10
A126
Rm
sR
VR, %
rR
θR
fcm, MPa
42 39 40 41 40 38 39 40 41 40
40.0
1.2
2.9
4
3.464
-
42 38 39 40 40 39 40 42 41 40
40.1
1.3
3.2
4
3.109
-
36/1368
42 41 40 41 42 39 43 41 42 39
41.0
1.3
3.3
4
3.000
-
36/1369
40 41 40 41 42 40 40 39 38 40
40.1
1.1
2.7
4
3.635
-
36/1370
42 42 41 39 38 40 42 42 42 41
40.9
1.4
3.5
4
2.760
-
36/1371
38 40 40 41 42 39 40 41 40 40
40.1
1.1
2.7
4
3.635
-
36/1372
41 42 39 42 40 38 39 41 40 38
40.0
1.5
3.7
4
2.683
-
36/1373
38 38 42 40 40 40 42 38 39 38
39.5
1.6
4.0
4
2.530
-
36/1374
40 40 41 40 39 40 41 39 41 41
40.2
0.8
2.0
2
2.535
-
36/1375
42 42 40 41 41 40 40 38 39 40
40.3
1.3
3.1
4
3.196
-
36/1376
42 42 41 40 41 39 40 39 42 41
40.7
1.2
2.8
3
2.587
-
36/1377
39 40 39 40 41 40 38 41 39 40
39.7
0.9
2.4
3
3.162
-
36/1378
39 40 41 42 40 39 38 40 40 40
39.9
1.1
2.8
4
3.635
-
36/1379
40 40 39 38 39 40 41 40 39 38
39.4
1.0
2.5
3
3.105
-
36/1380
42 40 43 41 41 41 42 43 40 42
41.5
1.1
2.6
3
2.777
-
36/1381
40 42 42 40 40 39 38 38 39 42
40.0
1.6
3.9
4
2.558
-
36/1382
40 40 41 42 42 40 42 39 39 40
40.5
1.2
2.9
3
2.546
-
36/1383
39 39 41 40 40 41 40 40 39 41
40.0
0.8
2.0
2
2.449
-
36/1384
40 40 39 41 42 40 38 39 38 40
39.7
1.3
3.2
4
3.196
-
36/1385
42 42 39 38 40 38 40 37 38 39
39.3
1.7
4.3
5
2.936
-
36/1386
40 39 42 39 41 41 42 41 41 42
40.8
1.1
2.8
3
2.642
-
36/1387
42 42 41 41 40 40 41 40 41 42
41.0
0.8
2.0
2
2.449
-
36/1388
42 42 40 40 41 40 41 42 40 40
40.8
0.9
2.3
2
2.176
-
36/1389
41 40 39 39 38 40 41 39 39 40
39.6
1.0
2.4
3
3.105
-
36/1390
39 38 38 38 37 38 38 38 39 37
38.0
0.7
1.8
2
3.000
-
36/1391
40 38 41 38 40 41 40 38 40 37
39.3
1.4
3.6
4
2.821
-
36/1392
42 41 40 42 41 40 42 42 42 43
41.5
1.0
2.3
3
3.087
-
36/1393
42 42 41 41 42 43 42 43 43 42
42.1
0.7
1.8
2
2.711
-
36/1394
42 42 43 42 40 39 41 41 40 38
40.8
1.5
3.8
5
3.227
-
36/1395
40 41 41 39 39 38 38 38 39 39
39.2
1.1
2.9
3
2.642
-
36/1396
38 38 39 39 38 39 38 37 38 38
38.2
0.6
1.7
2
3.162
-
36/1397
38 39 39 40 38 38 38 40 39 39
38.8
0.8
2.0
2
2.535
-
36/1398
41 42 42 40 40 39 39 39 40 40
40.2
1.1
2.8
3
2.642
-
36/1399
40 40 38 40 41 38 40 38 41 41
39.7
1.3
3.2
3
2.397
-
36/1400
40 40 42 42 42 43 41 40 42 42
41.4
1.1
2.6
3
2.791
-
36/1401
41 40 40 38 38 41 40 39 38 39
39.4
1.2
3.0
3
2.556
-
36/1402
38 38 39 40 40 38 37 38 40 40
38.8
1.1
2.9
3
2.642
-
36/1403
38 38 37 37 38 38 37 40 38 40
38.1
1.1
2.9
3
2.726
-
36/1404
38 40 41 40 40 38 40 40 38 39
39.4
1.1
2.7
3
2.791
-
36/1405
38 40 40 39 40 38 38 39 39 39
39.0
0.8
2.1
2
2.449
-
36/1406
40 40 42 38 36 39 40 41 41 40
39.7
1.7
4.3
6
3.523
-
36/1407
42 43 42 43 42 42 43 43 44 40
42.4
1.1
2.5
4
3.721
-
36/1408
42 42 41 39 42 42 41 43 42 40
41.4
1.2
2.8
4
3.408
-
36/1409
42 42 42 42 40 40 41 40 39 40
40.8
1.1
2.8
3
2.642
-
36/1410
42 42 43 41 40 42 41 41 40 42
41.4
1.0
2.3
3
3.105
-
36/1411
41 41 40 41 42 42 42 43 43 42
41.7
0.9
2.3
3
3.162
-
36/1412
40 42 41 41 41 42 41 41 42 41
41.2
0.6
1.5
2
3.162
-
36/1413
41 42 41 40 42 42 42 42 43 43
41.8
0.9
2.2
3
3.265
-
36/1414
42 42 41 43 40 41 41 42 42 40
41.4
1.0
2.3
3
3.105
-
36/1415
40 40 39 39 39 40 40 39 40 39
39.5
0.5
1.3
1
1.897
-
36/1416
38 38 40 40 38 37 38 40 37 38
38.4
1.2
3.1
3
2.556
-
36/1417
37 36 39 40 38 38 37 38 40 38
38.1
1.3
3.4
4
3.109
-
36/1418
41 42 43 40 42 41 43 43 40 40
41.5
1.3
3.1
3
2.364
-
Test area
R1
36/1366
36/1367
R2
R3
R4
R5
R6
R7
R8
R9
R10
A127
Rm
sR
VR, %
rR
θR
fcm, MPa
40 40 42 42 41 41 42 40 40 40
40.8
0.9
2.3
2
2.176
-
39 42 40 38 38 40 41 38 40 39
39.5
1.4
3.4
4
2.954
-
36/1421
40 39 39 38 37 40 39 39 40 38
38.9
1.0
2.6
3
3.017
-
36/1422
37 37 36 38 37 38 40 38 37 38
37.6
1.1
2.9
4
3.721
-
36/1423
38 40 41 40 40 41 38 38 40 41
39.7
1.3
3.2
3
2.397
-
36/1424
40 40 42 42 40 42 39 40 38 40
40.3
1.3
3.3
4
2.991
-
36/1425
40 40 42 40 40 41 41 40 41 42
40.7
0.8
2.0
2
2.429
-
36/1426
41 40 40 39 39 41 41 40 40 40
40.1
0.7
1.8
2
2.711
-
36/1427
40 38 39 40 40 38 41 39 38 40
39.3
1.1
2.7
3
2.832
-
36/1428
36 38 36 38 38 39 39 41 38 38
38.1
1.4
3.8
5
3.450
-
36/1429
39 38 39 39 40 38 39 39 39 37
38.7
0.8
2.1
3
3.644
-
36/1430
36 38 36 39 38 38 37 36 35 35
36.8
1.4
3.8
4
2.860
-
36/1431
34 35 34 36 37 36 36 38 38 36
36.0
1.4
3.9
4
2.828
-
36/1432
40 38 38 39 40 38 41 38 39 39
39.0
1.1
2.7
3
2.846
-
36/1433
36 38 38 40 38 38 38 39 38 39
38.2
1.0
2.7
4
3.873
-
36/1434
40 38 40 38 38 40 40 38 39 40
39.1
1.0
2.5
2
2.011
-
36/1435
40 38 39 38 41 40 40 41 41 43
40.1
1.5
3.8
5
3.281
-
36/1436
38 38 39 42 39 41 42 42 41 41
40.3
1.6
4.1
4
2.444
-
36/1437
40 40 42 42 42 41 38 40 40 38
40.3
1.5
3.7
4
2.677
-
36/1438
39 39 38 38 36 38 38 36 39 39
38.0
1.2
3.0
3
2.598
-
36/1439
36 40 38 39 37 38 38 37 38 38
37.9
1.1
2.9
4
3.635
-
36/1440
39 37 40 37 38 40 40 39 39 41
39.0
1.3
3.4
4
3.000
-
36/1441
36 38 38 40 36 38 40 38 38 36
37.8
1.5
3.9
4
2.711
-
36/1442
36 36 37 35 36 36 38 38 38 37
36.7
1.1
2.9
3
2.832
-
36/1443
39 36 36 39 38 37 39 38 38 40
38.0
1.3
3.5
4
3.000
-
36/1444
36 36 39 40 38 38 38 39 37 38
37.9
1.3
3.4
4
3.109
-
36/1445
38 37 39 40 38 38 36 41 38 40
38.5
1.5
3.9
5
3.313
-
36/1446
40 41 38 41 39 40 38 40 40 41
39.8
1.1
2.9
3
2.642
-
36/1447
42 39 40 38 38 39 42 38 40 42
39.8
1.7
4.2
4
2.372
-
36/1448
40 38 40 38 38 39 41 41 40 41
39.6
1.3
3.2
3
2.372
-
36/1449
41 42 39 38 39 40 42 38 41 42
40.2
1.6
4.0
4
2.470
-
36/1450
40 40 40 38 38 42 42 40 40 38
39.8
1.5
3.7
4
2.711
-
36/1451
42 41 40 38 40 40 38 41 42 41
40.3
1.4
3.5
4
2.821
-
36/1452
41 41 40 40 42 40 40 38 40 38
40.0
1.2
3.1
4
3.207
-
36/1453
42 41 39 39 41 38 38 39 40 41
39.8
1.4
3.5
4
2.860
-
36/1454
40 41 41 39 42 40 40 41 39 42
40.5
1.1
2.7
3
2.777
-
36/1455
40 40 42 41 40 40 38 38 41 40
40.0
1.2
3.1
4
3.207
-
36/1456
40 40 41 39 39 40 40 38 41 41
39.9
1.0
2.5
3
3.017
-
36/1457
42 39 40 40 40 39 41 41 40 41
40.3
0.9
2.4
3
3.162
-
36/1458
40 40 38 38 38 40 41 42 39 38
39.4
1.4
3.6
4
2.798
-
36/1459
40 40 39 41 40 40 42 41 39 41
40.3
0.9
2.4
3
3.162
-
36/1460
41 40 41 42 41 40 39 41 42 43
41.0
1.2
2.8
4
3.464
-
36/1461
40 40 41 40 39 38 41 41 40 39
39.9
1.0
2.5
3
3.017
-
36/1462
38 38 40 40 40 40 41 42 42 41
40.2
1.4
3.5
4
2.860
-
36/1463
41 42 42 41 42 40 39 40 41 40
40.8
1.0
2.5
3
2.905
-
36/1464
41 39 40 39 40 38 38 39 40 38
39.2
1.0
2.6
3
2.905
-
36/1465
41 40 41 39 42 40 40 42 40 39
40.4
1.1
2.7
3
2.791
-
36/1466
42 42 41 40 40 38 39 41 40 38
40.1
1.4
3.6
4
2.760
-
36/1467
39 41 38 41 40 42 41 39 40 38
39.9
1.4
3.4
4
2.919
-
36/1468
41 41 39 40 41 40 39 39 42 42
40.4
1.2
2.9
3
2.556
-
36/1469
39 40 38 39 40 42 38 41 42 39
39.8
1.5
3.7
4
2.711
-
36/1470
39 40 39 41 42 38 39 38 37 38
39.1
1.5
3.9
5
3.281
-
36/1471
42 41 42 40 40 43 40 41 40 42
41.1
1.1
2.7
3
2.726
-
Test area
R1
36/1419
36/1420
R2
R3
R4
R5
R6
R7
R8
R9
R10
A128
Rm
sR
VR, %
rR
θR
fcm, MPa
39 39 42 41 41 42 42 43 42 40
41.1
1.4
3.3
4
2.919
-
39 41 41 40 39 42 41 38 38 42
40.1
1.5
3.8
4
2.625
-
36/1474
38 38 39 40 42 40 41 40 40 40
39.8
1.2
3.1
4
3.254
-
36/1475
38 38 40 38 39 40 41 38 37 36
38.5
1.5
3.9
5
3.313
-
36/1476
38 37 38 40 37 40 40 40 41 40
39.1
1.4
3.7
4
2.760
-
36/1477
39 42 42 40 43 39 42 40 41 42
41.0
1.4
3.4
4
2.828
-
36/1478
40 42 41 41 42 40 42 42 42 43
41.5
1.0
2.3
3
3.087
-
36/1479
39 39 40 40 40 40 41 40 42 42
40.3
1.1
2.6
3
2.832
-
36/1480
40 40 41 41 40 42 42 41 39 42
40.8
1.0
2.5
3
2.905
-
36/1481
40 42 39 41 42 38 38 40 42 40
40.2
1.5
3.9
4
2.582
-
36/1482
40 41 38 38 39 40 41 39 39 40
39.5
1.1
2.7
3
2.777
-
36/1483
38 38 38 37 38 40 38 40 41 38
38.6
1.3
3.3
4
3.162
-
36/1484
39 39 41 41 40 40 40 38 39 38
39.5
1.1
2.7
3
2.777
-
36/1485
38 39 40 41 40 39 40 40 39 40
39.6
0.8
2.1
3
3.558
-
36/1486
38 39 38 38 39 39 38 37 38 38
38.2
0.6
1.7
2
3.162
-
36/1487
38 38 40 40 39 38 39 40 38 40
39.0
0.9
2.4
2
2.121
-
36/1488
46 45 46 44 45 44 43 44 42 43
44.2
1.3
3.0
4
3.038
-
36/1489
42 41 42 44 42 44 44 45 46 44
43.4
1.6
3.6
5
3.169
-
36/1490
44 44 44 43 44 43 45 45 46 46
44.4
1.1
2.4
3
2.791
-
36/1491
40 42 39 39 39 42 41 41 42 39
40.4
1.3
3.3
3
2.222
-
36/1492
38 39 41 41 41 41 42 38 39 40
40.0
1.4
3.5
4
2.828
-
36/1493
38 38 37 40 40 42 40 41 42 40
39.8
1.7
4.2
5
2.965
-
36/1494
37 39 40 41 38 37 37 37 36 36
37.8
1.7
4.5
5
2.965
-
36/1495
36 38 36 37 40 37 38 38 36 38
37.4
1.3
3.4
4
3.162
-
36/1496
38 41 42 39 42 41 40 39 41 39
40.2
1.4
3.5
4
2.860
-
36/1497
42 42 38 39 41 38 37 38 37 37
38.9
2.0
5.2
5
2.469
-
36/1498
40 41 42 38 40 40 42 40 38 38
39.9
1.5
3.8
4
2.625
-
36/1499
39 38 38 41 40 39 37 38 39 39
38.8
1.1
2.9
4
3.523
-
36/1500
37 40 38 37 36 38 38 37 36 38
37.5
1.2
3.1
4
3.394
-
36/1501
38 38 37 36 40 40 40 38 38 37
38.2
1.4
3.7
4
2.860
-
36/1502
42 43 41 44 43 42 40 42 41 43
42.1
1.2
2.8
4
3.341
-
36/1503
42 42 41 43 42 42 40 42 43 42
41.9
0.9
2.1
3
3.426
-
36/1504
40 40 42 41 41 42 43 42 43 42
41.6
1.1
2.6
3
2.791
-
36/1505
39 39 38 40 38 41 39 39 41 40
39.4
1.1
2.7
3
2.791
-
36/1506
40 40 41 39 40 38 40 40 41 39
39.8
0.9
2.3
3
3.265
-
36/1507
39 39 40 42 42 40 42 42 40 41
40.7
1.3
3.1
3
2.397
-
36/1508
39 40 41 38 40 40 40 42 39 39
39.8
1.1
2.9
4
3.523
-
36/1509
40 41 40 40 38 39 40 41 40 41
40.0
0.9
2.4
3
3.182
-
36/1510
38 41 40 40 39 41 42 40 40 41
40.2
1.1
2.8
4
3.523
-
36/1511
40 41 39 40 40 40 40 38 38 38
39.4
1.1
2.7
3
2.791
-
36/1512
38 38 41 40 39 40 39 40 38 39
39.2
1.0
2.6
3
2.905
-
36/1513
44 43 42 41 42 41 41 42 43 42
42.1
1.0
2.4
3
3.017
-
36/1514
42 42 42 40 42 43 42 42 44 42
42.1
1.0
2.4
4
4.022
-
36/1515
41 41 40 42 42 42 40 39 43 42
41.2
1.2
3.0
4
3.254
-
36/1516
42 41 40 40 44 44 42 40 43 40
41.6
1.6
4.0
4
2.429
-
36/1517
42 43 42 44 42 40 42 43 42 42
42.2
1.0
2.4
4
3.873
-
36/1518
40 41 40 42 43 42 42 43 43 42
41.8
1.1
2.7
3
2.642
-
36/1519
42 41 44 40 42 40 43 44 42 43
42.1
1.4
3.4
4
2.760
-
36/1520
42 42 43 42 43 42 43 42 42 42
42.3
0.5
1.1
1
2.070
-
36/1521
42 43 43 43 41 42 44 42 44 42
42.6
1.0
2.3
3
3.105
-
36/1522
42 42 41 38 40 42 42 41 38 39
40.5
1.6
4.1
4
2.424
-
36/1523
43 42 42 40 42 44 40 41 44 42
42.0
1.4
3.4
4
2.828
-
36/1524
40 42 40 40 42 43 40 40 41 42
41.0
1.2
2.8
3
2.598
-
Test area
R1
36/1472
36/1473
R2
R3
R4
R5
R6
R7
R8
R9
R10
A129
Rm
sR
VR, %
rR
θR
fcm, MPa
42 40 40 40 41 39 38 40 38 40
39.8
1.2
3.1
4
3.254
-
43 40 41 42 40 41 42 40 41 41
41.1
1.0
2.4
3
3.017
-
36/1527
42 42 41 43 41 42 40 43 42 40
41.6
1.1
2.6
3
2.791
-
36/1528
42 40 40 41 41 39 42 41 40 40
40.6
1.0
2.4
3
3.105
-
36/1529
42 40 42 38 38 40 40 38 38 39
39.5
1.6
4.0
4
2.530
-
36/1530
40 44 43 41 42 40 44 40 43 44
42.1
1.7
4.1
4
2.314
-
36/1531
42 41 41 43 44 42 43 44 45 42
42.7
1.3
3.1
4
2.991
-
36/1532
39 40 39 42 40 40 42 42 41 40
40.5
1.2
2.9
3
2.546
-
36/1533
40 42 41 40 42 43 44 42 43 44
42.1
1.4
3.4
4
2.760
-
36/1534
44 44 43 40 41 44 42 42 42 42
42.4
1.3
3.2
4
2.963
-
36/1535
38 38 39 40 39 38 38 40 38 38
38.6
0.8
2.2
2
2.372
-
36/1536
38 38 39 39 40 38 40 40 41 38
39.1
1.1
2.8
3
2.726
-
36/1537
38 38 39 40 39 38 40 41 38 39
39.0
1.1
2.7
3
2.846
-
36/1538
41 42 43 43 43 40 40 41 42 43
41.8
1.2
2.9
3
2.440
-
36/1539
40 40 44 42 40 42 39 40 42 42
41.1
1.5
3.7
5
3.281
-
36/1540
40 40 38 40 40 39 40 38 40 38
39.3
0.9
2.4
2
2.108
-
36/1541
41 40 42 41 39 40 41 42 42 40
40.8
1.0
2.5
3
2.905
-
36/1542
40 41 40 42 42 42 41 41 40 42
41.1
0.9
2.1
2
2.284
-
36/1543
42 43 42 43 43 40 40 42 40 40
41.5
1.4
3.3
3
2.216
-
36/1544
43 40 41 42 39 40 41 40 42 40
40.8
1.2
3.0
4
3.254
-
36/1545
43 43 40 42 44 40 41 40 40 42
41.5
1.5
3.6
4
2.650
-
36/1546
40 40 41 40 40 38 39 40 40 41
39.9
0.9
2.2
3
3.426
-
36/1547
42 40 43 42 40 40 42 40 41 42
41.2
1.1
2.8
3
2.642
-
36/1548
40 40 38 40 38 42 38 39 43 42
40.0
1.8
4.6
5
2.739
-
36/1549
38 38 40 39 38 38 37 38 37 38
38.1
0.9
2.3
3
3.426
-
36/1550
42 40 39 38 38 40 42 38 41 39
39.7
1.6
3.9
4
2.553
-
36/1551
38 38 40 42 41 39 38 38 39 38
39.1
1.4
3.7
4
2.760
-
36/1552
40 39 38 41 38 40 39 38 40 39
39.2
1.0
2.6
3
2.905
-
36/1553
38 38 37 39 38 38 37 37 38 36
37.6
0.8
2.2
3
3.558
-
36/1554
37 37 38 36 36 38 37 35 36 38
36.8
1.0
2.8
3
2.905
-
36/1555
38 38 39 40 40 40 39 39 40 41
39.4
1.0
2.5
3
3.105
-
36/1556
41 38 40 43 40 39 38 41 39 42
40.1
1.7
4.1
5
3.006
-
36/1557
43 44 42 40 42 40 43 43 39 42
41.8
1.6
3.9
5
3.088
-
36/1558
42 41 41 43 41 40 41 42 42 42
41.5
0.8
2.0
3
3.530
-
36/1559
41 41 41 42 42 42 42 41 43 42
41.7
0.7
1.6
2
2.963
-
36/1560
39 43 42 43 41 42 42 43 49 42
42.6
2.5
6.0
10
3.926
-
36/1561
40 43 42 42 43 40 39 40 39 39
40.7
1.6
4.0
4
2.444
-
36/1562
40 40 40 41 41 42 40 42 40 40
40.6
0.8
2.1
2
2.372
-
36/1563
42 41 43 43 41 42 40 40 43 41
41.6
1.2
2.8
3
2.556
-
36/1564
40 41 42 43 43 41 42 42 40 40
41.4
1.2
2.8
3
2.556
-
36/1565
40 42 43 43 44 43 40 42 42 42
42.1
1.3
3.1
4
3.109
-
36/1566
43 40 40 39 40 40 42 43 40 40
40.7
1.4
3.5
4
2.821
-
36/1567
44 40 40 42 42 40 39 39 41 40
40.7
1.6
3.9
5
3.191
-
36/1568
42 43 44 42 40 42 40 43 42 42
42.0
1.2
3.0
4
3.207
-
36/1569
43 42 42 40 41 42 41 43 42 43
41.9
1.0
2.4
3
3.017
-
36/1570
40 42 43 43 42 39 42 40 42 39
41.2
1.5
3.8
4
2.582
-
36/1571
40 40 41 43 41 44 40 40 42 42
41.3
1.4
3.4
4
2.821
-
36/1572
44 41 43 42 44 40 41 44 42 42
42.3
1.4
3.4
4
2.821
-
36/1573
40 43 42 43 42 41 40 42 43 42
41.8
1.1
2.7
3
2.642
-
36/1574
41 43 43 43 44 43 44 43 41 44
42.9
1.1
2.6
3
2.726
-
36/1575
42 43 44 43 41 40 43 43 44 40
42.3
1.5
3.5
4
2.677
-
36/1576
41 39 40 43 40 44 42 43 42 41
41.5
1.6
3.8
5
3.162
-
36/1577
40 41 40 40 42 42 44 40 42 39
41.0
1.5
3.6
5
3.354
-
Test area
R1
36/1525
36/1526
R2
R3
R4
R5
R6
R7
R8
R9
R10
A130
Rm
sR
VR, %
rR
θR
fcm, MPa
42 42 43 42 41 39 41 42 42 43
41.7
1.2
2.8
4
3.450
-
43 43 42 44 43 41 42 41 39 41
41.9
1.4
3.5
5
3.450
-
36/1580
42 41 40 40 40 42 40 43 42 41
41.1
1.1
2.7
3
2.726
-
36/1581
44 42 40 40 40 40 42 43 43 40
41.4
1.6
3.8
4
2.535
-
36/1582
40 40 42 42 42 41 43 43 44 41
41.8
1.3
3.1
4
3.038
-
36/1583
43 44 42 44 43 42 40 40 41 43
42.2
1.5
3.5
4
2.711
-
36/1584
43 44 44 44 44 42 41 43 41 41
42.7
1.3
3.1
3
2.243
-
36/1585
44 41 44 45 44 43 43 43 44 44
43.5
1.1
2.5
4
3.703
-
36/1586
41 39 41 40 40 40 42 42 40 39
40.4
1.1
2.7
3
2.791
-
36/1587
43 41 40 40 40 42 43 43 42 40
41.4
1.3
3.3
3
2.222
-
36/1588
43 41 43 43 43 42 44 44 43 42
42.8
0.9
2.1
3
3.265
-
36/1589
40 42 41 41 41 41 42 43 41 42
41.4
0.8
2.0
3
3.558
-
36/1590
42 44 41 45 43 41 42 42 43 43
42.6
1.3
3.0
4
3.162
-
36/1591
40 40 39 41 42 42 40 41 41 41
40.7
0.9
2.3
3
3.162
-
36/1592
42 41 42 42 43 41 41 41 41 40
41.4
0.8
2.0
3
3.558
-
36/1593
41 42 42 41 42 43 41 41 42 41
41.6
0.7
1.7
2
2.860
-
36/1594
44 42 43 45 44 40 44 45 42 44
43.3
1.6
3.6
5
3.191
-
36/1595
44 44 42 43 44 44 45 45 44 43
43.8
0.9
2.1
3
3.265
-
36/1596
40 43 40 39 42 40 40 42 42 41
40.9
1.3
3.1
4
3.109
-
36/1597
40 40 39 40 39 40 39 39 40 39
39.5
0.5
1.3
1
1.897
-
36/1598
40 42 42 41 42 40 40 39 41 40
40.7
1.1
2.6
3
2.832
-
36/1599
40 42 42 41 42 40 40 39 41 40
40.7
1.1
2.6
3
2.832
-
36/1600
43 40 39 39 39 40 40 41 39 40
40.0
1.2
3.1
4
3.207
-
36/1601
39 40 38 37 39 38 39 40 38 38
38.6
1.0
2.5
3
3.105
-
36/1602
39 38 39 38 41 41 40 39 40 39
39.4
1.1
2.7
3
2.791
-
36/1603
42 40 40 40 39 39 39 38 39 39
39.5
1.1
2.7
4
3.703
-
36/1604
39 40 39 42 40 40 39 38 40 39
39.6
1.1
2.7
4
3.721
-
36/1605
40 41 40 42 40 39 39 41 39 40
40.1
1.0
2.5
3
3.017
-
36/1606
39 39 40 38 39 38 41 40 41 39
39.4
1.1
2.7
3
2.791
-
36/1607
41 40 42 40 42 41 39 43 42 40
41.0
1.2
3.0
4
3.207
-
36/1608
41 40 39 40 40 41 40 41 40 39
40.1
0.7
1.8
2
2.711
-
36/1609
43 41 43 42 42 41 41 42 41 40
41.6
1.0
2.3
3
3.105
-
36/1610
41 41 41 42 42 41 42 40 41 41
41.2
0.6
1.5
2
3.162
-
36/1611
43 43 44 42 40 40 41 43 44 40
42.0
1.6
3.9
4
2.449
-
36/1612
40 43 44 44 45 43 40 44 43 40
42.6
1.9
4.5
5
2.635
-
36/1613
45 44 44 45 46 46 46 41 41 44
44.2
1.9
4.2
5
2.668
-
36/1614
41 42 43 42 40 40 42 42 41 42
41.5
1.0
2.3
3
3.087
-
36/1615
42 41 43 42 43 41 41 41 42 41
41.7
0.8
2.0
2
2.429
-
36/1616
41 43 41 41 40 42 43 40 41 43
41.5
1.2
2.8
3
2.546
-
36/1617
42 41 42 41 42 40 40 43 42 40
41.3
1.1
2.6
3
2.832
-
36/1618
42 42 41 42 40 39 40 40 41 40
40.7
1.1
2.6
3
2.832
-
36/1619
42 43 42 43 43 44 43 42 44 42
42.8
0.8
1.8
2
2.535
-
36/1620
44 44 42 45 44 45 42 44 44 44
43.8
1.0
2.4
3
2.905
-
36/1621
45 45 44 45 44 44 43 44 42 43
43.9
1.0
2.3
3
3.017
-
36/1622
44 41 44 42 43 41 42 41 44 43
42.5
1.3
3.0
3
2.364
-
36/1623
41 41 40 43 47 44 45 43 43 43
43.0
2.1
4.8
7
3.407
-
36/1624
43 42 43 40 43 44 40 43 42 42
42.2
1.3
3.1
4
3.038
-
36/1625
42 45 42 43 40 42 41 42 42 43
42.2
1.3
3.1
5
3.798
-
36/1626
42 43 44 42 40 44 44 43 44 43
42.9
1.3
3.0
4
3.109
-
36/1627
42 46 46 44 44 44 42 43 45 43
43.9
1.4
3.3
4
2.760
-
36/1628
44 42 40 43 42 42 43 42 40 41
41.9
1.3
3.1
4
3.109
-
36/1629
42 42 40 41 42 43 42 44 42 41
41.9
1.1
2.6
4
3.635
-
36/1630
44 42 43 45 40 40 43 45 45 43
43.0
1.9
4.4
5
2.652
-
Test area
R1
36/1578
36/1579
R2
R3
R4
R5
R6
R7
R8
R9
R10
A131
Rm
sR
VR, %
rR
θR
fcm, MPa
43 42 41 44 40 42 40 42 41 41
41.6
1.3
3.0
4
3.162
-
43 42 43 42 43 41 42 42 44 41
42.3
0.9
2.2
3
3.162
-
36/1633
42 40 41 40 41 40 42 41 41 40
40.8
0.8
1.9
2
2.535
-
36/1634
42 41 40 42 40 40 42 40 41 43
41.1
1.1
2.7
3
2.726
-
36/1635
43 42 44 40 44 40 42 42 43 44
42.4
1.5
3.6
4
2.657
-
36/1636
41 43 41 41 42 41 42 40 41 41
41.3
0.8
2.0
3
3.644
-
36/1637
40 43 42 40 42 42 40 41 43 44
41.7
1.4
3.4
4
2.821
-
36/1638
43 43 42 44 42 42 40 42 43 41
42.2
1.1
2.7
4
3.523
-
36/1639
42 44 43 41 40 40 42 40 41 43
41.6
1.4
3.4
4
2.798
-
36/1640
42 43 42 41 40 42 42 42 44 43
42.1
1.1
2.6
4
3.635
-
36/1641
43 44 44 44 40 42 43 42 42 43
42.7
1.3
2.9
4
3.196
-
36/1642
44 42 43 42 42 41 42 43 40 40
41.9
1.3
3.1
4
3.109
-
36/1643
40 41 40 40 42 42 42 42 41 40
41.0
0.9
2.3
2
2.121
-
36/1644
42 44 42 43 42 41 41 41 43 42
42.1
1.0
2.4
3
3.017
-
36/1645
42 42 42 43 43 42 41 40 41 41
41.7
0.9
2.3
3
3.162
-
36/1646
44 42 40 40 42 42 40 41 42 41
41.4
1.3
3.1
4
3.162
-
36/1647
39 40 43 42 42 40 42 41 41 43
41.3
1.3
3.2
4
2.991
-
36/1648
39 41 40 40 42 42 39 42 41 41
40.7
1.2
2.8
3
2.587
-
36/1649
40 39 41 40 38 39 38 41 42 41
39.9
1.4
3.4
4
2.919
-
37/1
35 37 38 36 37 37 38 37 34 34
36.3
1.5
4.1
4
2.677
-
37/2
35 36 35 34 35 36 36 35 33 36
35.1
1.0
2.8
3
3.017
-
37/3
33 33 36 32 35 36 36 35 37 34
34.7
1.6
4.7
5
3.056
-
37/4
37 36 34 35 37 35 33 33 34 34
34.8
1.5
4.2
4
2.711
-
37/5
37 35 37 36 33 33 32 35 34 38
35.0
2.0
5.7
6
3.000
-
37/6
36 35 34 36 35 33 34 34 35 35
34.7
0.9
2.7
3
3.162
-
37/7
35 35 32 34 36 37 34 34 36 32
34.5
1.6
4.8
5
3.030
-
37/8
34 34 33 35 35 33 32 35 34 35
34.0
1.1
3.1
3
2.846
-
37/9
35 35 34 36 33 35 35 34 35 36
34.8
0.9
2.6
3
3.265
-
37/10
34 33 35 36 36 35 35 34 36 34
34.8
1.0
3.0
3
2.905
-
37/11
33 34 34 37 38 36 38 36 37 34
35.7
1.8
5.1
5
2.734
-
37/12
31 34 32 30 34 33 34 32 32 32
32.4
1.3
4.2
4
2.963
-
37/13
34 33 37 35 34 34 33 34 33 34
34.1
1.2
3.5
4
3.341
-
37/14
35 37 33 36 37 35 36 35 35 36
35.5
1.2
3.3
4
3.394
-
37/15
35 37 34 33 31 31 34 32 33 31
33.1
2.0
5.9
6
3.047
-
37/16
36 34 34 34 32 33 34 32 32 33
33.4
1.3
3.8
4
3.162
-
37/17
33 32 36 34 33 32 33 36 35 33
33.7
1.5
4.4
4
2.677
-
37/18
34 36 39 32 34 35 38 38 36 37
35.9
2.2
6.1
7
3.206
-
37/19
32 34 34 35 36 33 34 34 35 32
33.9
1.3
3.8
4
3.109
-
37/20
37 35 36 38 35 37 35 36 34 33
35.6
1.5
4.2
5
3.321
-
37/21
36 35 36 34 36 36 32 32 34 36
34.7
1.6
4.7
4
2.444
-
37/22
34 35 35 30 30 32 30 33 34 32
32.5
2.0
6.2
5
2.483
-
37/23
34 34 35 34 35 34 34 36 35 34
34.5
0.7
2.0
2
2.828
-
37/24
38 36 36 37 36 36 34 37 36 37
36.3
1.1
2.9
4
3.776
-
37/25
34 36 35 33 33 34 35 34 33 35
34.2
1.0
3.0
3
2.905
-
37/26
37 35 34 36 33 34 35 34 34 34
34.6
1.2
3.4
4
3.408
-
37/27
33 36 36 33 36 35 36 34 36 34
34.9
1.3
3.7
3
2.332
-
37/28
30 36 35 34 32 35 35 34 34 35
34.0
1.8
5.2
6
3.402
-
37/29
32 36 36 37 36 35 34 36 33 35
35.0
1.6
4.5
5
3.198
-
37/30
36 34 36 36 38 37 37 36 35 38
36.3
1.3
3.4
4
3.196
-
37/31
37 35 32 36 34 35 38 35 36 38
35.6
1.8
5.2
6
3.265
-
37/32
37 35 35 36 36 36 34 38 36 38
36.1
1.3
3.6
4
3.109
-
37/33
36 35 35 34 35 35 35 38 35 34
35.2
1.1
3.2
4
3.523
-
Test area
R1
36/1631
36/1632
R2
R3
R4
R5
R6
R7
R8
R9
R10
A132
Rm
sR
VR, %
rR
θR
fcm, MPa
35 31 34 33 36 36 35 37 35 32
34.4
1.9
5.5
6
3.162
-
37 37 40 36 41 38 38 41 38 37
38.3
1.8
4.6
5
2.830
-
37/36
38 37 37 38 40 38 36 37 37 37
37.5
1.1
2.9
4
3.703
-
37/37
36 32 30 30 34 36 32 36 35 37
33.8
2.6
7.7
7
2.676
-
37/38
37 36 38 33 36 37 37 34 35 34
35.7
1.6
4.6
5
3.056
-
37/39
37 38 38 37 39 38 37 38 37 37
37.6
0.7
1.9
2
2.860
-
37/40
41 36 37 38 36 36 35 38 38 39
37.4
1.8
4.7
6
3.378
-
37/41
39 36 35 38 36 39 35 36 37 36
36.7
1.5
4.1
4
2.677
-
37/42
36 36 38 34 35 34 38 34 37 34
35.6
1.6
4.6
4
2.429
-
37/43
38 37 38 37 34 35 34 35 36 35
35.9
1.5
4.2
4
2.625
-
37/44
35 36 34 36 36 36 35 38 36 35
35.7
1.1
3.0
4
3.776
-
37/45
40 38 37 38 38 36 38 39 37 38
37.9
1.1
2.9
4
3.635
-
37/46
39 37 36 38 37 39 40 38 34 37
37.5
1.7
4.6
6
3.497
-
37/47
37 38 36 38 39 36 38 38 36 39
37.5
1.2
3.1
3
2.546
-
37/48
40 40 41 42 40 41 42 42 38 40
40.6
1.3
3.1
4
3.162
-
37/49
40 41 42 41 38 40 42 40 39 41
40.4
1.3
3.1
4
3.162
-
37/50
38 38 39 40 40 41 40 42 39 40
39.7
1.3
3.2
4
3.196
-
37/51
41 39 38 42 38 39 40 38 39 38
39.2
1.4
3.6
4
2.860
-
37/52
42 40 40 38 41 39 42 38 39 40
39.9
1.4
3.6
4
2.760
-
37/53
38 37 36 39 40 37 38 39 38 39
38.1
1.2
3.1
4
3.341
-
37/54
40 42 40 40 41 41 40 39 38 40
40.1
1.1
2.7
4
3.635
-
37/55
36 38 37 40 41 40 41 40 42 41
39.6
2.0
4.9
6
3.069
-
37/56
36 35 35 37 35 36 36 36 38 40
36.4
1.6
4.3
5
3.169
-
37/57
43 38 37 38 40 39 37 37 39 39
38.7
1.8
4.7
6
3.281
-
37/58
34 36 34 35 34 35 36 36 34 37
35.1
1.1
3.1
3
2.726
-
37/59
34 36 37 35 36 35 36 34 34 35
35.2
1.0
2.9
3
2.905
-
37/60
35 36 35 34 37 36 36 37 35 37
35.8
1.0
2.9
3
2.905
-
37/61
38 35 34 36 37 35 36 38 35 36
36.0
1.3
3.7
4
3.000
-
37/62
38 36 37 35 34 37 40 38 40 38
37.3
1.9
5.2
6
3.082
-
37/63
40 40 36 36 38 35 36 40 34 39
37.4
2.3
6.1
6
2.642
-
37/64
34 36 38 36 35 37 37 37 36 34
36.0
1.3
3.7
4
3.000
-
37/65
38 39 38 40 39 38 37 36 40 40
38.5
1.4
3.5
4
2.954
-
37/66
38 38 37 37 38 38 41 40 38 38
38.3
1.3
3.3
4
3.196
-
37/67
34 36 36 38 36 37 34 38 39 34
36.2
1.8
5.0
5
2.757
-
37/68
37 39 36 39 35 36 36 35 37 38
36.8
1.5
4.0
4
2.711
-
37/69
36 38 34 37 34 37 35 36 38 36
36.1
1.4
4.0
4
2.760
-
37/70
41 38 35 34 34 35 36 38 35 36
36.2
2.2
6.1
7
3.180
-
37/71
38 37 38 38 38 36 38 37 36 38
37.4
0.8
2.3
2
2.372
-
37/72
40 39 38 41 40 39 40 38 38 39
39.2
1.0
2.6
3
2.905
-
37/73
38 37 38 36 37 39 39 37 36 38
37.5
1.1
2.9
3
2.777
-
37/74
38 35 36 35 38 36 35 35 36 35
35.9
1.2
3.3
3
2.506
-
37/75
37 39 36 38 37 35 35 36 38 36
36.7
1.3
3.6
4
2.991
-
37/76
36 37 35 34 37 38 36 35 37 37
36.2
1.2
3.4
4
3.254
-
37/77
38 37 39 39 38 37 40 37 38 37
38.0
1.1
2.8
3
2.846
-
37/78
38 40 37 38 35 35 38 36 36 37
37.0
1.6
4.2
5
3.198
-
37/79
36 38 37 37 38 38 38 35 37 36
37.0
1.1
2.8
3
2.846
-
37/80
36 38 36 37 36 36 39 38 36 37
36.9
1.1
3.0
3
2.726
-
37/81
34 35 38 35 36 35 34 33 36 36
35.2
1.4
4.0
5
3.575
-
37/82
38 36 38 38 40 37 36 36 35 36
37.0
1.5
4.0
5
3.354
-
37/83
38 38 39 35 39 39 37 36 37 39
37.7
1.4
3.8
4
2.821
-
37/84
36 36 35 37 37 37 38 38 35 39
36.8
1.3
3.6
4
3.038
-
37/85
39 40 37 38 39 39 40 40 38 40
39.0
1.1
2.7
3
2.846
-
37/86
34 36 36 37 35 36 36 38 37 37
36.2
1.1
3.1
4
3.523
-
Test area
R1
37/34
37/35
R2
R3
R4
R5
R6
R7
R8
R9
R10
A133
Rm
sR
VR, %
rR
θR
fcm, MPa
40 40 40 38 37 35 38 36 35 37
37.6
2.0
5.2
5
2.557
-
38 37 37 38 39 37 38 38 39 36
37.7
0.9
2.5
3
3.162
-
37/89
34 34 36 36 36 38 37 38 37 37
36.3
1.4
3.9
4
2.821
-
37/90
34 34 36 34 37 35 34 36 37 38
35.5
1.5
4.3
4
2.650
-
37/91
35 36 35 35 34 34 35 35 35 37
35.1
0.9
2.5
3
3.426
-
37/92
35 34 35 35 34 34 35 36 35 35
34.8
0.6
1.8
2
3.162
-
37/93
40 36 40 36 37 38 36 37 38 39
37.7
1.6
4.2
4
2.553
-
37/94
40 40 38 38 41 40 39 38 40 40
39.4
1.1
2.7
3
2.791
-
37/95
36 37 38 38 37 39 39 37 38 37
37.6
1.0
2.6
3
3.105
-
37/96
36 38 37 38 38 37 38 36 38 37
37.3
0.8
2.2
2
2.429
-
37/97
35 37 35 36 36 38 38 34 35 34
35.8
1.5
4.1
4
2.711
-
37/98
34 37 36 35 37 37 37 35 36 36
36.0
1.1
2.9
3
2.846
-
Test area
R1
37/87
37/88
R2
R3
R4
R5
R6
R7
R8
R9
R10
37/99
37 36 35 36 38 35 35 35 36 36
35.9
1.0
2.8
3
3.017
-
37/100
35 37 38 35 35 36 35 34 33 34
35.2
1.5
4.2
5
3.388
-
37/101
34 36 36 35 32 33 34 32 32 33
33.7
1.6
4.6
4
2.553
-
37/102
34 34 35 34 35 34 35 34 32 32
33.9
1.1
3.2
3
2.726
-
37/103
33 34 35 34 37 37 34 35 34 35
34.8
1.3
3.8
4
3.038
-
37/104
38 35 34 35 37 35 36 34 34 35
35.3
1.3
3.8
4
2.991
-
37/105
35 36 35 37 36 35 35 37 34 36
35.6
1.0
2.7
3
3.105
-
37/106
35 36 33 34 33 34 34 35 34 35
34.3
0.9
2.8
3
3.162
-
37/107
36 34 33 34 36 34 34 35 36 35
34.7
1.1
3.1
3
2.832
-
37/108
36 35 33 35 35 33 34 35 34 35
34.5
1.0
2.8
3
3.087
-
37/109
36 35 34 35 34 35 36 34 34 36
34.9
0.9
2.5
2
2.284
-
37/110
33 32 32 34 35 34 35 33 34 33
33.5
1.1
3.2
3
2.777
-
37/111
33 33 34 33 34 32 33 31 34 35
33.2
1.1
3.4
4
3.523
-
37/112
35 33 34 35 34 36 36 35 36 36
35.0
1.1
3.0
3
2.846
-
37/113
39 38 37 36 37 38 36 37 37 36
37.1
1.0
2.7
3
3.017
-
37/114
37 35 38 38 40 38 37 37 36 38
37.4
1.3
3.6
5
3.704
-
37/115
36 36 36 35 36 35 35 38 35 36
35.8
0.9
2.6
3
3.265
-
37/116
34 36 37 36 36 37 36 36 36 35
35.9
0.9
2.4
3
3.426
-
37/117
38 36 36 35 36 37 36 35 35 36
36.0
0.9
2.6
3
3.182
-
37/118
38 37 37 36 37 36 37 38 38 36
37.0
0.8
2.2
2
2.449
-
37/119
38 38 37 38 37 37 39 37 36 38
37.5
0.8
2.3
3
3.530
-
37/120
39 38 36 38 36 39 38 36 36 36
37.2
1.3
3.5
3
2.279
-
37/121
38 36 36 36 36 36 36 36 36 38
36.4
0.8
2.3
2
2.372
-
37/122
35 37 38 35 35 38 36 36 39 38
36.7
1.5
4.1
4
2.677
-
37/123
37 35 36 38 37 36 38 35 36 37
36.5
1.1
3.0
3
2.777
-
37/124
38 36 37 38 36 35 37 38 38 38
37.1
1.1
3.0
3
2.726
-
37/125
37 38 40 38 38 37 39 40 37 37
38.1
1.2
3.1
3
2.506
-
37/126
39 40 37 37 39 41 38 39 38 39
38.7
1.3
3.2
4
3.196
-
37/127
38 39 40 39 38 39 39 37 38 38
38.5
0.8
2.2
3
3.530
-
37/128
41 32 37 38 37 40 41 39 40 40
38.5
2.7
7.1
9
3.311
-
37/129
41 39 38 39 39 38 39 40 37 40
39.0
1.2
3.0
4
3.464
-
37/130
39 38 38 39 38 41 39 38 40 39
38.9
1.0
2.6
3
3.017
-
37/131
39 36 39 39 37 39 39 38 39 41
38.6
1.3
3.5
5
3.704
-
37/132
40 40 39 38 40 41 39 37 40 39
39.3
1.2
3.0
4
3.450
-
37/133
40 38 35 38 39 39 38 37 42 39
38.5
1.8
4.8
7
3.803
-
37/134
39 40 40 39 39 37 39 37 38 32
38.0
2.4
6.2
8
3.394
-
37/135
39 40 36 41 37 38 37 41 40 38
38.7
1.8
4.6
5
2.830
-
37/136
40 39 37 39 40 41 37 39 40 38
39.0
1.3
3.4
4
3.000
-
37/137
36 37 36 39 38 37 38 38 39 40
37.8
1.3
3.5
4
3.038
-
37/138
38 41 37 39 41 38 38 37 38 39
38.6
1.4
3.7
4
2.798
-
37/139
40 39 37 37 40 38 35 37 39 38
38.0
1.6
4.1
5
3.198
-
A134
Rm
sR
VR, %
rR
θR
fcm, MPa
39 38 37 37 38 39 37 39 38 38
38.0
0.8
2.1
2
2.449
-
37 40 39 39 37 38 38 38 37 39
38.2
1.0
2.7
3
2.905
-
37/142
37 36 38 38 37 37 37 36 37 37
37.0
0.7
1.8
2
3.000
-
37/143
38 37 37 37 39 38 39 38 38 39
38.0
0.8
2.1
2
2.449
-
37/144
39 38 37 38 39 37 38 36 39 39
38.0
1.1
2.8
3
2.846
-
37/145
39 38 37 37 39 38 39 38 37 39
38.1
0.9
2.3
2
2.284
-
37/146
36 38 38 39 39 38 39 38 39 39
38.3
0.9
2.5
3
3.162
-
37/147
36 36 37 37 36 38 37 38 38 37
37.0
0.8
2.2
2
2.449
-
37/148
39 38 36 36 36 40 37 38 38 37
37.5
1.4
3.6
4
2.954
-
37/149
38 38 37 39 39 40 38 40 39 37
38.5
1.1
2.8
3
2.777
-
37/150
41 41 40 38 38 40 41 38 39 42
39.8
1.5
3.7
4
2.711
-
37/151
41 39 39 39 38 41 40 38 39 39
39.3
1.1
2.7
3
2.832
-
37/152
39 38 38 37 41 39 39 40 41 39
39.1
1.3
3.3
4
3.109
-
37/153
37 37 38 39 40 37 36 40 38 38
38.0
1.3
3.5
4
3.000
-
37/154
39 41 39 41 42 38 41 40 39 40
40.0
1.2
3.1
4
3.207
-
37/155
41 42 39 38 37 41 42 39 39 39
39.7
1.7
4.3
5
2.936
-
37/156
41 40 41 38 39 41 39 39 41 40
39.9
1.1
2.8
3
2.726
-
37/157
33 31 32 32 31 30 32 31 32 31
31.5
0.8
2.7
3
3.530
-
37/158
31 31 30 29 31 31 32 32 30 29
30.6
1.1
3.5
3
2.791
-
37/159
31 32 33 32 32 33 29 32 31 31
31.6
1.2
3.7
4
3.408
-
37/160
31 32 30 31 29 30 31 28 31 31
30.4
1.2
3.9
4
3.408
-
37/161
32 32 33 33 32 33 35 32 31 33
32.6
1.1
3.3
4
3.721
-
37/162
29 29 33 28 31 31 31 33 32 31
30.8
1.7
5.5
5
2.965
-
37/163
31 31 32 32 31 32 32 33 32 33
31.9
0.7
2.3
2
2.711
-
37/164
33 32 32 31 32 31 33 31 31 33
31.9
0.9
2.7
2
2.284
-
37/165
31 33 31 33 33 32 33 33 35 33
32.7
1.2
3.5
4
3.450
-
37/166
32 33 31 32 33 35 32 33 33 31
32.5
1.2
3.6
4
3.394
-
37/167
33 30 33 34 33 35 33 34 32 33
33.0
1.3
4.0
5
3.750
-
37/168
33 33 35 34 34 35 33 35 36 35
34.3
1.1
3.1
3
2.832
-
37/169
34 36 36 37 36 33 33 36 34 36
35.1
1.4
4.1
4
2.760
-
37/170
35 33 36 35 36 35 37 38 34 38
35.7
1.6
4.6
5
3.056
-
37/171
37 38 36 37 35 35 35 38 37 36
36.4
1.2
3.2
3
2.556
-
37/172
36 35 36 35 33 34 38 34 34 37
35.2
1.5
4.4
5
3.227
-
37/173
35 35 35 37 35 35 36 34 37 38
35.7
1.3
3.5
4
3.196
-
37/174
36 35 36 35 37 37 36 35 35 36
35.8
0.8
2.2
2
2.535
-
37/175
35 37 35 34 33 35 36 32 35 34
34.6
1.4
4.1
5
3.497
-
37/176
35 35 33 35 32 34 35 36 33 32
34.0
1.4
4.2
4
2.828
-
37/177
35 35 34 36 34 33 34 35 36 35
34.7
0.9
2.7
3
3.162
-
37/178
35 34 34 32 31 33 33 31 31 34
32.8
1.5
4.5
4
2.711
-
37/179
34 35 35 32 36 35 34 34 36 35
34.6
1.2
3.4
4
3.408
-
37/180
36 36 34 33 35 35 35 35 34 36
34.9
1.0
2.8
3
3.017
-
37/181
37 38 33 33 35 35 37 35 38 39
36.0
2.1
5.9
6
2.846
-
37/182
39 37 37 35 37 36 35 36 38 36
36.6
1.3
3.5
4
3.162
-
37/183
36 37 38 35 35 37 39 38 36 38
36.9
1.4
3.7
4
2.919
-
37/184
37 36 37 38 38 37 36 37 36 37
36.9
0.7
2.0
2
2.711
-
37/185
35 37 39 40 39 38 35 37 36 37
37.3
1.7
4.6
5
2.936
-
37/186
38 37 38 37 37 36 40 34 36 38
37.1
1.6
4.3
6
3.761
-
37/187
35 37 36 39 37 39 35 35 38 36
36.7
1.6
4.3
4
2.553
-
37/188
38 36 37 37 34 35 35 38 37 36
36.3
1.3
3.7
4
2.991
-
37/189
38 39 38 39 38 35 35 41 40 39
38.2
1.9
5.1
6
3.105
-
37/190
35 36 38 36 36 38 36 35 36 38
36.4
1.2
3.2
3
2.556
-
37/191
39 36 37 37 38 36 37 36 36 36
36.8
1.0
2.8
3
2.905
-
37/192
35 34 37 35 35 37 36 35 37 38
35.9
1.3
3.6
4
3.109
-
Test area
R1
37/140
37/141
R2
R3
R4
R5
R6
R7
R8
R9
R10
A135
Rm
sR
VR, %
rR
θR
fcm, MPa
36 39 38 38 39 39 38 36 36 37
37.6
1.3
3.4
3
2.372
-
36 34 36 36 35 35 35 34 36 35
35.2
0.8
2.2
2
2.535
-
37/195
37 37 36 36 36 35 37 37 36 35
36.2
0.8
2.2
2
2.535
-
37/196
36 37 38 34 36 35 35 35 38 36
36.0
1.3
3.7
4
3.000
-
37/197
37 35 38 38 35 37 37 38 36 37
36.8
1.1
3.1
3
2.642
-
37/198
35 37 35 38 35 35 36 38 38 37
36.4
1.3
3.7
3
2.222
-
37/199
36 37 35 35 36 38 36 35 35 37
36.0
1.1
2.9
3
2.846
-
37/200
37 37 38 35 36 37 35 36 38 37
36.6
1.1
2.9
3
2.791
-
37/201
35 34 34 35 33 35 34 35 34 36
34.5
0.8
2.5
3
3.530
-
37/202
32 30 31 32 34 31 34 33 32 33
32.2
1.3
4.1
4
3.038
-
37/203
33 32 33 32 33 32 31 33 33 32
32.4
0.7
2.2
2
2.860
-
37/204
35 32 32 32 32 32 32 34 31 30
32.2
1.4
4.3
5
3.575
-
37/205
32 33 30 30 30 31 30 33 33 34
31.6
1.6
5.0
4
2.535
-
37/206
37 35 36 36 37 34 34 32 33 34
34.8
1.7
4.8
5
2.965
-
37/207
32 33 34 35 37 34 34 33 34 36
34.2
1.5
4.3
5
3.388
-
37/208
34 34 34 32 33 32 32 30 31 31
32.3
1.4
4.4
4
2.821
-
37/209
34 35 34 35 33 32 33 33 33 34
33.6
1.0
2.9
3
3.105
-
37/210
30 31 33 31 33 33 34 34 33 34
32.6
1.4
4.4
4
2.798
-
37/211
32 34 33 32 33 33 34 34 34 34
33.3
0.8
2.5
2
2.429
-
37/212
31 30 30 28 29 27 30 28 31 32
29.6
1.6
5.3
5
3.169
-
37/213
32 33 32 33 31 32 33 33 30 33
32.2
1.0
3.2
3
2.905
-
37/214
33 31 32 32 33 32 31 32 32 33
32.1
0.7
2.3
2
2.711
-
37/215
31 32 31 30 32 30 32 32 33 32
31.5
1.0
3.1
3
3.087
-
37/216
32 32 32 32 30 31 30 33 33 33
31.8
1.1
3.6
3
2.642
-
37/217
32 33 34 32 31 32 32 29 31 33
31.9
1.4
4.3
5
3.649
-
37/218
32 31 31 30 29 31 33 31 31 29
30.8
1.2
4.0
4
3.254
-
37/219
33 31 31 29 29 31 31 30 33 30
30.8
1.4
4.5
4
2.860
-
37/220
31 31 32 29 29 33 32 30 30 31
30.8
1.3
4.3
4
3.038
-
37/221
32 32 32 31 32 32 33 31 32 33
32.0
0.7
2.1
2
3.000
-
37/222
32 31 29 30 28 31 30 31 31 30
30.3
1.2
3.8
4
3.450
-
38/1
39 37 36 38 36 36 37 38 37 38
37.2
1.0
2.8
3
2.905
-
38/2
40 40 38 37 39 38 40 36 38 36
38.2
1.5
4.1
4
2.582
-
38/3
40 38 39 36 37 38 36 37 38 37
37.6
1.3
3.4
4
3.162
-
38/4
39 40 38 37 36 38 38 37 36 38
37.7
1.3
3.3
4
3.196
-
38/5
36 37 38 38 38 36 38 38 37 36
37.2
0.9
2.5
2
2.176
-
38/6
38 38 38 40 39 38 37 37 36 38
37.9
1.1
2.9
4
3.635
-
38/7
36 37 39 37 38 38 37 38 36 38
37.4
1.0
2.6
3
3.105
-
38/8
36 37 39 38 37 38 36 36 38 37
37.2
1.0
2.8
3
2.905
-
38/9
37 38 38 38 36 37 38 36 38 39
37.5
1.0
2.6
3
3.087
-
38/10
36 39 38 36 37 38 36 36 35 36
36.7
1.3
3.4
4
3.196
-
38/11
42 36 36 37 36 36 37 36 37 37
37.0
1.8
4.9
6
3.286
-
38/12
37 37 37 35 36 36 37 34 35 36
36.0
1.1
2.9
3
2.846
-
38/13
38 38 35 36 37 35 37 36 38 36
36.6
1.2
3.2
3
2.556
-
38/14
37 35 38 36 38 36 36 35 36 37
36.4
1.1
3.0
3
2.791
-
38/15
36 36 38 36 39 38 36 37 36 35
36.7
1.3
3.4
4
3.196
-
38/16
35 37 36 35 37 35 37 38 38 36
36.4
1.2
3.2
3
2.556
-
38/17
36 36 37 38 37 36 36 35 37 36
36.4
0.8
2.3
3
3.558
-
38/18
38 36 36 35 36 35 37 36 37 37
36.3
0.9
2.6
3
3.162
-
38/19
35 36 38 38 36 37 36 36 38 35
36.5
1.2
3.2
3
2.546
-
38/20
35 37 36 37 37 35 36 35 36 37
36.1
0.9
2.4
2
2.284
-
38/21
38 41 43 40 40 39 41 38 39 39
39.8
1.5
3.9
5
3.227
-
38/22
39 40 40 39 39 41 38 40 39 40
39.5
0.8
2.2
3
3.530
-
Test area
R1
37/193
37/194
R2
R3
R4
R5
R6
R7
R8
R9
R10
A136
Rm
sR
VR, %
rR
θR
fcm, MPa
40 42 39 41 42 39 41 40 38 38
40.0
1.5
3.7
4
2.683
-
38 39 43 40 40 38 41 39 41 40
39.9
1.5
3.8
5
3.281
-
38/25
40 38 41 39 39 41 40 39 40 38
39.5
1.1
2.7
3
2.777
-
38/26
39 37 37 38 39 40 37 38 37 38
38.0
1.1
2.8
3
2.846
-
38/27
37 37 39 38 37 40 38 40 39 39
38.4
1.2
3.1
3
2.556
-
38/28
40 41 40 40 38 37 39 37 38 37
38.7
1.5
3.9
4
2.677
-
38/29
38 39 40 37 40 39 41 40 40 39
39.3
1.2
3.0
4
3.450
-
38/30
42 40 41 41 40 38 39 42 41 41
40.5
1.3
3.1
4
3.151
-
38/31
38 39 42 40 41 41 40 38 38 40
39.7
1.4
3.6
4
2.821
-
38/32
42 41 40 38 38 40 39 38 39 40
39.5
1.4
3.4
4
2.954
-
38/33
38 38 39 40 41 40 38 41 40 40
39.5
1.2
3.0
3
2.546
-
38/34
37 39 38 37 38 40 41 40 40 39
38.9
1.4
3.5
4
2.919
-
38/35
41 40 40 38 39 40 41 40 41 40
40.0
0.9
2.4
3
3.182
-
38/36
40 39 41 40 39 38 38 41 40 41
39.7
1.2
2.9
3
2.587
-
38/37
39 40 41 40 38 38 37 36 38 40
38.7
1.6
4.0
5
3.191
-
38/38
38 40 41 40 41 40 39 38 38 40
39.5
1.2
3.0
3
2.546
-
38/39
44 41 40 39 40 41 41 40 42 42
41.0
1.4
3.4
5
3.536
-
38/40
42 43 42 43 42 44 43 43 43 42
42.7
0.7
1.6
2
2.963
-
38/41
43 41 43 42 39 41 42 41 42 41
41.5
1.2
2.8
4
3.394
-
38/42
42 43 43 40 43 40 41 42 41 42
41.7
1.2
2.8
3
2.587
-
38/43
43 43 41 39 41 42 39 41 42 43
41.4
1.5
3.6
4
2.657
-
38/44
42 39 41 39 41 43 42 42 42 42
41.3
1.3
3.2
4
2.991
-
38/45
44 43 42 43 42 42 43 41 42 43
42.5
0.8
2.0
3
3.530
-
38/46
42 42 39 38 39 39 41 41 40 41
40.2
1.4
3.5
4
2.860
-
38/47
41 39 38 39 40 41 41 40 39 39
39.7
1.1
2.7
3
2.832
-
38/48
41 42 38 39 38 37 39 41 42 40
39.7
1.8
4.5
5
2.830
-
38/49
42 43 42 41 40 41 42 43 40 42
41.6
1.1
2.6
3
2.791
-
38/50
44 45 43 44 42 45 43 44 41 42
43.3
1.3
3.1
4
2.991
-
38/51
43 42 41 44 43 45 44 41 43 42
42.8
1.3
3.1
4
3.038
-
38/52
45 44 45 44 40 41 42 43 41 40
42.5
2.0
4.6
5
2.554
-
38/53
45 44 43 42 44 43 42 43 42 40
42.8
1.4
3.3
5
3.575
-
38/54
40 43 42 43 42 43 42 43 44 41
42.3
1.2
2.7
4
3.450
-
38/55
42 43 41 44 43 42 41 42 41 43
42.2
1.0
2.4
3
2.905
-
38/56
45 44 44 43 42 42 40 40 42 40
42.2
1.8
4.3
5
2.757
-
38/57
39 43 42 43 41 43 42 40 40 41
41.4
1.4
3.5
4
2.798
-
38/58
42 41 40 43 42 41 42 43 42 43
41.9
1.0
2.4
3
3.017
-
38/59
40 38 39 41 40 41 40 42 40 40
40.1
1.1
2.7
4
3.635
-
38/60
41 42 42 43 42 44 43 42 41 42
42.2
0.9
2.2
3
3.265
-
38/61
46 42 41 40 42 43 40 42 42 41
41.9
1.7
4.1
6
3.471
-
38/62
44 42 41 42 43 44 43 42 42 41
42.4
1.1
2.5
3
2.791
-
38/63
43 41 43 43 40 40 39 41 41 42
41.3
1.4
3.4
4
2.821
-
38/64
40 40 39 41 41 42 42 41 42 40
40.8
1.0
2.5
3
2.905
-
38/65
42 44 43 44 42 43 42 42 42 43
42.7
0.8
1.9
2
2.429
-
38/66
44 45 43 42 43 41 41 41 42 45
42.7
1.6
3.7
4
2.553
-
38/67
43 42 40 42 40 40 44 42 43 42
41.8
1.4
3.3
4
2.860
-
38/68
44 45 41 41 40 42 43 42 43 42
42.3
1.5
3.5
5
3.346
-
38/69
40 42 42 43 41 41 40 42 41 41
41.3
0.9
2.3
3
3.162
-
38/70
40 41 42 44 41 40 42 43 42 42
41.7
1.3
3.0
4
3.196
-
38/71
42 41 43 40 42 42 41 42 43 40
41.6
1.1
2.6
3
2.791
-
38/72
43 41 40 39 42 42 43 43 40 40
41.3
1.5
3.6
4
2.677
-
38/73
39 42 41 38 39 41 41 40 42 41
40.4
1.3
3.3
4
2.963
-
38/74
43 40 41 41 39 40 41 42 40 38
40.5
1.4
3.5
5
3.487
-
38/75
40 38 39 39 40 38 41 41 40 38
39.4
1.2
3.0
3
2.556
-
Test area
R1
38/23
38/24
R2
R3
R4
R5
R6
R7
R8
R9
R10
A137
Rm
sR
VR, %
rR
θR
fcm, MPa
39 39 41 38 39 40 41 40 38 39
39.4
1.1
2.7
3
2.791
-
38 37 38 39 40 41 39 38 39 37
38.6
1.3
3.3
4
3.162
-
38/78
41 40 40 38 37 39 40 38 41 40
39.4
1.3
3.4
4
2.963
-
38/79
39 37 38 39 40 39 38 39 39 40
38.8
0.9
2.4
3
3.265
-
38/80
38 37 38 40 40 41 38 38 39 40
38.9
1.3
3.3
4
3.109
-
38/81
41 38 38 37 38 40 37 38 38 40
38.5
1.4
3.5
4
2.954
-
38/82
40 38 37 37 38 38 40 37 38 38
38.1
1.1
2.9
3
2.726
-
38/83
40 43 37 36 38 37 36 37 36 36
37.6
2.3
6.0
7
3.083
-
38/84
38 37 37 38 36 39 36 38 39 39
37.7
1.2
3.1
3
2.587
-
38/85
40 41 40 39 37 37 38 40 38 40
39.0
1.4
3.6
4
2.828
-
38/86
41 39 39 38 37 38 37 40 38 39
38.6
1.3
3.3
4
3.162
-
38/87
39 37 37 36 38 36 37 38 39 38
37.5
1.1
2.9
3
2.777
-
38/88
39 37 40 38 35 37 43 38 37 37
38.1
2.2
5.7
8
3.664
-
38/89
36 39 39 40 37 38 42 40 38 38
38.7
1.7
4.4
6
3.523
-
38/90
39 39 36 36 38 36 37 36 38 36
37.1
1.3
3.5
3
2.332
-
38/91
37 37 36 35 37 38 37 36 38 36
36.7
0.9
2.6
3
3.162
-
38/92
40 39 40 37 36 38 36 36 35 39
37.6
1.8
4.9
5
2.721
-
38/93
42 40 43 42 42 41 43 40 39 44
41.6
1.6
3.8
5
3.169
-
38/94
41 41 38 42 42 40 41 43 42 41
41.1
1.4
3.3
5
3.649
-
38/95
42 40 39 39 42 41 40 42 41 42
40.8
1.2
3.0
3
2.440
-
38/96
43 40 40 40 39 41 42 40 41 40
40.6
1.2
2.9
4
3.408
-
38/97
42 42 38 38 39 40 41 40 42 40
40.2
1.5
3.9
4
2.582
-
38/98
39 41 39 42 42 40 40 42 41 39
40.5
1.3
3.1
3
2.364
-
38/99
42 42 38 40 40 41 40 39 42 42
40.6
1.4
3.5
4
2.798
-
38/100
42 41 39 40 41 41 39 43 40 42
40.8
1.3
3.2
4
3.038
-
38/101
42 43 42 41 39 42 42 43 42 40
41.6
1.3
3.0
4
3.162
-
38/102
39 39 41 41 40 42 43 42 41 42
41.0
1.3
3.3
4
3.000
-
38/103
34 37 34 39 37 36 36 37 36 36
36.2
1.5
4.1
5
3.388
-
38/104
35 34 35 37 34 36 37 35 36 37
35.6
1.2
3.3
3
2.556
-
38/105
36 38 36 35 37 38 40 38 36 37
37.1
1.4
3.9
5
3.450
-
38/106
37 36 38 35 36 36 35 34 34 35
35.6
1.3
3.6
4
3.162
-
38/107
38 40 37 36 35 37 38 36 37 34
36.8
1.7
4.6
6
3.558
-
38/108
36 35 34 35 37 36 39 37 36 35
36.0
1.4
3.9
5
3.536
-
38/109
34 37 35 35 36 37 36 38 35 36
35.9
1.2
3.3
4
3.341
-
38/110
38 40 37 36 37 38 35 35 34 36
36.6
1.8
4.9
6
3.378
-
38/111
35 37 36 38 35 34 38 35 36 35
35.9
1.4
3.8
4
2.919
-
38/112
38 37 36 36 37 36 38 36 35 34
36.3
1.3
3.4
4
3.196
-
38/113
33 34 34 36 35 33 34 36 37 34
34.6
1.3
3.9
4
2.963
-
38/114
35 36 34 35 34 36 37 36 35 35
35.3
0.9
2.7
3
3.162
-
38/115
34 37 33 36 36 35 36 34 34 36
35.1
1.3
3.7
4
3.109
-
38/116
37 34 35 34 34 36 34 35 37 33
34.9
1.4
3.9
4
2.919
-
38/117
35 35 34 33 36 35 35 36 35 34
34.8
0.9
2.6
3
3.265
-
38/118
36 34 34 37 36 37 34 36 35 35
35.4
1.2
3.3
3
2.556
-
38/119
34 37 32 38 36 37 34 36 34 35
35.3
1.8
5.2
6
3.281
-
38/120
36 36 35 35 34 34 36 37 34 35
35.2
1.0
2.9
3
2.905
-
38/121
36 37 34 36 37 36 34 35 35 34
35.4
1.2
3.3
3
2.556
-
38/122
37 34 37 35 36 37 33 36 37 34
35.6
1.5
4.2
4
2.657
-
38/123
36 36 38 36 34 34 37 38 35 35
35.9
1.4
4.0
4
2.760
-
38/124
37 35 37 34 35 37 36 35 36 36
35.8
1.0
2.9
3
2.905
-
38/125
34 38 38 34 35 37 38 38 34 35
36.1
1.9
5.1
4
2.159
-
38/126
34 36 37 36 35 36 36 36 35 36
35.7
0.8
2.3
3
3.644
-
38/127
37 34 35 36 34 35 37 36 35 34
35.3
1.2
3.3
3
2.587
-
38/128
37 34 36 35 36 37 38 37 36 36
36.2
1.1
3.1
4
3.523
-
Test area
R1
38/76
38/77
R2
R3
R4
R5
R6
R7
R8
R9
R10
A138
Rm
sR
VR, %
rR
θR
fcm, MPa
38 38 36 37 36 36 37 36 38 36
36.8
0.9
2.5
2
2.176
-
36 37 38 36 38 36 36 35 34 35
36.1
1.3
3.6
4
3.109
-
38/131
37 38 37 36 35 36 37 37 38 37
36.8
0.9
2.5
3
3.265
-
38/132
36 35 37 35 35 34 36 35 34 37
35.4
1.1
3.0
3
2.791
-
38/133
38 36 36 35 34 35 34 35 36 36
35.5
1.2
3.3
4
3.394
-
39/1
41 42 44 43 42 41 44 42 41 48
42.8
2.1
5.0
7
3.256
-
39/2
42 42 42 44 40 44 44 43 42 42
42.5
1.3
3.0
4
3.151
-
39/3
44 43 43 42 42 42 44 41 40 41
42.2
1.3
3.1
4
3.038
-
39/4
42 38 40 41 39 41 40 39 42 42
40.4
1.4
3.5
4
2.798
-
39/5
39 40 48 42 40 42 40 39 41 41
41.2
2.6
6.3
9
3.440
-
39/6
42 41 42 43 42 42 43 44 41 41
42.1
1.0
2.4
3
3.017
-
39/7
42 43 44 41 43 44 42 42 41 42
42.4
1.1
2.5
3
2.791
-
39/8
39 40 40 39 38 40 39 40 40 41
39.6
0.8
2.1
3
3.558
-
39/9
42 43 42 41 44 43 43 42 41 42
42.3
0.9
2.2
3
3.162
-
39/10
39 40 39 40 38 40 38 40 42 42
39.8
1.4
3.5
4
2.860
-
39/11
38 41 40 42 41 42 41 43 42 42
41.2
1.4
3.4
5
3.575
-
39/12
40 40 41 40 39 41 40 42 42 39
40.4
1.1
2.7
3
2.791
-
39/13
41 40 42 40 42 43 41 40 42 41
41.2
1.0
2.5
3
2.905
-
39/14
42 40 42 41 40 42 40 40 39 42
40.8
1.1
2.8
3
2.642
-
39/15
40 41 41 39 40 42 41 41 38 39
40.2
1.2
3.1
4
3.254
-
39/16
40 40 40 39 38 38 39 39 40 39
39.2
0.8
2.0
2
2.535
-
39/17
39 41 39 39 41 40 38 39 38 40
39.4
1.1
2.7
3
2.791
-
39/18
40 41 41 37 40 41 40 42 43 41
40.6
1.6
3.9
6
3.803
-
39/19
42 42 41 40 42 42 43 43 41 42
41.8
0.9
2.2
3
3.265
-
39/20
40 40 40 40 39 40 42 41 42 40
40.4
1.0
2.4
3
3.105
-
39/21
40 40 42 40 41 38 39 40 42 43
40.5
1.5
3.7
5
3.313
-
39/22
43 43 41 42 40 42 42 41 41 40
41.5
1.1
2.6
3
2.777
-
39/23
42 39 40 43 40 43 42 41 42 43
41.5
1.4
3.5
4
2.790
-
39/24
41 42 43 42 42 43 41 41 40 41
41.6
1.0
2.3
3
3.105
-
39/25
42 43 41 42 42 42 43 43 42 42
42.2
0.6
1.5
2
3.162
-
39/26
41 42 41 42 42 40 39 42 43 42
41.4
1.2
2.8
4
3.408
-
39/27
44 42 42 43 42 43 42 41 43 42
42.4
0.8
2.0
3
3.558
-
39/28
40 40 42 39 40 39 41 41 39 40
40.1
1.0
2.5
3
3.017
-
39/29
42 42 43 43 41 42 41 41 44 40
41.9
1.2
2.9
4
3.341
-
39/30
42 44 42 40 42 41 44 42 42 43
42.2
1.2
2.9
4
3.254
-
39/31
43 44 42 43 40 42 41 41 42 42
42.0
1.2
2.7
4
3.464
-
39/32
44 43 44 42 41 42 43 40 40 42
42.1
1.4
3.4
4
2.760
-
39/33
40 40 39 39 39 38 41 40 41 39
39.6
1.0
2.4
3
3.105
-
39/34
40 40 40 42 43 41 42 40 40 44
41.2
1.5
3.6
4
2.711
-
39/35
39 41 42 43 42 40 40 41 41 42
41.1
1.2
2.9
4
3.341
-
39/36
39 40 41 40 40 42 40 41 39 40
40.2
0.9
2.3
3
3.265
-
39/37
42 43 43 41 42 42 41 40 40 43
41.7
1.2
2.8
3
2.587
-
39/38
40 40 42 42 41 43 43 42 41 42
41.6
1.1
2.6
3
2.791
-
39/39
40 41 41 43 42 41 43 44 42 43
42.0
1.2
3.0
4
3.207
-
39/40
43 42 43 40 40 43 42 43 44 40
42.0
1.5
3.5
4
2.683
-
39/41
40 42 42 43 40 42 43 42 43 44
42.1
1.3
3.1
4
3.109
-
39/42
40 42 41 42 42 43 40 40 39 40
40.9
1.3
3.1
4
3.109
-
39/43
40 42 42 40 39 43 40 40 41 40
40.7
1.3
3.1
4
3.196
-
39/44
42 42 43 43 42 44 43 43 42 42
42.6
0.7
1.6
2
2.860
-
39/45
43 43 44 42 44 43 43 42 42 42
42.8
0.8
1.8
2
2.535
-
39/46
42 44 42 43 40 42 44 42 42 43
42.4
1.2
2.8
4
3.408
-
39/47
38 40 39 38 40 41 40 38 39 39
39.2
1.0
2.6
3
2.905
-
Test area
R1
38/129
38/130
R2
R3
R4
R5
R6
R7
R8
R9
R10
A139
Rm
sR
VR, %
rR
θR
fcm, MPa
42 39 40 38 39 40 42 40 41 41
40.2
1.3
3.3
4
3.038
-
40 42 39 40 40 42 41 40 42 40
40.6
1.1
2.6
3
2.791
-
39/50
42 41 39 38 42 40 42 40 42 40
40.6
1.4
3.5
4
2.798
-
39/51
38 39 32 38 40 40 40 40 38 39
38.4
2.4
6.3
8
3.315
-
39/52
39 41 40 41 42 42 43 41 40 40
40.9
1.2
2.9
4
3.341
-
39/53
40 42 38 39 42 41 38 39 40 42
40.1
1.6
4.0
4
2.508
-
39/54
38 38 40 41 42 40 40 40 40 41
40.0
1.2
3.1
4
3.207
-
39/55
38 38 39 38 39 38 37 39 39 38
38.3
0.7
1.8
2
2.963
-
39/56
38 38 39 38 39 40 40 40 40 39
39.1
0.9
2.2
2
2.284
-
39/57
38 39 38 38 39 39 39 39 38 40
38.7
0.7
1.7
2
2.963
-
39/58
39 37 37 39 38 41 40 39 39 39
38.8
1.2
3.2
4
3.254
-
39/59
38 40 40 39 39 38 42 40 41 40
39.7
1.3
3.2
4
3.196
-
39/60
39 38 41 38 38 39 38 40 39 38
38.8
1.0
2.7
3
2.905
-
39/61
39 39 41 39 38 42 41 37 43 38
39.7
1.9
4.9
6
3.082
-
39/62
38 40 40 40 41 41 39 40 38 40
39.7
1.1
2.7
3
2.832
-
39/63
42 40 41 39 40 42 43 42 40 39
40.8
1.4
3.4
4
2.860
-
39/64
39 40 42 43 42 40 41 42 40 42
41.1
1.3
3.1
4
3.109
-
39/65
42 40 41 39 40 43 42 41 40 40
40.8
1.2
3.0
4
3.254
-
39/66
42 40 40 42 42 40 39 40 40 40
40.5
1.1
2.7
3
2.777
-
39/67
41 40 42 40 39 44 43 40 42 41
41.2
1.5
3.8
5
3.227
-
39/68
43 41 40 42 41 43 43 41 41 40
41.5
1.2
2.8
3
2.546
-
39/69
39 38 40 40 37 38 40 40 42 40
39.4
1.4
3.6
5
3.497
-
39/70
40 41 42 40 42 40 39 38 41 38
40.1
1.4
3.6
4
2.760
-
39/71
41 40 40 40 39 38 41 40 40 41
40.0
0.9
2.4
3
3.182
-
39/72
40 38 42 41 39 41 42 41 43 40
40.7
1.5
3.7
5
3.346
-
39/73
38 40 41 42 42 41 43 42 41 38
40.8
1.7
4.1
5
2.965
-
39/74
38 39 40 41 41 41 41 40 39 42
40.2
1.2
3.1
4
3.254
-
39/75
41 40 39 42 40 40 40 40 39 41
40.2
0.9
2.3
3
3.265
-
39/76
39 38 41 39 39 39 38 39 38 37
38.7
1.1
2.7
4
3.776
-
39/77
38 38 39 38 38 38 38 37 38 37
37.9
0.6
1.5
2
3.523
-
39/78
39 38 39 38 38 37 41 40 37 39
38.6
1.3
3.3
4
3.162
-
39/79
40 42 39 39 42 41 41 38 42 40
40.4
1.4
3.5
4
2.798
-
39/80
38 39 40 40 38 40 39 38 42 37
39.1
1.4
3.7
5
3.450
-
39/81
39 40 39 41 42 40 40 40 41 40
40.2
0.9
2.3
3
3.265
-
39/82
38 37 42 38 40 38 38 40 38 41
39.0
1.6
4.2
5
3.062
-
39/83
38 37 37 37 38 37 36 38 36 40
37.4
1.2
3.1
4
3.408
-
39/84
37 40 37 40 40 37 38 37 37 38
38.1
1.4
3.6
3
2.189
-
39/85
39 40 39 42 39 40 42 42 40 38
40.1
1.4
3.6
4
2.760
-
39/86
38 39 38 38 40 40 41 40 39 38
39.1
1.1
2.8
3
2.726
-
39/87
41 38 39 39 38 39 38 38 37 37
38.4
1.2
3.1
4
3.408
-
39/88
37 38 39 39 40 37 37 37 39 39
38.2
1.1
3.0
3
2.642
-
39/89
39 37 38 38 40 38 38 38 39 39
38.4
0.8
2.2
3
3.558
-
39/90
40 39 39 39 38 42 38 39 39 38
39.1
1.2
3.1
4
3.341
-
39/91
40 39 40 39 38 39 40 40 38 40
39.3
0.8
2.1
2
2.429
-
39/92
40 42 37 42 43 39 41 40 39 40
40.3
1.8
4.4
6
3.396
-
39/93
40 40 39 40 39 40 38 38 38 38
39.0
0.9
2.4
2
2.121
-
39/94
39 38 39 40 39 38 38 38 39 39
38.7
0.7
1.7
2
2.963
-
39/95
39 40 39 39 40 40 41 38 40 39
39.5
0.8
2.2
3
3.530
-
39/96
36 36 40 35 35 38 34 34 35 36
35.9
1.9
5.2
6
3.238
-
39/97
36 36 35 34 34 38 36 36 38 38
36.1
1.5
4.2
4
2.625
-
39/98
38 36 38 37 38 37 40 40 36 38
37.8
1.4
3.7
4
2.860
-
39/99
36 36 38 38 40 40 38 36 38 38
37.8
1.5
3.9
4
2.711
-
39/100
36 34 35 35 40 37 35 35 34 35
35.6
1.8
5.0
6
3.378
-
Test area
R1
39/48
39/49
R2
R3
R4
R5
R6
R7
R8
R9
R10
A140
Rm
sR
VR, %
rR
θR
fcm, MPa
34 36 34 35 35 36 36 35 35 35
35.1
0.7
2.1
2
2.711
-
34 38 35 36 35 34 34 35 36 34
35.1
1.3
3.7
4
3.109
-
39/103
38 40 40 36 36 39 40 40 38 41
38.8
1.8
4.5
5
2.855
-
39/104
40 40 38 38 36 39 41 38 41 36
38.7
1.8
4.7
5
2.734
-
39/105
40 41 38 38 39 40 41 38 38 40
39.3
1.3
3.2
3
2.397
-
39/106
37 39 39 38 38 36 36 39 38 39
37.9
1.2
3.2
3
2.506
-
39/107
39 40 37 38 39 39 38 37 37 40
38.4
1.2
3.1
3
2.556
-
39/108
40 40 42 38 41 40 40 42 41 40
40.4
1.2
2.9
4
3.408
-
39/109
38 40 39 39 38 39 38 40 38 40
38.9
0.9
2.3
2
2.284
-
39/110
41 38 39 40 42 38 39 41 42 40
40.0
1.5
3.7
4
2.683
-
39/111
40 40 39 39 42 40 41 41 41 40
40.3
0.9
2.4
3
3.162
-
39/112
38 38 42 39 37 42 36 36 38 38
38.4
2.1
5.5
6
2.832
-
39/113
41 40 40 41 41 40 43 43 41 40
41.0
1.2
2.8
3
2.598
-
39/114
41 42 37 40 40 41 42 41 40 39
40.3
1.5
3.7
5
3.346
-
39/115
40 41 41 39 38 41 40 39 41 40
40.0
1.1
2.6
3
2.846
-
39/116
39 38 40 40 38 39 40 40 38 37
38.9
1.1
2.8
3
2.726
-
39/117
40 39 39 40 48 40 40 38 38 40
40.2
2.9
7.1
10
3.497
-
39/118
37 39 36 36 37 37 37 38 36 36
36.9
1.0
2.7
3
3.017
-
39/119
37 39 40 37 36 38 37 37 37 37
37.5
1.2
3.1
4
3.394
-
39/120
39 40 41 39 39 38 40 38 38 39
39.1
1.0
2.5
3
3.017
-
39/121
39 41 41 39 41 42 40 42 39 39
40.3
1.3
3.1
3
2.397
-
39/122
39 39 40 41 39 38 37 41 41 40
39.5
1.4
3.4
4
2.954
-
39/123
39 39 38 39 38 40 37 38 37 37
38.2
1.0
2.7
3
2.905
-
39/124
37 37 36 35 38 36 36 36 36 35
36.2
0.9
2.5
3
3.265
-
39/125
36 37 36 36 34 36 37 33 34 36
35.5
1.4
3.8
4
2.954
-
39/126
35 36 35 36 35 36 34 35 36 35
35.3
0.7
1.9
2
2.963
-
39/127
36 35 37 36 37 34 35 34 35 36
35.5
1.1
3.0
3
2.777
-
39/128
34 36 37 35 38 37 37 38 36 38
36.6
1.3
3.7
4
2.963
-
39/129
36 32 34 35 33 34 34 35 34 37
34.4
1.4
4.2
5
3.497
-
39/130
37 35 33 32 34 35 35 33 35 35
34.4
1.4
4.2
5
3.497
-
39/131
37 35 34 34 37 38 37 35 35 35
35.7
1.4
4.0
4
2.821
-
39/132
36 37 34 34 36 34 36 34 33 36
35.0
1.3
3.8
4
3.000
-
39/133
34 36 34 38 35 36 36 36 35 34
35.4
1.3
3.6
4
3.162
-
39/134
35 34 34 35 36 33 33 35 34 36
34.5
1.1
3.1
3
2.777
-
39/135
34 35 35 36 34 37 38 35 37 34
35.5
1.4
4.0
4
2.790
-
39/136
36 36 33 35 36 32 36 35 33 35
34.7
1.5
4.3
4
2.677
-
39/137
37 37 35 37 37 37 35 36 37 38
36.6
1.0
2.6
3
3.105
-
39/138
39 38 39 40 40 37 37 37 37 40
38.4
1.3
3.5
3
2.222
-
39/139
39 38 37 41 41 42 37 41 39 37
39.2
1.9
4.9
5
2.588
-
39/140
37 38 36 38 37 39 39 35 37 36
37.2
1.3
3.5
4
3.038
-
39/141
36 34 33 35 35 34 35 33 34 34
34.3
0.9
2.8
3
3.162
-
39/142
33 31 34 36 36 34 35 36 35 33
34.3
1.6
4.8
5
3.056
-
39/143
34 36 37 35 37 36 37 37 36 37
36.2
1.0
2.9
3
2.905
-
39/144
35 38 37 37 36 35 35 35 36 37
36.1
1.1
3.0
3
2.726
-
39/145
35 36 36 37 35 35 36 35 36 35
35.6
0.7
2.0
2
2.860
-
39/146
35 35 37 36 36 37 36 36 37 37
36.2
0.8
2.2
2
2.535
-
39/147
38 39 38 40 38 37 39 40 38 38
38.5
1.0
2.5
3
3.087
-
39/148
38 38 42 40 38 37 38 40 38 39
38.8
1.5
3.8
5
3.388
-
39/149
40 38 38 39 39 41 38 39 39 39
39.0
0.9
2.4
3
3.182
-
39/150
41 37 40 39 40 41 42 37 38 39
39.4
1.7
4.3
5
2.919
-
39/151
38 37 38 40 38 39 39 38 39 38
38.4
0.8
2.2
3
3.558
-
39/152
38 38 40 39 40 41 40 38 39 40
39.3
1.1
2.7
3
2.832
-
39/153
38 39 40 41 41 40 38 42 39 40
39.8
1.3
3.3
4
3.038
-
Test area
R1
39/101
39/102
R2
R3
R4
R5
R6
R7
R8
R9
R10
A141
Rm
sR
VR, %
rR
θR
fcm, MPa
40 39 41 39 40 40 38 38 39 38
39.2
1.0
2.6
3
2.905
-
38 39 40 39 39 40 40 38 39 39
39.1
0.7
1.9
2
2.711
-
39/156
38 39 38 40 41 40 39 41 39 40
39.5
1.1
2.7
3
2.777
-
39/157
38 40 37 40 40 41 38 39 38 38
38.9
1.3
3.3
4
3.109
-
39/158
40 40 40 32 41 40 38 40 40 39
39.0
2.6
6.6
9
3.486
-
39/159
41 41 40 41 37 41 40 38 39 39
39.7
1.4
3.6
4
2.821
-
39/160
40 40 40 42 41 42 39 38 39 41
40.2
1.3
3.3
4
3.038
-
39/161
42 42 41 41 40 40 42 40 40 39
40.7
1.1
2.6
3
2.832
-
39/162
41 40 40 40 39 41 38 38 40 40
39.7
1.1
2.7
3
2.832
-
39/163
42 40 40 38 42 42 42 40 40 40
40.6
1.3
3.3
4
2.963
-
39/164
41 42 41 41 39 38 38 40 38 40
39.8
1.5
3.7
4
2.711
-
39/165
38 41 39 39 40 40 38 40 39 39
39.3
0.9
2.4
3
3.162
-
39/166
38 38 38 39 41 39 38 38 39 40
38.8
1.0
2.7
3
2.905
-
39/167
38 39 39 40 39 39 38 41 41 40
39.4
1.1
2.7
3
2.791
-
39/168
38 40 38 37 39 41 41 40 40 39
39.3
1.3
3.4
4
2.991
-
39/169
40 40 38 39 41 40 41 38 39 40
39.6
1.1
2.7
3
2.791
-
39/170
40 40 38 39 38 38 36 38 38 38
38.3
1.2
3.0
4
3.450
-
39/171
40 40 40 41 40 41 38 39 38 40
39.7
1.1
2.7
3
2.832
-
39/172
39 41 40 38 40 40 38 38 38 39
39.1
1.1
2.8
3
2.726
-
39/173
37 37 38 37 36 39 38 38 37 39
37.6
1.0
2.6
3
3.105
-
39/174
40 39 37 38 38 42 39 38 40 39
39.0
1.4
3.6
5
3.536
-
39/175
49 41 37 39 39 38 40 38 38 42
40.1
3.5
8.7
12
3.450
-
39/176
40 38 39 40 38 39 38 39 40 41
39.2
1.0
2.6
3
2.905
-
39/177
41 42 38 39 38 38 40 41 41 40
39.8
1.5
3.7
4
2.711
-
39/178
38 38 37 39 39 37 39 39 40 40
38.6
1.1
2.8
3
2.791
-
39/179
41 38 39 39 40 38 40 39 39 39
39.2
0.9
2.3
3
3.265
-
39/180
42 39 40 39 40 38 39 39 41 37
39.4
1.4
3.6
5
3.497
-
39/181
36 33 36 35 36 35 35 36 36 37
35.5
1.1
3.0
4
3.703
-
39/182
37 38 39 38 37 38 39 39 37 37
37.9
0.9
2.3
2
2.284
-
39/183
36 39 39 38 37 36 36 37 38 36
37.2
1.2
3.3
3
2.440
-
39/184
35 36 36 35 36 35 35 36 34 37
35.5
0.8
2.4
3
3.530
-
39/185
35 33 36 35 37 35 35 33 36 35
35.0
1.2
3.6
4
3.207
-
39/186
34 35 35 34 35 37 36 35 36 35
35.2
0.9
2.6
3
3.265
-
39/187
38 39 38 39 39 37 38 39 39 40
38.6
0.8
2.2
3
3.558
-
39/188
38 38 38 36 37 40 37 39 37 36
37.6
1.3
3.4
4
3.162
-
39/189
39 38 36 36 34 34 37 35 37 36
36.2
1.6
4.5
5
3.088
-
39/190
37 36 37 35 39 38 36 38 37 36
36.9
1.2
3.2
4
3.341
-
39/191
35 36 35 35 37 36 35 35 37 37
35.8
0.9
2.6
2
2.176
-
39/192
30 30 30 29 33 31 34 30 34 35
31.6
2.2
6.9
6
2.764
-
39/193
32 31 30 31 31 30 31 30 31 31
30.8
0.6
2.1
2
3.162
-
39/194
33 33 32 32 30 33 31 30 31 32
31.7
1.2
3.7
3
2.587
-
39/195
32 33 32 30 32 32 31 32 33 32
31.9
0.9
2.7
3
3.426
-
39/196
33 34 34 34 32 34 33 34 34 34
33.6
0.7
2.1
2
2.860
-
39/197
30 30 30 31 29 31 25 29 29 32
29.6
1.9
6.4
7
3.689
-
39/198
30 32 31 30 29 31 32 32 32 29
30.8
1.2
4.0
3
2.440
-
39/199
32 31 33 33 31 32 33 32 31 31
31.9
0.9
2.7
2
2.284
-
39/200
30 30 33 32 30 31 31 31 33 32
31.3
1.2
3.7
3
2.587
-
39/201
33 34 34 34 34 34 35 35 36 36
34.5
1.0
2.8
3
3.087
-
39/202
32 35 36 37 38 36 36 37 36 37
36.0
1.6
4.5
6
3.674
-
39/203
34 35 35 34 36 34 33 36 32 33
34.2
1.3
3.8
4
3.038
-
39/204
34 31 34 34 36 33 34 33 34 34
33.7
1.3
3.7
5
3.995
-
39/205
33 34 32 33 34 33 33 34 33 33
33.2
0.6
1.9
2
3.162
-
39/206
34 34 34 33 33 32 36 33 33 36
33.8
1.3
3.9
4
3.038
-
Test area
R1
39/154
39/155
R2
R3
R4
R5
R6
R7
R8
R9
R10
A142
Rm
sR
VR, %
rR
θR
fcm, MPa
34 33 34 35 33 35 35 35 34 33
34.1
0.9
2.6
2
2.284
-
34 34 31 32 31 33 33 35 35 35
33.3
1.6
4.7
4
2.553
-
39/209
34 35 37 36 32 33 34 34 33 34
34.2
1.5
4.3
5
3.388
-
39/210
34 35 36 36 32 33 32 35 32 33
33.8
1.6
4.8
4
2.470
-
39/211
32 33 32 31 32 33 31 33 32 33
32.2
0.8
2.4
2
2.535
-
39/212
34 34 34 32 33 34 33 33 34 33
33.4
0.7
2.1
2
2.860
-
39/213
34 33 33 33 33 35 33 34 34 33
33.5
0.7
2.1
2
2.828
-
39/214
35 36 34 35 37 36 36 37 34 34
35.4
1.2
3.3
3
2.556
-
39/215
39 38 37 38 39 38 37 37 37 37
37.7
0.8
2.2
2
2.429
-
39/216
36 35 35 37 36 36 36 37 38 36
36.2
0.9
2.5
3
3.265
-
39/217
37 36 36 34 36 37 36 35 37 35
35.9
1.0
2.8
3
3.017
-
39/218
37 37 37 36 35 35 36 37 36 38
36.4
1.0
2.7
3
3.105
-
39/219
37 35 35 36 38 38 36 36 38 36
36.5
1.2
3.2
3
2.546
-
39/220
38 38 38 36 35 38 37 36 36 35
36.7
1.3
3.4
3
2.397
-
39/221
36 36 36 37 37 38 36 35 35 38
36.4
1.1
3.0
3
2.791
-
39/222
38 39 39 37 38 37 37 38 37 37
37.7
0.8
2.2
2
2.429
-
39/223
37 38 35 36 37 36 38 37 36 35
36.5
1.1
3.0
3
2.777
-
40/1
36 35 36 38 38 40 36 40 38 40
37.7
1.9
5.0
5
2.648
-
40/2
40 38 37 36 36 36 37 37 36 37
37.0
1.2
3.4
4
3.207
-
40/3
36 38 36 36 38 35 37 38 38 39
37.1
1.3
3.5
4
3.109
-
40/4
36 38 38 35 38 38 37 37 39 38
37.4
1.2
3.1
4
3.408
-
40/5
37 36 36 36 35 36 34 37 38 36
36.1
1.1
3.0
4
3.635
-
40/6
40 40 38 38 37 38 40 37 38 39
38.5
1.2
3.1
3
2.546
-
40/7
38 40 39 40 41 39 39 40 38 37
39.1
1.2
3.1
4
3.341
-
40/8
38 36 41 38 36 36 37 41 37 38
37.8
1.9
5.0
5
2.668
-
40/9
35 36 37 36 36 36 38 37 38 36
36.5
1.0
2.7
3
3.087
-
40/10
37 36 35 36 36 38 35 37 36 35
36.1
1.0
2.8
3
3.017
-
40/11
37 37 36 36 36 37 36 37 35 35
36.2
0.8
2.2
2
2.535
-
40/12
38 39 39 40 39 40 40 38 38 39
39.0
0.8
2.1
2
2.449
-
40/13
37 37 36 36 38 38 40 39 38 38
37.7
1.3
3.3
4
3.196
-
40/14
39 37 38 36 37 37 38 37 39 38
37.6
1.0
2.6
3
3.105
-
40/15
36 37 37 38 38 36 39 38 38 37
37.4
1.0
2.6
3
3.105
-
40/16
38 39 38 40 40 38 38 37 37 38
38.3
1.1
2.8
3
2.832
-
40/17
40 36 39 36 36 37 36 36 37 39
37.2
1.5
4.2
4
2.582
-
40/18
39 40 36 38 37 38 36 36 38 38
37.6
1.3
3.6
4
2.963
-
40/19
36 40 36 38 38 38 36 38 38 38
37.6
1.3
3.4
4
3.162
-
40/20
36 37 38 37 37 38 36 34 39 39
37.1
1.5
4.1
5
3.281
-
40/21
38 40 38 39 39 37 36 36 38 36
37.7
1.4
3.8
4
2.821
-
40/22
39 37 37 36 34 36 35 37 36 38
36.5
1.4
3.9
5
3.487
-
40/23
36 40 37 37 39 36 40 40 39 39
38.3
1.6
4.3
4
2.444
-
40/24
36 37 36 41 36 39 40 40 39 37
38.1
1.9
5.0
5
2.615
-
40/25
38 39 39 38 38 40 41 40 38 39
39.0
1.1
2.7
3
2.846
-
40/26
40 39 41 38 38 38 42 39 38 36
38.9
1.7
4.4
6
3.471
-
40/27
36 37 38 39 38 37 38 37 39 36
37.5
1.1
2.9
3
2.777
-
40/28
40 42 39 38 40 39 40 37 38 40
39.3
1.4
3.6
5
3.526
-
40/29
37 38 38 37 39 40 39 36 36 36
37.6
1.4
3.8
4
2.798
-
40/30
38 36 37 36 36 37 38 37 36 38
36.9
0.9
2.4
2
2.284
-
40/31
38 37 40 38 38 40 41 40 39 40
39.1
1.3
3.3
4
3.109
-
40/32
38 37 35 38 39 38 40 38 40 36
37.9
1.6
4.2
5
3.135
-
40/33
39 38 39 39 36 36 37 38 39 40
38.1
1.4
3.6
4
2.919
-
40/34
40 40 37 37 41 41 37 38 34 38
38.3
2.2
5.8
7
3.162
-
40/35
40 41 36 41 38 40 40 38 37 38
38.9
1.7
4.4
5
2.892
-
Test area
R1
39/207
39/208
R2
R3
R4
R5
R6
R7
R8
R9
R10
A143
Rm
sR
VR, %
rR
θR
fcm, MPa
38 38 40 37 37 38 38 37 36 38
37.7
1.1
2.8
4
3.776
-
38 38 37 39 37 36 41 38 36 41
38.1
1.8
4.7
5
2.790
-
40/38
36 37 35 39 37 37 39 36 39 37
37.2
1.4
3.8
4
2.860
-
40/39
37 37 38 36 38 37 36 38 38 36
37.1
0.9
2.4
2
2.284
-
40/40
42 40 36 38 38 36 39 38 36 37
38.0
1.9
5.1
6
3.087
-
40/41
36 34 36 35 36 36 37 37 37 36
36.0
0.9
2.6
3
3.182
-
40/42
37 39 37 37 36 38 38 38 37 38
37.5
0.8
2.3
3
3.530
-
40/43
40 41 39 38 37 37 41 40 38 40
39.1
1.5
3.9
4
2.625
-
40/44
41 37 36 41 37 40 42 38 40 38
39.0
2.1
5.3
6
2.920
-
40/45
36 39 38 40 37 37 38 39 38 38
38.0
1.2
3.0
4
3.464
-
40/46
37 36 37 40 38 38 40 36 38 37
37.7
1.4
3.8
4
2.821
-
40/47
37 39 40 37 37 38 34 37 38 38
37.5
1.6
4.2
6
3.795
-
40/48
38 37 38 38 39 42 36 39 37 38
38.2
1.6
4.2
6
3.705
-
40/49
41 38 38 37 37 38 37 36 34 36
37.2
1.8
4.9
7
3.860
-
40/50
37 37 38 39 38 38 37 38 39 40
38.1
1.0
2.6
3
3.017
-
40/51
38 40 42 41 40 40 38 39 43 42
40.3
1.7
4.2
5
2.936
-
40/52
42 37 37 38 41 38 40 42 42 39
39.6
2.1
5.2
5
2.421
-
40/53
41 39 42 39 38 40 38 39 41 40
39.7
1.3
3.4
4
2.991
-
40/54
42 38 41 39 38 38 42 40 41 42
40.1
1.7
4.3
4
2.314
-
40/55
42 41 38 39 41 37 39 42 41 42
40.2
1.8
4.5
5
2.757
-
40/56
40 41 42 40 36 38 39 41 41 41
39.9
1.8
4.5
6
3.348
-
40/57
39 40 39 37 41 39 38 36 36 36
38.1
1.8
4.7
5
2.790
-
40/58
37 37 38 39 40 37 38 36 34 39
37.5
1.7
4.6
6
3.497
-
40/59
39 37 36 41 37 38 37 36 39 39
37.9
1.6
4.2
5
3.135
-
40/60
40 37 40 40 40 38 38 37 40 38
38.8
1.3
3.4
3
2.279
-
40/61
38 37 36 38 39 39 38 38 37 39
37.9
1.0
2.6
3
3.017
-
40/62
40 40 38 37 39 40 38 38 37 39
38.6
1.2
3.0
3
2.556
-
40/63
40 38 38 39 39 39 36 38 37 41
38.5
1.4
3.7
5
3.487
-
40/64
36 37 35 39 36 36 36 37 35 39
36.6
1.4
3.9
4
2.798
-
40/65
38 36 37 36 38 40 41 38 36 38
37.8
1.7
4.5
5
2.965
-
40/66
39 38 40 40 40 41 40 39 38 39
39.4
1.0
2.5
3
3.105
-
40/67
38 38 36 39 42 41 40 39 38 40
39.1
1.7
4.4
6
3.471
-
40/68
38 36 34 39 40 39 39 36 38 36
37.5
1.9
5.1
6
3.157
-
40/69
38 38 37 38 34 37 36 37 33 37
36.5
1.7
4.7
5
2.914
-
40/70
36 35 36 38 38 38 37 38 37 36
36.9
1.1
3.0
3
2.726
-
40/71
38 39 36 37 38 38 38 37 37 37
37.5
0.8
2.3
3
3.530
-
40/72
36 36 35 35 37 38 37 37 38 36
36.5
1.1
3.0
3
2.777
-
40/73
38 36 38 37 37 37 36 35 38 37
36.9
1.0
2.7
3
3.017
-
40/74
38 38 38 40 38 41 40 38 39 39
38.9
1.1
2.8
3
2.726
-
40/75
39 37 38 39 36 39 35 38 38 36
37.5
1.4
3.8
4
2.790
-
40/76
38 37 36 36 38 38 37 36 38 36
37.0
0.9
2.5
2
2.121
-
40/77
36 37 37 36 38 36 36 37 36 36
36.5
0.7
1.9
2
2.828
-
40/78
36 36 38 38 38 37 39 36 35 36
36.9
1.3
3.5
4
3.109
-
40/79
36 36 38 38 38 40 37 40 36 40
37.9
1.7
4.4
4
2.405
-
40/80
36 38 38 39 36 37 38 36 34 35
36.7
1.6
4.3
5
3.191
-
40/81
35 36 36 38 37 35 37 35 35 36
36.0
1.1
2.9
3
2.846
-
40/82
35 37 37 37 38 36 39 38 37 36
37.0
1.2
3.1
4
3.464
-
40/83
38 37 36 36 35 38 38 39 38 39
37.4
1.3
3.6
4
2.963
-
40/84
35 36 39 38 38 36 36 36 37 38
36.9
1.3
3.5
4
3.109
-
40/85
38 36 35 35 38 36 39 35 36 36
36.4
1.4
3.9
4
2.798
-
40/86
37 38 38 38 37 35 37 35 35 38
36.8
1.3
3.6
3
2.279
-
40/87
38 37 35 38 37 37 37 36 35 38
36.8
1.1
3.1
3
2.642
-
40/88
37 38 37 39 34 37 36 36 38 37
36.9
1.4
3.7
5
3.649
-
Test area
R1
40/36
40/37
R2
R3
R4
R5
R6
R7
R8
R9
R10
A144
Rm
sR
VR, %
rR
θR
fcm, MPa
38 35 35 36 38 36 35 35 37 38
36.3
1.3
3.7
3
2.243
-
35 38 36 39 38 38 40 37 36 37
37.4
1.5
4.0
5
3.321
-
40/91
40 36 38 40 38 36 36 39 36 36
37.5
1.7
4.6
4
2.331
-
40/92
36 38 39 40 36 41 38 38 36 36
37.8
1.8
4.8
5
2.757
-
40/93
37 36 38 34 35 37 36 36 38 36
36.3
1.3
3.4
4
3.196
-
40/94
38 37 36 35 37 36 35 38 37 38
36.7
1.2
3.2
3
2.587
-
40/95
38 36 38 38 36 37 36 36 34 37
36.6
1.3
3.5
4
3.162
-
40/96
35 37 38 36 35 37 36 38 36 36
36.4
1.1
3.0
3
2.791
-
40/97
35 36 38 37 36 36 34 36 36 38
36.2
1.2
3.4
4
3.254
-
40/98
38 36 38 38 37 36 36 35 37 38
36.9
1.1
3.0
3
2.726
-
40/99
38 37 36 36 36 37 37 36 36 36
36.5
0.7
1.9
2
2.828
-
40/100
36 38 38 37 37 39 38 37 36 39
37.5
1.1
2.9
3
2.777
-
40/101
39 39 40 37 38 36 36 36 35 37
37.3
1.6
4.4
5
3.056
-
40/102
37 37 36 36 38 38 40 40 36 38
37.6
1.5
4.0
4
2.657
-
40/103
38 40 40 37 38 38 37 35 38 38
37.9
1.4
3.8
5
3.450
-
40/104
37 37 37 36 36 38 38 38 39 38
37.4
1.0
2.6
3
3.105
-
40/105
37 40 37 39 37 39 38 38 38 38
38.1
1.0
2.6
3
3.017
-
40/106
39 38 37 37 39 39 37 36 38 38
37.8
1.0
2.7
3
2.905
-
40/107
36 37 40 40 38 39 37 38 39 39
38.3
1.3
3.5
4
2.991
-
40/108
37 39 38 39 38 38 36 37 36 38
37.6
1.1
2.9
3
2.791
-
40/109
38 36 36 40 37 38 36 40 36 37
37.4
1.6
4.2
4
2.535
-
40/110
38 40 36 36 38 36 39 38 39 38
37.8
1.4
3.7
4
2.860
-
40/111
37 38 38 37 36 35 36 38 38 36
36.9
1.1
3.0
3
2.726
-
40/112
37 37 39 39 38 40 38 36 37 36
37.7
1.3
3.5
4
2.991
-
40/113
37 38 38 38 39 37 36 39 38 38
37.8
0.9
2.4
3
3.265
-
40/114
40 40 39 38 39 39 40 40 39 38
39.2
0.8
2.0
2
2.535
-
40/115
41 40 39 38 40 40 38 36 38 38
38.8
1.5
3.8
5
3.388
-
40/116
36 37 36 37 37 38 38 40 40 41
38.0
1.8
4.6
5
2.835
-
40/117
40 39 38 38 37 37 39 39 36 37
38.0
1.2
3.3
4
3.207
-
40/118
38 38 36 36 37 36 36 38 39 39
37.3
1.3
3.4
3
2.397
-
40/119
39 40 40 40 39 41 40 41 40 39
39.9
0.7
1.8
2
2.711
-
40/120
36 44 40 41 40 36 37 39 38 38
38.9
2.5
6.3
8
3.239
-
40/121
40 42 38 40 39 37 38 37 38 37
38.6
1.6
4.3
5
3.037
-
40/122
34 37 37 38 38 36 35 35 36 36
36.2
1.3
3.6
4
3.038
-
40/123
38 38 37 37 38 36 37 36 36 35
36.8
1.0
2.8
3
2.905
-
40/124
35 37 36 36 37 39 38 34 38 40
37.0
1.8
4.9
6
3.286
-
40/125
41 40 38 40 36 38 40 36 39 35
38.3
2.1
5.4
6
2.916
-
40/126
37 37 36 37 37 36 38 35 36 37
36.6
0.8
2.3
3
3.558
-
40/127
36 38 34 38 36 38 36 38 36 37
36.7
1.3
3.6
4
2.991
-
40/128
35 34 35 36 38 36 36 34 33 35
35.2
1.4
4.0
5
3.575
-
40/129
35 38 37 37 37 36 38 38 36 37
36.9
1.0
2.7
3
3.017
-
40/130
35 38 37 37 37 36 38 38 36 37
36.9
1.0
2.7
3
3.017
-
40/131
36 38 40 40 38 36 37 37 40 36
37.8
1.7
4.5
4
2.372
-
40/132
36 39 36 38 38 40 40 40 38 37
38.2
1.5
4.1
4
2.582
-
40/133
32 32 34 33 31 32 33 32 34 35
32.8
1.2
3.7
4
3.254
-
40/134
32 32 31 31 33 31 32 33 34 32
32.1
1.0
3.1
3
3.017
-
40/135
34 33 32 32 34 34 33 34 33 33
33.2
0.8
2.4
2
2.535
-
40/136
31 34 33 32 30 31 32 34 32 32
32.1
1.3
4.0
4
3.109
-
40/137
31 32 30 32 34 29 32 34 33 31
31.8
1.6
5.1
5
3.088
-
40/138
32 34 33 34 35 32 32 34 33 31
33.0
1.2
3.8
4
3.207
-
40/139
34 32 34 35 34 33 33 35 33 33
33.6
1.0
2.9
3
3.105
-
40/140
33 33 31 33 31 33 32 32 31 31
32.0
0.9
2.9
2
2.121
-
40/141
34 32 31 32 34 34 33 32 31 34
32.7
1.3
3.8
3
2.397
-
Test area
R1
40/89
40/90
R2
R3
R4
R5
R6
R7
R8
R9
R10
A145
Rm
sR
VR, %
rR
θR
fcm, MPa
33 32 33 34 33 32 29 31 34 33
32.4
1.5
4.6
5
3.321
-
35 34 32 33 31 34 35 33 33 32
33.2
1.3
4.0
4
3.038
-
40/144
37 34 38 37 39 36 37 37 38 35
36.8
1.5
4.0
5
3.388
-
40/145
39 35 39 35 34 33 34 38 37 35
35.9
2.2
6.1
6
2.748
-
40/146
37 34 37 40 37 39 39 39 37 39
37.8
1.8
4.6
6
3.426
-
40/147
36 37 39 39 38 37 38 40 36 38
37.8
1.3
3.5
4
3.038
-
40/148
35 35 35 36 39 37 37 35 36 37
36.2
1.3
3.6
4
3.038
-
40/149
37 37 36 34 39 35 38 39 39 40
37.4
2.0
5.2
6
3.069
-
40/150
35 39 36 38 36 36 37 40 36 39
37.2
1.7
4.5
5
2.965
-
40/151
36 36 35 36 37 37 36 35 36 36
36.0
0.7
1.9
2
3.000
-
40/152
40 39 39 40 36 36 40 40 39 41
39.0
1.7
4.4
5
2.942
-
40/153
39 40 39 39 39 38 38 37 37 39
38.5
1.0
2.5
3
3.087
-
40/154
41 36 37 39 35 39 38 36 35 33
36.9
2.4
6.4
8
3.364
-
40/155
38 37 37 36 40 40 40 39 40 37
38.4
1.6
4.1
4
2.535
-
40/156
37 36 35 35 34 38 36 36 34 40
36.1
1.9
5.1
6
3.238
-
40/157
36 39 37 37 40 40 37 36 38 40
38.0
1.6
4.3
4
2.449
-
40/158
36 35 35 38 35 36 35 36 39 38
36.3
1.5
4.1
4
2.677
-
40/159
35 36 35 36 39 35 36 35 35 35
35.7
1.3
3.5
4
3.196
-
40/160
39 41 42 42 41 38 38 40 39 40
40.0
1.5
3.7
4
2.683
-
40/161
36 40 40 42 36 40 39 39 39 37
38.8
1.9
5.0
6
3.105
-
40/162
37 36 38 37 36 36 35 37 37 37
36.6
0.8
2.3
3
3.558
-
40/163
38 40 40 37 37 37 36 40 37 37
37.9
1.5
4.0
4
2.625
-
40/164
40 39 38 39 40 39 39 40 40 36
39.0
1.2
3.2
4
3.207
-
40/165
38 38 37 36 36 38 37 36 37 37
37.0
0.8
2.2
2
2.449
-
40/166
36 41 37 39 36 38 39 37 40 39
38.2
1.7
4.4
5
2.965
-
40/167
37 40 37 39 37 38 36 36 36 36
37.2
1.4
3.8
4
2.860
-
40/168
38 42 40 38 39 38 40 42 41 38
39.6
1.6
4.2
4
2.429
-
40/169
36 39 39 38 41 42 39 39 40 38
39.1
1.7
4.3
6
3.607
-
40/170
38 37 37 38 37 36 36 36 40 36
37.1
1.3
3.5
4
3.109
-
40/171
37 41 38 41 41 42 40 42 42 37
40.1
2.0
5.0
5
2.469
-
40/172
36 37 40 37 42 37 38 41 38 36
38.2
2.1
5.5
6
2.860
-
40/173
38 38 38 38 34 37 36 38 36 36
36.9
1.4
3.7
4
2.919
-
40/174
41 37 39 40 39 41 36 41 41 39
39.4
1.8
4.5
5
2.815
-
40/175
39 38 38 37 37 36 35 36 40 42
37.8
2.1
5.5
7
3.337
-
40/176
38 37 38 37 36 36 34 36 35 39
36.6
1.5
4.1
5
3.321
-
40/177
41 37 38 41 37 40 39 40 39 37
38.9
1.6
4.1
4
2.508
-
40/178
39 36 37 39 36 40 37 39 39 40
38.2
1.5
4.1
4
2.582
-
40/179
39 40 39 42 40 37 41 40 37 42
39.7
1.8
4.5
5
2.830
-
40/180
37 39 40 40 41 38 37 40 38 39
38.9
1.4
3.5
4
2.919
-
40/181
39 39 40 40 37 39 42 37 38 40
39.1
1.5
3.9
5
3.281
-
40/182
39 40 39 38 38 36 39 40 37 37
38.3
1.3
3.5
4
2.991
-
40/183
36 36 35 37 38 36 39 39 38 37
37.1
1.4
3.7
4
2.919
-
40/184
35 38 38 39 37 37 36 39 39 37
37.5
1.4
3.6
4
2.954
-
40/185
36 35 38 39 38 40 40 41 37 39
38.3
1.9
4.9
6
3.177
-
40/186
40 37 38 38 37 36 37 36 38 39
37.6
1.3
3.4
4
3.162
-
40/187
40 36 38 42 41 39 38 41 40 40
39.5
1.8
4.5
6
3.372
-
40/188
37 42 40 42 40 38 41 38 40 38
39.6
1.8
4.5
5
2.815
-
40/189
36 36 37 37 35 37 38 37 36 36
36.5
0.8
2.3
3
3.530
-
40/190
40 40 41 42 37 38 40 38 39 36
39.1
1.9
4.7
6
3.238
-
40/191
41 41 42 40 38 39 40 37 40 41
39.9
1.5
3.8
5
3.281
-
40/192
40 41 42 38 38 40 37 36 37 36
38.5
2.1
5.5
6
2.828
-
40/193
40 37 37 38 39 38 39 40 40 38
38.6
1.2
3.0
3
2.556
-
40/194
37 37 39 37 37 36 39 37 36 41
37.6
1.6
4.2
5
3.169
-
Test area
R1
40/142
40/143
R2
R3
R4
R5
R6
R7
R8
R9
R10
A146
Rm
sR
VR, %
rR
θR
fcm, MPa
40 39 42 39 40 41 36 42 38 41
39.8
1.9
4.7
6
3.202
-
41 40 38 40 42 42 38 40 40 41
40.2
1.4
3.5
4
2.860
-
40/197
35 42 37 39 37 36 36 38 38 36
37.4
2.0
5.4
7
3.481
-
40/198
35 34 35 33 37 38 35 35 35 35
35.2
1.4
4.0
5
3.575
-
40/199
39 38 37 37 38 37 36 35 35 39
37.1
1.4
3.9
4
2.760
-
40/200
35 37 36 33 35 38 35 35 35 33
35.2
1.5
4.4
5
3.227
-
40/201
35 33 36 39 35 35 33 33 36 38
35.3
2.1
5.8
6
2.916
-
40/202
38 39 41 40 39 39 37 37 37 38
38.5
1.4
3.5
4
2.954
-
40/203
37 36 36 36 37 35 36 35 35 37
36.0
0.8
2.3
2
2.449
-
40/204
38 35 35 36 36 37 36 35 34 37
35.9
1.2
3.3
4
3.341
-
40/205
34 38 37 35 34 34 34 39 34 42
36.1
2.8
7.8
8
2.850
-
40/206
34 34 36 34 35 35 36 34 35 34
34.7
0.8
2.4
2
2.429
-
40/207
34 35 34 35 35 34 34 33 35 37
34.6
1.1
3.1
4
3.721
-
40/208
35 36 35 39 39 38 37 37 38 37
37.1
1.4
3.9
4
2.760
-
40/209
35 36 35 38 34 34 34 34 39 37
35.6
1.8
5.2
5
2.721
-
40/210
37 36 37 34 41 36 35 38 38 39
37.1
2.0
5.5
7
3.457
-
40/211
35 34 36 37 35 37 35 35 37 36
35.7
1.1
3.0
3
2.832
-
40/212
36 34 34 34 35 37 38 34 36 34
35.2
1.5
4.2
4
2.711
-
40/213
36 38 40 37 35 36 36 38 37 36
36.9
1.4
3.9
5
3.450
-
40/214
37 38 36 36 38 35 34 35 36 36
36.1
1.3
3.6
4
3.109
-
40/215
35 34 36 35 34 36 34 34 34 33
34.5
1.0
2.8
3
3.087
-
40/216
37 35 39 36 35 38 38 35 38 37
36.8
1.5
4.0
4
2.711
-
40/217
35 35 36 36 37 36 38 36 38 37
36.4
1.1
3.0
3
2.791
-
40/218
34 37 34 35 35 34 34 33 37 34
34.7
1.3
3.9
4
2.991
-
40/219
36 35 33 34 33 37 35 34 36 34
34.7
1.3
3.9
4
2.991
-
40/220
34 37 36 34 36 35 39 35 36 35
35.7
1.5
4.2
5
3.346
-
40/221
36 35 37 37 36 37 37 35 37 37
36.4
0.8
2.3
2
2.372
-
40/222
36 35 36 37 39 34 36 35 38 36
36.2
1.5
4.1
5
3.388
-
40/223
35 34 35 33 34 35 36 36 36 37
35.1
1.2
3.4
4
3.341
-
40/224
36 40 36 37 38 38 35 36 36 36
36.8
1.5
4.0
5
3.388
-
40/225
36 35 35 35 34 36 37 35 36 34
35.3
0.9
2.7
3
3.162
-
40/226
36 35 34 35 34 33 33 37 35 37
34.9
1.4
4.2
4
2.760
-
40/227
33 36 38 36 37 37 37 36 35 38
36.3
1.5
4.1
5
3.346
-
40/228
35 34 35 35 35 35 36 35 37 34
35.1
0.9
2.5
3
3.426
-
40/229
34 36 37 35 34 35 34 34 36 33
34.8
1.2
3.5
4
3.254
-
40/230
36 37 37 39 36 35 38 37 35 35
36.5
1.4
3.7
4
2.954
-
40/231
35 38 39 35 35 36 34 35 37 35
35.9
1.6
4.4
5
3.135
-
40/232
40 36 37 38 36 36 38 36 41 40
37.8
1.9
5.1
5
2.588
-
40/233
36 37 36 38 38 35 38 35 39 37
36.9
1.4
3.7
4
2.919
-
40/234
35 38 35 36 35 36 37 36 35 35
35.8
1.0
2.9
3
2.905
-
40/235
38 35 35 37 34 37 37 35 36 37
36.1
1.3
3.6
4
3.109
-
40/236
37 37 36 36 34 36 35 35 37 36
35.9
1.0
2.8
3
3.017
-
40/237
34 34 34 35 36 34 33 36 35 38
34.9
1.4
4.2
5
3.450
-
40/238
36 37 38 36 40 36 36 38 35 36
36.8
1.5
4.0
5
3.388
-
40/239
36 37 35 36 35 34 35 36 37 36
35.7
0.9
2.7
3
3.162
-
40/240
37 34 34 36 35 37 36 36 38 34
35.7
1.4
4.0
4
2.821
-
40/241
36 34 36 38 35 35 35 37 38 38
36.2
1.5
4.1
4
2.711
-
40/242
34 34 33 35 33 35 34 33 32 36
33.9
1.2
3.5
4
3.341
-
40/243
40 42 35 35 36 35 35 36 35 35
36.4
2.5
6.9
7
2.796
-
40/244
32 33 34 36 35 35 36 36 36 34
34.7
1.4
4.1
4
2.821
-
40/245
35 34 33 33 35 34 33 34 34 35
34.0
0.8
2.4
2
2.449
-
40/246
37 36 35 39 38 34 35 35 36 35
36.0
1.6
4.3
5
3.198
-
40/247
35 35 36 35 36 33 34 36 35 34
34.9
1.0
2.8
3
3.017
-
Test area
R1
40/195
40/196
R2
R3
R4
R5
R6
R7
R8
R9
R10
A147
Rm
sR
VR, %
rR
θR
fcm, MPa
33 34 32 32 34 34 34 34 36 35
33.8
1.2
3.6
4
3.254
-
35 35 36 35 37 38 37 35 34 34
35.6
1.3
3.8
4
2.963
-
40/250
34 33 36 35 36 35 37 37 36 33
35.2
1.5
4.2
4
2.711
-
40/251
36 35 35 33 35 34 35 35 35 35
34.8
0.8
2.3
3
3.803
-
40/252
38 36 37 35 38 37 36 37 35 35
36.4
1.2
3.2
3
2.556
-
40/253
34 34 34 34 36 35 37 35 35 35
34.9
1.0
2.8
3
3.017
-
40/254
35 35 34 35 34 37 37 37 35 36
35.5
1.2
3.3
3
2.546
-
40/255
36 33 34 34 35 35 35 36 35 35
34.8
0.9
2.6
3
3.265
-
40/256
34 34 34 35 34 34 33 36 35 36
34.5
1.0
2.8
3
3.087
-
40/257
34 36 35 34 34 34 36 38 32 36
34.9
1.7
4.8
6
3.607
-
40/258
36 35 34 36 36 35 36 32 38 34
35.2
1.6
4.6
6
3.705
-
40/259
33 37 35 35 35 34 38 37 34 34
35.2
1.6
4.6
5
3.088
-
40/260
41 38 36 36 34 39 35 36 39 34
36.8
2.3
6.4
7
2.982
-
40/261
35 37 36 37 35 38 36 36 39 36
36.5
1.3
3.5
4
3.151
-
40/262
34 36 36 33 33 33 34 33 33 34
33.9
1.2
3.5
3
2.506
-
40/263
44 45 46 44 42 44 41 44 41 43
43.4
1.6
3.8
5
3.037
-
40/264
42 40 42 40 43 42 40 41 43 43
41.6
1.3
3.0
3
2.372
-
40/265
40 40 39 38 37 40 42 41 41 39
39.7
1.5
3.8
5
3.346
-
40/266
42 41 43 40 41 40 41 38 43 41
41.0
1.5
3.6
5
3.354
-
40/267
41 43 43 42 43 40 42 43 43 42
42.2
1.0
2.4
3
2.905
-
40/268
42 43 41 42 43 40 42 43 41 42
41.9
1.0
2.4
3
3.017
-
40/269
42 40 41 43 42 43 41 40 42 43
41.7
1.2
2.8
3
2.587
-
40/270
42 43 43 42 43 43 42 42 43 41
42.4
0.7
1.6
2
2.860
-
40/271
42 43 42 41 43 44 43 41 41 40
42.0
1.2
3.0
4
3.207
-
40/272
43 40 44 43 42 39 44 43 44 39
42.1
2.0
4.8
5
2.469
-
40/273
44 42 41 42 43 43 44 44 41 42
42.6
1.2
2.8
3
2.556
-
40/274
43 42 43 42 42 44 40 41 40 40
41.7
1.4
3.4
4
2.821
-
40/275
41 43 45 41 43 42 44 43 42 41
42.5
1.4
3.2
4
2.954
-
40/276
43 41 42 44 43 43 44 40 42 43
42.5
1.3
3.0
4
3.151
-
40/277
43 44 44 45 44 42 40 44 44 42
43.2
1.5
3.4
5
3.388
-
40/278
40 43 44 42 40 40 44 44 42 44
42.3
1.8
4.2
4
2.264
-
40/279
41 40 40 40 39 40 40 42 40 43
40.5
1.2
2.9
4
3.394
-
40/280
43 42 43 43 41 39 44 43 42 43
42.3
1.4
3.4
5
3.526
-
40/281
42 43 45 44 42 44 41 44 45 42
43.2
1.4
3.2
4
2.860
-
40/282
43 42 45 42 41 40 43 44 45 44
42.9
1.7
3.9
5
3.006
-
40/283
43 44 43 45 45 43 42 42 42 43
43.2
1.1
2.6
3
2.642
-
40/284
42 41 43 42 43 40 42 42 40 42
41.7
1.1
2.5
3
2.832
-
40/285
40 41 41 44 39 41 39 42 41 42
41.0
1.5
3.6
5
3.354
-
40/286
41 38 40 42 44 41 40 40 42 42
41.0
1.6
4.0
6
3.674
-
40/287
42 40 40 42 41 40 41 41 43 42
41.2
1.0
2.5
3
2.905
-
40/288
42 42 39 40 43 40 41 42 43 42
41.4
1.3
3.3
4
2.963
-
40/289
42 43 38 42 41 43 42 43 43 41
41.8
1.5
3.7
5
3.227
-
40/290
40 40 43 39 42 43 42 43 41 43
41.6
1.5
3.6
4
2.657
-
40/291
42 43 42 41 42 38 43 44 40 43
41.8
1.8
4.2
6
3.426
-
40/292
42 43 40 40 40 42 41 43 39 41
41.1
1.4
3.3
4
2.919
-
40/293
40 39 42 39 39 43 40 42 42 43
40.9
1.7
4.1
4
2.405
-
40/294
42 43 42 42 40 41 42 43 43 41
41.9
1.0
2.4
3
3.017
-
40/295
43 42 41 41 41 43 42 43 40 40
41.6
1.2
2.8
3
2.556
-
40/296
37 36 36 38 36 37 37 36 38 38
36.9
0.9
2.4
2
2.284
-
40/297
36 39 38 38 39 39 38 39 38 38
38.2
0.9
2.4
3
3.265
-
40/298
37 37 39 39 39 37 36 35 38 39
37.6
1.4
3.8
4
2.798
-
40/299
38 38 36 38 39 40 36 38 37 39
37.9
1.3
3.4
4
3.109
-
40/300
36 40 39 38 37 38 38 37 38 38
37.9
1.1
2.9
4
3.635
-
Test area
R1
40/248
40/249
R2
R3
R4
R5
R6
R7
R8
R9
R10
A148
Rm
sR
VR, %
rR
θR
fcm, MPa
40 38 39 39 39 40 41 41 40 42
39.9
1.2
3.0
4
3.341
-
40 41 40 38 41 42 40 40 39 39
40.0
1.2
2.9
4
3.464
-
40/303
39 40 38 40 38 40 42 40 38 39
39.4
1.3
3.2
4
3.162
-
40/304
36 39 41 39 37 39 38 39 38 40
38.6
1.4
3.7
5
3.497
-
40/305
38 37 39 41 39 41 38 42 42 41
39.8
1.8
4.6
5
2.757
-
40/306
40 40 38 38 39 38 39 38 38 38
38.6
0.8
2.2
2
2.372
-
40/307
40 40 40 39 42 38 40 40 38 39
39.6
1.2
3.0
4
3.408
-
40/308
41 39 39 41 38 38 38 40 41 39
39.4
1.3
3.2
3
2.372
-
40/309
39 39 42 40 38 39 39 40 42 41
39.9
1.4
3.4
4
2.919
-
40/310
39 36 39 36 36 40 40 36 38 36
37.6
1.8
4.7
4
2.252
-
40/311
36 39 39 38 38 38 37 41 38 38
38.2
1.3
3.4
5
3.798
-
40/312
40 41 38 39 39 40 38 38 39 40
39.2
1.0
2.6
3
2.905
-
40/313
38 39 38 37 39 40 40 40 39 41
39.1
1.2
3.1
4
3.341
-
40/314
39 38 40 42 40 36 38 38 38 37
38.6
1.7
4.4
6
3.503
-
40/315
40 41 39 38 40 41 40 40 38 41
39.8
1.1
2.9
3
2.642
-
40/316
40 40 42 41 37 42 38 40 39 39
39.8
1.6
4.1
5
3.088
-
40/317
39 40 41 40 39 37 36 38 38 38
38.6
1.5
3.9
5
3.321
-
40/318
40 38 39 39 37 37 40 40 38 36
38.4
1.4
3.7
4
2.798
-
40/319
40 40 38 38 43 41 38 38 37 37
39.0
1.9
5.0
6
3.087
-
40/320
39 40 40 38 37 37 39 40 40 39
38.9
1.2
3.1
3
2.506
-
40/321
39 38 36 38 39 37 40 38 39 36
38.0
1.3
3.5
4
3.000
-
40/322
39 38 38 38 39 37 36 38 35 38
37.6
1.3
3.4
4
3.162
-
40/323
40 38 38 39 36 36 38 40 37 41
38.3
1.7
4.4
5
2.936
-
40/324
41 40 40 41 38 38 40 41 38 38
39.5
1.4
3.4
3
2.216
-
40/325
34 34 38 37 35 36 36 34 34 37
35.5
1.5
4.3
4
2.650
-
40/326
36 34 34 33 35 34 34 33 35 33
34.1
1.0
2.9
3
3.017
-
40/327
34 36 35 35 34 35 35 34 34 34
34.6
0.7
2.0
2
2.860
-
40/328
35 36 33 34 35 34 36 34 36 35
34.8
1.0
3.0
3
2.905
-
41/1
37 34 35 38 38 37 36 40 36 36
36.7
1.7
4.6
6
3.523
-
41/2
32 34 35 34 37 34 36 34 33 34
34.3
1.4
4.1
5
3.526
-
41/3
34 36 36 36 35 36 36 36 35 34
35.4
0.8
2.4
2
2.372
-
41/4
38 36 38 36 38 40 40 38 36 36
37.6
1.6
4.2
4
2.535
-
41/5
37 34 35 36 36 36 38 36 36 34
35.8
1.2
3.4
4
3.254
-
41/6
36 38 36 36 35 34 37 36 36 38
36.2
1.2
3.4
4
3.254
-
41/7
40 40 38 37 36 38 38 36 37 40
38.0
1.6
4.1
4
2.558
-
41/8
35 34 34 35 36 36 35 35 36 36
35.2
0.8
2.2
2
2.535
-
41/9
34 35 35 35 35 36 34 37 38 38
35.7
1.5
4.2
4
2.677
-
41/10
39 36 37 36 38 37 36 38 38 35
37.0
1.2
3.4
4
3.207
-
41/11
36 36 34 35 38 34 36 36 36 37
35.8
1.2
3.4
4
3.254
-
41/12
35 34 35 36 34 36 36 34 33 37
35.0
1.2
3.6
4
3.207
-
41/13
36 36 38 37 36 36 36 40 40 37
37.2
1.6
4.4
4
2.470
-
41/14
37 34 39 38 36 38 37 37 38 35
36.9
1.5
4.1
5
3.281
-
41/15
35 38 38 36 37 36 36 36 36 36
36.4
1.0
2.7
3
3.105
-
41/16
40 38 40 39 38 37 38 40 38 38
38.6
1.1
2.8
3
2.791
-
41/17
37 36 37 35 35 34 36 38 37 38
36.3
1.3
3.7
4
2.991
-
41/18
38 36 38 35 35 34 38 37 38 37
36.6
1.5
4.1
4
2.657
-
41/19
38 40 39 38 36 40 38 38 38 37
38.2
1.2
3.2
4
3.254
-
41/20
37 36 36 38 34 36 37 36 34 34
35.8
1.4
3.9
4
2.860
-
41/21
37 36 38 38 36 34 35 37 35 34
36.0
1.5
4.1
4
2.683
-
41/22
36 36 35 35 38 36 38 38 35 35
36.2
1.3
3.6
3
2.279
-
41/23
35 33 33 34 36 36 35 35 38 36
35.1
1.5
4.3
5
3.281
-
41/24
35 39 34 34 34 35 36 35 37 37
35.6
1.6
4.6
5
3.037
-
Test area
R1
40/301
40/302
R2
R3
R4
R5
R6
R7
R8
R9
R10
A149
Rm
sR
VR, %
rR
θR
fcm, MPa
36 36 35 34 35 35 36 36 35 33
35.1
1.0
2.8
3
3.017
-
35 34 34 34 35 37 36 36 35 34
35.0
1.1
3.0
3
2.846
-
41/27
36 35 38 38 35 33 32 35 37 38
35.7
2.1
5.9
6
2.842
-
41/28
35 36 37 33 35 36 38 35 36 36
35.7
1.3
3.7
5
3.738
-
41/29
37 36 35 36 35 36 37 34 35 33
35.4
1.3
3.6
4
3.162
-
41/30
37 36 37 35 36 37 36 36 36 35
36.1
0.7
2.0
2
2.711
-
41/31
35 32 32 33 33 34 33 35 36 37
34.0
1.7
5.0
5
2.942
-
41/32
37 36 36 35 37 37 34 35 35 34
35.6
1.2
3.3
3
2.556
-
41/33
36 36 35 35 34 33 36 35 34 34
34.8
1.0
3.0
3
2.905
-
41/34
36 33 34 34 35 34 37 37 36 36
35.2
1.4
4.0
4
2.860
-
41/35
35 34 36 36 38 37 40 39 39 38
37.2
1.9
5.2
6
3.105
-
41/36
40 36 36 37 38 38 36 37 35 33
36.6
1.9
5.2
7
3.689
-
41/37
32 36 34 35 37 36 39 38 39 33
35.9
2.4
6.8
7
2.887
-
41/38
38 38 36 36 35 35 38 35 39 39
36.9
1.7
4.5
4
2.405
-
41/39
38 37 40 38 38 35 36 37 37 35
37.1
1.5
4.1
5
3.281
-
41/40
36 36 37 33 34 35 37 38 36 37
35.9
1.5
4.2
5
3.281
-
41/41
36 36 34 35 36 33 33 36 36 35
35.0
1.2
3.6
3
2.405
-
41/42
38 36 38 36 39 38 36 40 40 40
38.1
1.7
4.4
4
2.405
-
41/43
38 36 38 36 37 37 38 37 37 35
36.9
1.0
2.7
3
3.017
-
41/44
36 36 40 34 36 35 38 36 34 37
36.2
1.8
5.0
6
3.308
-
41/45
38 36 38 39 36 37 37 36 36 38
37.1
1.1
3.0
3
2.726
-
42/1
38 36 34 36 36 38 38 37 35 38
36.6
1.4
3.9
4
2.798
-
42/2
36 33 35 36 38 37 38 34 36 37
36.0
1.6
4.5
5
3.062
-
42/3
36 34 37 36 36 36 35 36 35 37
35.8
0.9
2.6
3
3.265
-
42/4
36 33 34 35 35 36 37 36 38 38
35.8
1.6
4.5
5
3.088
-
42/5
34 36 35 35 36 35 34 37 35 35
35.2
0.9
2.6
3
3.265
-
42/6
34 34 35 34 36 33 34 34 33 34
34.1
0.9
2.6
3
3.426
-
42/7
37 36 34 36 36 35 37 38 37 37
36.3
1.2
3.2
4
3.450
-
42/8
33 42 42 39 37 36 37 34 34 35
36.9
3.2
8.7
9
2.801
-
42/9
34 34 38 34 36 32 32 31 34 33
33.8
2.0
6.0
7
3.425
-
42/10
37 36 36 33 34 34 35 34 34 33
34.6
1.3
3.9
4
2.963
-
42/11
34 33 35 34 33 34 34 33 32 33
33.5
0.8
2.5
3
3.530
-
42/12
35 34 34 35 33 34 33 36 34 34
34.2
0.9
2.7
3
3.265
-
42/13
32 34 33 35 34 36 34 34 35 33
34.0
1.2
3.4
4
3.464
-
42/14
32 34 34 35 36 33 36 33 35 36
34.4
1.4
4.2
4
2.798
-
42/15
33 33 34 36 34 35 34 37 33 33
34.2
1.4
4.1
4
2.860
-
42/16
37 37 37 35 36 35 37 35 34 35
35.8
1.1
3.2
3
2.642
-
42/17
35 34 35 33 36 36 33 35 35 33
34.5
1.2
3.4
3
2.546
-
42/18
35 36 35 34 33 35 35 34 36 36
34.9
1.0
2.8
3
3.017
-
42/19
33 34 36 33 35 34 34 35 33 34
34.1
1.0
2.9
3
3.017
-
42/20
33 32 32 34 31 33 32 32 33 33
32.5
0.8
2.6
3
3.530
-
42/21
34 33 35 33 34 35 33 35 34 37
34.3
1.3
3.6
4
3.196
-
42/22
36 35 35 34 33 35 34 34 33 33
34.2
1.0
3.0
3
2.905
-
42/23
35 36 34 34 35 32 33 35 34 35
34.3
1.2
3.4
4
3.450
-
42/24
35 35 34 36 36 35 34 34 35 34
34.8
0.8
2.3
2
2.535
-
42/25
34 35 34 34 35 36 36 34 34 34
34.6
0.8
2.4
2
2.372
-
42/26
34 35 35 34 36 36 37 36 35 37
35.5
1.1
3.0
3
2.777
-
42/27
34 35 37 36 33 34 33 34 33 36
34.5
1.4
4.2
4
2.790
-
42/28
35 37 35 36 36 35 37 36 35 37
35.9
0.9
2.4
2
2.284
-
42/29
30 33 32 36 33 34 33 34 32 33
33.0
1.6
4.7
6
3.838
-
42/30
37 37 36 35 34 34 36 35 36 35
35.5
1.1
3.0
3
2.777
-
42/31
34 36 34 35 33 36 34 35 34 35
34.6
1.0
2.8
3
3.105
-
Test area
R1
41/25
41/26
R2
R3
R4
R5
R6
R7
R8
R9
R10
A150
Rm
sR
VR, %
rR
θR
fcm, MPa
36 37 37 35 34 35 36 35 35 33
35.3
1.3
3.5
4
3.196
-
38 35 38 38 37 35 38 34 35 33
36.1
1.9
5.3
5
2.615
-
42/34
38 33 34 37 37 36 35 33 34 35
35.2
1.8
5.0
5
2.855
-
42/35
34 35 36 38 35 36 34 34 35 33
35.0
1.4
4.0
5
3.536
-
42/36
34 34 37 37 33 32 35 33 36 34
34.5
1.7
5.0
5
2.914
-
42/37
36 37 37 35 34 35 37 34 35 35
35.5
1.2
3.3
3
2.546
-
42/38
33 35 36 36 36 33 34 34 36 35
34.8
1.2
3.5
3
2.440
-
42/39
35 36 34 34 35 36 33 33 34 34
34.4
1.1
3.1
3
2.791
-
42/40
34 34 33 36 33 37 37 35 36 36
35.1
1.5
4.3
4
2.625
-
42/41
36 32 35 33 35 38 38 34 35 36
35.2
1.9
5.5
6
3.105
-
42/42
36 32 35 34 34 33 36 37 34 35
34.6
1.5
4.4
5
3.321
-
42/43
34 35 36 34 35 33 35 37 36 36
35.1
1.2
3.4
4
3.341
-
42/44
35 34 36 35 33 32 37 36 35 36
34.9
1.5
4.4
5
3.281
-
42/45
34 35 34 35 36 34 37 35 34 34
34.8
1.0
3.0
3
2.905
-
42/46
36 36 32 35 33 35 34 36 33 36
34.6
1.5
4.4
4
2.657
-
42/47
36 37 37 36 38 37 36 39 37 38
37.1
1.0
2.7
3
3.017
-
42/48
36 38 38 38 36 37 36 39 38 37
37.3
1.1
2.8
3
2.832
-
42/49
36 38 35 35 37 38 36 35 37 38
36.5
1.3
3.5
3
2.364
-
42/50
38 38 37 37 35 35 34 36 34 34
35.8
1.6
4.5
4
2.470
-
42/51
38 39 35 38 36 37 38 40 36 35
37.2
1.7
4.5
5
2.965
-
42/52
38 36 34 38 37 37 38 39 37 36
37.0
1.4
3.8
5
3.536
-
42/53
38 33 34 36 37 38 34 36 36 35
35.7
1.7
4.8
5
2.936
-
42/54
37 35 36 38 36 35 34 35 38 38
36.2
1.5
4.1
4
2.711
-
42/55
36 37 36 35 33 35 36 36 37 37
35.8
1.2
3.4
4
3.254
-
42/56
34 35 33 37 36 36 33 37 36 35
35.2
1.5
4.2
4
2.711
-
42/57
38 36 36 37 38 34 36 36 38 35
36.4
1.3
3.7
4
2.963
-
42/58
35 35 34 33 34 36 34 36 37 35
34.9
1.2
3.4
4
3.341
-
42/59
37 33 34 37 35 34 34 35 33 35
34.7
1.4
4.1
4
2.821
-
42/60
36 35 37 36 34 36 37 36 33 36
35.6
1.3
3.6
4
3.162
-
42/61
36 34 37 36 38 34 34 36 38 36
35.9
1.5
4.2
4
2.625
-
42/62
38 38 36 35 34 33 34 35 34 35
35.2
1.7
4.8
5
2.965
-
42/63
34 34 34 36 35 33 33 36 35 35
34.5
1.1
3.1
3
2.777
-
42/64
34 37 38 35 35 37 35 36 36 37
36.0
1.2
3.5
4
3.207
-
42/65
38 36 38 36 35 34 35 33 37 37
35.9
1.7
4.6
5
3.006
-
42/66
38 38 37 36 35 34 38 37 36 37
36.6
1.3
3.7
4
2.963
-
42/67
35 36 36 35 36 34 37 36 36 35
35.6
0.8
2.4
3
3.558
-
42/68
35 38 40 36 39 38 38 40 37 36
37.7
1.7
4.5
5
2.936
-
42/69
40 35 36 37 36 40 37 36 39 35
37.1
1.9
5.2
5
2.615
-
42/70
36 34 34 36 37 35 34 37 37 36
35.6
1.3
3.6
3
2.372
-
42/71
35 34 35 36 37 37 34 38 37 36
35.9
1.4
3.8
4
2.919
-
42/72
35 35 36 33 36 35 37 34 36 35
35.2
1.1
3.2
4
3.523
-
42/73
38 37 37 37 38 34 35 36 35 36
36.3
1.3
3.7
4
2.991
-
42/74
35 37 36 34 36 33 37 38 36 36
35.8
1.5
4.1
5
3.388
-
42/75
34 37 39 39 37 38 36 35 36 35
36.6
1.7
4.7
5
2.919
-
42/76
38 38 38 34 37 35 34 37 36 36
36.3
1.6
4.3
4
2.553
-
42/77
36 36 37 38 37 36 34 36 38 36
36.4
1.2
3.2
4
3.408
-
42/78
34 37 33 36 36 38 38 34 33 35
35.4
1.9
5.4
5
2.635
-
42/79
33 33 34 34 32 36 31 33 32 33
33.1
1.4
4.1
5
3.649
-
42/80
35 34 34 37 37 34 37 35 36 33
35.2
1.5
4.2
4
2.711
-
42/81
34 36 37 36 38 38 34 35 38 34
36.0
1.7
4.7
4
2.353
-
42/82
33 34 33 34 35 35 33 34 33 35
33.9
0.9
2.6
2
2.284
-
42/83
37 36 37 35 35 34 34 36 36 35
35.5
1.1
3.0
3
2.777
-
42/84
36 35 37 34 34 37 36 37 36 35
35.7
1.2
3.2
3
2.587
-
Test area
R1
42/32
42/33
R2
R3
R4
R5
R6
R7
R8
R9
R10
A151
Rm
sR
VR, %
rR
θR
fcm, MPa
36 38 36 33 34 36 33 35 36 35
35.2
1.5
4.4
5
3.227
-
37 34 34 35 38 38 36 34 34 35
35.5
1.6
4.6
4
2.424
-
42/87
34 34 38 36 36 37 34 34 35 37
35.5
1.5
4.3
4
2.650
-
42/88
34 37 35 34 36 35 35 38 35 34
35.3
1.3
3.8
4
2.991
-
42/89
34 35 34 33 34 34 35 34 33 32
33.8
0.9
2.7
3
3.265
-
42/90
36 37 33 34 37 34 34 33 34 33
34.5
1.6
4.6
4
2.530
-
42/91
34 34 32 35 36 33 35 35 33 34
34.1
1.2
3.5
4
3.341
-
42/92
34 36 33 33 37 34 34 35 33 35
34.4
1.3
3.9
4
2.963
-
42/93
38 37 36 35 36 36 38 36 33 35
36.0
1.5
4.1
5
3.354
-
42/94
37 37 35 38 37 39 38 40 37 38
37.6
1.3
3.6
5
3.704
-
42/95
36 36 37 34 34 33 34 36 37 36
35.3
1.4
4.0
4
2.821
-
42/96
34 37 35 34 35 37 33 34 36 34
34.9
1.4
3.9
4
2.919
-
42/97
34 33 36 34 37 37 34 33 36 38
35.2
1.8
5.2
5
2.757
-
42/98
38 35 36 36 35 34 35 37 34 36
35.6
1.3
3.6
4
3.162
-
42/99
34 37 35 35 34 36 37 37 38 38
36.1
1.5
4.2
4
2.625
-
42/100
34 36 34 37 33 35 34 37 33 36
34.9
1.5
4.4
4
2.625
-
42/101
37 37 36 36 35 37 37 35 38 38
36.6
1.1
2.9
3
2.791
-
42/102
34 36 35 35 34 37 34 36 37 36
35.4
1.2
3.3
3
2.556
-
42/103
34 36 34 36 35 35 38 35 37 37
35.7
1.3
3.7
4
2.991
-
42/104
37 36 34 36 36 34 34 38 38 37
36.0
1.6
4.3
4
2.558
-
42/105
38 38 39 37 36 36 35 37 35 36
36.7
1.3
3.6
4
2.991
-
42/106
36 34 38 38 37 37 36 34 37 38
36.5
1.5
4.1
4
2.650
-
42/107
38 39 34 35 37 39 38 37 37 38
37.2
1.6
4.4
5
3.088
-
42/108
40 38 40 38 37 35 37 39 38 37
37.9
1.5
4.0
5
3.281
-
42/109
38 37 35 39 39 38 37 36 38 37
37.4
1.3
3.4
4
3.162
-
42/110
39 36 35 37 34 36 35 36 38 37
36.3
1.5
4.1
5
3.346
-
42/111
36 37 37 38 38 36 36 35 37 34
36.4
1.3
3.5
4
3.162
-
42/112
35 38 33 38 34 36 32 36 35 35
35.2
1.9
5.5
6
3.105
-
42/113
33 34 34 38 38 34 35 35 36 38
35.5
1.9
5.4
5
2.631
-
42/114
36 36 35 37 34 38 38 37 36 37
36.4
1.3
3.5
4
3.162
-
42/115
34 37 39 38 35 34 38 37 38 37
36.7
1.8
4.8
5
2.830
-
42/116
34 34 35 36 37 34 33 34 33 34
34.4
1.3
3.7
4
3.162
-
42/117
33 35 33 37 35 34 32 34 34 33
34.0
1.4
4.2
5
3.536
-
42/118
34 36 38 36 35 37 36 34 36 37
35.9
1.3
3.6
4
3.109
-
42/119
38 36 36 35 37 34 34 33 35 34
35.2
1.5
4.4
5
3.227
-
42/120
36 38 37 38 36 35 37 34 35 36
36.2
1.3
3.6
4
3.038
-
42/121
37 38 36 36 37 35 37 37 35 34
36.2
1.2
3.4
4
3.254
-
42/122
36 38 33 37 34 34 38 34 35 37
35.6
1.8
5.2
5
2.721
-
42/123
33 37 34 34 35 34 33 33 36 34
34.3
1.3
3.9
4
2.991
-
42/124
34 34 33 35 33 32 33 35 34 33
33.6
1.0
2.9
3
3.105
-
42/125
37 34 35 36 36 38 36 37 36 38
36.3
1.3
3.4
4
3.196
-
42/126
39 37 37 36 35 34 37 36 35 38
36.4
1.5
4.1
5
3.321
-
42/127
34 35 36 34 34 37 34 38 35 35
35.2
1.4
4.0
4
2.860
-
42/128
34 35 33 34 35 36 34 33 37 37
34.8
1.5
4.2
4
2.711
-
42/129
34 34 35 36 38 37 35 36 35 34
35.4
1.3
3.8
4
2.963
-
42/130
35 34 33 33 36 34 36 34 35 32
34.2
1.3
3.8
4
3.038
-
42/131
33 35 35 36 35 34 34 33 32 33
34.0
1.2
3.7
4
3.207
-
42/132
36 34 34 33 38 36 34 33 34 35
34.7
1.6
4.5
5
3.191
-
42/133
35 34 33 34 34 33 35 35 35 33
34.1
0.9
2.6
2
2.284
-
42/134
36 38 35 35 34 36 34 36 34 34
35.2
1.3
3.7
4
3.038
-
42/135
34 32 31 32 32 30 30 32 35 32
32.0
1.6
4.9
5
3.198
-
42/136
35 31 34 34 34 35 32 32 34 33
33.4
1.3
4.0
4
2.963
-
42/137
30 31 32 34 34 32 34 33 34 34
32.8
1.5
4.5
4
2.711
-
Test area
R1
42/85
42/86
R2
R3
R4
R5
R6
R7
R8
R9
R10
A152
Rm
sR
VR, %
rR
θR
fcm, MPa
34 35 34 33 34 35 36 35 34 36
34.6
1.0
2.8
3
3.105
-
33 34 35 34 32 36 33 34 33 35
33.9
1.2
3.5
4
3.341
-
42/140
34 32 34 34 35 36 34 33 33 32
33.7
1.3
3.7
4
3.196
-
42/141
35 33 33 32 34 36 34 34 36 34
34.1
1.3
3.8
4
3.109
-
42/142
35 35 34 33 35 36 34 35 33 36
34.6
1.1
3.1
3
2.791
-
42/143
32 32 35 34 36 34 35 33 35 34
34.0
1.3
3.9
4
3.000
-
42/144
34 36 33 34 36 37 33 36 35 36
35.0
1.4
4.0
4
2.828
-
42/145
35 34 34 34 36 33 33 35 33 34
34.1
1.0
2.9
3
3.017
-
42/146
34 34 33 32 35 36 36 36 35 33
34.4
1.4
4.2
4
2.798
-
42/147
31 33 34 32 34 33 34 35 33 34
33.3
1.2
3.5
4
3.450
-
42/148
33 34 36 35 33 35 34 36 35 34
34.5
1.1
3.1
3
2.777
-
42/149
32 33 32 32 34 33 34 36 34 35
33.5
1.4
4.0
4
2.954
-
42/150
35 34 32 34 32 33 33 35 34 32
33.4
1.2
3.5
3
2.556
-
42/151
33 35 32 34 32 36 34 34 35 33
33.8
1.3
3.9
4
3.038
-
42/152
36 35 33 34 36 36 34 35 36 36
35.1
1.1
3.1
3
2.726
-
42/153
34 35 33 34 34 36 32 35 36 36
34.5
1.4
3.9
4
2.954
-
42/154
36 37 34 34 36 33 37 34 35 35
35.1
1.4
3.9
4
2.919
-
42/155
34 32 34 35 36 33 33 34 32 32
33.5
1.4
4.0
4
2.954
-
42/156
34 35 34 36 33 33 34 35 34 37
34.5
1.3
3.7
4
3.151
-
42/157
37 33 34 33 36 34 33 32 34 34
34.0
1.5
4.4
5
3.354
-
42/158
34 36 35 34 33 34 33 35 34 36
34.4
1.1
3.1
3
2.791
-
42/159
33 35 33 36 34 32 33 34 36 34
34.0
1.3
3.9
4
3.000
-
42/160
34 34 35 33 36 36 35 34 36 33
34.6
1.2
3.4
3
2.556
-
42/161
32 31 35 31 30 35 32 34 33 34
32.7
1.8
5.4
5
2.830
-
42/162
33 32 33 35 32 34 35 32 36 33
33.5
1.4
4.3
4
2.790
-
42/163
34 35 33 36 32 34 36 34 33 37
34.4
1.6
4.6
5
3.169
-
42/164
34 36 37 36 35 34 34 32 35 34
34.7
1.4
4.1
5
3.526
-
42/165
31 35 36 35 34 34 35 35 34 36
34.5
1.4
4.2
5
3.487
-
42/166
34 36 37 34 33 35 35 36 35 34
34.9
1.2
3.4
4
3.341
-
42/167
37 34 35 35 36 34 35 35 36 34
35.1
1.0
2.8
3
3.017
-
42/168
32 33 33 34 34 35 36 36 37 35
34.5
1.6
4.6
5
3.162
-
42/169
32 34 34 35 34 36 32 33 33 36
33.9
1.4
4.3
4
2.760
-
42/170
34 36 32 33 37 34 35 33 37 34
34.5
1.7
5.0
5
2.914
-
42/171
36 33 32 34 34 35 36 36 33 34
34.3
1.4
4.1
4
2.821
-
42/172
33 36 34 34 35 36 35 34 35 36
34.8
1.0
3.0
3
2.905
-
42/173
36 36 34 33 37 36 35 33 34 37
35.1
1.5
4.3
4
2.625
-
42/174
37 37 36 35 34 34 34 37 35 33
35.2
1.5
4.2
4
2.711
-
42/175
43 38 38 38 39 42 40 43 38 42
40.1
2.2
5.4
5
2.290
-
42/176
39 38 38 41 39 38 39 38 41 42
39.3
1.5
3.8
4
2.677
-
42/177
41 39 42 42 40 41 43 42 40 41
41.1
1.2
2.9
4
3.341
-
42/178
40 43 43 39 40 43 40 43 40 40
41.1
1.7
4.0
4
2.405
-
42/179
45 39 42 41 42 39 39 39 39 39
40.4
2.1
5.1
6
2.905
-
42/180
38 38 38 39 38 40 41 43 42 41
39.8
1.9
4.7
5
2.668
-
42/181
38 37 40 43 39 38 43 39 38 42
39.7
2.2
5.6
6
2.711
-
42/182
38 38 39 42 38 41 39 38 40 40
39.3
1.4
3.6
4
2.821
-
42/183
39 42 42 39 38 43 41 42 39 39
40.4
1.8
4.4
5
2.815
-
42/184
40 39 39 40 38 38 39 38 38 42
39.1
1.3
3.3
4
3.109
-
42/185
41 41 38 45 38 38 38 39 38 40
39.6
2.3
5.7
7
3.083
-
42/186
40 39 39 40 38 42 40 39 38 39
39.4
1.2
3.0
4
3.408
-
42/187
42 40 41 40 39 43 43 43 43 44
41.8
1.7
4.0
5
2.965
-
42/188
40 39 38 40 35 38 42 37 37 41
38.7
2.1
5.5
7
3.316
-
42/189
38 40 38 41 41 38 40 39 42 38
39.5
1.5
3.8
4
2.650
-
42/190
39 39 40 38 38 38 42 40 41 39
39.4
1.3
3.4
4
2.963
-
Test area
R1
42/138
42/139
R2
R3
R4
R5
R6
R7
R8
R9
R10
A153
Rm
sR
VR, %
rR
θR
fcm, MPa
38 38 37 36 38 38 38 40 38 37
37.8
1.0
2.7
4
3.873
-
37 36 42 40 39 40 37 38 39 37
38.5
1.8
4.8
6
3.259
-
42/193
37 38 39 40 39 39 38 37 38 38
38.3
0.9
2.5
3
3.162
-
42/194
38 38 43 39 38 39 37 40 40 39
39.1
1.7
4.3
6
3.607
-
42/195
44 43 40 39 39 39 41 38 39 38
40.0
2.1
5.1
6
2.920
-
42/196
42 43 41 41 39 39 40 40 42 39
40.6
1.4
3.5
4
2.798
-
42/197
38 37 39 40 37 38 41 40 38 38
38.6
1.3
3.5
4
2.963
-
42/198
38 37 37 38 39 42 37 42 39 38
38.7
1.9
4.9
5
2.648
-
42/199
40 40 42 39 43 39 39 42 43 44
41.1
1.9
4.7
5
2.615
-
42/200
38 37 40 37 40 37 38 40 39 38
38.4
1.3
3.3
3
2.372
-
42/201
38 42 38 41 43 40 38 37 41 38
39.6
2.1
5.2
6
2.905
-
42/202
39 40 37 37 39 36 41 38 37 38
38.2
1.5
4.1
5
3.227
-
42/203
37 35 39 38 35 39 38 38 37 38
37.4
1.4
3.8
4
2.798
-
42/204
37 37 37 39 35 37 37 36 38 39
37.2
1.2
3.3
4
3.254
-
42/205
37 36 36 35 37 35 36 37 37 38
36.4
1.0
2.7
3
3.105
-
42/206
35 34 36 38 36 38 38 35 35 36
36.1
1.4
4.0
4
2.760
-
42/207
38 38 36 35 34 40 36 35 39 38
36.9
2.0
5.3
6
3.047
-
42/208
40 43 43 40 40 41 40 39 40 41
40.7
1.3
3.3
4
2.991
-
42/209
42 43 44 40 40 41 40 42 42 41
41.5
1.4
3.3
4
2.954
-
42/210
43 41 42 39 39 42 43 40 40 43
41.2
1.6
3.9
4
2.470
-
42/211
39 40 40 39 41 38 39 42 39 40
39.7
1.2
2.9
4
3.450
-
42/212
38 37 38 38 37 39 37 39 38 37
37.8
0.8
2.1
2
2.535
-
42/213
38 41 39 39 40 39 41 39 42 39
39.7
1.3
3.2
4
3.196
-
42/214
38 37 40 37 38 39 38 40 39 41
38.7
1.3
3.5
4
2.991
-
42/215
41 40 39 41 40 39 38 40 38 41
39.7
1.2
2.9
3
2.587
-
42/216
38 40 40 40 39 40 40 41 40 40
39.8
0.8
2.0
3
3.803
-
42/217
39 40 41 38 42 38 41 43 41 39
40.2
1.7
4.2
5
2.965
-
42/218
41 38 39 38 38 38 39 41 38 38
38.8
1.2
3.2
3
2.440
-
42/219
39 38 38 39 43 42 41 39 40 42
40.1
1.8
4.5
5
2.790
-
42/220
37 42 39 38 38 39 39 38 38 38
38.6
1.3
3.5
5
3.704
-
42/221
41 38 40 40 38 42 38 38 39 39
39.3
1.4
3.6
4
2.821
-
42/222
38 38 37 37 38 37 38 37 39 38
37.7
0.7
1.8
2
2.963
-
42/223
36 40 37 36 38 37 37 38 36 36
37.1
1.3
3.5
4
3.109
-
42/224
40 38 38 39 39 38 38 41 39 40
39.0
1.1
2.7
3
2.846
-
42/225
40 39 38 39 39 40 39 40 41 40
39.5
0.8
2.2
3
3.530
-
42/226
40 38 38 38 38 40 39 37 38 39
38.5
1.0
2.5
3
3.087
-
42/227
39 38 37 38 38 37 37 38 39 38
37.9
0.7
1.9
2
2.711
-
42/228
38 38 38 37 41 38 38 38 37 38
38.1
1.1
2.9
4
3.635
-
42/229
36 38 36 36 35 40 37 36 35 34
36.3
1.7
4.7
6
3.523
-
42/230
36 36 37 39 37 35 35 35 38 35
36.3
1.4
3.9
4
2.821
-
42/231
38 37 37 35 35 38 35 36 38 36
36.5
1.3
3.5
3
2.364
-
42/232
34 36 37 36 35 34 36 34 35 36
35.3
1.1
3.0
3
2.832
-
42/233
37 38 33 36 38 36 35 35 34 35
35.7
1.6
4.6
5
3.056
-
42/234
37 37 35 36 38 37 38 35 38 36
36.7
1.2
3.2
3
2.587
-
42/235
36 39 37 38 38 39 36 39 37 36
37.5
1.3
3.4
3
2.364
-
42/236
37 37 38 37 36 37 38 37 38 37
37.2
0.6
1.7
2
3.162
-
42/237
36 36 37 37 39 37 37 38 39 37
37.3
1.1
2.8
3
2.832
-
42/238
36 36 36 37 36 37 36 35 37 37
36.3
0.7
1.9
2
2.963
-
42/239
36 38 37 37 39 36 37 36 39 37
37.2
1.1
3.1
3
2.642
-
42/240
40 41 41 43 40 40 40 42 43 40
41.0
1.2
3.0
3
2.405
-
42/241
42 42 39 39 39 41 41 40 42 39
40.4
1.3
3.3
3
2.222
-
42/242
41 39 40 41 40 41 41 42 40 40
40.5
0.8
2.1
3
3.530
-
42/243
39 42 40 41 43 41 40 42 40 39
40.7
1.3
3.3
4
2.991
-
Test area
R1
42/191
42/192
R2
R3
R4
R5
R6
R7
R8
R9
R10
A154
Rm
sR
VR, %
rR
θR
fcm, MPa
42 41 42 41 43 39 41 40 41 42
41.2
1.1
2.8
4
3.523
-
44 41 40 39 39 41 40 39 40 39
40.2
1.5
3.9
5
3.227
-
42/246
43 40 40 41 40 40 42 43 39 40
40.8
1.4
3.4
4
2.860
-
42/247
41 41 40 39 41 39 41 40 41 40
40.3
0.8
2.0
2
2.429
-
42/248
40 39 39 38 38 40 40 39 39 39
39.1
0.7
1.9
2
2.711
-
42/249
38 37 38 39 39 39 38 38 38 40
38.4
0.8
2.2
3
3.558
-
42/250
39 38 38 40 38 40 41 41 38 39
39.2
1.2
3.1
3
2.440
-
42/251
39 41 42 42 39 40 39 38 40 40
40.0
1.3
3.3
4
3.000
-
42/252
39 42 40 39 38 38 40 38 39 38
39.1
1.3
3.3
4
3.109
-
42/253
38 39 40 38 37 39 40 39 40 40
39.0
1.1
2.7
3
2.846
-
42/254
42 38 39 41 39 38 39 41 40 40
39.7
1.3
3.4
4
2.991
-
42/255
41 40 40 39 38 37 39 39 38 38
38.9
1.2
3.1
4
3.341
-
42/256
39 38 40 38 39 38 38 40 38 39
38.7
0.8
2.1
2
2.429
-
42/257
41 39 39 38 40 41 42 39 39 40
39.8
1.2
3.1
4
3.254
-
42/258
40 41 39 39 39 38 42 39 41 43
40.1
1.6
4.0
5
3.135
-
42/259
41 39 41 42 40 41 40 39 41 40
40.4
1.0
2.4
3
3.105
-
42/260
42 43 43 44 43 41 41 42 41 41
42.1
1.1
2.6
3
2.726
-
42/261
43 41 41 40 41 42 43 42 43 42
41.8
1.0
2.5
3
2.905
-
42/262
40 41 39 38 40 39 41 40 40 40
39.8
0.9
2.3
3
3.265
-
42/263
40 42 38 40 41 41 38 40 42 39
40.1
1.4
3.6
4
2.760
-
42/264
38 38 38 38 40 39 39 39 40 39
38.8
0.8
2.0
2
2.535
-
42/265
39 40 42 43 41 42 42 41 42 41
41.3
1.2
2.8
4
3.450
-
42/266
41 42 41 39 39 39 41 40 40 40
40.2
1.0
2.6
3
2.905
-
42/267
38 40 40 40 40 39 42 43 41 40
40.3
1.4
3.5
5
3.526
-
42/268
42 41 39 42 44 40 41 43 42 39
41.3
1.6
4.0
5
3.056
-
42/269
40 38 40 39 39 38 40 40 38 40
39.2
0.9
2.3
2
2.176
-
42/270
38 40 40 43 41 40 42 42 41 42
40.9
1.4
3.5
5
3.450
-
42/271
40 40 43 41 41 40 41 41 43 43
41.3
1.3
3.0
3
2.397
-
42/272
38 40 42 41 40 40 40 42 39 39
40.1
1.3
3.2
4
3.109
-
42/273
40 38 40 42 39 40 38 39 42 38
39.6
1.5
3.8
4
2.657
-
42/274
40 43 41 41 39 42 42 43 43 42
41.6
1.3
3.2
4
2.963
-
42/275
40 43 42 41 43 44 43 44 44 44
42.8
1.4
3.3
4
2.860
-
42/276
40 39 38 39 39 41 39 40 39 42
39.6
1.2
3.0
4
3.408
-
42/277
40 39 39 38 40 39 38 38 40 39
39.0
0.8
2.1
2
2.449
-
42/278
39 38 39 39 40 39 38 40 38 41
39.1
1.0
2.5
3
3.017
-
42/279
42 43 42 42 41 41 42 42 42 39
41.6
1.1
2.6
4
3.721
-
42/280
42 41 41 43 43 42 40 40 40 40
41.2
1.2
3.0
3
2.440
-
42/281
41 42 41 42 43 44 40 43 44 42
42.2
1.3
3.1
4
3.038
-
42/282
39 37 36 39 39 38 38 40 39 39
38.4
1.2
3.1
4
3.408
-
42/283
37 38 37 39 40 37 40 39 41 37
38.5
1.5
3.9
4
2.650
-
42/284
39 36 37 35 33 37 37 39 37 38
36.8
1.8
4.9
6
3.308
-
42/285
40 39 42 42 41 38 40 37 36 40
39.5
2.0
5.1
6
2.979
-
42/286
37 37 39 38 40 37 37 37 36 35
37.3
1.4
3.8
5
3.526
-
42/287
39 38 40 42 40 41 42 39 40 40
40.1
1.3
3.2
4
3.109
-
42/288
41 40 42 40 39 39 41 41 40 42
40.5
1.1
2.7
3
2.777
-
42/289
39 39 40 40 40 39 40 41 41 42
40.1
1.0
2.5
3
3.017
-
42/290
40 40 38 39 37 38 39 41 37 41
39.0
1.5
3.8
4
2.683
-
42/291
39 38 40 41 39 39 37 39 40 40
39.2
1.1
2.9
4
3.523
-
42/292
39 38 39 40 41 38 37 38 37 39
38.6
1.3
3.3
4
3.162
-
42/293
39 40 40 41 38 37 40 37 37 38
38.7
1.5
3.9
4
2.677
-
42/294
39 40 37 37 39 37 38 38 40 37
38.2
1.2
3.2
3
2.440
-
42/295
39 40 42 39 38 42 41 38 40 38
39.7
1.6
3.9
4
2.553
-
42/296
39 40 40 38 41 38 38 41 39 41
39.5
1.3
3.2
3
2.364
-
Test area
R1
42/244
42/245
R2
R3
R4
R5
R6
R7
R8
R9
R10
A155
Rm
sR
VR, %
rR
θR
fcm, MPa
41 42 41 40 39 42 40 41 42 37
40.5
1.6
3.9
5
3.162
-
39 38 39 39 38 38 39 38 40 40
38.8
0.8
2.0
2
2.535
-
42/299
38 40 39 40 42 38 37 39 37 37
38.7
1.6
4.2
5
3.056
-
42/300
40 42 37 38 40 38 39 41 40 40
39.5
1.5
3.8
5
3.313
-
42/301
39 39 38 40 40 39 42 39 39 40
39.5
1.1
2.7
4
3.703
-
42/302
38 38 42 41 41 41 39 42 41 43
40.6
1.7
4.2
5
2.919
-
42/303
41 41 39 42 40 40 42 39 40 41
40.5
1.1
2.7
3
2.777
-
42/304
35 38 34 40 38 40 36 40 38 38
37.7
2.1
5.6
6
2.842
-
42/305
39 38 38 39 40 37 36 36 35 37
37.5
1.6
4.2
5
3.162
-
42/306
35 39 37 35 38 38 34 36 35 35
36.2
1.7
4.7
5
2.965
-
42/307
34 34 38 38 39 36 36 37 40 39
37.1
2.1
5.6
6
2.886
-
42/308
37 34 34 36 33 38 37 37 36 36
35.8
1.6
4.5
5
3.088
-
42/309
37 36 38 36 36 35 35 37 38 36
36.4
1.1
3.0
3
2.791
-
42/310
38 39 38 37 40 40 39 38 36 38
38.3
1.3
3.3
4
3.196
-
42/311
36 34 38 34 36 36 38 35 37 36
36.0
1.4
3.9
4
2.828
-
42/312
40 38 40 37 36 39 38 37 36 36
37.7
1.6
4.2
4
2.553
-
42/313
36 36 38 40 38 39 37 38 36 38
37.6
1.3
3.6
4
2.963
-
42/314
38 41 37 37 41 36 40 41 38 37
38.6
2.0
5.1
5
2.557
-
42/315
40 37 39 38 34 39 34 39 39 38
37.7
2.1
5.6
6
2.842
-
42/316
38 34 34 39 40 38 38 37 36 38
37.2
2.0
5.3
6
3.017
-
42/317
38 35 38 40 35 34 40 37 36 38
37.1
2.1
5.6
6
2.886
-
42/318
36 37 40 48 39 38 37 36 39 38
38.8
3.5
9.0
12
3.439
-
42/319
38 42 40 37 40 38 35 40 39 40
38.9
2.0
5.1
7
3.555
-
42/320
38 34 38 35 40 37 37 37 38 38
37.2
1.7
4.5
6
3.558
-
42/321
38 38 36 38 38 36 33 36 37 38
36.8
1.6
4.4
5
3.088
-
42/322
38 38 36 38 38 33 35 37 39 37
36.9
1.8
4.9
6
3.348
-
42/323
36 36 37 41 36 38 38 39 37 38
37.6
1.6
4.2
5
3.169
-
42/324
40 40 40 36 36 38 39 35 36 38
37.8
1.9
5.1
5
2.588
-
42/325
40 42 41 42 38 41 40 38 41 38
40.1
1.6
4.0
4
2.508
-
42/326
42 38 41 42 41 40 38 41 40 38
40.1
1.6
4.0
4
2.508
-
42/327
41 42 40 40 38 41 37 41 42 41
40.3
1.6
4.1
5
3.056
-
42/328
42 38 39 37 39 41 42 41 40 38
39.7
1.8
4.5
5
2.830
-
42/329
36 36 40 35 40 41 37 35 39 38
37.7
2.2
5.9
6
2.711
-
42/330
38 36 42 38 37 40 38 39 39 36
38.3
1.8
4.8
6
3.281
-
42/331
34 35 36 35 36 35 38 36 38 39
36.2
1.6
4.5
5
3.088
-
42/332
37 38 36 40 38 35 36 39 37 37
37.3
1.5
4.0
5
3.346
-
42/333
39 38 39 38 36 40 35 38 36 37
37.6
1.6
4.2
5
3.169
-
42/334
36 40 39 34 38 38 39 39 36 37
37.6
1.8
4.9
6
3.265
-
42/335
36 35 34 34 36 34 36 37 38 36
35.6
1.3
3.8
4
2.963
-
42/336
37 35 35 36 35 34 35 35 34 36
35.2
0.9
2.6
3
3.265
-
42/337
40 39 40 38 39 38 37 37 36 38
38.2
1.3
3.4
4
3.038
-
42/338
38 40 40 40 35 36 37 38 38 38
38.0
1.7
4.5
5
2.942
-
42/339
39 40 40 38 37 37 38 40 37 38
38.4
1.3
3.3
3
2.372
-
42/340
38 38 38 42 38 35 35 37 36 38
37.5
2.0
5.4
7
3.476
-
42/341
36 37 34 34 35 35 37 38 37 38
36.1
1.5
4.2
4
2.625
-
42/342
37 40 38 38 34 35 35 34 40 41
37.2
2.6
7.0
7
2.676
-
42/343
33 36 37 37 40 35 38 35 36 37
36.4
1.9
5.2
7
3.689
-
42/344
38 38 36 36 37 37 36 35 36 37
36.6
1.0
2.6
3
3.105
-
42/345
40 39 41 38 39 40 37 38 39 38
38.9
1.2
3.1
4
3.341
-
42/346
41 39 38 38 42 40 39 38 37 38
39.0
1.6
4.0
5
3.198
-
42/347
41 41 38 39 38 40 41 38 36 38
39.0
1.7
4.4
5
2.942
-
42/348
38 38 36 40 41 34 36 38 40 37
37.8
2.1
5.7
7
3.256
-
42/349
42 40 40 38 38 39 40 38 37 39
39.1
1.4
3.7
5
3.450
-
Test area
R1
42/297
42/298
R2
R3
R4
R5
R6
R7
R8
R9
R10
A156
Rm
sR
VR, %
rR
θR
fcm, MPa
34 38 38 35 35 37 34 35 35 36
35.7
1.5
4.2
4
2.677
-
38 37 38 39 36 35 36 36 38 39
37.2
1.4
3.8
4
2.860
-
42/352
35 36 34 34 35 38 37 34 34 35
35.2
1.4
4.0
4
2.860
-
42/353
39 34 35 40 36 38 36 36 35 38
36.7
1.9
5.3
6
3.082
-
42/354
36 36 34 36 38 38 33 35 36 34
35.6
1.6
4.6
5
3.037
-
42/355
36 36 39 34 34 38 37 34 38 38
36.4
1.9
5.2
5
2.635
-
42/356
38 38 37 35 40 40 38 37 38 38
37.9
1.4
3.8
5
3.450
-
42/357
38 38 41 37 40 37 38 40 36 36
38.1
1.7
4.5
5
2.892
-
42/358
38 40 40 37 37 40 38 40 37 40
38.7
1.4
3.7
3
2.115
-
42/359
36 36 37 35 38 40 35 36 35 38
36.6
1.6
4.5
5
3.037
-
42/360
35 36 38 38 40 38 41 37 37 38
37.8
1.8
4.6
6
3.426
-
42/361
38 38 35 37 39 40 34 34 40 38
37.3
2.3
6.1
6
2.651
-
42/362
38 35 35 39 35 40 36 34 35 38
36.5
2.1
5.7
6
2.901
-
42/363
39 38 38 40 34 40 37 39 39 38
38.2
1.8
4.6
6
3.426
-
42/364
38 34 37 34 35 38 38 40 37 37
36.8
1.9
5.3
6
3.105
-
42/365
36 36 36 40 35 38 40 41 41 39
38.2
2.3
6.0
6
2.609
-
42/366
38 38 39 36 38 40 37 36 37 36
37.5
1.4
3.6
4
2.954
-
42/367
40 35 36 38 38 41 40 39 37 40
38.4
2.0
5.1
6
3.069
-
42/368
38 36 38 40 38 37 40 36 40 36
37.9
1.7
4.4
4
2.405
-
42/369
36 37 37 37 39 38 40 41 40 38
38.3
1.6
4.3
5
3.056
-
42/370
40 38 36 37 36 39 38 37 37 36
37.4
1.3
3.6
4
2.963
-
42/371
35 39 39 40 41 37 38 41 41 40
39.1
2.0
5.0
6
3.047
-
42/372
38 41 38 38 37 38 38 36 36 39
37.9
1.4
3.8
5
3.450
-
42/373
35 36 36 37 40 37 40 36 36 36
36.9
1.7
4.7
5
2.892
-
42/374
39 39 38 38 40 38 40 38 39 38
38.7
0.8
2.1
2
2.429
-
42/375
35 38 37 37 37 39 37 36 39 37
37.2
1.2
3.3
4
3.254
-
42/376
35 36 37 37 37 37 38 37 37 38
36.9
0.9
2.4
3
3.426
-
42/377
39 37 40 40 41 37 38 37 40 37
38.6
1.6
4.1
4
2.535
-
42/378
38 40 38 39 37 38 39 39 39 39
38.6
0.8
2.2
3
3.558
-
42/379
40 39 39 37 37 39 37 38 40 39
38.5
1.2
3.1
3
2.546
-
42/380
37 39 39 38 41 39 39 41 40 40
39.3
1.3
3.2
4
3.196
-
42/381
39 38 38 39 38 38 38 37 37 37
37.9
0.7
1.9
2
2.711
-
42/382
36 34 35 39 36 36 37 35 37 36
36.1
1.4
3.8
5
3.649
-
42/383
37 37 35 35 36 36 37 38 37 38
36.6
1.1
2.9
3
2.791
-
42/384
38 37 39 37 36 37 38 39 40 39
38.0
1.2
3.3
4
3.207
-
42/385
38 37 39 38 37 38 38 36 36 37
37.4
1.0
2.6
3
3.105
-
42/386
38 37 39 40 39 38 42 38 37 39
38.7
1.5
3.9
5
3.346
-
42/387
38 37 39 37 40 41 39 37 37 37
38.2
1.5
3.9
4
2.711
-
42/388
38 38 37 39 39 38 37 37 37 36
37.6
1.0
2.6
3
3.105
-
42/389
39 37 37 37 39 40 40 39 41 39
38.8
1.4
3.6
4
2.860
-
42/390
39 37 36 37 36 37 36 36 36 38
36.8
1.0
2.8
3
2.905
-
42/391
37 39 35 37 37 37 38 37 37 40
37.4
1.3
3.6
5
3.704
-
42/392
37 36 37 37 39 36 40 39 36 38
37.5
1.4
3.8
4
2.790
-
42/393
37 35 36 35 35 37 34 36 37 36
35.8
1.0
2.9
3
2.905
-
42/394
33 35 35 36 35 36 34 34 36 36
35.0
1.1
3.0
3
2.846
-
42/395
34 36 34 38 36 35 36 34 40 38
36.1
2.0
5.6
6
2.963
-
42/396
36 35 35 38 40 36 35 36 36 38
36.5
1.6
4.5
5
3.030
-
42/397
36 35 35 34 35 36 34 35 34 34
34.8
0.8
2.3
2
2.535
-
42/398
38 38 40 40 35 36 37 35 34 36
36.9
2.1
5.6
6
2.886
-
42/399
36 36 38 38 37 34 39 38 37 37
37.0
1.4
3.8
5
3.536
-
42/400
40 38 38 39 39 40 40 38 39 41
39.2
1.0
2.6
3
2.905
-
42/401
41 42 43 44 42 42 43 43 41 43
42.4
1.0
2.3
3
3.105
-
42/402
42 43 41 42 40 42 41 43 41 40
41.5
1.1
2.6
3
2.777
-
Test area
R1
42/350
42/351
R2
R3
R4
R5
R6
R7
R8
R9
R10
A157
Rm
sR
VR, %
rR
θR
fcm, MPa
39 40 41 41 38 42 41 41 39 40
40.2
1.2
3.1
4
3.254
-
39 43 42 43 43 41 41 42 43 41
41.8
1.3
3.1
4
3.038
-
42/405
39 38 37 41 39 39 38 39 41 40
39.1
1.3
3.3
4
3.109
-
42/406
39 39 41 39 38 38 39 41 41 41
39.6
1.3
3.2
3
2.372
-
42/407
42 38 38 41 42 42 40 41 41 40
40.5
1.5
3.7
4
2.650
-
42/408
40 39 41 42 40 41 42 42 41 40
40.8
1.0
2.5
3
2.905
-
42/409
41 42 41 42 42 41 42 43 40 41
41.5
0.8
2.0
3
3.530
-
42/410
41 43 40 42 39 41 42 41 40 40
40.9
1.2
2.9
4
3.341
-
42/411
40 41 40 38 40 40 41 40 41 40
40.1
0.9
2.2
3
3.426
-
42/412
42 39 42 42 41 40 43 42 41 40
41.2
1.2
3.0
4
3.254
-
42/413
38 38 40 39 38 38 39 37 39 39
38.5
0.8
2.2
3
3.530
-
42/414
39 39 40 39 39 40 38 39 38 39
39.0
0.7
1.7
2
3.000
-
42/415
41 42 43 40 39 40 38 40 41 42
40.6
1.5
3.7
5
3.321
-
42/416
41 40 40 39 39 39 38 38 39 40
39.3
0.9
2.4
3
3.162
-
42/417
42 39 40 42 41 40 42 43 40 41
41.0
1.2
3.0
4
3.207
-
42/418
39 39 40 41 40 39 41 40 41 42
40.2
1.0
2.6
3
2.905
-
42/419
38 41 41 41 40 41 39 41 41 39
40.2
1.1
2.8
3
2.642
-
42/420
41 39 39 40 40 39 40 39 40 39
39.6
0.7
1.8
2
2.860
-
42/421
38 42 40 42 41 42 42 40 42 40
40.9
1.4
3.4
4
2.919
-
42/422
38 38 37 38 39 40 39 38 40 40
38.7
1.1
2.7
3
2.832
-
42/423
39 43 39 39 41 40 41 42 39 40
40.3
1.4
3.5
4
2.821
-
42/424
38 38 39 41 41 38 40 40 39 39
39.3
1.2
3.0
3
2.587
-
42/425
36 38 40 35 39 38 37 36 38 34
37.1
1.9
5.0
6
3.238
-
42/426
36 36 37 38 36 36 36 35 35 37
36.2
0.9
2.5
3
3.265
-
42/427
41 40 42 39 40 38 38 38 37 37
39.0
1.7
4.4
5
2.942
-
42/428
36 36 41 42 36 37 37 37 36 36
37.4
2.2
5.9
6
2.701
-
42/429
40 37 36 37 40 37 38 35 36 35
37.1
1.8
4.8
5
2.790
-
42/430
39 37 40 38 38 38 39 37 36 38
38.0
1.2
3.0
4
3.464
-
42/431
40 38 38 39 40 38 41 40 37 40
39.1
1.3
3.3
4
3.109
-
42/432
39 39 37 39 38 38 39 40 38 39
38.6
0.8
2.2
3
3.558
-
42/433
39 42 37 41 38 41 39 38 39 40
39.4
1.6
4.0
5
3.169
-
42/434
42 40 39 41 39 38 41 37 37 38
39.2
1.8
4.5
5
2.855
-
42/435
41 40 37 37 41 42 40 38 39 38
39.3
1.8
4.5
5
2.830
-
42/436
38 39 39 42 39 38 39 36 37 38
38.5
1.6
4.1
6
3.795
-
42/437
40 37 37 37 37 36 40 40 39 38
38.1
1.5
4.0
4
2.625
-
42/438
38 37 38 36 40 38 37 39 40 39
38.2
1.3
3.4
4
3.038
-
42/439
42 40 38 39 39 38 40 38 37 37
38.8
1.5
4.0
5
3.227
-
42/440
42 40 39 41 39 38 41 37 37 38
39.2
1.8
4.5
5
2.855
-
42/441
41 40 37 37 41 42 40 38 39 38
39.3
1.8
4.5
5
2.830
-
42/442
39 41 41 42 39 41 41 39 41 42
40.6
1.2
2.9
3
2.556
-
42/443
40 42 41 40 40 39 42 40 40 41
40.5
1.0
2.4
3
3.087
-
42/444
42 36 38 39 37 38 41 40 41 41
39.3
2.0
5.1
6
2.996
-
42/445
38 38 39 41 40 41 39 38 39 38
39.1
1.2
3.1
3
2.506
-
42/446
40 37 41 42 38 41 42 40 41 40
40.2
1.6
4.0
5
3.088
-
42/447
40 38 40 36 37 36 35 40 42 40
38.4
2.3
6.0
7
3.019
-
42/448
40 42 40 38 41 40 40 40 40 40
40.1
1.0
2.5
4
4.022
-
42/449
42 42 38 42 38 38 39 40 41 42
40.2
1.8
4.5
4
2.206
-
42/450
40 42 39 39 39 40 38 39 39 39
39.4
1.1
2.7
4
3.721
-
42/451
39 38 38 40 40 41 40 38 39 37
39.0
1.2
3.2
4
3.207
-
42/452
42 40 38 39 39 38 38 39 40 42
39.5
1.5
3.8
4
2.650
-
42/453
42 43 37 38 38 41 40 39 39 42
39.9
2.0
5.1
6
2.963
-
42/454
38 40 40 38 39 39 42 41 40 41
39.8
1.3
3.3
4
3.038
-
42/455
39 38 38 39 38 38 38 39 41 38
38.6
1.0
2.5
3
3.105
-
Test area
R1
42/403
42/404
R2
R3
R4
R5
R6
R7
R8
R9
R10
A158
Rm
sR
VR, %
rR
θR
fcm, MPa
38 38 39 41 41 39 40 40 41 39
39.6
1.2
3.0
3
2.556
-
37 41 41 40 38 37 40 42 38 38
39.2
1.8
4.6
5
2.757
-
42/458
38 39 37 40 39 36 37 39 39 41
38.5
1.5
3.9
5
3.313
-
42/459
41 41 42 40 41 39 41 42 40 41
40.8
0.9
2.3
3
3.265
-
42/460
42 40 41 40 39 39 42 38 40 41
40.2
1.3
3.3
4
3.038
-
42/461
38 42 41 40 38 38 40 39 38 39
39.3
1.4
3.6
4
2.821
-
42/462
40 40 41 41 40 39 40 38 39 39
39.7
0.9
2.4
3
3.162
-
42/463
42 40 39 39 40 38 40 39 40 41
39.8
1.1
2.9
4
3.523
-
42/464
39 38 36 37 36 36 38 39 37 36
37.2
1.2
3.3
3
2.440
-
42/465
36 35 35 38 37 35 39 38 37 38
36.8
1.5
4.0
4
2.711
-
42/466
38 40 38 40 39 41 41 38 38 39
39.2
1.2
3.1
3
2.440
-
42/467
38 39 37 40 39 39 36 37 39 39
38.3
1.3
3.3
4
3.196
-
42/468
41 41 40 40 41 39 41 42 40 41
40.6
0.8
2.1
3
3.558
-
42/469
42 40 41 40 39 39 42 38 40 41
40.2
1.3
3.3
4
3.038
-
42/470
36 37 40 35 37 39 38 39 35 39
37.5
1.8
4.7
5
2.810
-
42/471
41 39 41 39 40 37 35 40 35 37
38.4
2.3
5.9
6
2.642
-
42/472
34 33 37 36 38 38 38 38 39 36
36.7
1.9
5.3
6
3.082
-
42/473
37 40 37 37 40 37 36 37 37 39
37.7
1.4
3.8
4
2.821
-
42/474
36 35 34 35 36 35 34 36 37 37
35.5
1.1
3.0
3
2.777
-
42/475
37 37 38 36 38 39 39 38 36 38
37.6
1.1
2.9
3
2.791
-
42/476
39 40 36 38 35 37 36 35 40 37
37.3
1.9
5.1
5
2.648
-
42/477
34 36 39 36 35 35 34 33 35 36
35.3
1.6
4.6
6
3.667
-
42/478
33 34 35 36 35 39 36 36 35 37
35.6
1.6
4.6
6
3.644
-
42/479
33 36 35 35 38 34 35 34 33 33
34.6
1.6
4.6
5
3.169
-
42/480
35 38 35 37 38 36 34 38 36 37
36.4
1.4
3.9
4
2.798
-
42/481
41 39 39 40 40 38 38 39 37 38
38.9
1.2
3.1
4
3.341
-
42/482
40 40 36 38 36 37 41 39 41 41
38.9
2.0
5.2
5
2.469
-
42/483
41 41 41 39 41 40 38 40 38 41
40.0
1.2
3.1
3
2.405
-
42/484
37 38 39 37 37 39 37 38 38 37
37.7
0.8
2.2
2
2.429
-
42/485
38 38 37 38 38 35 36 37 38 35
37.0
1.2
3.4
3
2.405
-
42/486
39 39 40 39 40 38 39 39 40 39
39.2
0.6
1.6
2
3.162
-
42/487
36 39 36 36 39 40 37 37 36 39
37.5
1.6
4.2
4
2.530
-
42/488
36 36 38 38 37 37 37 37 37 39
37.2
0.9
2.5
3
3.265
-
42/489
37 37 38 36 40 40 39 37 37 37
37.8
1.4
3.7
4
2.860
-
42/490
39 35 35 36 38 38 35 34 36 37
36.3
1.6
4.5
5
3.056
-
42/491
39 35 37 35 36 35 37 35 37 35
36.1
1.4
3.8
4
2.919
-
42/492
37 35 35 35 38 35 36 37 36 36
36.0
1.1
2.9
3
2.846
-
42/493
35 37 37 36 37 35 35 36 38 37
36.3
1.1
2.9
3
2.832
-
42/494
39 37 36 36 35 36 36 34 36 36
36.1
1.3
3.6
5
3.886
-
42/495
34 35 33 32 33 33 35 33 32 31
33.1
1.3
3.9
4
3.109
-
42/496
37 38 36 36 34 36 35 36 35 39
36.2
1.5
4.1
5
3.388
-
42/497
40 38 38 39 35 38 39 40 40 40
38.7
1.6
4.0
5
3.191
-
42/498
35 37 38 31 40 40 40 38 37 39
37.5
2.8
7.5
9
3.216
-
42/499
39 38 41 40 40 40 41 38 41 41
39.9
1.2
3.0
3
2.506
-
42/500
39 41 42 42 39 39 38 40 38 40
39.8
1.5
3.7
4
2.711
-
42/501
38 37 36 37 39 39 39 40 39 39
38.3
1.3
3.3
4
3.196
-
42/502
40 37 39 39 36 35 37 36 37 36
37.2
1.6
4.4
5
3.088
-
42/503
38 37 39 39 39 38 37 39 40 37
38.3
1.1
2.8
3
2.832
-
42/504
40 35 39 36 40 38 39 38 40 38
38.3
1.7
4.4
5
2.936
-
42/505
38 36 40 38 37 38 37 40 41 40
38.5
1.6
4.3
5
3.030
-
42/506
42 41 37 39 39 38 38 38 37 39
38.8
1.6
4.2
5
3.088
-
42/507
35 36 34 34 35 37 38 38 39 36
36.2
1.8
4.8
5
2.855
-
42/508
38 36 35 37 36 35 40 41 37 37
37.2
2.0
5.3
6
3.017
-
Test area
R1
42/456
42/457
R2
R3
R4
R5
R6
R7
R8
R9
R10
A159
Rm
sR
VR, %
rR
θR
fcm, MPa
36 37 36 39 37 35 37 39 38 36
37.0
1.3
3.6
4
3.000
-
40 39 38 37 38 38 37 39 37 39
38.2
1.0
2.7
3
2.905
-
42/511
38 42 41 36 36 37 36 38 37 39
38.0
2.1
5.5
6
2.846
-
42/512
39 39 38 37 38 39 40 39 39 41
38.9
1.1
2.8
4
3.635
-
42/513
35 37 38 36 37 36 36 37 39 37
36.8
1.1
3.1
4
3.523
-
42/514
35 37 37 38 37 37 37 36 35 38
36.7
1.1
2.9
3
2.832
-
42/515
35 35 37 35 35 35 35 35 36 35
35.3
0.7
1.9
2
2.963
-
42/516
38 39 40 37 37 35 38 40 41 41
38.6
2.0
5.1
6
3.069
-
42/517
38 40 40 38 41 40 39 42 39 38
39.5
1.4
3.4
4
2.954
-
42/518
41 38 37 37 39 41 42 39 41 38
39.3
1.8
4.7
5
2.734
-
42/519
40 39 38 37 38 38 37 39 37 39
38.2
1.0
2.7
3
2.905
-
42/520
38 42 41 36 36 37 36 38 37 39
38.0
2.1
5.5
6
2.846
-
42/521
39 39 38 37 38 39 40 39 39 41
38.9
1.1
2.8
4
3.635
-
43/1
37 37 36 36 39 40 38 37 37 39
37.6
1.3
3.6
4
2.963
-
43/2
38 39 39 42 39 40 43 39 39 39
39.7
1.6
3.9
5
3.191
-
43/3
41 38 42 41 41 43 43 41 44 38
41.2
2.0
4.8
6
3.017
-
43/4
44 41 38 43 43 44 42 44 42 40
42.1
2.0
4.7
6
3.047
-
43/5
40 39 41 39 41 42 38 42 41 41
40.4
1.3
3.3
4
2.963
-
43/6
40 38 40 42 40 42 43 43 42 40
41.0
1.6
4.0
5
3.062
-
43/7
42 39 43 41 42 40 38 40 38 42
40.5
1.8
4.4
5
2.810
-
43/8
42 41 38 37 40 41 39 42 41 41
40.2
1.7
4.2
5
2.965
-
43/9
40 40 42 41 42 43 40 40 41 42
41.1
1.1
2.7
3
2.726
-
43/10
40 38 40 39 40 41 42 40 41 41
40.2
1.1
2.8
4
3.523
-
43/11
43 41 39 43 43 39 42 43 44 40
41.7
1.8
4.4
5
2.734
-
43/12
38 39 41 37 39 43 40 42 39 40
39.8
1.8
4.6
6
3.308
-
43/13
44 45 42 43 41 45 44 43 41 44
43.2
1.5
3.4
4
2.711
-
43/14
45 43 44 44 41 42 41 43 42 42
42.7
1.3
3.1
4
2.991
-
43/15
43 45 44 43 41 42 41 43 44 43
42.9
1.3
3.0
4
3.109
-
43/16
42 42 41 40 42 43 41 41 41 40
41.3
0.9
2.3
3
3.162
-
43/17
43 43 44 42 42 41 42 42 41 42
42.2
0.9
2.2
3
3.265
-
43/18
42 41 43 42 42 43 41 40 45 41
42.0
1.4
3.4
5
3.536
-
43/19
41 41 42 44 40 41 41 42 41 42
41.5
1.1
2.6
4
3.703
-
43/20
42 40 42 43 42 41 40 43 42 40
41.5
1.2
2.8
3
2.546
-
43/21
39 41 40 42 40 42 41 41 41 39
40.6
1.1
2.6
3
2.791
-
43/22
42 44 42 42 41 41 43 41 41 42
41.9
1.0
2.4
3
3.017
-
43/23
41 39 38 41 38 39 39 37 40 39
39.1
1.3
3.3
4
3.109
-
43/24
39 44 37 41 37 40 37 41 44 43
40.3
2.8
6.9
7
2.508
-
43/25
38 37 37 38 37 37 36 35 36 41
37.2
1.6
4.4
6
3.705
-
43/26
39 41 38 41 41 40 38 37 37 36
38.8
1.9
4.8
5
2.668
-
43/27
41 42 40 39 39 40 38 39 41 40
39.9
1.2
3.0
4
3.341
-
43/28
43 42 40 40 39 39 42 42 40 41
40.8
1.4
3.4
4
2.860
-
43/29
40 39 39 38 40 41 39 39 40 38
39.3
0.9
2.4
3
3.162
-
43/30
39 38 38 39 40 40 41 38 38 39
39.0
1.1
2.7
3
2.846
-
43/31
39 39 39 37 38 40 40 39 38 40
38.9
1.0
2.6
3
3.017
-
43/32
40 38 38 39 39 40 40 41 40 38
39.3
1.1
2.7
3
2.832
-
43/33
37 37 38 42 37 40 40 39 38 38
38.6
1.6
4.3
5
3.037
-
43/34
43 41 40 38 39 38 39 38 42 41
39.9
1.8
4.5
5
2.790
-
43/35
41 41 39 39 38 37 37 41 39 42
39.4
1.8
4.5
5
2.815
-
43/36
41 37 39 40 40 42 43 38 42 41
40.3
1.9
4.7
6
3.177
-
43/37
39 39 40 39 38 40 38 40 41 39
39.3
0.9
2.4
3
3.162
-
43/38
39 39 40 40 40 39 41 38 39 40
39.5
0.8
2.2
3
3.530
-
43/39
40 39 40 39 40 40 38 39 38 41
39.4
1.0
2.5
3
3.105
-
Test area
R1
42/509
42/510
R2
R3
R4
R5
R6
R7
R8
R9
R10
A160
Rm
sR
VR, %
rR
θR
fcm, MPa
37 39 38 37 39 38 39 39 40 40
38.6
1.1
2.8
3
2.791
-
40 40 40 39 40 39 40 40 40 37
39.5
1.0
2.5
3
3.087
-
43/42
40 39 39 38 41 41 40 40 40 39
39.7
0.9
2.4
3
3.162
-
43/43
37 36 38 37 36 38 39 38 39 37
37.5
1.1
2.9
3
2.777
-
43/44
39 38 41 39 37 39 39 41 38 37
38.8
1.4
3.6
4
2.860
-
43/45
38 42 41 42 38 37 38 40 41 38
39.5
1.9
4.8
5
2.631
-
43/46
37 36 37 38 36 37 37 39 40 39
37.6
1.3
3.6
4
2.963
-
43/47
36 38 37 41 39 41 40 38 41 37
38.8
1.9
4.8
5
2.668
-
43/48
37 38 39 39 38 40 41 38 37 38
38.5
1.3
3.3
4
3.151
-
43/49
39 37 41 40 38 37 35 38 37 38
38.0
1.7
4.5
6
3.530
-
43/50
41 40 41 40 42 38 41 39 42 40
40.4
1.3
3.1
4
3.162
-
43/51
36 38 42 38 39 39 40 38 38 40
38.8
1.6
4.2
6
3.705
-
43/52
40 41 39 38 42 40 39 38 40 42
39.9
1.4
3.6
4
2.760
-
43/53
39 41 39 40 38 41 38 38 40 39
39.3
1.2
3.0
3
2.587
-
43/54
39 39 37 38 39 39 40 38 37 39
38.5
1.0
2.5
3
3.087
-
43/55
42 41 40 39 38 39 37 37 41 41
39.5
1.8
4.5
5
2.810
-
43/56
39 37 39 37 39 39 38 37 37 38
38.0
0.9
2.5
2
2.121
-
43/57
40 41 40 41 43 39 42 43 42 44
41.5
1.6
3.8
5
3.162
-
43/58
41 40 39 43 42 39 38 38 40 40
40.0
1.6
4.1
5
3.062
-
43/59
39 39 40 38 39 42 39 41 39 42
39.8
1.4
3.5
4
2.860
-
43/60
39 38 41 43 42 42 40 41 40 43
40.9
1.7
4.1
5
3.006
-
43/61
40 38 41 42 40 41 39 42 41 41
40.5
1.3
3.1
4
3.151
-
43/62
39 38 39 40 40 39 39 41 42 41
39.8
1.2
3.1
4
3.254
-
43/63
40 40 39 39 39 41 40 38 40 41
39.7
0.9
2.4
3
3.162
-
43/64
38 38 40 39 39 40 41 39 41 40
39.5
1.1
2.7
3
2.777
-
43/65
40 41 39 38 39 40 39 40 40 40
39.6
0.8
2.1
3
3.558
-
43/66
40 40 39 38 40 39 42 40 41 42
40.1
1.3
3.2
4
3.109
-
43/67
39 38 39 39 41 40 41 41 40 43
40.1
1.4
3.6
5
3.450
-
43/68
40 42 41 39 43 42 41 40 39 40
40.7
1.3
3.3
4
2.991
-
43/69
39 39 42 40 41 42 41 39 41 40
40.4
1.2
2.9
3
2.556
-
43/70
41 38 41 42 44 41 40 39 41 42
40.9
1.7
4.1
6
3.607
-
43/71
41 42 40 41 39 42 41 42 39 42
40.9
1.2
2.9
3
2.506
-
43/72
40 39 42 43 42 40 39 41 40 42
40.8
1.4
3.4
4
2.860
-
43/73
39 40 42 40 41 40 40 39 41 41
40.3
0.9
2.4
3
3.162
-
43/74
41 41 40 39 39 41 41 40 39 38
39.9
1.1
2.8
3
2.726
-
43/75
40 41 42 40 39 40 41 41 39 39
40.2
1.0
2.6
3
2.905
-
43/76
42 41 39 41 40 39 42 38 40 40
40.2
1.3
3.3
4
3.038
-
43/77
39 41 40 36 42 40 39 41 42 41
40.1
1.8
4.5
6
3.348
-
43/78
39 42 42 41 40 39 43 42 39 42
40.9
1.5
3.7
4
2.625
-
43/79
41 41 39 38 39 42 43 42 38 40
40.3
1.8
4.4
5
2.830
-
43/80
37 41 39 39 38 42 37 40 37 41
39.1
1.9
4.7
5
2.698
-
43/81
39 42 42 42 41 42 38 41 39 41
40.7
1.5
3.7
4
2.677
-
43/82
40 39 41 40 39 41 38 39 43 41
40.1
1.4
3.6
5
3.450
-
43/83
41 39 42 43 42 37 39 38 36 39
39.6
2.3
5.9
7
3.019
-
43/84
39 37 36 38 37 39 39 39 40 41
38.5
1.5
3.9
5
3.313
-
43/85
41 40 39 42 41 40 42 38 39 43
40.5
1.6
3.9
5
3.162
-
43/86
41 40 41 39 42 41 40 38 42 43
40.7
1.5
3.7
5
3.346
-
43/87
37 39 40 36 38 39 37 37 39 38
38.0
1.2
3.3
4
3.207
-
43/88
39 37 37 37 36 39 37 37 36 40
37.5
1.4
3.6
4
2.954
-
43/89
37 37 36 36 39 40 38 37 37 39
37.6
1.3
3.6
4
2.963
-
43/90
38 39 39 42 39 40 43 39 39 39
39.7
1.6
3.9
5
3.191
-
43/91
41 38 42 41 41 43 43 41 44 38
41.2
2.0
4.8
6
3.017
-
43/92
41 41 38 43 43 44 42 44 42 40
41.8
1.9
4.5
6
3.202
-
Test area
R1
43/40
43/41
R2
R3
R4
R5
R6
R7
R8
R9
R10
A161
Rm
sR
VR, %
rR
θR
fcm, MPa
40 39 41 39 41 42 38 42 41 41
40.4
1.3
3.3
4
2.963
-
40 38 40 42 40 42 43 43 42 40
41.0
1.6
4.0
5
3.062
-
43/95
42 39 43 41 42 40 38 40 38 42
40.5
1.8
4.4
5
2.810
-
43/96
42 41 38 37 40 41 39 42 41 41
40.2
1.7
4.2
5
2.965
-
43/97
40 40 42 41 42 43 40 40 41 42
41.1
1.1
2.7
3
2.726
-
43/98
38 38 37 38 40 38 41 39 38 38
38.5
1.2
3.1
4
3.394
-
Test area
R1
43/93
43/94
R2
R3
R4
R5
R6
R7
R8
R9
R10
43/99
39 39 40 38 38 42 40 39 39 37
39.1
1.4
3.5
5
3.649
-
43/100
37 39 41 42 43 41 38 38 37 38
39.4
2.2
5.5
6
2.764
-
43/101
37 38 39 38 38 40 38 39 38 37
38.2
0.9
2.4
3
3.265
-
43/102
38 38 40 39 40 39 37 38 39 40
38.8
1.0
2.7
3
2.905
-
43/103
39 38 40 37 38 38 36 40 41 40
38.7
1.6
4.0
5
3.191
-
43/104
39 38 40 40 41 39 40 39 38 38
39.2
1.0
2.6
3
2.905
-
43/105
38 39 40 38 39 38 40 38 40 38
38.8
0.9
2.4
2
2.176
-
43/106
40 37 38 40 38 37 38 37 38 42
38.5
1.6
4.3
5
3.030
-
43/107
37 38 39 39 40 38 39 37 40 38
38.5
1.1
2.8
3
2.777
-
43/108
37 36 38 36 35 37 36 37 35 36
36.3
0.9
2.6
3
3.162
-
43/109
33 34 36 35 37 34 34 37 36 34
35.0
1.4
4.0
4
2.828
-
43/110
37 38 35 36 37 37 38 37 36 35
36.6
1.1
2.9
3
2.791
-
43/111
38 37 38 37 36 37 36 38 36 35
36.8
1.0
2.8
3
2.905
-
43/112
37 36 38 37 40 36 40 37 38 36
37.5
1.5
4.0
4
2.650
-
43/113
37 38 36 38 40 37 36 37 36 35
37.0
1.4
3.8
5
3.536
-
43/114
38 39 40 38 37 36 37 39 39 38
38.1
1.2
3.1
4
3.341
-
43/115
36 37 40 38 39 38 37 38 39 38
38.0
1.2
3.0
4
3.464
-
43/116
38 37 38 39 38 37 38 37 38 37
37.7
0.7
1.8
2
2.963
-
43/117
37 38 37 39 39 38 36 37 37 38
37.6
1.0
2.6
3
3.105
-
43/118
38 38 37 39 36 37 38 38 39 37
37.7
0.9
2.5
3
3.162
-
43/119
38 39 38 39 37 38 38 37 38 38
38.0
0.7
1.8
2
3.000
-
43/120
39 38 39 37 37 36 35 38 39 38
37.6
1.3
3.6
4
2.963
-
43/121
37 38 40 40 39 39 38 38 39 39
38.7
0.9
2.5
3
3.162
-
43/122
37 39 39 40 37 38 38 39 41 40
38.8
1.3
3.4
4
3.038
-
43/123
40 38 39 40 38 40 39 38 40 39
39.1
0.9
2.2
2
2.284
-
43/124
38 39 37 40 39 39 37 38 39 40
38.6
1.1
2.8
3
2.791
-
43/125
40 37 36 38 40 41 40 38 37 38
38.5
1.6
4.3
5
3.030
-
43/126
37 38 35 38 39 38 39 38 40 39
38.1
1.4
3.6
5
3.649
-
43/127
38 38 40 40 38 39 38 38 39 40
38.8
0.9
2.4
2
2.176
-
43/128
38 37 38 38 39 40 39 37 37 39
38.2
1.0
2.7
3
2.905
-
43/129
38 39 38 38 39 40 37 39 38 38
38.4
0.8
2.2
3
3.558
-
43/130
37 35 37 35 35 34 36 34 35 37
35.5
1.2
3.3
3
2.546
-
43/131
36 35 36 37 38 37 39 40 38 37
37.3
1.5
4.0
5
3.346
-
43/132
38 39 37 38 38 40 40 38 39 38
38.5
1.0
2.5
3
3.087
-
43/133
37 37 40 39 37 38 38 40 39 40
38.5
1.3
3.3
3
2.364
-
43/134
40 38 39 40 41 38 39 40 38 39
39.2
1.0
2.6
3
2.905
-
43/135
41 39 38 37 38 40 40 39 41 40
39.3
1.3
3.4
4
2.991
-
43/136
40 39 38 38 37 39 40 38 40 38
38.7
1.1
2.7
3
2.832
-
43/137
40 38 40 37 37 38 38 39 36 40
38.3
1.4
3.7
4
2.821
-
43/138
40 38 38 37 39 38 37 37 39 37
38.0
1.1
2.8
3
2.846
-
43/139
38 37 36 37 37 38 37 37 38 39
37.4
0.8
2.3
3
3.558
-
43/140
38 37 35 37 39 40 40 40 38 39
38.3
1.6
4.3
5
3.056
-
43/141
37 38 39 37 39 37 40 40 38 38
38.3
1.2
3.0
3
2.587
-
43/142
37 40 40 39 39 38 40 38 39 40
39.0
1.1
2.7
3
2.846
-
43/143
38 40 39 38 37 39 38 40 38 37
38.4
1.1
2.8
3
2.791
-
43/144
40 38 39 39 38 40 37 40 37 39
38.7
1.2
3.0
3
2.587
-
43/145
40 39 39 38 37 39 41 38 41 40
39.2
1.3
3.4
4
3.038
-
A162
Rm
sR
VR, %
rR
θR
fcm, MPa
41 40 40 38 39 42 41 41 40 40
40.2
1.1
2.8
4
3.523
-
39 39 41 40 40 42 40 41 38 39
39.9
1.2
3.0
4
3.341
-
43/148
38 41 41 42 44 43 40 39 38 42
40.8
2.0
5.0
6
2.935
-
43/149
39 40 38 37 39 40 40 39 38 39
38.9
1.0
2.6
3
3.017
-
43/150
38 38 40 39 37 39 39 37 39 39
38.5
1.0
2.5
3
3.087
-
43/151
34 33 35 34 35 34 35 35 33 36
34.4
1.0
2.8
3
3.105
-
43/152
34 36 33 35 36 34 35 33 36 35
34.7
1.2
3.3
3
2.587
-
43/153
35 33 33 34 36 35 34 34 35 33
34.2
1.0
3.0
3
2.905
-
43/154
37 36 34 37 38 36 36 37 34 35
36.0
1.3
3.7
4
3.000
-
43/155
36 35 36 38 37 36 34 38 36 34
36.0
1.4
3.9
4
2.828
-
43/156
38 37 37 36 35 35 38 40 36 35
36.7
1.6
4.5
5
3.056
-
43/157
38 37 36 35 36 34 38 36 39 35
36.4
1.6
4.3
5
3.169
-
43/158
37 35 34 38 36 38 35 34 36 39
36.2
1.8
4.8
5
2.855
-
43/159
35 34 33 36 38 33 36 35 35 36
35.1
1.5
4.3
5
3.281
-
43/160
36 33 34 36 37 37 36 36 35 35
35.5
1.3
3.6
4
3.151
-
43/161
34 33 34 38 35 34 35 35 36 35
34.9
1.4
3.9
5
3.649
-
43/162
32 33 32 33 34 34 34 33 30 34
32.9
1.3
3.9
4
3.109
-
43/163
33 32 34 33 33 34 33 31 34 33
33.0
0.9
2.9
3
3.182
-
43/164
33 34 34 34 35 33 35 33 34 32
33.7
0.9
2.8
3
3.162
-
43/165
34 34 33 33 34 32 31 30 31 30
32.2
1.6
5.0
4
2.470
-
43/166
35 32 30 33 32 30 30 31 32 31
31.6
1.6
5.0
5
3.169
-
43/167
30 31 30 29 30 31 29 27 30 29
29.6
1.2
4.0
4
3.408
-
43/168
28 30 29 29 28 29 30 30 28 29
29.0
0.8
2.8
2
2.449
-
43/169
31 30 29 28 27 28 29 30 32 32
29.6
1.7
5.8
5
2.919
-
43/170
28 33 30 33 34 34 36 34 32 32
32.6
2.3
7.0
8
3.523
-
43/171
34 32 30 29 28 28 30 27 30 31
29.9
2.1
7.0
7
3.367
-
43/172
28 28 29 32 31 32 33 32 29 30
30.4
1.8
6.0
5
2.721
-
43/173
34 33 36 32 34 33 36 36 37 34
34.5
1.6
4.8
5
3.030
-
43/174
33 35 34 36 35 34 33 32 36 35
34.3
1.3
3.9
4
2.991
-
43/175
32 30 33 34 31 30 31 33 30 33
31.7
1.5
4.7
4
2.677
-
43/176
33 32 30 31 32 32 34 32 31 32
31.9
1.1
3.4
4
3.635
-
43/177
33 31 32 34 35 33 32 36 33 34
33.3
1.5
4.5
5
3.346
-
43/178
35 33 36 33 33 36 33 32 33 33
33.7
1.4
4.2
4
2.821
-
43/179
30 34 35 32 32 34 32 33 35 33
33.0
1.6
4.7
5
3.198
-
43/180
34 35 36 34 36 37 37 35 36 35
35.5
1.1
3.0
3
2.777
-
43/181
34 32 33 35 34 33 33 31 31 30
32.6
1.6
4.8
5
3.169
-
43/182
33 36 34 33 36 35 33 34 31 31
33.6
1.8
5.3
5
2.815
-
43/183
32 32 30 34 35 33 33 32 33 34
32.8
1.4
4.3
5
3.575
-
43/184
38 37 40 40 37 38 37 37 38 39
38.1
1.2
3.1
3
2.506
-
43/185
38 39 37 40 38 41 36 38 39 39
38.5
1.4
3.7
5
3.487
-
43/186
40 39 41 40 41 40 38 39 38 39
39.5
1.1
2.7
3
2.777
-
43/187
38 41 40 42 38 39 39 40 41 37
39.5
1.6
4.0
5
3.162
-
43/188
41 40 40 40 38 39 41 39 41 38
39.7
1.2
2.9
3
2.587
-
43/189
42 40 38 39 38 38 37 39 40 41
39.2
1.5
4.0
5
3.227
-
43/190
41 40 38 37 38 39 40 38 37 39
38.7
1.3
3.5
4
2.991
-
43/191
40 39 39 39 38 37 39 40 40 37
38.8
1.1
2.9
3
2.642
-
43/192
40 38 39 37 40 38 40 39 40 38
38.9
1.1
2.8
3
2.726
-
43/193
38 40 39 38 37 37 38 36 37 36
37.6
1.3
3.4
4
3.162
-
43/194
37 38 41 38 38 38 38 38 40 39
38.5
1.2
3.1
4
3.394
-
43/195
38 39 40 38 37 38 39 39 40 39
38.7
0.9
2.5
3
3.162
-
43/196
40 39 38 37 40 38 40 37 37 36
38.2
1.5
3.9
4
2.711
-
43/197
38 41 38 37 37 41 40 38 37 40
38.7
1.6
4.2
4
2.444
-
43/198
37 36 38 38 37 40 36 37 39 38
37.6
1.3
3.4
4
3.162
-
Test area
R1
43/146
43/147
R2
R3
R4
R5
R6
R7
R8
R9
R10
A163
Rm
sR
VR, %
rR
θR
fcm, MPa
38 37 38 39 40 38 38 36 38 38
38.0
1.1
2.8
4
3.795
-
37 36 35 39 38 37 36 40 37 35
37.0
1.6
4.4
5
3.062
-
43/201
35 36 38 37 40 36 37 36 37 35
36.7
1.5
4.1
5
3.346
-
43/202
35 36 37 39 38 40 36 37 37 37
37.2
1.5
4.0
5
3.388
-
43/203
36 38 38 36 37 38 37 36 38 36
37.0
0.9
2.5
2
2.121
-
43/204
37 35 36 37 37 38 40 35 35 36
36.6
1.6
4.3
5
3.169
-
43/205
37 37 37 40 38 36 36 37 37 38
37.3
1.2
3.1
4
3.450
-
43/206
37 38 37 37 36 38 39 40 40 36
37.8
1.5
3.9
4
2.711
-
43/207
37 35 36 36 37 36 38 38 38 39
37.0
1.2
3.4
4
3.207
-
43/208
36 35 37 35 36 35 36 37 35 37
35.9
0.9
2.4
2
2.284
-
43/209
38 37 36 37 38 36 37 37 36 37
36.9
0.7
2.0
2
2.711
-
43/210
36 36 37 38 37 36 37 36 39 39
37.1
1.2
3.2
3
2.506
-
43/211
35 37 36 38 39 38 38 37 36 39
37.3
1.3
3.6
4
2.991
-
43/212
38 40 36 37 37 35 37 38 37 37
37.2
1.3
3.5
5
3.798
-
43/213
39 36 37 35 37 38 36 36 38 37
36.9
1.2
3.2
4
3.341
-
43/214
35 37 36 34 38 38 39 37 37 39
37.0
1.6
4.4
5
3.062
-
43/215
36 37 37 37 37 36 38 38 38 37
37.1
0.7
2.0
2
2.711
-
43/216
38 39 40 40 39 41 42 42 39 41
40.1
1.4
3.4
4
2.919
-
43/217
40 42 41 41 39 42 39 38 41 40
40.3
1.3
3.3
4
2.991
-
43/218
41 40 41 40 39 41 38 42 40 40
40.2
1.1
2.8
4
3.523
-
43/219
40 41 42 40 39 41 39 41 42 40
40.5
1.1
2.7
3
2.777
-
43/220
41 42 43 42 41 40 39 40 41 42
41.1
1.2
2.9
4
3.341
-
43/221
38 40 39 39 41 40 40 42 40 41
40.0
1.2
2.9
4
3.464
-
43/222
42 40 42 42 43 39 38 39 40 38
40.3
1.8
4.5
5
2.734
-
43/223
41 39 40 38 42 38 40 39 40 38
39.5
1.4
3.4
4
2.954
-
43/224
40 38 40 39 40 39 41 42 40 38
39.7
1.3
3.2
4
3.196
-
43/225
38 38 39 40 42 39 41 40 41 39
39.7
1.3
3.4
4
2.991
-
43/226
41 39 39 41 39 40 39 41 40 39
39.8
0.9
2.3
2
2.176
-
43/227
42 45 40 42 43 44 42 40 40 42
42.0
1.7
4.0
5
2.942
-
43/228
43 44 43 44 42 44 41 43 41 44
42.9
1.2
2.8
3
2.506
-
43/229
43 45 44 46 42 42 43 42 44 42
43.3
1.4
3.3
4
2.821
-
43/230
40 42 41 43 42 40 44 42 42 42
41.8
1.2
2.9
4
3.254
-
43/231
40 41 40 42 40 41 40 39 40 40
40.3
0.8
2.0
3
3.644
-
43/232
41 39 42 39 40 40 39 42 41 40
40.3
1.2
2.9
3
2.587
-
43/233
41 42 41 42 41 41 40 39 41 43
41.1
1.1
2.7
4
3.635
-
43/234
42 41 40 41 40 41 41 42 41 43
41.2
0.9
2.2
3
3.265
-
43/235
43 41 40 40 39 41 40 40 39 41
40.4
1.2
2.9
4
3.408
-
43/236
43 41 42 40 44 40 42 41 39 42
41.4
1.5
3.6
5
3.321
-
43/237
37 38 36 37 38 38 37 39 39 38
37.7
0.9
2.5
3
3.162
-
43/238
40 38 38 37 38 41 37 38 40 38
38.5
1.4
3.5
4
2.954
-
43/239
38 37 39 38 39 37 39 40 40 40
38.7
1.2
3.0
3
2.587
-
43/240
40 38 39 38 39 38 37 38 39 40
38.6
1.0
2.5
3
3.105
-
43/241
40 37 39 40 38 37 39 38 40 40
38.8
1.2
3.2
3
2.440
-
43/242
41 40 39 38 39 39 38 41 39 39
39.3
1.1
2.7
3
2.832
-
43/243
40 42 41 38 40 40 38 42 38 38
39.7
1.6
4.1
4
2.444
-
43/244
41 40 38 37 39 37 39 38 38 40
38.7
1.3
3.5
4
2.991
-
43/245
42 41 39 39 37 37 38 37 37 37
38.4
1.8
4.8
5
2.721
-
43/246
36 38 40 39 40 37 37 39 39 38
38.3
1.3
3.5
4
2.991
-
43/247
37 36 37 35 36 37 38 37 38 38
36.9
1.0
2.7
3
3.017
-
43/248
39 38 38 37 39 36 38 37 35 36
37.3
1.3
3.6
4
2.991
-
43/249
35 37 38 35 37 39 36 37 35 38
36.7
1.4
3.9
4
2.821
-
43/250
36 38 37 35 38 37 37 37 36 37
36.8
0.9
2.5
3
3.265
-
43/251
38 36 35 34 36 35 37 38 37 36
36.2
1.3
3.6
4
3.038
-
Test area
R1
43/199
43/200
R2
R3
R4
R5
R6
R7
R8
R9
R10
A164
Rm
sR
VR, %
rR
θR
fcm, MPa
40 38 40 40 39 44 42 38 38 40
39.9
1.9
4.8
6
3.138
-
41 40 39 38 40 38 40 40 38 41
39.5
1.2
3.0
3
2.546
-
43/254
36 38 40 40 41 40 41 40 40 41
39.7
1.6
3.9
5
3.191
-
43/255
38 38 38 39 36 40 37 38 38 38
38.0
1.1
2.8
4
3.795
-
43/256
38 38 40 39 39 37 40 38 37 37
38.3
1.2
3.0
3
2.587
-
43/257
37 37 36 38 39 38 39 37 38 37
37.6
1.0
2.6
3
3.105
-
43/258
37 36 37 37 38 36 36 38 39 36
37.0
1.1
2.8
3
2.846
-
43/259
37 37 36 37 37 38 36 36 37 36
36.7
0.7
1.8
2
2.963
-
43/260
38 37 35 36 34 37 37 38 37 36
36.5
1.3
3.5
4
3.151
-
43/261
38 39 37 38 38 38 36 37 36 37
37.4
1.0
2.6
3
3.105
-
43/262
38 37 38 37 36 35 36 34 35 34
36.0
1.5
4.1
4
2.683
-
43/263
36 37 38 35 37 35 37 34 36 34
35.9
1.4
3.8
4
2.919
-
43/264
39 39 40 39 39 40 39 39 38 41
39.3
0.8
2.1
3
3.644
-
43/265
39 39 40 38 38 39 40 39 39 37
38.8
0.9
2.4
3
3.265
-
43/266
39 40 39 38 38 41 40 38 38 38
38.9
1.1
2.8
3
2.726
-
43/267
40 40 39 40 39 39 38 38 40 39
39.2
0.8
2.0
2
2.535
-
43/268
38 38 42 39 39 38 38 40 38 38
38.8
1.3
3.4
4
3.038
-
43/269
38 37 36 38 37 37 36 37 36 39
37.1
1.0
2.7
3
3.017
-
43/270
37 38 37 36 38 37 38 36 36 38
37.1
0.9
2.4
2
2.284
-
43/271
38 39 34 34 38 38 39 36 37 36
36.9
1.9
5.0
5
2.698
-
43/272
38 38 37 36 38 36 37 36 35 38
36.9
1.1
3.0
3
2.726
-
43/273
36 35 36 37 38 37 36 38 38 36
36.7
1.1
2.9
3
2.832
-
43/274
38 37 36 37 38 37 36 36 36 35
36.6
1.0
2.6
3
3.105
-
43/275
37 39 37 38 36 37 38 37 36 37
37.2
0.9
2.5
3
3.265
-
43/276
26 27 28 29 29 28 28 28 28 29
28.0
0.9
3.4
3
3.182
-
43/277
27 28 30 28 29 30 30 27 28 27
28.4
1.3
4.5
3
2.372
-
43/278
27 28 28 27 28 28 28 28 27 26
27.5
0.7
2.6
2
2.828
-
43/279
26 25 27 26 27 29 28 29 27 28
27.2
1.3
4.8
4
3.038
-
43/280
32 30 31 30 30 29 28 31 30 30
30.1
1.1
3.7
4
3.635
-
43/281
32 30 32 31 32 32 21 30 32 32
30.4
3.4
11.2
11
3.230
-
43/282
31 30 30 30 31 32 33 31 31 32
31.1
1.0
3.2
3
3.017
-
43/283
31 30 32 30 32 31 31 29 32 31
30.9
1.0
3.2
3
3.017
-
43/284
29 28 28 29 30 28 29 29 29 28
28.7
0.7
2.4
2
2.963
-
43/285
30 31 29 28 29 29 28 30 31 30
29.5
1.1
3.7
3
2.777
-
43/286
26 26 28 28 28 27 28 27 26 26
27.0
0.9
3.5
2
2.121
-
43/287
26 28 27 26 28 27 26 27 28 28
27.1
0.9
3.2
2
2.284
-
43/288
27 26 28 27 28 27 26 26 25 27
26.7
0.9
3.6
3
3.162
-
43/289
31 30 29 29 31 32 31 32 31 30
30.6
1.1
3.5
3
2.791
-
43/290
32 30 31 30 31 32 32 30 32 33
31.3
1.1
3.4
3
2.832
-
43/291
28 29 28 28 28 29 27 28 28 28
28.1
0.6
2.0
2
3.523
-
43/292
29 28 28 29 27 27 28 28 28 27
27.9
0.7
2.6
2
2.711
-
43/293
30 30 31 32 32 29 32 32 33 32
31.3
1.3
4.0
4
3.196
-
43/294
31 31 32 30 30 32 31 31 30 32
31.0
0.8
2.6
2
2.449
-
43/295
32 32 32 31 30 30 31 31 30 30
30.9
0.9
2.8
2
2.284
-
43/296
29 30 30 32 31 32 32 32 33 34
31.5
1.5
4.8
5
3.313
-
43/297
32 32 33 33 32 32 32 34 30 31
32.1
1.1
3.4
4
3.635
-
43/298
32 30 30 31 30 33 32 30 30 30
30.8
1.1
3.7
3
2.642
-
43/299
32 33 34 32 32 32 31 32 31 32
32.1
0.9
2.7
3
3.426
-
43/300
30 32 33 31 31 31 32 30 32 31
31.3
0.9
3.0
3
3.162
-
43/301
30 32 29 31 32 32 33 33 32 32
31.6
1.3
4.0
4
3.162
-
43/302
31 30 29 32 32 31 31 30 34 32
31.2
1.4
4.5
5
3.575
-
43/303
36 37 36 33 33 31 28 31 27 28
32.0
3.6
11.3
10
2.762
-
43/304
25 26 25 27 26 27 28 27 25 26
26.2
1.0
3.9
3
2.905
-
Test area
R1
43/252
43/253
R2
R3
R4
R5
R6
R7
R8
R9
R10
A165
Rm
sR
VR, %
rR
θR
fcm, MPa
26 27 26 25 24 27 26 25 27 28
26.1
1.2
4.6
4
3.341
-
28 27 27 28 27 28 26 26 27 27
27.1
0.7
2.7
2
2.711
-
43/307
26 28 27 26 25 26 27 27 26 28
26.6
1.0
3.6
3
3.105
-
43/308
26 27 26 25 27 27 26 27 26 28
26.5
0.8
3.2
3
3.530
-
43/309
30 29 30 30 28 30 28 30 28 31
29.4
1.1
3.7
3
2.791
-
43/310
30 29 32 31 30 30 30 31 30 29
30.2
0.9
3.0
3
3.265
-
43/311
30 28 29 30 31 29 30 27 29 29
29.2
1.1
3.9
4
3.523
-
43/312
30 32 34 28 30 29 31 31 29 30
30.4
1.7
5.6
6
3.503
-
43/313
28 30 29 29 28 30 30 30 30 32
29.6
1.2
4.0
4
3.408
-
43/314
31 30 30 30 32 31 30 29 29 31
30.3
0.9
3.1
3
3.162
-
43/315
34 36 33 37 36 37 37 38 36 35
35.9
1.5
4.2
5
3.281
-
43/316
35 37 34 36 36 35 35 37 36 38
35.9
1.2
3.3
4
3.341
-
43/317
36 34 36 37 36 37 39 38 37 37
36.7
1.3
3.6
5
3.738
-
43/318
36 35 38 37 37 36 35 36 36 36
36.2
0.9
2.5
3
3.265
-
43/319
37 37 36 36 35 37 36 37 37 38
36.6
0.8
2.3
3
3.558
-
43/320
34 40 40 36 37 36 37 36 37 37
37.0
1.8
4.9
6
3.286
-
43/321
36 39 38 36 37 35 38 38 37 38
37.2
1.2
3.3
4
3.254
-
43/322
38 37 38 37 37 39 37 37 40 40
38.0
1.2
3.3
3
2.405
-
43/323
37 41 40 37 39 38 38 37 40 41
38.8
1.6
4.2
4
2.470
-
43/324
37 36 40 38 38 37 38 38 37 38
37.7
1.1
2.8
4
3.776
-
43/325
39 39 39 37 39 39 38 39 38 39
38.6
0.7
1.8
2
2.860
-
43/326
34 35 34 33 33 32 38 35 37 33
34.4
1.9
5.5
6
3.162
-
43/327
32 31 30 33 37 36 34 33 34 34
33.4
2.1
6.3
7
3.304
-
43/328
34 34 37 35 35 36 32 32 36 34
34.5
1.6
4.8
5
3.030
-
43/329
34 34 36 34 35 35 34 32 34 32
34.0
1.2
3.7
4
3.207
-
43/330
33 34 34 34 34 34 35 34 36 35
34.3
0.8
2.4
3
3.644
-
43/331
30 31 29 31 30 30 31 32 30 32
30.6
1.0
3.2
3
3.105
-
43/332
31 32 32 33 32 31 30 32 33 32
31.8
0.9
2.9
3
3.265
-
43/333
30 30 32 31 31 30 30 31 33 30
30.8
1.0
3.4
3
2.905
-
43/334
34 32 32 32 32 35 34 31 34 32
32.8
1.3
4.0
4
3.038
-
43/335
34 35 34 33 35 35 35 31 34 32
33.8
1.4
4.1
4
2.860
-
43/336
35 35 34 37 36 35 37 36 35 34
35.4
1.1
3.0
3
2.791
-
43/337
35 36 35 34 34 34 36 34 34 34
34.6
0.8
2.4
2
2.372
-
43/338
36 37 36 32 37 37 34 34 36 34
35.3
1.7
4.8
5
2.936
-
43/339
35 34 36 36 38 37 35 34 35 36
35.6
1.3
3.6
4
3.162
-
43/340
31 30 32 32 33 31 30 30 32 32
31.3
1.1
3.4
3
2.832
-
43/341
30 30 31 33 31 32 31 30 32 30
31.0
1.1
3.4
3
2.846
-
43/342
28 29 31 31 30 31 30 32 30 30
30.2
1.1
3.8
4
3.523
-
43/343
32 36 36 34 34 34 34 33 34 34
34.1
1.2
3.5
4
3.341
-
43/344
36 33 36 35 34 34 35 38 36 35
35.2
1.4
4.0
5
3.575
-
43/345
36 34 34 36 34 34 37 37 34 34
35.0
1.3
3.8
3
2.250
-
43/346
33 35 35 34 35 33 35 32 35 33
34.0
1.2
3.4
3
2.598
-
43/347
37 37 35 35 31 35 36 32 36 37
35.1
2.1
5.9
6
2.886
-
43/348
34 35 36 35 34 36 36 35 34 37
35.2
1.0
2.9
3
2.905
-
43/349
34 32 33 35 34 34 35 36 30 30
33.3
2.1
6.2
6
2.916
-
43/350
34 36 35 35 34 33 35 35 36 35
34.8
0.9
2.6
3
3.265
-
43/351
35 34 33 34 36 34 34 34 35 36
34.5
1.0
2.8
3
3.087
-
43/352
37 34 35 34 33 34 34 35 36 34
34.6
1.2
3.4
4
3.408
-
43/353
36 35 34 33 34 33 35 34 33 33
34.0
1.1
3.1
3
2.846
-
43/354
30 31 30 29 28 28 31 32 32 29
30.0
1.5
5.0
4
2.683
-
43/355
34 32 32 33 34 36 35 36 35 34
34.1
1.4
4.2
4
2.760
-
43/356
31 32 33 34 34 32 33 31 34 33
32.7
1.2
3.5
3
2.587
-
43/357
37 36 35 34 34 35 35 36 35 34
35.1
1.0
2.8
3
3.017
-
Test area
R1
43/305
43/306
R2
R3
R4
R5
R6
R7
R8
R9
R10
A166
Rm
sR
VR, %
rR
θR
fcm, MPa
34 35 34 33 32 32 31 32 30 34
32.7
1.6
4.8
5
3.191
-
37 38 37 36 36 37 38 38 37 36
37.0
0.8
2.2
2
2.449
-
43/360
35 36 37 38 37 36 37 37 38 37
36.8
0.9
2.5
3
3.265
-
43/361
36 37 37 36 37 37 36 35 37 36
36.4
0.7
1.9
2
2.860
-
43/362
38 40 36 38 38 39 38 38 38 39
38.2
1.0
2.7
4
3.873
-
43/363
40 40 40 41 40 41 39 41 40 40
40.2
0.6
1.6
2
3.162
-
43/364
41 40 39 40 40 40 40 39 41 40
40.0
0.7
1.7
2
3.000
-
43/365
40 41 41 40 38 40 39 40 40 40
39.9
0.9
2.2
3
3.426
-
43/366
40 39 40 38 40 41 38 42 40 40
39.8
1.2
3.1
4
3.254
-
43/367
41 40 39 40 42 37 42 40 39 42
40.2
1.6
4.0
5
3.088
-
43/368
38 40 39 37 36 37 38 36 37 38
37.6
1.3
3.4
4
3.162
-
43/369
40 41 40 39 39 38 40 40 38 40
39.5
1.0
2.5
3
3.087
-
43/370
40 39 39 38 40 39 38 40 38 39
39.0
0.8
2.1
2
2.449
-
43/371
38 40 38 38 40 40 40 39 40 39
39.2
0.9
2.3
2
2.176
-
43/372
38 40 40 40 41 40 42 41 41 39
40.2
1.1
2.8
4
3.523
-
43/373
40 40 41 39 41 38 38 40 40 41
39.8
1.1
2.9
3
2.642
-
43/374
32 34 35 36 37 34 36 37 34 36
35.1
1.6
4.5
5
3.135
-
43/375
37 35 36 36 37 35 35 34 36 37
35.8
1.0
2.9
3
2.905
-
43/376
35 34 37 36 34 35 34 34 36 37
35.2
1.2
3.5
3
2.440
-
43/377
36 33 34 36 35 37 34 35 36 36
35.2
1.2
3.5
4
3.254
-
43/378
38 38 38 38 39 40 39 39 35 39
38.3
1.3
3.5
5
3.738
-
43/379
41 39 38 40 38 38 39 36 40 38
38.7
1.4
3.7
5
3.526
-
43/380
40 37 38 38 41 39 38 37 35 40
38.3
1.8
4.6
6
3.396
-
43/381
39 38 39 40 40 39 38 40 40 39
39.2
0.8
2.0
2
2.535
-
43/382
38 40 38 38 36 37 40 41 40 39
38.7
1.6
4.0
5
3.191
-
43/383
38 40 40 39 40 38 39 37 38 39
38.8
1.0
2.7
3
2.905
-
43/384
33 38 36 36 37 37 37 39 39 36
36.8
1.8
4.8
6
3.426
-
43/385
37 40 34 36 35 34 38 35 36 35
36.0
1.9
5.2
6
3.182
-
43/386
34 36 38 35 36 37 34 36 36 35
35.7
1.3
3.5
4
3.196
-
43/387
34 37 38 34 37 38 35 37 36 37
36.3
1.5
4.1
4
2.677
-
43/388
35 37 38 36 37 38 35 36 37 36
36.5
1.1
3.0
3
2.777
-
43/389
36 35 36 35 37 36 38 37 36 38
36.4
1.1
3.0
3
2.791
-
43/390
37 38 36 35 39 38 37 38 36 36
37.0
1.2
3.4
4
3.207
-
43/391
35 34 36 36 35 35 36 35 38 37
35.7
1.2
3.2
4
3.450
-
43/392
40 37 36 37 35 38 36 37 36 37
36.9
1.4
3.7
5
3.649
-
43/393
35 36 38 35 35 35 38 36 37 38
36.3
1.3
3.7
3
2.243
-
43/394
36 37 36 37 35 36 37 35 36 36
36.1
0.7
2.0
2
2.711
-
43/395
36 32 38 38 37 35 38 39 36 37
36.6
2.0
5.5
7
3.481
-
43/396
37 36 38 39 38 35 37 34 39 37
37.0
1.6
4.4
5
3.062
-
43/397
39 36 37 35 38 36 36 38 37 37
36.9
1.2
3.2
4
3.341
-
43/398
36 35 38 37 37 36 36 38 34 39
36.6
1.5
4.1
5
3.321
-
43/399
37 36 37 35 38 39 39 36 37 39
37.3
1.4
3.8
4
2.821
-
43/400
39 40 40 41 39 41 40 38 39 40
39.7
0.9
2.4
3
3.162
-
43/401
38 37 36 36 38 40 41 40 37 38
38.1
1.7
4.5
5
2.892
-
43/402
39 38 40 37 38 37 39 38 37 38
38.1
1.0
2.6
3
3.017
-
43/403
37 38 39 42 35 37 40 38 36 37
37.9
2.0
5.3
7
3.457
-
43/404
37 37 39 39 37 39 38 39 38 37
38.0
0.9
2.5
2
2.121
-
43/405
39 38 37 38 39 38 39 37 38 36
37.9
1.0
2.6
3
3.017
-
43/406
40 37 40 36 38 37 36 35 36 38
37.3
1.7
4.6
5
2.936
-
43/407
37 36 35 36 35 36 37 37 35 36
36.0
0.8
2.3
2
2.449
-
43/408
36 37 40 37 39 38 37 38 38 38
37.8
1.1
3.0
4
3.523
-
43/409
37 33 33 34 37 38 34 39 37 37
35.9
2.2
6.1
6
2.748
-
43/410
37 33 38 37 38 39 37 36 36 35
36.6
1.7
4.7
6
3.503
-
Test area
R1
43/358
43/359
R2
R3
R4
R5
R6
R7
R8
R9
R10
A167
Rm
sR
VR, %
rR
θR
fcm, MPa
33 34 35 37 35 38 37 34 35 37
35.5
1.6
4.6
5
3.030
-
37 38 36 38 37 38 36 38 39 38
37.5
1.0
2.6
3
3.087
-
43/413
37 40 38 40 38 39 40 37 37 38
38.4
1.3
3.3
3
2.372
-
43/414
37 35 37 38 37 36 36 37 37 36
36.6
0.8
2.3
3
3.558
-
43/415
36 36 37 39 38 40 37 38 37 36
37.4
1.3
3.6
4
2.963
-
43/416
38 37 38 37 39 38 37 36 36 37
37.3
0.9
2.5
3
3.162
-
43/417
38 39 36 37 38 37 38 36 37 37
37.3
0.9
2.5
3
3.162
-
43/418
37 35 36 38 39 39 38 37 36 37
37.2
1.3
3.5
4
3.038
-
43/419
40 38 37 38 37 36 38 38 38 35
37.5
1.4
3.6
5
3.693
-
43/420
37 38 38 37 39 37 37 35 37 37
37.2
1.0
2.8
4
3.873
-
43/421
38 37 38 37 36 36 37 35 36 37
36.7
0.9
2.6
3
3.162
-
43/422
38 39 37 36 36 37 37 37 38 38
37.3
0.9
2.5
3
3.162
-
43/423
37 40 37 38 37 36 37 36 38 40
37.6
1.4
3.8
4
2.798
-
43/424
38 37 36 37 39 38 38 37 38 36
37.4
1.0
2.6
3
3.105
-
43/425
37 38 36 37 37 36 37 40 40 36
37.4
1.5
4.0
4
2.657
-
43/426
37 40 40 39 38 37 39 38 37 40
38.5
1.3
3.3
3
2.364
-
43/427
36 37 38 39 38 36 37 35 35 35
36.6
1.4
3.9
4
2.798
-
43/428
37 36 37 37 37 37 38 37 39 38
37.3
0.8
2.2
3
3.644
-
44/1
47 43 44 43 45 44 46 42 42 41
43.7
1.9
4.3
6
3.177
-
44/2
39 39 39 40 41 38 39 41 40 40
39.6
1.0
2.4
3
3.105
-
44/3
40 42 42 41 39 41 41 40 42 43
41.1
1.2
2.9
4
3.341
-
44/4
40 42 40 39 43 41 38 43 37 37
40.0
2.3
5.7
6
2.654
-
44/5
44 42 41 41 41 40 40 41 42 38
41.0
1.6
3.8
6
3.838
-
44/6
30 29 28 31 30 31 27 32 30 29
29.7
1.5
5.0
5
3.346
-
44/7
29 30 27 27 29 29 29 28 27 31
28.6
1.3
4.7
4
2.963
-
44/8
30 28 27 27 28 29 28 31 27 27
28.2
1.4
5.0
4
2.860
-
44/9
29 28 29 27 26 27 28 27 31 28
28.0
1.4
5.1
5
3.536
-
44/10
27 31 27 28 28 28 27 27 31 31
28.5
1.8
6.2
4
2.248
-
44/11
32 28 27 29 29 28 28 29 28 29
28.7
1.3
4.7
5
3.738
-
44/12
27 30 29 28 29 30 29 29 31 30
29.2
1.1
3.9
4
3.523
-
44/13
31 34 31 28 31 31 30 29 28 30
30.3
1.8
5.8
6
3.396
-
44/14
28 30 31 27 33 32 31 30 30 28
30.0
1.9
6.3
6
3.182
-
44/15
29 30 30 29 32 29 27 26 27 31
29.0
1.9
6.5
6
3.182
-
44/16
30 31 31 30 33 30 31 31 30 30
30.7
0.9
3.1
3
3.162
-
44/17
38 39 39 38 43 42 40 40 40 38
39.7
1.7
4.3
5
2.936
-
44/18
40 38 39 39 39 39 38 39 39 39
38.9
0.6
1.5
2
3.523
-
44/19
42 41 40 41 41 40 42 41 41 42
41.1
0.7
1.8
2
2.711
-
44/20
39 41 42 40 43 38 41 40 41 42
40.7
1.5
3.7
5
3.346
-
44/21
40 45 38 39 40 43 44 42 40 44
41.5
2.4
5.8
7
2.898
-
44/22
40 39 39 38 39 39 39 39 39 39
39.0
0.5
1.2
2
4.243
-
44/23
39 40 42 40 40 39 39 39 40 41
39.9
1.0
2.5
3
3.017
-
44/24
42 41 41 40 40 40 40 40 41 42
40.7
0.8
2.0
2
2.429
-
44/25
40 40 41 41 40 37 39 39 40 39
39.6
1.2
3.0
4
3.408
-
44/26
40 40 43 41 40 40 41 40 42 43
41.0
1.2
3.0
3
2.405
-
44/27
39 41 43 40 41 40 39 39 39 40
40.1
1.3
3.2
4
3.109
-
44/28
41 39 40 40 40 39 41 39 39 39
39.7
0.8
2.1
2
2.429
-
44/29
41 42 41 43 40 40 40 41 40 39
40.7
1.2
2.8
4
3.450
-
44/30
39 39 40 41 39 39 37 38 31 40
38.3
2.8
7.3
10
3.583
-
44/31
40 41 42 42 43 39 40 42 40 41
41.0
1.2
3.0
4
3.207
-
44/32
38 43 38 38 40 40 38 40 37 38
39.0
1.8
4.5
6
3.402
-
44/33
40 44 39 40 42 43 41 40 40 43
41.2
1.7
4.1
5
2.965
-
44/34
41 41 44 40 40 40 39 42 40 39
40.6
1.5
3.7
5
3.321
-
Test area
R1
43/411
43/412
R2
R3
R4
R5
R6
R7
R8
R9
R10
A168
Rm
sR
VR, %
rR
θR
fcm, MPa
41 44 42 42 42 42 42 40 42 40
41.7
1.2
2.8
4
3.450
-
40 43 43 44 37 39 39 38 39 39
40.1
2.4
5.9
7
2.943
-
44/37
42 41 43 42 40 40 42 40 42 41
41.3
1.1
2.6
3
2.832
-
44/38
40 44 40 40 41 39 40 44 42 42
41.2
1.8
4.3
5
2.855
-
44/39
42 39 40 42 39 41 40 40 40 41
40.4
1.1
2.7
3
2.791
-
45/1
50 53 51 46 45 50 40 40 52 49
47.6
4.7
9.9
13
2.769
-
45/2
57 56 53 52 50 54 50 54 49 57
53.2
2.9
5.5
8
2.724
-
45/3
55 49 49 55 48 55 50 58 45 59
52.3
4.7
9.0
14
2.984
-
45/4
49 53 52 49 52 52 42 49 51 52
50.1
3.2
6.4
11
3.424
-
45/5
57 53 53 57 53 51 53 60 56 56
54.9
2.7
5.0
9
3.301
-
45/6
59 57 60 58 59 58 60 58 62 59
59.0
1.4
2.4
5
3.536
-
45/7
53 53 51 52 53 49 53 54 52 44
51.4
3.0
5.7
10
3.388
-
45/8
55 50 55 54 54 49 55 54 52 56
53.4
2.3
4.3
7
3.019
-
45/9
57 54 52 57 54 56 55 53 52 57
54.7
2.0
3.7
5
2.497
-
45/10
54 54 57 53 56 54 54 55 54 49
54.0
2.1
3.9
8
3.795
-
45/11
57 52 52 55 44 47 52 58 50 51
51.8
4.3
8.2
14
3.284
-
45/12
54 48 52 53 51 53 47 54 58 57
52.7
3.5
6.6
11
3.174
-
45/13
44 43 45 43 43 43 51 39 43 40
43.4
3.2
7.4
12
3.745
-
45/14
38 50 41 44 43 49 40 43 47 44
43.9
3.8
8.8
12
3.123
-
45/15
49 41 46 45 45 45 41 49 43 44
44.8
2.8
6.2
8
2.877
-
45/16
56 54 49 56 56 50 55 47 50 52
52.5
3.3
6.4
9
2.693
-
45/17
40 43 42 46 43 42 46 41 43 43
42.9
1.9
4.5
6
3.138
-
45/18
54 51 52 49 50 52 51 50 52 50
51.1
1.4
2.8
5
3.450
-
45/19
47 53 51 51 51 49 49 53 47 54
50.5
2.5
4.9
7
2.845
-
45/20
47 50 54 44 44 52 50 51 48 50
49.0
3.3
6.7
10
3.062
-
45/21
51 47 51 43 40 53 52 50 48 52
48.7
4.3
8.8
13
3.044
-
45/22
38 40 37 42 41 40 39 44 42 40
40.3
2.1
5.1
7
3.402
-
45/23
41 47 39 43 39 44 48 45 42 46
43.4
3.2
7.3
9
2.840
-
45/24
55 53 47 58 54 54 57 55 55 54
54.2
2.9
5.4
11
3.746
-
45/25
57 59 53 47 51 51 47 51 57 53
52.6
4.1
7.8
12
2.935
-
45/26
54 56 51 59 58 62 58 55 51 57
56.1
3.5
6.2
11
3.162
-
45/27
57 51 51 51 45 57 56 53 57 53
53.1
3.8
7.2
12
3.123
-
45/28
57 61 61 59 54 55 54 58 54 58
57.1
2.8
4.8
7
2.530
-
45/29
60 62 57 56 57 63 53 60 58 55
58.1
3.1
5.4
10
3.182
-
45/30
56 57 58 56 50 59 53 46 57 55
54.7
4.0
7.3
13
3.249
-
45/31
59 46 45 50 46 51 57 56 49 48
50.7
5.0
9.8
14
2.806
-
45/32
49 55 54 52 53 49 53 42 56 52
51.5
4.0
7.8
14
3.470
-
46/1
22 24 24 21 26 24 26 21 20 22
23.0
2.1
9.2
6
2.846
-
46/2
20 22 18 24 20 16 22 27 24 24
21.7
3.3
15.1
11
3.366
-
46/3
22 22 24 22 22 22 26 20 20 26
22.6
2.1
9.4
6
2.832
-
46/4
24 24 21 26 24 23 22 23 24 26
23.7
1.6
6.6
5
3.191
-
46/5
29 32 32 32 32 30 35 31 33 31
31.7
1.6
5.2
6
3.667
-
46/6
24 27 24 24 24 25 24 25 24 23
24.4
1.1
4.4
4
3.721
-
47/1
46 46 48 47 46 44 45 46 47 48
46.3
1.3
2.7
4
3.196
-
47/2
48 47 44 45 40 46 46 45 44 44
44.9
2.2
4.9
8
3.664
-
47/3
44 42 40 44 40 41 41 40 40 41
41.3
1.6
3.8
4
2.553
-
47/4
41 42 43 45 46 46 45 44 42 42
43.6
1.8
4.2
5
2.721
-
47/5
44 43 46 46 45 45 43 46 46 45
44.9
1.2
2.7
3
2.506
-
47/6
42 43 42 42 43 45 45 44 43 41
43.0
1.3
3.1
4
3.000
-
47/7
42 46 46 42 41 45 45 44 46 45
44.2
1.9
4.2
5
2.668
-
Test area
R1
44/35
44/36
R2
R3
R4
R5
R6
R7
R8
R9
R10
A169
Rm
sR
VR, %
rR
θR
fcm, MPa
44 41 43 42 44 41 41 42 43 43
42.4
1.2
2.8
3
2.556
-
39 39 42 42 43 43 43 42 44 41
41.8
1.7
4.0
5
2.965
-
47/10
44 42 42 45 45 43 42 43 43 42
43.1
1.2
2.8
3
2.506
-
47/11
44 42 43 41 42 42 44 41 42 42
42.3
1.1
2.5
3
2.832
-
47/12
45 43 44 44 43 41 44 42 43 40
42.9
1.5
3.6
5
3.281
-
47/13
43 42 44 44 44 43 42 44 41 44
43.1
1.1
2.6
3
2.726
-
47/14
43 41 44 44 42 42 43 43 44 44
43.0
1.1
2.5
3
2.846
-
47/15
41 40 40 42 43 43 43 41 41 42
41.6
1.2
2.8
3
2.556
-
47/16
44 42 40 41 40 43 43 43 43 40
41.9
1.5
3.6
4
2.625
-
47/17
43 44 42 40 40 41 41 43 43 42
41.9
1.4
3.3
4
2.919
-
47/18
42 44 43 43 41 44 41 42 41 43
42.4
1.2
2.8
3
2.556
-
47/19
40 42 43 43 45 44 42 43 41 44
42.7
1.5
3.5
5
3.346
-
47/20
44 43 45 44 41 44 44 43 42 44
43.4
1.2
2.7
4
3.408
-
47/21
40 44 40 41 39 39 41 40 42 42
40.8
1.5
3.8
5
3.227
-
48/1
38 38 35 37 43 34 42 40 36 40
38.3
2.9
7.7
9
3.055
-
48/2
38 39 40 35 42 43 39 39 38 40
39.3
2.2
5.6
8
3.614
-
48/3
42 40 36 40 38 37 40 40 38 37
38.8
1.9
4.8
6
3.202
-
48/4
41 35 34 40 39 32 38 42 44 42
38.7
3.9
10.1
12
3.063
-
48/5
34 37 34 40 40 40 41 36 41 40
38.3
2.8
7.3
7
2.508
-
48/6
37 35 34 36 39 38 40 41 41 34
37.5
2.7
7.2
7
2.575
-
48/7
39 41 35 40 37 37 38 40 42 38
38.7
2.1
5.5
7
3.316
-
48/8
40 38 40 40 30 32 34 38 37 37
36.6
3.5
9.6
10
2.855
-
48/9
36 35 36 34 36 40 42 35 40 37
37.1
2.6
7.1
8
3.026
-
48/10
38 37 36 38 39 37 39 39 39 38
38.0
1.1
2.8
3
2.846
-
48/11
34 33 32 34 35 33 35 35 35 39
34.5
1.9
5.5
7
3.684
-
48/12
30 31 33 31 36 34 30 32 32 32
32.1
1.9
5.8
6
3.238
-
48/13
34 34 31 32 33 36 34 32 34 32
33.2
1.5
4.4
5
3.388
-
48/14
32 33 34 34 34 36 32 31 34 32
33.2
1.5
4.4
5
3.388
-
48/15
30 36 30 33 33 32 32 32 34 35
32.7
1.9
6.0
6
3.082
-
48/16
36 39 30 34 33 32 31 33 33 32
33.3
2.6
7.8
9
3.483
-
48/17
33 30 34 31 32 40 34 31 32 34
33.1
2.8
8.5
10
3.563
-
48/18
33 32 33 30 32 32 35 32 35 33
32.7
1.5
4.6
5
3.346
-
48/19
33 32 32 33 36 35 32 32 36 33
33.4
1.6
4.9
4
2.429
-
48/20
30 32 32 32 35 32 34 32 34 33
32.6
1.4
4.4
5
3.497
-
48/21
34 32 36 34 34 32 32 34 34 33
33.5
1.3
3.8
4
3.151
-
48/22
35 36 34 35 35 36 32 35 34 40
35.2
2.0
5.8
8
3.914
-
48/23
34 38 34 36 34 36 38 37 34 35
35.6
1.6
4.6
4
2.429
-
48/24
35 34 36 38 41 38 38 36 36 32
36.4
2.5
6.9
9
3.595
-
48/25
41 40 40 32 42 35 34 34 35 37
37.0
3.5
9.4
10
2.860
-
48/26
32 36 34 34 38 34 34 40 34 36
35.2
2.3
6.7
8
3.408
-
48/27
35 34 36 34 34 37 36 35 34 34
34.9
1.1
3.2
3
2.726
-
48/28
38 36 36 35 35 34 34 38 36 34
35.6
1.5
4.2
4
2.657
-
48/29
33 36 34 34 35 34 32 36 35 40
34.9
2.2
6.3
8
3.664
-
48/30
37 38 36 36 34 36 34 34 42 34
36.1
2.5
7.0
8
3.182
-
Test area
R1
47/8
47/9
R2
R3
R4
R5
R6
R7
R8
R9
R10
A170
Appendix B
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Beta [1]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.15716
0
26
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
163.23
21
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
1081.2
0
29
Critical Value
8.5581
Burr [2]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14055
0
2
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
145.49
9
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
911.13
0
25
Critical Value
8.5581
B1
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Burr (four-parameter) [3]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.1401
0
1
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
144.59
3
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
909.88
0
24
Critical Value
8.5581
Cauchy [4]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.17849
0
32
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
333.15
37
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
3978.5
0
44
Critical Value
8.5581
B2
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Chi-Squared [5]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.37456
0
54
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
1260.1
50
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
13.362
15.507
18.168
20.09
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
Critical Value
8
3456.9
0
41
11.03
Chi-Squared (two-parameter) [6]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.20169
0
38
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
341.03
38
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
13.362
15.507
18.168
20.09
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
Critical Value
8
1263.7
0
31
11.03
B3
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Dagum [7]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14192
0
5
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
144.66
4
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
909.46
0
23
Critical Value
8.5581
Dagum (four-parameter) [8]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14327
0
11
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
144.29
2
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
908.16
0
21
Critical Value
8.5581
B4
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Erlang [9]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.27105
0
49
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
671.48
47
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
1176.4
0
30
Critical Value
9.8032
Erlang (three-parameter) [10]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.18755
0
34
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
216.79
27
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
678.15
0
16
Critical Value
9.8032
B5
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Error [11]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.25586
0
46
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
361.56
41
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
4955.5
0
46
Critical Value
8.5581
Error Function [12]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.84397
0
63
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
18373.0
63
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
7.7794
9.4877
11.668
13.277
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
4
80662.0
0
56
Critical Value
5.9886
B6
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Exponential [13]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.39666
0
55
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
1467.7
52
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
14.684
16.919
19.679
21.666
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
9
7884.9
0
48
Critical Value
12.242
Exponential (two-parameter) [14]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.34106
0
52
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
996.18
48
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
13.362
15.507
18.168
20.09
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
Critical Value
8
3507.7
0
42
11.03
B7
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Fatigue Life [15]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14651
0
16
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
152.63
17
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.11
0
8
Critical Value
8.5581
Fatigue Life (three-parameter) [16]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.1444
0
12
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
152.01
16
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.07
0
5
Critical Value
8.5581
B8
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Frechet [17]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.19873
0
36
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
253.6
32
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
466.79
0
2
Critical Value
8.5581
Frechet (three-parameter) [18]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.20914
0
41
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
388.92
44
Critical Value
1.3749
1.9286
2.5018
3.2892
B9
3.9074
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Gamma [19]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14839
0
19
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
203.98
25
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
689.89
0
18
Critical Value
9.8032
Gamma (three-parameter) [20]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.15528
0
24
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
164.29
22
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.08
0
6
Critical Value
8.5581
B10
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Generalized Extreme Value [21]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.15006
0
20
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
156.07
19
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
906.07
0
20
Critical Value
8.5581
Generalized Gamma [22]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.16898
0
29
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
187.4
24
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
671.79
0
15
Critical Value
8.5581
B11
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Generalized Gamma (four-parameter) [23]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.1432
0
9
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
151.44
15
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.03
0
4
Critical Value
8.5581
Generalized Logistic [24]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14307
0
8
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
150.63
13
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
939.38
0
26
Critical Value
8.5581
B12
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Generalized Pareto [25]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.17692
0
31
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
2243.8
57
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
Gumbel Max [26]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14624
0
14
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
176.14
23
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
691.7
0
19
Critical Value
9.8032
B13
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Gumbel Min [27]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.26852
0
48
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
1032.0
49
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
Hypersecant [28]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.2275
0
45
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
325.61
35
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
3675.6
0
43
Critical Value
8.5581
B14
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Inverse Gaussian [29]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.15116
0
21
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
160.38
20
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
678.38
0
17
Critical Value
9.8032
Inverse Gaussian (three-parameter) [30]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14289
0
7
0.2
Critical Value
0.1
0.05
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
150.86
14
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.08
0
7
Critical Value
8.5581
B15
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Johnson SB [31]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.16971
0
30
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
298.8
33
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
Kumaraswamy [32]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.15234
0
23
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
225.15
29
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
1367.5
0
32
Critical Value
9.8032
B16
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Laplace [33]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.25586
0
47
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
361.56
42
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
4955.5
0
45
Critical Value
8.5581
Levy [34]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.4633
0
61
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
2559.2
61
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
15.987
18.307
21.161
23.209
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
10
18894.0
0
55
Critical Value
13.442
B17
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Levy (two-parameter) [35]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.40897
0
56
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
1980.3
55
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
15.987
18.307
21.161
23.209
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
10
10000.0
0
50
Critical Value
13.442
Log-Gamma [36]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.16845
0
28
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
214.95
26
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
457.65
0
1
Critical Value
8.5581
B18
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Log-Logistic [37]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.15566
0
25
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
145.44
8
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
1031.4
0
27
Critical Value
8.5581
Log-Logistic (three-parameter) [38]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14094
0
3
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
143.8
1
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
908.9
0
22
Critical Value
8.5581
B19
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Log-Pearson III [39]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14758
0
18
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
146.99
10
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.45
0
11
Critical Value
8.5581
Logistic [40]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.214
0
43
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
324.38
34
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
2273.1
0
34
Critical Value
9.8032
B20
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Lognormal [41]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14624
0
15
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
148.63
12
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.32
0
10
Critical Value
8.5581
Lognormal (three-parameter) [42]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14095
0
4
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
147.33
11
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.19
0
9
Critical Value
8.5581
B21
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Nakagami [43]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.27454
0
50
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
608.8
45
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
13.362
15.507
18.168
20.09
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
Critical Value
8
3317.1
0
40
11.03
Normal [44]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.20006
0
37
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
360.4
40
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
2277.2
0
35
Critical Value
9.8032
B22
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Pareto [45]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.45601
0
60
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
2119.7
56
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
14195.0
0
54
Critical Value
9.8032
Pareto 2 [46]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.42372
0
57
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
1662.6
54
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
14.684
16.919
19.679
21.666
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
9
10851.0
0
51
Critical Value
12.242
B23
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Pearson V [47]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.15979
0
27
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
153.02
18
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
589.74
0
3
Critical Value
8.5581
Pearson V (three-parameter) [48]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14216
0
6
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
145.07
6
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.58
0
14
Critical Value
8.5581
B24
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Pearson VI [49]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14321
0
10
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
145.34
7
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.54
0
13
Critical Value
8.5581
Pearson VI (four-parameter) [50]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14546
0
13
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
144.89
5
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
667.53
0
12
Critical Value
8.5581
B25
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Pert [51]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.21686
0
44
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
661.72
46
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
15.987
18.307
21.161
23.209
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
10
3201.3
0
39
Critical Value
13.442
Phased Bi-Exponential [52]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.43231
0
58
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
2368.4
59
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
9.2364
11.07
13.388
15.086
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
5
5723.6
0
47
Critical Value
7.2893
B26
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Phased Bi-Weibull [53]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.36464
0
53
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
1614.9
53
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
9.2364
11.07
13.388
15.086
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
5
7991.8
0
49
Critical Value
7.2893
Power Function [54]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.49156
0
62
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
2545.4
60
Critical Value
1.3749
1.9286
2.5018
3.2892
B27
3.9074
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Rayleigh [55]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.19595
0
35
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
362.64
43
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
13.362
15.507
18.168
20.09
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
Critical Value
8
2989.7
0
37
11.03
Rayleigh (two-parameter) [56]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.17971
0
33
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
238.8
30
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
1078.8
0
28
Critical Value
9.8032
B28
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Reciprocal [57]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.28617
0
51
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
1352.3
51
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
14.684
16.919
19.679
21.666
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
9
11989.0
0
52
Critical Value
12.242
Rice [58]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.20695
0
39
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
358.95
39
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
13.362
15.507
18.168
20.09
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
Critical Value
8
3066.4
0
38
11.03
B29
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Student's t [59]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.90549
0
64
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
19679.0
64
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
7.7794
9.4877
11.668
13.277
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
4
95513.0
0
57
Critical Value
5.9886
Triangular [60]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.45549
0
59
0.2
Critical Value
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
2686.3
62
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
12185.0
0
53
Critical Value
16.985
B30
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Uniform [61]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.2096
0
42
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
2311.2
58
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
0.1
0.05
0.02
0.01
Wakeby [62]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14755
0
17
0.2
Critical Value 0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
243.37
31
Critical Value
1.3749
1.9286
2.5018
3.2892
B31
3.9074
Goodness of fit (GOF) analysis for the range of the rebound index (rR)
Weibull [63]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.20798
0
40
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
331.39
36
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
10.645
12.592
15.033
16.812
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
6
2409.3
0
36
Critical Value
8.5581
Weibull (three-parameter) [64]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.15198
0
22
0.2
Critical Value
0.1
0.01175 0.01339 0.01487 0.01662 0.01784
Anderson-Darling
Statistic
Rank
224.92
28
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
12.017
14.067
16.622
18.475
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
7
1367.5
0
33
Critical Value
9.8032
B32
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Beta [1]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.0818
0
28
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
65.833
23
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
887.65
0
20
Critical Value
16.985
Burr [2]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.03593
1.7311E-10
3
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
10.785
6
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
444.2
0
10
Critical Value
16.985
B33
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Burr (four-parameter) [3]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.03652
8.0427E-11
4
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
10.296
4
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
397.03
0
4
Critical Value
16.985
Cauchy [4]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.12666
0
36
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
258.09
36
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2255.9
0
35
Critical Value
16.985
B34
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Chi-Squared [5]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.59686
0
60
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
4828.8
60
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
17.275
19.675
22.618
24.725
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
11
20613.0
0
53
Critical Value
14.631
Chi-Squared (two-parameter) [6]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.21622
0
49
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1065.7
48
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
18.549
21.026
24.054
26.217
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
12
8308.9
0
45
Critical Value
15.812
B35
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Dagum [7]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.03336
4.2724E-9
1
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
8.7333
1
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
420.69
0
5
Critical Value
16.985
Dagum (four-parameter) [8]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.0355
3.0047E-10
2
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
8.9882
2
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
656.71
0
15
Critical Value
16.985
B36
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Erlang [9]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.24196
0
50
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
993.21
46
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2370.2
0
36
Critical Value
16.985
Erlang (three-parameter) [10]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.11489
0
34
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
182.09
32
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
903.0
0
21
Critical Value
16.985
B37
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Error [11]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.17114
0
45
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
313.12
41
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2726.9
0
39
Critical Value
16.985
Error Function [12]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.82482
0
61
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
20503.0
61
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
18.307
21.161
23.209
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
10
1.0033E+5
0
55
Critical Value
13.442
15.987
B38
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Exponential [13]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.34911
0
53
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1539.7
50
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
18.549
21.026
24.054
26.217
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
12
9706.0
0
48
Critical Value
15.812
Exponential (two-parameter) [14]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.3042
0
51
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1215.9
49
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
18.549
21.026
24.054
26.217
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
12
6376.3
0
44
Critical Value
15.812
B39
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Fatigue Life [15]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.06343
0
22
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
30.052
18
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
460.15
0
11
Critical Value
16.985
Fatigue Life (three-parameter) [16]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.05753
0
17
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
24.081
15
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
433.04
0
8
Critical Value
16.985
B40
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Frechet [17]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.07287
0
24
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
68.836
24
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
740.74
0
17
Critical Value
16.985
Frechet (three-parameter) [18]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.09497
0
31
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
117.91
27
Critical Value
1.3749
1.9286
2.5018
3.2892
B41
3.9074
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Gamma [19]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.07882
0
26
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
99.956
26
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1127.3
0
27
Critical Value
16.985
Gamma (three-parameter) [20]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.07888
0
27
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
57.04
21
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
548.89
0
13
Critical Value
16.985
B42
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Generalized Extreme Value [21]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.03748
2.2657E-11
5
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
9.0923
3
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
686.99
0
16
Critical Value
16.985
Generalized Gamma [22]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.09063
0
29
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
84.214
25
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
808.28
0
18
Critical Value
16.985
B43
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Generalized Gamma (four-parameter) [23]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.06321
0
21
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
33.695
19
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
440.78
0
9
Critical Value
16.985
Generalized Logistic [24]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.04393
1.8310E-15
12
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
14.055
12
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
230.82
0
1
Critical Value
16.985
B44
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Generalized Pareto [25]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.07881
0
25
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
2115.3
53
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
Gumbel Max [26]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.07019
0
23
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
63.909
22
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
999.29
0
24
Critical Value
16.985
B45
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Gumbel Min [27]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.20911
0
48
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1027.8
47
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
Hypersecant [28]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.1475
0
41
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
258.36
37
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2183.1
0
33
Critical Value
16.985
B46
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Inverse Gaussian [29]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.06227
0
20
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
37.261
20
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
848.22
0
19
Critical Value
16.985
Inverse Gaussian (three-parameter) [30]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.05519
0
16
0.2
Critical Value
0.1
0.05
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
21.834
14
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
428.0
0
7
Critical Value
16.985
B47
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Johnson SB [31]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.0548
0
15
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
154.56
28
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
Kumaraswamy [32]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.10732
0
33
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
187.81
33
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1974.2
0
31
Critical Value
16.985
B48
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Laplace [33]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.17114
0
46
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
313.12
42
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2726.9
0
40
Critical Value
16.985
Levy [34]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.44863
0
58
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
2734.9
58
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
18.549
21.026
24.054
26.217
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
12
19016.0
0
52
Critical Value
15.812
B49
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Levy (two-parameter) [35]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.41747
0
56
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
2370.3
55
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
15079.0
0
50
Critical Value
16.985
Log-Logistic [36]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.06184
0
19
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
28.387
17
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
276.06
0
2
Critical Value
16.985
B50
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Log-Logistic (three-parameter) [37]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.0395
1.3863E-12
6
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
12.382
11
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
633.15
0
14
Critical Value
16.985
Log-Pearson III [38]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.04333
4.6733E-15
11
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
11.647
9
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1013.7
0
26
Critical Value
16.985
B51
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Logistic [39]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.1434
0
40
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
252.24
35
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2252.9
0
34
Critical Value
16.985
Lognormal [40]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.05929
0
18
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
25.941
16
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
467.39
0
12
Critical Value
16.985
B52
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Lognormal (three-parameter) [41]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.05064
0
14
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
17.559
13
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
425.4
0
6
Critical Value
16.985
Nakagami [42]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.18274
0
47
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
436.13
43
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
3191.2
0
41
Critical Value
16.985
B53
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Normal [43]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.13858
0
39
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
282.41
39
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2647.2
0
38
Critical Value
16.985
Pareto [44]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.44993
0
59
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
2584.1
57
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
14.684
16.919
19.679
21.666
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
9
22118.0
0
54
Critical Value
12.242
B54
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Pareto 2 [45]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.36595
0
54
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1673.9
52
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
18.549
21.026
24.054
26.217
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
12
8646.2
0
46
Critical Value
15.812
Pearson V [46]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.04493
3.7291E-16
13
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
10.548
5
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1007.9
0
25
Critical Value
16.985
B55
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Pearson V (three-parameter) [47]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.04197
3.7383E-14
10
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
11.626
8
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
345.25
0
3
Critical Value
16.985
Pearson VI [48]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.04171
5.5852E-14
9
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
11.566
7
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
907.42
0
22
Critical Value
16.985
B56
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Pearson VI (four-parameter) [49]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.04146
8.0423E-14
8
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
11.708
10
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
908.6
0
23
Critical Value
16.985
Pert [50]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.16933
0
44
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
677.98
44
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
4854.6
0
42
Critical Value
16.985
B57
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Phased Bi-Exponential [51]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.15977
0
43
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
831.99
45
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
5795.3
0
43
Critical Value
16.985
Phased Bi-Weibull [52]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.84394
0
62
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
23829.0
62
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
18.307
21.161
23.209
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
10
1.1161E+5
0
56
Critical Value
13.442
15.987
B58
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Power Function [53]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.37352
0
55
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
2173.0
54
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
17.275
19.675
22.618
24.725
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
11
16812.0
0
51
Critical Value
14.631
Rayleigh [54]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.13617
0
38
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
305.44
40
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2576.4
0
37
Critical Value
16.985
B59
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Rayleigh (two-parameter) [55]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.09249
0
30
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
162.1
30
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1642.9
0
29
Critical Value
16.985
Reciprocal [56]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.32165
0
52
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1593.1
51
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
17.275
19.675
22.618
24.725
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
11
13185.0
0
49
Critical Value
14.631
B60
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Rice [57]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.12484
0
35
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
230.99
34
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2073.0
0
32
Critical Value
16.985
Triangular [58]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.42367
0
57
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
3133.6
59
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
8971.6
0
47
Critical Value
16.985
B61
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Uniform [59]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14802
0
42
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
2505.0
56
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
0.05
0.02
0.01
Wakeby [60]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.04078
2.1809E-13
7
0.2
0.1
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
165.8
31
Critical Value
1.3749
1.9286
2.5018
3.2892
B62
3.9074
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
Weibull [61]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.12901
0
37
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
261.96
38
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1951.5
0
30
Critical Value
16.985
Weibull (three-parameter) [62]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.0981
0
32
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
159.43
29
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1638.9
0
28
Critical Value
16.985
B63
Goodness of fit (GOF) analysis for the standard deviation of the rebound index (sR)
B64
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Beta [1]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.07876
0
27
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
98.126
24
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
801.28
0
21
Critical Value
16.985
Burr [2]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.02214
3.0375E-4
4
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
5.6515
5
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
78.561
2.0559E-11
1
Critical Value
16.985
19.812
B65
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Burr (four-parameter) [3]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.0223
2.6582E-4
5
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
5.3697
4
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
144.29
0
8
Critical Value
16.985
Cauchy [4]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.13221
0
37
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
292.83
36
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1967.9
0
31
Critical Value
16.985
B66
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Chi-Squared [5]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.22789
0
50
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
683.21
45
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
3242.5
0
37
Critical Value
16.985
Chi-Squared (two-parameter) [6]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14979
0
42
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
332.07
38
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2158.5
0
33
Critical Value
16.985
B67
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Dagum [7]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.01821
0.0052
3
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
3.1127
1
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
122.01
0
3
Critical Value
16.985
Dagum (four-parameter) [8]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.01778
0.00688
2
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
3.5253
2
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
126.65
0
4
Critical Value
16.985
B68
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Erlang [9]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.17858
0
47
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
485.45
44
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1871.0
0
29
Critical Value
16.985
Erlang (three-parameter) [10]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.13255
0
38
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
266.14
35
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1048.2
0
22
Critical Value
16.985
B69
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Error [11]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.16845
0
45
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
397.85
41
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
3494.7
0
40
Critical Value
16.985
Error Function [12]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.75562
0
60
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
14367.0
60
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
17.275
19.675
22.618
24.725
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
11
49942.0
0
51
Critical Value
14.631
B70
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Exponential [13]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.32012
0
54
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1299.3
51
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
18.549
21.026
24.054
26.217
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
12
7730.6
0
44
Critical Value
15.812
Exponential (two-parameter) [14]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.28439
0
51
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1068.7
48
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
18.549
21.026
24.054
26.217
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
12
5978.2
0
42
Critical Value
15.812
B71
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Fatigue Life [15]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.05786
0
24
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
46.163
19
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
314.13
0
15
Critical Value
16.985
Fatigue Life (three-parameter) [16]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.05343
0
20
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
37.743
18
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
369.94
0
16
Critical Value
16.985
B72
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Frechet [17]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.04276
1.1355E-14
16
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
34.559
15
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
159.24
0
9
Critical Value
16.985
Frechet (three-parameter) [18]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.0557
0
22
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
73.213
22
Critical Value
1.3749
1.9286
2.5018
3.2892
B73
3.9074
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Gamma [19]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.09288
0
30
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
165.06
28
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1418.0
0
25
Critical Value
16.985
Gamma (three-parameter) [20]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.07705
0
26
0.2
Critical Value
0.1
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
95.12
23
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
795.94
0
20
Critical Value
16.985
B74
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Generalized Extreme Value [21]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.01673
0.01315
1
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
3.8078
3
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
0.1
0.05
0.02
0.01
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
170.05
0
10
Critical Value
16.985
Generalized Gamma [22]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.08997
0
29
0.2
Critical Value
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
131.78
26
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1055.9
0
23
Critical Value
16.985
B75
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Generalized Gamma (four-parameter) [23]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.05709
0
23
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
52.223
20
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
505.3
0
18
Critical Value
16.985
Generalized Logistic [24]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.02802
1.5264E-6
13
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
17.874
12
Critical Value
1.3749
1.9286
2.5018
3.2892
B76
3.9074
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Generalized Pareto [25]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.05485
0
21
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1893.3
53
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
Gumbel Max [26]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.08253
0
28
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
145.61
27
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
1280.9
0
24
Critical Value
16.985
B77
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Gumbel Min [27]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.21743
0
49
0.2
0.1
0.05
0.02
0.01
Critical Value 0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
1208.6
49
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
Hypersecant [28]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.14767
0
40
0.2
Critical Value
0.1
0.05
0.02
0.01
0.01134 0.01292 0.01435 0.01604 0.01721
Anderson-Darling
Statistic
Rank
353.56
39
Critical Value
1.3749
1.9286
2.5018
3.2892
3.9074
19.812
22.362
25.472
27.688
Chi-Squared
Deg. of freedom
Statistic
P-Value
Rank
13
2894.4
0
35
Critical Value
16.985
B78
Goodness of fit (GOF) analysis for the coefficient of variation of the rebound index (VR)
Inverse Gaussian [29]
Kolmogorov-Smirnov
Statistic
P-Value
Rank
0.06438
0
25
0.2
Critical Value
0.1
0.05
0.02
0.01