1 1) 1 2 cos|+ form − ln( = + +ln .||2+ =cos 2 + + ln |cos √ 2 = csc − 22tan +4csc 2 − √ sin 2 sin 1 2 2 2 = √ ⇒ √ = 18. Let = . Then .(2 ) = 2 = 2( 14. Let = ln(1 + ), = ⇒ = , = Then − ). −1 √ √ 2 2 −1 22 −1 1 2 2 1 + 1 1 2 =6 sin 6 + 3) = , = 28. sin 2 = sin · 2( − =3,, 2 = ] s 1[ = = 2 ln || − + 5. = + ln |csc − cot | − ln |sin | 7.2.39]√ = − cot +2 2 2 [by Exercise + √ √ 0 ( − 3) sin 2 = 22 −3 −3 (2 2+ 1)− 1 2 −3+ 2 2 2 = = [− cos + sin ] + [integration by parts] − cos + sin2 + ln(1 + ) = ln(1 + ) − ln(1 + ) − 2 19. Let = . = Then = = = + = + . 2 1 + 1 + = (2ln 1 + 6) − (2 ln 3 + 2) = 4 − 2 ln 3 or 4 − ln 9 √1 − cos √ cos) + . The answer can be written − ln(1 = −2 cosas +2 2 sin ++ 20. Since 2 is a constant, 2 =sin + .2 −1 − 1 1 ln(1+ 2 ) − 2 ) − 2 = ln(1 + 2 1= −1 1 1 + 2 tan2 + 1+ √ √ 6. Let = 2 . Then = 2 ⇒ = = sin √ + = sin−1 √ + . √ √ √ 3 −24 2 3 − 2 2 3 3 1 2 2 29. 2= ln + − 1 arctan ,3 = 2 4 1 3 21. Use Let integration = , . so by thatparts =with sec and 2 = . Then ⇒ (21 ) 4 = .1Now use parts with 37. Let = tan Then = ⇒ tan sec == 0 arctan = = 4. 15. Let = , = sec tan ⇒ =0 , = sec . Then 4 0 1 4 1arctan2 √2 −4 1 −4 1 1 + 1 7. Let = arctan . Then = ⇒ = = 4 − . , = . Thus, = arctan , = 2 ⇒ = sec tan −1 +sec ==2 sec −ln √ = 1 sec √1+ 2 |sec √+ tan | + . = = . Then +√ = √−4 = , 2 1 + 2 2 2 2 2 −1 −4 + −1 − 1 4 2+tan − 1 −1 −1 38. The integrand is an odd function,so Theorem 5.5.7(b)]. 4 = 0 [by 1+ 2 , so that 16. Let cos 1 −4 −21 = 2 .2 Then 21 + −= 2 21 2 2 − ln arctan + =2 ln= +− 1 − 1⇒−√ − 1 1 − + − −1 1 + . = ln + − arctan − + arctan = = − 1 = +arctan = ( + 1) + ( − 5). Setting 2 = gives 8. 2 = 1 +2+ 1) 12+− 21 − 4 ( − 5)( − 5 − + 11 3− 5 1 1 2 12 −12 32 12 1 √ √ ( = ( ) = = − ) = − 2 + 12 2 sec tan 1 2 3 1 1 √ √. Setting √ 1 + 2so√ 1 + 2 =√5 gives 4 = 6, = 23 2 . Now tan+ (so = +2 = = . Now 39. −2 Let==−6, = sec , so−= that =if sec . −1 3 + arctan Then or + 1) arctan − arctan 2 − 1 ≥ 0 − 1 if ≥ 0 − sec √ sec − ( − 1) 1 30. | − 1| = (1 + 2 )32 − (1 + 2= + or 13 (2 − = 2) 1+ 2 + )12 4 4 if 13 0 −( 3− 41) if −1 − 1 0 1− 23 2 1 1 = + ln | − 5| + ln | + 1| = ln −101) = + 1= =11 to get 1 =3 . Set = 03to get 1 = −, so = −1. 2( +. 20 12 −⇒ 4 − 5 Set 0 + 21 + Then 22. Let − =5 = . ( ,−so 1(1that 2 17. − cos (ln = ) + cos 2) + 12 0 cos 2 0 =1) 2 0 2 20 0 0 2 Thus, −1 | − 1| = −1 (1 − ) =+2 ln ( −1 1) 5−− 1 ln 1+= − 1−ln5 0 1+ ln 5 −=23 ln 3 −1 0 3 √ 3 3 −1 11 1 ln 1 = , = cos 2 | 2− 1+ 1 = 1 ln Thus, = +2 = + 1 ln || 1| + 1=+ln(ln |sec − √ 2+ = ) . − = −1 2− 2+ 1| −11ln |sec | + [or ln |1 − cos | + ]. = 122 12 sin 2 − sin 2 − 1 2 2 2 2 0 ( − 2) − (1 − 0) )+ += 2 − 0 2 = = , sin32 (−1 +0(0 22 − 1) − − + 21 + (ln ) = = = + . Multiply by ( + 4)( − 1) to get + 2 = ( − 1) + ( + 4). 9. 2 + 3 − 4 ( + 4)( −11) 1 1 + 4 − 1 2 1 2 1 2 − 2 cos7.2, 06 −in+ 2 0sin=6 + 18 (1 1 1) = 4 4 Section 4 31. in 2Example 5, 4 +2(a) 22 − 3 −2 = 40. As Using product formula [sin(6 − 3)SECTION + sin(6 + STRATEGY 3)] = 12 (sin 3 + sin 9). Thus, ¤ 677 7.5+ FOR 3 cos 3 = 2 −4⇒ = 3 + = 3 + + + 22−2 == ( 2) ⇔ + ( − 254). Setting 23. Substituting 1 for gives 3 = 5 ⇔ = . Substituting for 6gives −5 = .INTEGRATION Thus, 5 2 − 2 − 8 ( − 4)( + 2) − 4 + 2 c √ √ ° 2016 Cengage May not to a publicly in whole or in part. or posted accessible1 website, be1scanned, copied,or duplicated, All Rights Reserved. 4 Learning. 4 −1 4 = 1 +35 + sin 9) 12 − 13 cos33 − 9 cos9 1+ 1 +3 sin cos (sin 3 47. Let 1=+− 1, = so that√ =6 . Then 25 2 = 0+ 2 0 2√ 23 5 √ √ √ · = = + = sin − 1 − 2 + . 0 = 41 gives so = . Setting = −2 gives 10 = −6, so = − . Now = + = ln | + 4| + ln | − 1| 2 2 2 − 46 =6, 3 3 1 − 1 + 1 − 1 − 1 − 2 + 3 − 4 4 1− 5 1 1 5 2 3 −4 2 = 1+ 1 −4 31 + 2 − − − −4 = 12 49( +−149 +=349−2 + 32−3 + −4 ) 3 ( − ( + 1) = = ( 2 + 3 39 +3 +31) 9 = 2 1) 2 3 − 2 233 2 ln53 5 2) + 3 ln 3 − 2 (ln 2 + ln 3) 8 +−35 ). ln 6 ln + | 0 − =4|25 (3 (1 +5−)(1 Another method: Substitute = = = 3 + − ln ln | +5 2| + .5 3 =−3 5+ln23 3 3 −2+ 2 1 −3 2 − 2 − 8 = ln || − 3−1 −− 4 3 − + = ln | − 1| − 3( − 1)−1 − 32 ( − 1)−2 − 13 ( − 1)−3 + 2 2= 4 2ln 2 + 1 3ln 3, or 1 ln 48 41. Let = , = tan = sec − 1 5 ⇒ 5= and = tan − . So 5 3 3 1 2 + = 3, √ ) sec 2= 1 (1 + 22 tan √ √ 24. (1 + tan tan2 ) sec 1 2 , so − 32. = 23 1 2 2 = 0 2 48. Let = 1 − = − , and 2 = −2 . Then 2tan − − 1− 21−2 (− ). 2 1 tan = (tan − ) − (tan − ) = cos(1) 1 1 = −3 0 1 + 2 + − ln |sec | ⇒ = − , = −2sin . Then 10. Let1 = , =3 3 2 2 − 1) sec ] = (2 sec tan + ) = [sec + 2 sec tan + (sec ¤ 677 1 SECTION 7.5 STRATEGY sec FOR INTEGRATION √ 1 2 2 3 3 1 1 1 = tan − − ln |sec | + Now let = 2 − , so = 2 − , and 2 = −. Thus, = − = − ( − ) = ( − ) 2 1 3 3 3 |sec1 + tan 1 tan 1 3= 2√1sec + 2 (sec cos(1) 1 |) + 1[by Example 7.2.8] 1 + ln = 2. − √ 0 = − 47. Let 1, so that Then 2 sin sin =2 − sin − cos + .√ =− √3 2 2 2 4 4 3 2 5 2 − (− ) = (2 − ) (2 ) = (4 − 2 ) = − 33. Using product formula 2(c) in Section 7.2, 1 1 1 3 5 1 1 (12 1 31 + 12 −4 + 4) − 3 3 3 −4 3 2 −4 −1 −2 −3 −4 1 + 1) 31 + 3 + 1) (+ 1|+ 3= (4+−3 = = ( = = ( + 25. ( − 1) ln 4)+ −(0 −) 0) = 4 − ln 4 4− = 4−=ln |3 √ √ √ 1 Learning. 1 1 c ° 2016 Cengage All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 1 + 3 3 + 1 3 + 1 0 8 Reserved. 14 + cos 0 Learning. + cos(2May +04not 6)] = 16 [cos(−4) 8] to=a publicly 4 + cos 8). Thus, cos0 2 cos° c 6 2016= Cengage be2scanned, copied, or duplicated, or posted accessible website, in whole or in part. = 83−All6) 2Rights −−1 2 [cos(2 2 (cos −2 3 −1 5 −3=2 15 2 − 15 −1 −2 3 1 5 23 − = ln || − 3 − 2 − 3 + = ln | − 1| − 1) − 3 ( − 1)−3 + 3( − 1)1 − 2 ( − 1 1 1 1 1 2 4 + cos 8) = cos3 22 √ cos16 = 2 3 (cos sin 4 + 8 sin 8 + = 8 sin 4 + 16 sin 8 + . + +1 2 4 + 1 + =24 . ⇒ Multiply ( + 1)( 26. Let get 49. = 4 + 1 =⇒ 2 2 = 4 + 1 =⇒ 2 . So 2 + 1)to0 √ √ 1=by2 3 + 2 √ 2 2 + + 1 ( + 1)( + 1) + 1 + 1 48. Let = 1 − 2 , so = 1 − , and 2 = −2 . Then 0 2 − 1 − 2 = 1 2 − (− ). 2 1 2 √ + ( + ). Substituting −1 for 12 + ( ⇔ 32 + 1 =( + ) − 1) 1 + ( 3 + 1 = ( + 1) + )( + 1) + 2 2 + Now let = 2 −√, so = 2 = −. [by Formula 19] 2=− , and = 2 2 ln = 2 Thus, 1 accessible website, 2or− 2 c 2016 Cengage ° Learning. May not bescanned, copied, duplicated, or posted to a publicly in whole or in part. 1 + 1 ( − 1) 4 + 1All Rights Reserved. 4 2 √ gives 3 = + = 2 + 0 4 = 2 ⇔ = 2.√2Equating ⇔ = 1. Equating coefficients of gives coefficients of √ 2 √ √ 2 2 1 −=1 2 − (− ) = (2 − √ )4 (2+) (4 2 − 2 4 ) = 43 3 − 25 5 1 gives 0 = + = 1 + 1 ⇔= ln = −1. Thus, + 1 4 + 1 + 1 1 √ √ √ 1 8 8 4 2 16 14 2 − 15 1 2 − 15 1 1 32 +=1 3 2 − 5 21 − 23 − 5 = = + − = + 1 3 2 +1 2 +1 2 + + √ 1 +1 2 + 1 0√ + 0 2 +1 √ = 50. As in Exercise 49, let = 2 4 + 1.0Then . Now = 8 2 1 = 2 1 1 ⇒ 2 1. 2 4 1 ⇒ 49. Let = 4 + 1 ⇒ = 4 + =+ 4 (2 − 1)2 So 2 1) 4 ( − = 2 ln | + 1| + 12 ln(2 + 1) − tan−1 = (2 ln 2 + 12 ln 2 − 4 ) − (0 + 0 − 0) 0 1 − 1 1 11 = = 5 ln 2 2−+ + += 2 1 ln ⇒ 2 = 2 2 2 2 √ [by Formula 19] = = 2 ( + 1) ( − 1) 2−−1 1 ( −2 1) + 1 + 2 1+ 12 4 ( + 1) (2 − 1) ( − 1) 4 + 1 Section 7.5 Strategy for Integration 4 2 2 √ 2 1 1 1 = ( ° + 1)( − 1)Learning. + ( − 1)Reserved. ( 1)( +or( + 1)or2posted . = ⇒accessible =website, , in=whole −1or in⇒ c 2016 +4 + 1) Cengage All Rights May be 1 scanned, copied, duplicated, to a 1 publicly part. = 4 . +− 1not− 4 + = ln √ 4 + 1 + 1 Equating coefficients of 3 gives + = 0, and equating coefficients of 1 gives 1 = + − + ⇒ 1 1 = + 14 − + 14 ⇒ √12 = − . So = 14and = − 14 . Therefore, 2 √ = 50. As in Exercise 49, let = 4 + 1. Then . Now = 8 2 1 2 2 2 4 + 1 ( − 1)2 4 ( − 1) 14 14 14 −14 √ + + =8 + 1 + 1+ ( + 1)2+ − 1+ ( − 1)2 ⇒ 2 41+ 1 = = 2 2 2 2 2 2 ( + 1) ( − 1) + 1 ( + 1) −1 ( − 1) ( − 1) 2 2 −2 −2 + 2( + 1) + 2( − 1) − = − 1 + 1)2 . = 1 ⇒ = 14 , = −1 ⇒ = 14 . 1 = ( + 1)( − 1)2 + ( − 1)2 + 1( − 1)( + 1)2 + ( 2 2 = 2 ln − 2 ln | − 1| − of 1 gives +1 = +− + ⇒ Equating coefficients of 3 gives | ++ 1| =− 0, and equating coefficients +1 −1 √ − . So =1 and = 1 = + 14 − + 14 ⇒ 12 = √ 2 2 − 14 . Therefore, = 2 ln 4 + 1 + 1 4− √ − 2 ln 4 + 1 − 1 − √ + 4 + 1 + 1 4 + 1−1 14 14 14 −14 √ + + =8 √+ 1 2 4 + 1 1 2 + 1)2 1 + 1 ( − 1 ( − so 1)2 2 51. Let 2 = tan ⇒ = 2 tan , = 2 sec , 4 + 1 = sec , 2 2
© Copyright 2026 Paperzz