NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 116 Proofs Lecture 9 • Hyperbolic functions are the complex analogues of the trigonometric functions. (8.7) (8.8) Relation to trigonometric functions cos x = cosh(ix) i sinh x = sin(ix) 1 2 (e−x + ex ) Hence, cos(ix) = cosh x ⇒ cos(i2 x) = cosh(ix) • Other hyperbolic functions can be obtained from these: sinh x 1 tanh x = = cosh x coth x 1 sech x = cosh x 1 cosech x = sinh x cosh x = cos(ix) = • cos(ix) = cosh(x) • These are the two fundamental hyperbolic functions. i sin x = sinh(ix) 1 2 eix + e−ix 2 2 ⇒ cos(ix) = 12 ei x + e−i x • cos x = Hyperbolic Functions • By definition cosh x = 12 (ex + e−x ) sinh x = 12 (ex − e−x ) NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 (8.9) cos(−x) = cosh(ix) But cos(−x) = cos(x) = cosh(ix) 2 1 i2 x e − e−i x 2i 1 −x sin(ix) = e − ex 2i • sin(ix) = Multiply RHS top and bottom by i i x −i −x sin(ix) = e − ex = e − e−x 2 2 Therefore, sin(ix) = i sinh x 117 NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 • ⇒ sin(i2 x) = i sinh(ix) sin(−x) = i sinh(ix) −sin(x) = i sinh(ix) Multiply both sides by −i i sin x = sinh(ix) 118 NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 119 Identities of Hyperbolic Functions • Trig identities for cos, sin, etc. can be transformed to their hyperbolic analogue by changing the trig functions to their corresponding hyperbolic ones and remembering to change the sign of any term involving sinh2 . E.g. cos2 x + sin2 x = 1 Therefore cos2 (ix) + sin2 (ix) must = 1. • Using eqns. 8.9 this becomes cosh2 (x) + i2 sinh2 (x) = 1 ⇒ cosh2 x − sinh2 x = 1 (8.10) • Similarly we can transform 1 + tan2 x = sec2 x into 1 − tanh2 x = sech 2 x and becomes cot2 x + 1 = cosec 2 x − coth2 x + 1 = −cosech 2 x ⇒ coth2 x − 1 = cosech 2 x NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 120 Inverse Hyperbolic Functions • Again analogous to trig functions. • If y = cosh x then x = cosh−1 y also have sinh−1 , tanh−1 , cosech Graphs of Hyperbolic Functions −1 , sech −1 , coth−1 . NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 121 NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 122 NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 123 NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 Writing Inverse Hyperbolic Functions in Closed Form 124 NST1A Maths Course A, Lisa Jardine-Wright, Michaelmas 2006 Example 2: • y = tanh x, x = tanh−1 y y= Example 1: 125 sinh x ex − e−x = x cosh x e + e−x y(ex + e−x ) = ex − e−x • y = cosh x, x = cosh−1 y cosh x = 12 (ex + e−x ) sinh x = 12 (ex − e−x ) yex + ye−x = ex − e−x from (eqn 8.1) from (eqn 8.2) Add these equations together (y + 1)e−x = (1 − y)ex 1+y 1−y 1+y 2x = ln 1−y e2x = cosh x + sinh x = 12 ex + 12 e−x + 12 ex − 12 e−x ⇒ cosh x + sinh x = ex x = ln[cosh x + sinh x] p x = ln[cosh x + cosh2 x − 1] cosh−1 y = ln [y + ye−x + e−x = ex − yex x = tanh −1 p y 2 − 1] 1 y = ln 2 1+y 1−y
© Copyright 2026 Paperzz