MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Basic Integration Math 1001 Worksheet Winter 2016 SOLUTIONS 1. (a) We use u-substitution. Let u = x2 − 9 so du = 2x dx and becomes Z Z 1 1 x √ √ du dx = 2 u x2 − 9 Z 1 1 = u− 2 du 2 1 2 du = x dx. The integral 1 1 u2 = 1 +C 2 2 √ = x2 − 9 + C. (b) This is an arcsecant type integral with k = 3, so Z Z x 1 1 1 √ √ dx = dx = arcsec + C. 3 3 x x2 − 9 x x2 − 32 (c) We use integration by parts. Let w = x so dw = dx, and let dv = csc2 (9x) dx so v = − 91 cot(9x). Then Z Z 1 1 2 cot(9x) dx x csc (9x) dx = − x cot(9x) + 9 9 1 1 1 = − x cot(9x) + · ln|sin(9x)| + C 9 9 9 1 1 = − x cot(9x) + ln|sin(9x)| + C. 9 81 (d) We use u-substitution. Let u = x5 so du = 5x4 dx and becomes Z Z 1 4 x5 x e dx = eu du 5 1 = eu + C 5 1 5 = ex + C. 5 1 5 du = x4 dx. The integral –2– (e) We begin with u-substitution. Let u = x5 so du = 5x4 dx and 15 du = x4 dx. The integral becomes Z Z Z 1 9 x5 5 x5 4 x e dx = x e (x dx) = ueu du. 5 Now we use integration by parts, letting w = u so dw = du, and dv = eu du so v = eu . We obtain Z Z 1 u u 9 x5 ue − e du x e dx = 5 1 1 = ueu − eu + C 5 5 1 1 5 5 = x5 ex − ex + C. 5 5 (f) We begin by completing the square: 8 4 2 9x − 12x + 8 = 9 x − x + 3 9 4 4 8 4 2 =9 x − x+ + − 3 9 9 9 " # 2 2 4 =9 x− + 3 9 2 = (3x − 2)2 + 4. Thus the integral becomes Z 9x2 1 1 dx = dx. − 12x + 8 (3x − 2)2 + 4 Now let u = 3x − 2 so du = 3 dx and 31 du = dx. Finally, Z Z 1 1 1 dx = du 2 2 9x − 12x + 8 3 u +4 u 1 1 = · arctan +C 3 2 2 1 3x − 2 = arctan + C. 6 2 (g) We try integration by parts, with w = e4x so dw = 4e4x dx and dv = cos(x) dx so v = sin(x). Then Z Z 4x 4x e cos(x) dx = e sin(x) − 4 e4x sin(x) dx. –3– We try integration by parts a second time. Again, we let w = e4x so dw = 4e4x dx, and now we let dv = sin(x) dx so v = − cos(x). Thus Z Z 4x 4x 4x 4x e cos(x) dx = e sin(x) − 4 −e cos(x) + 4 e cos(x) dx 4x Z 4x = e sin(x) + 4e cos(x) − 16 Z 17 Z e4x cos(x) dx e4x cos(x) dx = e4x sin(x) + 4e4x cos(x) + C e4x cos(x) dx = 4 1 4x e sin(x) + e4x cos(x) + C. 17 17 (h) We begin by performing long division: 6x − 1 2x − 5 12x2 − 32x + 14 12x2 − 30x −2x + 14 −2x + 5 9 Now we can write Z 12x2 − 32x + 14 dx = 2x − 5 Z 6x − 1 + = 3x2 − x + (i) Let u = ln(x) so du = 1 x Z 9 2x − 5 dx 9 ln|2x − 5| + C. 2 dx. The integral becomes Z 1 1 q √ dx = du 2 2 4 − u x 4 − ln (x) u = arcsin +C 2 ln(x) = arcsin + C. 2 (j) Recall that 1 + tan2 (x) = sec2 (x), so Z Z 2 2 2 2 cos (x)[1 + tan (x)] dx = cos (x) sec (x) dx = dx = x + C. Alternatively, we could write Z Z Z 2 2 2 2 cos (x)[1 + tan (x)] dx = [cos (x) + sin (x)] dx = dx = x + C.
© Copyright 2026 Paperzz