CS 3513 - Numerical Analysis Homework #9 - 2006.11.08 Due Date - 2006.11.17 Solutions Show that the following finite-difference formulas are all O(h4 ). 1. 12hf ′ (x) ≈ f (x − 2h) − 8f (x − h) + 8f (x + h) − f (x + 2h) 2. 12hf ′ (x) ≈ −3f (x − h) − 10f (x) + 18f (x + h) − 6f (x + 2h) + f (x + 3h) 3. 12hf ′ (x) ≈ −25f (x) + 48f (x + h) − 36f (x + 2h) + 16f (x + 3h) − 3f (x + 4h) 4. 12hf ′ (x) ≈ 3f (x + h) + 10f (x) − 18f (x − h) + 6f (x − 2h) − f (x − 3h) 5. 12hf ′ (x) ≈ 25f (x) − 48f (x − h) + 36f (x − 2h) − 16f (x − 3h) + 3f (x − 4h) To answer all of the above problems, consider the following expansions: 9h2 27h3 81h4 − f ′′′ (x) + f iv (x) + ... 2 6 24 4h2 8h3 16h4 f (x − 2h) = f (x) − 2f ′ (x)h + f ′′ (x) − f ′′′ (x) + f iv (x) + ... 2 6 24 2 3 4 h h h f (x − h) = f (x) − f ′ (x)h + f ′′ (x) − f ′′′ (x) + f iv (x) + ... 2 6 24 f (x) = f (x) f (x − 3h) = f (x) − 3f ′ (x)h + f ′′ (x) h2 h3 h4 + f ′′′ (x) + f iv (x) + ... 2 6 24 4h2 8h3 16h4 f (x + 2h) = f (x) + 2f ′ (x)h + f ′′ (x) + f ′′′ (x) + f iv (x) + ... 2 6 24 9h2 27h3 81h4 f (x + 3h) = f (x) + 3f ′ (x)h + f ′′ (x) + f ′′′ (x) + f iv (x) + ... 2 6 24 f (x + h) = f (x) + f ′ (x)h + f ′′ (x) By using the above formulas with the prescribed values from the problems, it is easy to show that the formulas are indeed order 1 Use the above finite-difference formulas to construct a first derivative program in Matlab. Given a function on an interval [a, b], your program should compute the derivative using the formula from problem 1 on all points except those near the endpoints. Near the endpoints you will have to use the formulas from the other problems. Compare the derivative computed by finite-difference with the actual derivative on the specified interval and plot the difference. 6. f (x) = 4x3 − 12x2 − x + 1 on [0, 1] with h = 0.01 Actual Derivative (red) Finite Difference (blue) 0 −2 −4 f’(x) −6 −8 −10 −12 −14 0 0.2 0.4 0.6 0.8 1 0.8 1 x −13 1.8 Error in Finite Difference Approximation x 10 1.6 1.4 |f’−fd| 1.2 1 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 x −14 4.5 x 10 Relative Error in Finite Difference Approximation 0 0.2 4 3.5 |f’−fd|/f’ 3 2.5 2 1.5 1 0.5 0 0.4 0.6 x 2 0.8 1 7. f (x) = sin(x) on [0, 2π] with h = 0.02 Actual Derivative (red) Finite Difference (blue) 1 0.8 0.6 0.4 f’(x) 0.2 0 −0.2 −0.4 −0.6 −0.8 −1 0 1 2 3 4 5 6 5 6 x −8 3.5 Error in Finite Difference Approximation x 10 3 2.5 |f’−fd| 2 1.5 1 0.5 0 0 1 2 3 4 x −8 4 Relative Error in Finite Difference Approximation x 10 3.5 |f’−fd |/f’ 3 2.5 2 1.5 1 0.5 0 1 2 3 4 x 3 5 6 8. f (x) = ex on [0, 1] with h = 0.001 Actual Derivative (red) Finite Difference (blue) 2.8 2.6 2.4 2.2 f’(x) 2 1.8 1.6 1.4 1.2 1 0.8 0 0.2 0.4 0.6 0.8 1 x −13 7 x 10 Error in the Finite Difference Approximation 6 5 |f’−fd| 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 x −13 2.5 x 10 Relative Error in Finite Difference Approximation 0 0.2 2 |f’−fd|/f’ 1.5 1 0.5 0 0.4 0.6 x 4 0.8 1 9. f (x) = xex on [0, 2] with h = 0.01 Actual Derivative (red) Finite Difference (blue) 25 20 f’(x) 15 10 5 0 0 0.5 −7 1.4 1 x 1.5 x 10 Error in Finite Difference Approximation 0 0.5 2 1.2 1 |f’−fd| 0.8 0.6 0.4 0.2 0 −8 1.2 x 10 1 x 1.5 2 Relative Error in Finite Difference Approximation 1 |f’−fd|/f’ 0.8 0.6 0.4 0.2 0 0 0.5 1 x 5 1.5 2
© Copyright 2026 Paperzz