Answer on Question #61340-Physics-Mechanics

Answer on Question #61340-Physics-Mechanics-Relativity
A satellite of mass 2500 kg is orbiting the Earth in an elliptical orbit. At the farthest point from the Earth, its
altitude is 3600 km, while at the nearest point, it is 1100 km. Calculate the energy and angular momentum
of the satellite and its speed at the aphelion and perihelion.
Solution
We know, π‘ˆ = βˆ’
πΊπ‘€π‘š
π‘Ÿ
(where G IS gravitational constant, m is satellite's mass, M IS Earth’s mass)
At aphelion,
π‘Ÿ1 = 𝑅𝐸𝐴𝑅𝑇𝐻 + 3600 π‘˜π‘š
At perihelion,
π‘Ÿ2 = 𝑅𝐸𝐴𝑅𝑇𝐻 + 1100 π‘˜π‘š
From the conservation of energy:
𝐾 + π‘ˆ = π‘π‘œπ‘›π‘ π‘‘ β†’
π‘šπ‘£12 πΊπ‘€π‘š π‘šπ‘£22 πΊπ‘€π‘š
βˆ’
=
βˆ’
2
π‘Ÿ1
2
π‘Ÿ2
From the conservation of angular momentum:
π‘šπ‘£1 π‘Ÿ1 = π‘šπ‘£2 π‘Ÿ2
𝑣2 =
π‘Ÿ1
𝑣
π‘Ÿ2 1
2
𝑣12 𝐺𝑀 1 π‘Ÿ1
𝐺𝑀
βˆ’
= ( 𝑣1 ) βˆ’
2
π‘Ÿ1
2 π‘Ÿ2
π‘Ÿ2
1 1
(π‘Ÿ βˆ’ π‘Ÿ )
2
𝑣12 = 𝐺𝑀 1
π‘Ÿ1 2
1 βˆ’ (π‘Ÿ )
2
1. Speed.
At aphelion,
𝑣1 = √6.673 βˆ™ 10βˆ’11 βˆ™ 5.98 βˆ™ 10
1
1
(
6 + 3.6 βˆ™ 106 ) βˆ’ (6.37 βˆ™ 106 + 1.1 βˆ™ 106 ))
(6.37
βˆ™
10
24
106
2
106 )
(6.37 βˆ™
+ 3.6 βˆ™
1βˆ’(
)
(6.37 βˆ™ 106 + 1.1 βˆ™ 106 )
At perihelion,
𝑣2 =
2. The energy.
At aphelion,
(6.37 βˆ™ 106 + 3.6 βˆ™ 106 )
π‘š
4140.5 = 5526.2
6
6
(6.37 βˆ™ 10 + 1.1 βˆ™ 10 )
𝑠
= 4140.5
π‘š
𝑠
1
6.673 βˆ™ 10βˆ’11 βˆ™ 5.98 βˆ™ 1024 βˆ™ 2500
πΈπ‘Ž = 2500(4140.5)2 βˆ’
= βˆ’7.86 βˆ™ 1010 𝐽.
(6.37 βˆ™ 106 + 3.6 βˆ™ 106 )
2
At perihelion,
𝐸𝑝 = πΈπ‘Ž = βˆ’7.86 βˆ™ 1010 𝐽.
2. The angular momentum.
At aphelion,
πΏπ‘Ž = 2500(4140.5)(6.37 βˆ™ 106 + 3.6 βˆ™ 106 ) = 1.03 βˆ™ 1014
At perihelion,
𝐿𝑝 = πΏπ‘Ž = 1.03 βˆ™ 1014
π‘˜π‘”π‘š2
.
𝑠
https://www.AssignmentExpert.com
π‘˜π‘”π‘š2
.
π‘