110.202. Calculus III 2004 Summer Quiz IV 8/2/2004 12:00Noon 1. Show that ¢ ¡ F = x2 + y 2 i − 2xyj is not a gradient vector field. [Solution] Assume that F is a gradient field, that is, F = ∇f . By theorem, we have 0 = curl (∇F ) = curl F = ∇ × F. But, ∇×F = = = 6= ¯ ¯ ¯ ¯ i j k ¯ ¯ ∂ ∂ ∂ ¯ ¯ ∂x ∂y ∂z ¯ ¯ ¯ x2 + y 2 −2xy 0 ¯ ∙ ¸ ¢ ∂ ∂ ¡ 2 2 (−2xy) − x +y k ∂x ∂y (−4y) k 0. This is a contradiction. Hence, F is not a gradient vector field. ¥ 2. Let F (x, y, z) = xi + yj + zk. Evaluate ZZ S F · dS where S is the upper hemisphere of the unit sphere x2 +y 2 +z 2 = 1. [Solution] Let Φ (u, v) = (sin u cos v, sin u sin v, cos u) 1 2 where 0 ≤ u ≤ π2 and 0 ≤ v ≤ 2π. Then Φ is a parametrization of S. Therefore, we can calculate Tu = (cos u cos v, cos u sin v, − sin u) and Tv = (− sin u sin v, sin u cos v, 0) . Hence, we have ¯ ¯ ¯ ¯ i j k ¯ ¯ Tu × Tv = ¯¯ cos u cos v cos u sin v − sin u ¯¯ ¯ ¯ − sin u sin v sin u cos v 0 ¡ 2 ¢ ¡ 2 ¢ = sin u cos v i + sin u sin v j + (cos u sin u) k. Moreover, we have F · (Tu × Tv ) ¢ ¡ = (sin u cos v, sin u sin v, cos u) · sin2 u cos v, sin2 u sin v, cos u sin u = sin3 u cos2 v + sin3 u sin2 v + cos2 u sin u = sin u. By definition, ZZ ZZ F · dS = F · (Tu × Tv ) dudv S Φ Z π Z 2π 2 = sin udvdu 0 0 Z π 2 sin udu = 2π 0 π 2 = 2π [− cos u]|u=0 = 2π. ¥ 3. Evaluate ZZ S where (∇ × F) · dS ¡ ¢ ¡ ¢ F = x2 + y − 4 i + 3xyj + 2xz + z 2 k and S is the surface x2 + y 2 + z 2 = 16, 0 ≤ z. (Let n, the unit normal, be upward pointing.) [Solution] 3 First, we calculate ¯ ¯ i j k ¯ ∂ ∂ ∂ ¯ ∇×F=¯ ∂x ∂y ∂z ¯ x2 + y − 4 3xy 2xz + z 2 ¯ ¯ ¯ ¯ = −2zj + (3y − 1) k. ¯ ¯ Since we want to evaluate our integral on a sphere, we use spherical coordinates to parametrize S. Because S is an upper semisphere, we let x = 4 sin φ cos θ, y = 4 sin φ sin θ and z = 4 cos φ with 0 ≤ φ ≤ π2 and 0 ≤ θ ≤ 2π. Hence, we have ¯ ¯ ¯ ¯ i j k ¯ ¯ Tφ × Tθ = ¯¯ 4 cos φ cos θ 4 cos φ sin θ −4 sin φ ¯¯ ¯ ¯ −4 sin φ sin θ 4 sin φ cos θ 0 ¡ ¢ ¡ ¢ = 16 sin2 φ cos θ i + 16 sin2 φ sin θ j + (16 sin φ cos φ) k. Since this standard spherical coordinates parametrization is orientation reversing, we need to swap the order of φ and θ to get an orientation preserving parametrization. So, we use n = Tθ × Tφ = − (Tφ × Tθ ) ¡ ¢ ¡ ¢ = −16 sin2 φ cos θ i + −16 sin2 φ sin θ j + (−16 sin φ cos φ) k. Thus, by definition, ZZ (∇ × F) · dS S ZZ = (0, −2 (4 cos φ) , 3 (4 sin φ sin θ) − 1) · (Tθ × Tφ ) dφdθ S Z 2π Z π 2 ¡ ¢ = 16 sin φ cos φ − 4 sin θ sin2 φ cos φ dφdθ 0 0 ¶¯ π # Z 2π " µ 2 sin φ 4 sin θ sin3 φ ¯¯ 2 dθ − = 16 ¯ 2 3 0 φ=0 ¶ Z 2π µ 1 4 sin θ − dθ = 16 2 3 0 µ ¶¯2π θ 4 cos θ ¯¯ = 16 + ¯ 2 3 φ=0 = 16π. ¥ 4. Evaluate Z C x3 dy − y 3 dx 4 where C is the unit circle x2 + y 2 = 1. [Solution] By Green’s theorem, we know Z 3 C 3 x dy − y dx = ZZ D ¡ 2 ¢ 3x + 3y 2 dxdy where D is the unit disk. To evaluate the right-hand side integral, we use polar coordinates. Let x = r cos θ and y = r sin θ where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Moreover, the Jacobian is r. The the integral becomes ZZ D ¡ 2 ¢ 3x + 3y 2 dxdy = Z 2π 0 Z Z 0 1 1 3r2 · rdrdθ 3r3 dr 0 µ 4 ¶¯1 3r ¯¯ = 2π 4 ¯r=0 3π = . 2 = 2π ¥ 5. Use Green’s theorem to find the area of the loop of the curve x = a sin θ cos θ and y = a sin2 θ for a > 0 and 0 ≤ θ ≤ π. [Solution] Let D be the region bounded by the given curve and C be the boundary of D which is the given curve. By Green’s theorem, 5 = = = = = = ¥ we have the area A equals ZZ dxdy D Z 1 (xdy − ydx) 2 C Z ¡ ¢¡ ¢ 1 π (a sin θ cos θ) (2a sin θ cos θ) dθ − a sin2 θ a cos2 θ − a sin2 θ dθ 2 0 Z a2 π 2 sin θdθ 2 0 Z a2 π 1 − cos 2θ dθ 2 0 2 µ ¶¯π θ sin 2θ ¯¯ a2 · − ¯ 2 2 4 θ=0 πa2 . 4
© Copyright 2026 Paperzz