The LaTeX report Generated by gurrola on 26 February 2013, 11:27:38 This report has been generated automatically by MadAnalysis 5. Please cite: E. Conte, B. Fuks and G. Serret, , MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology Comput. Phys. Commun. arXiv:1206.1599 [hep-ph]. 184 (2013) 222-256, To contact us: http://madanalysis.irmp.ucl.ac.be [email protected] Contents 1 2 3 Setup 2 Datasets 5 Histos and cuts 6 1.1 1.2 2.1 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Command history Conguration 2 4 smur Histogram Histogram Histogram Histogram Histogram Histogram Histogram Histogram 5 1 2 3 4 5 6 7 8 6 7 8 9 10 11 12 13 1 1 1.1 Setup Command history ma5># set directory where running "./bin/ma5"; set lumi; define the signal significance ma5>set main.currentdir = /home/gurrola/Desktop ma5>set main.lumi = 100 ma5>set main.SBratio = 'S/sqrt(S+B)' ma5># import samples ma5>import samples/smur.lhe as smur ma5># define bg and signal samples ma5>set smur.type = signal ma5># define weights for the samples ma5>set smur.weight = 1 ma5># titles for the plots ma5>set smur.title = "#tilde{#mu}_{R}#tilde{#mu}_{R}jj" ma5># line styles and colors ma5>set smur.linecolor = black ma5>set smur.linestyle = dash-dotted ma5>set smur.linewidth = 4 ma5># a jet can be from a light quark or b quark ma5>define jets = j b b ma5># make plots ma5>plot PT(jets[1]) ma5>plot ETA(jets[1]) ma5>plot PHI(jets[1]) ma5>plot PT(jets[2]) ma5>plot ETA(jets[2]) ma5>plot PHI(jets[2]) ma5>plot DELTAR(jets[1], jets[2]) ma5>plot M(jets[1] jets[2]) ma5># plot parameters ma5>set selection[1].xmax = 1000 ma5>set selection[1].xmin = 0 ma5>set selection[1].nbins = 50 ma5>set selection[1].logY = true ma5>set selection[1].logX = false ma5>set selection[1].rank = PTordering ma5>set selection[1].stacking_method = normalize2one ma5>set selection[1].titleX = "p_{T}[j_{1}] (GeV)" ma5>set selection[2].xmax = 16 ma5>set selection[2].xmin = -16 ma5>set selection[2].nbins = 320 ma5>set selection[2].logY = false 2 ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set ma5>set selection[2].logX = false selection[2].rank = PTordering selection[2].stacking_method = normalize2one selection[2].titleX = "#eta[j_{1}]" selection[3].xmax = 3.2 selection[3].xmin = -3.2 selection[3].nbins = 64 selection[3].logY = false selection[3].logX = false selection[3].rank = PTordering selection[3].stacking_method = normalize2one selection[3].titleX = "#phi[j_{1}]" selection[4].xmax = 500 selection[4].xmin = 0 selection[4].nbins = 50 selection[4].logY = true selection[4].logX = false selection[4].rank = PTordering selection[4].stacking_method = normalize2one selection[4].titleX = "p_{T}[j_{2}] (GeV)" selection[5].xmax = 16 selection[5].xmin = -16 selection[5].nbins = 320 selection[5].logY = false selection[5].logX = false selection[5].rank = PTordering selection[5].stacking_method = normalize2one selection[5].titleX = "#eta[j_{2}]" selection[6].xmax = 3.2 selection[6].xmin = -3.2 selection[6].nbins = 64 selection[6].logY = false selection[6].logX = false selection[6].rank = PTordering selection[6].stacking_method = normalize2one selection[6].titleX = "#phi[j_{2}]" selection[7].xmax = 30 selection[7].xmin = 0 selection[7].nbins = 150 selection[7].logY = false selection[7].logX = false selection[7].rank = PTordering selection[7].stacking_method = normalize2one 3 ma5>set selection[7].titleX = "#Delta#eta[j_{1},j_{2}]" ma5>set selection[8].xmax = 10000 ma5>set selection[8].xmin = 0 ma5>set selection[8].nbins = 80 ma5>set selection[8].logY = true ma5>set selection[8].logX = false ma5>set selection[8].rank = PTordering ma5>set selection[8].stacking_method = normalize2one ma5>set selection[8].titleX = "M[j_{1},j_{2}] (GeV)" ma5>submit VBFPlots_SmuR 1.2 Conguration • MadAnalysis version 1.1.5 (2012/11/28). • Histograms given for an integrated luminosity of 100.0fb−1 . 4 2 Datasets 2.1 smur • Sample consisting of: signal events. • Generated events: 50000 events. • Normalization to the luminosity: 86+/- 1 events. • Ratio (event weight): 0.0017 . Path to the event le Nr. of events samples/smur.lhe 50000 5 Cross section (pb) 0.000866 @ 0.16% Negative (%) 0.0 wgts 3 Histos and cuts 3.1 Histogram 1 * Plot: PT ( jets[1] ) Table 1. Dataset Integral smur 1.0 Entries events 1.0 Statistics table / Mean RMS Underow Overow 29.3596 60.01 0.0 Figure 1. 6 0.0 3.2 Histogram 2 * Plot: ETA ( jets[1] ) Table 2. Dataset Integral smur 1.0 Entries events 1.0 Statistics table / Mean RMS Underow Overow 0.0714294 5.258 0.0 Figure 2. 7 0.0 3.3 Histogram 3 * Plot: PHI ( jets[1] ) Table 3. Dataset Integral smur 1.0 Entries events 1.0 Statistics table / Mean RMS Underow Overow 0.00849216 1.815 0.0 Figure 3. 8 0.676 3.4 Histogram 4 * Plot: PT ( jets[2] ) Table 4. Dataset Integral smur 1.0 Entries events 1.0 Statistics table / Mean RMS Underow Overow 6.57577 12.24 0.0 Figure 4. 9 0.0 3.5 Histogram 5 * Plot: ETA ( jets[2] ) Table 5. Dataset Integral smur 1.0 Entries events 1.0 Statistics table / Mean RMS Underow Overow -0.057858 6.09 0.0 Figure 5. 10 0.0 3.6 Histogram 6 * Plot: PHI ( jets[2] ) Table 6. Dataset Integral Entries events smur 1.0 1.0 Statistics table / Mean RMS Underow Overow 0.00551786 1.811 0.0 Figure 6. 11 0.694 3.7 Histogram 7 * Plot: DELTAR ( jets[1] , jets[2] ) Table 7. Dataset Integral smur 1.0 Entries events 1.0 Statistics table / Mean RMS Underow Overow 10.9836 2.734 0.0 Figure 7. 12 0.0 3.8 Histogram 8 * Plot: M ( jets[1] jets[2] ) Table 8. Dataset Integral smur 1.0 Entries events 1.0 Statistics table / Mean RMS Underow Overow 1827.32 1290 0.0 Figure 8. 13 0.0
© Copyright 2026 Paperzz