INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, July 1988, p. 321-325 0020-7713/88/03032 1-05$02.OOtO Copyright 0 1988, International Union of Microbiological Societies Vol. 38, No. 3 Proteobacteria classis nov. a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives” E. STACKEBRANDT,l R. G. E. MURRAY,2*AND H. G. TRUPER3 Lehrstuhl fur Allgemeine Mikrobiologie, Biologiezentrum, Christian-Albrechts Universitat, 2300 K i d , Federal Republic of Germany’; Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12; and Institut fur Mikrobiulogie, Universitat Bonn, 5300 Bonn I , Federal Republic of Germany3 Proteobacteria classis nov. is suggested as the name for a new higher taxon to circumscribe the a,p, y, and 6 groups that are included among the phylogenetic relatives of the purple photosynthetic bacteria and as a suitable collective name for reference to that group. The group names (alpha, etc.) remain as vernacular terms at the level of subclass pending further studies and nomenclatural proposals. the interim while the phylogenetic data are being integrated into formal bacterial taxonomy. It does not appear to be inappropriate or confusing to use the protean prefix because of the genus Proteus among the Proteobacteria; the reasons for use are clear enough. This new class is so far only definable in phylogenetic terms. Above all, it is shown by the evolutionary distance matrix generated from homologies of complete 16s rRNAs, from which a phylogenetic tree is derived. According to Woese (25) a corresponding tree given by maximum parsimony of sequence selection recognizing unique nucleotides at specific sites results in a very similar topography. Few class-specific signature nucleotides of the 16s rRNA are determinable compared with those found in other major lines of descent of the Gracilicutes (25). There is a preference for adenine at position 906 and for cytosine at position 1520 (a guanine residue is the eubacterial consensus composition at these positions). In terms of ribonuclease T,-resistant oligonucleotides, catalogs of Proteobncteria can be characterized by the following signatures (positions and distribution in parentheses): CUAAUACCG (170; alpha-delta), YCAC AYYG (315; alpha-delta; Y = pyrimidine), AAUUUUG or AAUUUUC (365; alpha-delta), CUAACUYYG (510; alpha, gamma, delta), and UCACACCAUG (1410; alpha-delta). The alpha, beta, and gamma groups correspond to rRNA superfamilies IV, 111, and I+II, respectively, as defined by De Ley and co-workers (3-6, 9, 11, 15, 16) on the basis of rRNA similarities (members of the delta subclass have not yet been included in such studies). The groups within the Proteobacteria are termed “subdivisions” by Woese et al., (26) or “subphyla” by Woese (25). Only a comparison of full 16s rRNA sequences can be expected to convincingly determine the common origin of the four subclasses; other methods, such as deoxyribonucleic acid-rRNA pairing, comparison of 5s rRNA sequences, and 16s rRNA cataloging, are not capable of discrimination at that level. Table 1 lists those taxa which have been found to be members of each of the individual groups, and the methods that determine their phylogenetic positions are indicated in the references cited; the names used are included without prejudice. At this time we do not have a formal nomenclatural proposal for any new ranks between class and genus because thorough study will be required to establish stable taxonomic arrangements and phenotypic markers for those ranks (22). The groups corresponding to the immediate separations within the Proteobncteria should be at the subclass rank and are so shown in Table 1; however, to emphasize that these group names have no formal status in Phylogenetic interpretations derived from the study of ribosomal ribonucleic acid (rRNA) sequences and oligonucleotide catalogs provide an important factual base for arrangements of higher taxa of bacteria (25, 26). A recent workshop organized by the International Committee on Systematic Bacteriology recognized that a particularly diverse but related group of gram-negative bacteria, including phototrophic and heterotrophic bacteria, needed a formal collective name (22). These organisms are often referred to as “purple bacteria and their relatives,” and this is not appropriate because most of them are not purple or photosynthetic. We believe that they should be named at the level of class. This group has evolved relatively rapidly to generate a number of branches, including organisms of great biological significance but startlingly different physiological attributes . These relationships invalidate the proposal for an interim set of higher taxa proposed in Bergey’s Munual of Systematic Bacteriology (14) separating the classes Scotobacteria (for nonphotosynthetic true bacteria, which now prove to be relatives of purple bacteria) and Anoxyphotobacteria (encompassing the photosynthetic bacteria having photosystem I alone, including the purple bacteria). The remaining class, Oxyphotobacteria, can be retained as a phylogenetically valid circumscription of the bacteria having both photosystems I and 11. These and the other gram-negative bacteria forming the major phylogenetic group derived from the main stem of bacterial evolution can still be conveniently classified as members of the division Gracilicutes until further phylogenetic studies clarify some of the orders of branching or the need for status at the level of division. The grampositive bacteria form a more clearly structured phylogenetic group and can remain, as recommended (22), assembled in the division Firmicutes. The outstanding attribute of the major phylogenetic branches (a,p, y, and 6) within the purple bacteria and their relatives is the diversity of shape and physiology. Therefore, we propose that these organisms be designated Proteobacteria classis nov. (Prot.e.0.bac.ter’i.a. Gr. n. Proteus, a Greek god of the sea, capable of assuming many different shapes; Gr. dim. n. bakterion, a small rod; Proteobacteria protean group of bacteria of diverse properties despite a common ancestry). It seems appropriate to use the suffix -bacteria at this hierarchical level because it is consistent with an extant proposal of higher taxa (14) that is useful in * Corresponding author. 321 Downloaded from www.microbiologyresearch.org by IP: 88.99.165.207 On: Sun, 18 Jun 2017 21:29:38 322 INT. J. SYST.BACTERIOL. NOTES TABLE 1. Genera recognized as members of the class Proteobacteria“ References Subclass “Alpha” “Beta” Taxonb 16s rRNA sequences 16s rRNA-23s rRNA hybridization Rhodohacter Rhodomicrobium Rhodopseudomonas Rhodopila Rhodospirillum Acetobacter Acidiphilium Agrobacteriurn Ancalornicrobium Aquaspirillum Azospirillurn Beijerinckia Blastobacter Brady rh izobium Caulobacter Erythrobacter Filornicrobium Gemmobacter Gluconohacter Hyp homic robiurn Hyphornonas Me thy lobacteriurn My coplana Nitrobacter Paracoccus Pedornicrobium Phy llobacterium Phenylobacterium Prosthecornicrobium Rhizohium Rochalimaea Stella Xanthobacter Zymornonas 25 25 25 25 25 9 25 N P” 25 25 NP 17 8 9 R hodocyclus Achromohacter Alcaligenaceae Alcaligenes Bordetella Aquaspirillum Chrornobacteriurn Comamonas Derxia Janthinobacterium King ella Leptothrix Methylomonas Clara Methanolomonas Methanomonas Neisseria Nitrosococcus Nitrosolobus Nitrosospira Nitrosovibrio Oligella Pseudornonas acidovorans complex Pseudornonas solanacearum complex Sirnonsiella Sphaerotilus S p irillurn Tuylorella Thiobucillusd Vitreoscilla Xy lophilus 25 5s rRNA sequences 9 9 9 13 13 9 9 9 9 NP 25 17a 17 9 17a 17a 17a NP 25 25 17a 17a 13 25 NP 25 25 17a NP NP 9 13 11 4 25 25 25 25 NP 25 15 15 5 6 5 5 16 19 28 28 28 25 25 25 25 25 25 25 NP 25 25 16 15 5 5 13 15 25 25 19 19 24 Continued on following p a g e Downloaded from www.microbiologyresearch.org by IP: 88.99.165.207 On: Sun, 18 Jun 2017 21:29:38 VOL. 38, 1988 NOTES 323 TABLE 1-Continued References Subclass "Gamma" Taxonb Chrornatiaceae Amoehohacter Chrornatiurn Larnprocystis Thiocapsa Thiocystis Thiodictyon Thiospirillurn Ectothiorhodospiraceae Eciothiorhodospira Acinetobacter Aeromonadaceae Aerornonas Alterornonas Alysiella Azornonas Azotobacter Beggiatoa Branhamella Deleya Enterohacteriaceae Budvicia (1) Buttiauxella' Cedecea" Citrobacter" Edwardsiella' Enterohacter Erwinia' Es ch e ric hia Hafnia' Klebsiella' Kluyvera' Leclercia (21) Leminorella' Moellerella' Morganella' Obesurnbacterium' Proteus Providencia' Rahnella' Salmonella'' Serratia Shigella" Taturnella' Yersinia Yokenella (= Koserella) (12) Xenorhabdus Frateuria Halornonas Legionella Leucothrix Lysohacter Marinornonas Moraxella Oceanospirillurn Pasteurellaceue Pasteurella Plesiornonas Pseudomonas juorescens complex Psychrobacter (10) Ruminobacter Serpens Thiornicrospira Thiothrix 16s rRNA sequences 25 7 25 25 25 25 25 25 25 25 25 27 27 NP 16s rRNA-23s rRNA hybridization 5s rRNA sequences 13 16 3 3 3 13 5 5 19 25 NP 27 16 5 3 27 3 27 27 27 27 6a 5 27 27 27 27 5 16 25 3 25 25 5 3 3 13 18, 25 25 19 19 Continued on following p a g e Downloaded from www.microbiologyresearch.org by IP: 88.99.165.207 On: Sun, 18 Jun 2017 21:29:38 324 INT. J . SYST.BACTERIOL. NOTES TABLE 1-Con tinlied References Subclass ‘‘Delta’’ Taxon” 16s rRNA sequences Vibrionacea e Enhydrobacter (20) Listonella Vibrio Photobacterium Skewanella Xanthomonas Xy lella 27 27 Bdellovibrio Desulfobucter Desulfobulbus Desulfococcus Desulfonema Desulfovibrio Desulfuromonas Myxococcuceae Chondromyces Cystobacter Myxococcits Nannocystis Sorangium Stigmatella Pelobacter 25 25 25 25 25 25 25 2s NP 25 25 25 25 25 NP 25 23 16.5 rRNA-23s rRNA hybridization 5s rRNA sequences 3 3 3 5 ‘’ Genera of phototrophic bacteria head the list of taxa and are followed by other taxa in alphabetical order. Only phylogenetically defined families are included. References are not necessarily to the original presentation of data but are selected sources giving more comprehensive overviews. The subclasses “alpha” to “gamma” contain many misclassified strains which are not listed but which can be recognized in the original literature. The numbers in parentheses are reference numbers. I ’ NP, Unpublished data of Stackebrandt and co-workers. Heterogeneous genus. Genera assigned t o the Enterobacieririceae by deoxyribonucleic acid hybridization data and not by rRNA sequencing (2). ’ nomenclature, they are put in quotation marks and not set in italic type. A few genera have been effectively aligned within a group (e.g., as a family), and this is indicated by direct reference without assignment of method. It would be appropriate to refer to a named organism as belonging to, for example, the Proteobucteriu alpha group. LITERATURE CITED 1. Bouvet, 0. M. M., P. A. D. Grimont, C. Richard, E. Aldova, 0. Hausner, and M. Gabrhelova. 1985. Budvicia aquatica gen. nov., sp. nov.: a hydrogen sulfide-producing member of the En?erobac?eriaceae. Int. J. Syst. Bacteriol. 3560-64. 2. Brenner, D. J. 1984. Family I. Enterobacteriaceae, p. 409-601. In N. R. Krieg and J . G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore. 3. Colwell, R. R., M. T. MacDonell, and J. De Ley. 1986. Proposal to recognize the family Aeromonaduceae fam. nov. Int. J. Syst. Bacteriol. 36:473477. 4. De Ley, J., P. Segers, K. Kersters, W. Mannheim, and A. Lievens. 1986. Intra- and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int. J. Syst. Bacteriol. 36:405414. 5. De Vos, P., M. Goor, M. Gillis, and J. De Ley. 1985. Ribosomal ribonucleic acid cistron similarities of phytopathogenic Pseudomonas species. Int. J . Syst. Bacteriol. 35169-184. 6. De Vos, P., K. Kersters, E. Falsen, B. Pot, M. Gillis, P. Segers, and J. De Ley. 1985. Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev. Int. J . Syst. Bacteriol. 35443-453. 6a.Ehlers, U. R., U. Wyss, and E. Stackebrandt. 1988. 16s rRNA cataloging and the phylogenetic position of Xenorhabdus. Syst. Appl. Microbiol. 10:121-125. 7. Fowler, V. J., N. Pfennig, W. Schubert, and E. Stackebrandt. 1984. Towards a phylogeny of phototrophic purple sulfur bacteria: 16s rRNA oligonucleotide cataloguing of eleven species of Chromatiaceae. Arch. Microbiol. 139:382-387. 8. Hennecke, H., K. Kaluza, B. Thony, M. Fuhrmann, W. Ludwig, and E. Stackebrandt. 1985. Convergent evolution of nitrogenase genes and 16s rRNA in Rhizobium species and other nitrogenfixing bacteria. Arch. Microbiol. 142:342-348. 9. Jarvis, B. D. W., M. Gillis, and J. De Ley. 1986. Intra- and intergeneric similarities between the ribosomal ribonucleic acid cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int. J. Syst. Bacteriol. 36:129-138. 10. Juni, E., and G. A. Heym. 1986. Psychrobacter immobilis gen. nov., sp. nov.: genospecies composed of gram-negative, aerobic, oxidase-positive coccobacilli. Int. J. Syst. Bacteriol. 36: 388-391. 11. Kersters, K., K.-H. Hinz, A. Hertle, P. Segers, A. Lievens, 0. Siegmann, and J. De Ley. 1984. Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Int. J. Syst. Bacteriol. 3456-70. 12. Kosako, Y., R. Sakazaki, G. P. Huntley-Carter, and J. J. Farmer 111. 1986. Yokenella regensburgei and Koserella trabulsii are subjective synonyms. Int. J. Syst. Bacteriol. 33:127-129. 13. Lane, D. J., D. A. Stahl, G. J. Olsen, D. J. Heller, and N. R. Pace. 1985. Phylogenetic analysis of the genera Thiobacillus and Thiomicrospiru by 5s rRNA sequences. J . Bacteriol. 163:7581. 14. Murray, R. G. E. 1984. The higher taxa, or, a place for everything . . .?, p. 33. In N. R. Krieg and J. G. Holt (ed.), Bergey’s manual of systematic bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore. 15. Rossau, R., K. Kersters, E. Falsen, E. Jantzen, P. Segers, A. Union, L. Nehls, and J. De Ley. 1987. Oligella, a new genus Downloaded from www.microbiologyresearch.org by IP: 88.99.165.207 On: Sun, 18 Jun 2017 21:29:38 VOL. 38, 1988 NOTES including Oligella urethralis comb. nov. (formerly Moraxella urethralis) and Oligella ureolytica sp. nov. (formerly CDC group We): relationship to Taylorella equigenitalis and related taxa. Int. J. Syst. Bacteriol. 37:198-210. 16. Rossau, R., A. Van Landschoot, W. Mannheim, and J. De Ley. 1986. Inter- and intrageneric similarities of ribosomal ribonucleic acid cistrons of the Neisseriaceae. Int. J. Syst. Bacteriol. 36:323-332. 17. Rothe, B., A. Fischer, P. Hirsch, M. Sittig, and E. Stackebrandt. 1987. The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gernrnobacter aquatilis gen. nov., sp. nov. Arch. Microbiol. 147:92-99. 17a.Stackebrandt, E., A. Fischer, T. Roggentin, U. Wehmeyer, D. Bomar, and J. Smida. 1988. A phylogenetic survey of budding, and/or prosthecate, nonphototrophic eubacteria: membership of Hyphornicrobiurn, Hyphornonas, Pedomicrobiurn, Filornicmbiurn, Caulobacter, and “Dichotomicrobium” to the alpha subdivision of purple non-sulfur bacteria. Arch. Microbiol. 149: 547-556. 18. Stackebrandt, E., and H. Hippe. 1986. Transfer of Bactcroides arnylophilus to a new genus Rurninobacter gen. nov., nom. rev. as Rurninobacter arnylophilus comb. nov. Syst. Appl. Microbiol. 8:204207. 19. Stahl, D. A., D. J. Lane, G. J. Olsen, D. J. Heller, T. M. Schmidt, and N. R. Pace. 1987. Phylogenetic analysis of certain sulfide-oxidizing and related morphologically conspicuous bacteria by 5s ribosomal ribonucleic acid sequences. Int. J. Syst. Bacteriol. 37:116-122. 20. Staley, J. T.,R. L. Irgens, and D. J. Brenner. 1987. Enhydrohacter aerosaccus gen. nov., sp. nov., a gas-vacuolated, facultatively anaerobic, heterotrophic rod. Int. J. Syst. Bacteriol. 37:289-291. 325 21. Tamura, K., R. Sakazaki, Y. Kosako, and E. Yoshizaki. 1986. Leclercia adecarboxylata gen. nov., comb. nov., formerly known as Escherichia adecarboxylata. Curr. Microbiol. 13: 179-194. 22. Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, 0. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Triiper. 1987. Report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463464. 23. Wells, J. M., B. C. Raju, H.-Y. Hung, W. G. Weisburg, L. Mandelco-Paul, and D. J. Brenner. 1987. Xylella fastidiosa gen. nov., sp. nov. : gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Bacteriol. 37:136-143. 24. Willems, A., M. Gillis, K. Kerster, L. Van den Broecke, and J. De Ley. 1987. Transfer of Xanthornonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. Int. J. Syst. Bacterial. 37:422430. 25. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221-271. 26. Woese, C. R., E. Stackebrandt, R. J. Macke, and G. E. Fox. 1985. A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol. 6:143-151. 27. Woese, C. R., W. G. Weisburg, C. M. Hahn, B. J. Paster, L. B. Zablen, B. J. Lewis, T. J. Macke, W. Ludwig, and E. Stackebrandt. 1985. The phylogeny of purple bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6:25-33. 28. Wolfrum, T., and H. Stolp. 1987. Comparative studies on 5s RNA sequences of RUMP-type methylotrophic bacteria. Syst. Appl. Microbiol. 9:273-276. Downloaded from www.microbiologyresearch.org by IP: 88.99.165.207 On: Sun, 18 Jun 2017 21:29:38
© Copyright 2026 Paperzz