Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Figure S 1 - Experimental setup of harvesting procedure for a pSIRM cell culture experiment. Cells are seeded with pre-determined cell number to avoid growth inhibitory effects until harvest on day 3 of the experiment. Media is replaced to supply cells with nutrients 24 and 4 hours prior the harvest. The harvest protocol summarizes the labeling procedure of adherent cell cultures (see Methods section). 1 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 1 – Composition of the full label medium and label buffer for pSIRM experiments used for the labeling of T98G cells and other cell lines as mentioned in the manuscript. Base Carbon sources Supplemented with Full label medium Dulbeccos modified eagle medium (DMEM) - without Glucose - without Glutamine - without Pyruvate + 13C-Glucose (2.5 g/L) + 12C-Glutamine (4 mM) + small molecules (inhibitor, antibiotics etc.) Label buffer HEPES (5 mM) NaCl (140 mM) pH 7.4 + 13C-Glucose (2.5 g/L) + 12C-Glutamine (4 mM) 2 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Figure S 2 – Experimental scheme of the reproducibility experiment to determine technical and biological variances of GC-MS derived data. T98G cells were cultured for three days, and labeled with 13C-glucose for 3 minutes. Cell extracts were prepared separately for each cell culture plate. Technical variance was determined by the repeated measurement of pooled cell samples. Biological reproducibility was determined by repeated measurement of five independently treated cell samples. 3 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 2 – Biological and technical variation of the measurement of metabolite pool sizes in T98G cells. The coefficient of variation (CoV) of the peak area for each metabolite was calculated from six consecutive measured technical replicates. The calculation of CoVs for the biological reproducibility based on five biological replicates, each measured in four technical repetitions. Compound Adenine Alanine, betaAlanine Asparagine Aspartic acid Butanoic acid, 2-aminoButanoic acid, 3-hydroxyButanoic acid, 4-aminoCitric acid Cytosine Fructose-1,6-bisphosphate Fructose Fructose-6-phosphate Fumaric acid Glucose Glucose-6-phosphate Glutamine Glutaric acid, 2-hydroxyGlutaric acid, 2-oxoGlyceric acid Glyceric acid-3-phosphate Glycerol Glycerol-3-phosphate Glycine Inositol, myoIsoleucine Lactic acid Leucine Lysine Malic acid Methionine Pantothenic acid Phosphoenolpyruvic acid Proline Putrescine Pyroglutamic acid Pyruvic acid Ribitol Ribose-5-phosphate Serine Succinic acid Sucrose Threonine Tyrosine Uracil Uridine 5'-monophosphate Uridine Valine Coefficient of variation Technical Biological replicates replicates 13.7 14.7 8.9 12.4 6.8 10.0 9.0 5.3 3.6 10.3 9.3 5.5 7.6 15.9 16.1 19.6 8.9 10.6 15.1 12.1 15.3 15.6 11.5 13.9 6.4 10.3 9.0 10.4 8.6 7.0 10.8 11.6 5.9 11.9 8.7 13.4 12.2 14.3 6.3 7.1 11.3 14.7 15.3 16.5 10.2 13.1 12.7 6.6 11.3 11.6 8.1 12.0 3.9 11.0 7.6 8.6 12.0 11.5 9.2 13.3 16.8 20.7 11.2 11.2 11.8 13.2 7.6 5.2 14.5 8.1 10.1 13.8 5.3 7.5 11.5 9.3 11.3 11.2 10.0 10.2 15.0 21.3 23.2 29.5 10.4 11.1 10.7 8.2 10.0 20.5 6.8 14.3 21.5 13.5 5.6 11.6 4 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 3 – Quant mixture composition and concentration range for each metabolite Compound Adenine Adenosine Alanine Alanine, beta Arginine Asparagine Aspartic acid Butyric acid, 3-hydroxy Butyric acid, 4-amino Citric acid Creatinine Cysteine Cytosine Dihydroxyacetone phosphate Erythritol, meso Fructose Fructose-1,6-bisphosphate Fructose-6-phosphate Fumaric acid Gluconic acid-6-phosphate Glucosamine Glucose Glucose 1-phosphate Glucose-6-phosphate Glutamic acid Glutamine Glutaric acid Glutaric acid, 2-hydroxy Glutaric acid, 2-oxo Glyceraldehyde-3-phosphate Glyceric acid Glyceric acid-3-phosphate Glycerol Glycerol-3-phosphate Glycine GMP Hypotaurine Inosine Inositol, myo Isoleucine Lactic Acid Leucine Lysine Malic acid Methionine Pantothenic acid Phenylalanine Phosphoenolpyruvic acid Proline Putrescine Pyroglutamic acid Concentration range in Quant mix (pmol) Minimum Maximum 37 7400 94 18709 673 134695 56 11225 57 11481 114 22707 75 15025 144 28818 48 9697 260 52051 221 44201 41 8254 45 9001 441 88183 409 81887 416 83259 271 54288 66 13154 172 34462 73 14616 23 4638 1943 388544 59 11894 164 32884 680 135934 684 136855 151 30278 286 57268 171 34223 323 64668 80 15987 217 43478 326 65154 135 26996 333 66605 101 20113 92 18323 56 11184 278 55506 191 38116 2231 446190 457 91484 103 20531 224 44746 34 6702 84 16788 242 48429 75 15036 304 60801 31 6208 465 92937 5 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Pyruvate Ribose Ribose, 2-deoxy Ribose 5-phosphate Serine Succinic acid Threonine Tryptophan Tyrosine Uracil Uridine 5′-monophosphate Valine 1454 100 37 456 571 212 839 49 55 134 407 213 290803 19983 7455 91208 114188 42341 167898 9793 11038 26764 81489 42680 6 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Figure S 3 - Illustration of quant-addition experiment. The measurement of the quant mixture delivers calibration curves, which were used to quantify the biological sample – here shown for citric acid and glycerol-3-phosphate. The quantification results are shown for the individual measurements of quantification mixtures (black), cell samples (green), the sum of quantities of cell extracts and quantification mixtures (red), and the measurements of samples spiked into quantification mixtures (blue). 7 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 4 – Data quant addition experiment. T98G cell extracts, equivalent to 7.14 x 105 cells, were quantified by external quantification. Same amounts of extracts were spiked into each dilution of the quantification mixture. Compound Adenine Alanine, betaAlanine Butanoic acid, 3-hydroxyCitric acid Cytosine Erythritol Fructose BP Fructose MP Fructose-6-phosphate Fumaric acid Glucose-1/6-phosphate Glutaric acid, 2-hydroxyGlutaric acid, 2-oxoGlutaric acid Glyceric acid Glyceric acid-3-phosphate Glycerol Glycerol-3-phosphate Glycine Hypotaurine Inositol, myoLactic acid Leucine Malic acid Pantothenic acid Phenylalanine Proline Putrescine Pyroglutamic acid Pyruvic acid Ribose Serine Succinic acid Threonine Uracil Valine Concentration in extract in pmol (Avg ± SD) 614 ± 182 2300 ± 624 9840 ± 3183 213 ± 88 4333 ± 330 1467 ± 326 1403 ± 147 9224 ± 473 8791 ± 793 326 ± 37 1234 ± 93 1137 ± 207 396 ± 25 6150 ± 380 136 ± 51 223 ± 24 875 ± 139 4305 ± 369 1111 ± 142 12759 ± 3200 2551 ± 273 7313 ± 885 189454 ± 18268 16789 ± 3287 5428 ± 321 1396 ± 244 10229 ± 2156 7661 ± 1824 151 ± 12 58365 ± 4119 31775 ± 5243 91 ± 27 23025 ± 3328 1801 ± 134 36780 ± 5628 4135 ± 2397 11337 ± 2111 Conc. quant (measured) + conc. extract (pmol) 1:200 614 2300 10689 370 4609 1467 1869 9678 9225 457 1431 1494 680 6150 265 299 875 4568 1315 13085 2665 7655 192498 16789 5676 1488 10632 7661 198 58818 32523 183 23674 2011 37576 4135 11559 1:100 614 2434 11537 529 4855 1753 2266 10060 9615 533 1617 1613 960 6529 443 377 1436 4981 1406 13507 2770 7878 194432 17776 5884 1569 10823 7962 238 59351 35292 289 24376 2260 38779 4403 11847 1:50 807 2560 12291 780 5225 1857 2987 10707 10287 613 1929 1915 1531 6787 733 521 1628 5732 1594 14327 2913 8301 197362 18899 6262 1715 11110 8766 311 60187 38762 502 25174 2679 40274 4722 12214 1:20 950 2883 16541 1717 6596 1994 5228 12880 12481 912 2848 2881 3345 7852 1618 1001 2795 7979 2228 16497 3438 9637 208360 22799 7462 2175 12534 12088 499 62939 48600 1086 28578 4098 45846 5428 13616 1:10 1371 3456 24554 3263 9141 2347 9093 17166 16838 1501 4585 4954 6495 9624 3248 1792 4864 11706 3482 20261 4502 12310 229315 28801 9561 2990 15479 17110 823 67892 66948 2114 35000 6439 56066 6721 15970 1:5 2184 4497 36271 5977 15188 3224 17585 26803 26351 2980 8242 10100 12605 13348 6360 3463 9482 17908 6402 26574 6506 18742 280861 35738 14172 4917 20126 20495 1412 77985 95473 4566 45122 10545 71285 9606 19668 Conc. (Quant + spiked in extract) (pmol) 1:2 4220 8130 83215 16149 29647 5995 43782 49782 50400 7169 18609 24578 29013 22607 15488 8443 22350 37709 14642 46330 11552 35335 432389 63458 27697 9710 35598 39253 3415 105173 178251 9154 82883 23352 125978 17499 35039 1:200 697 2078 11637 458 4635 1492 1813 9809 9334 311 1462 1332 783 6284 317 309 1090 4785 1236 12253 2617 7811 194868 18069 5682 1597 10559 8525 186 56276 35120 230 24334 2040 38110 2044 11936 1:100 576 1987 8756 507 4992 1585 2390 10729 10040 363 1744 1489 1277 6766 561 439 1196 5242 1389 10957 2751 8279 195966 16244 6436 1740 10023 7189 221 61889 35723 347 24116 2373 37739 1258 11267 1:50 791 2275 11316 1000 6119 1975 3651 12542 11675 436 2357 1837 2410 7550 1002 696 1697 6415 1839 12341 3241 9033 218580 20882 7568 2090 11674 10088 325 68508 44233 656 28823 3233 45000 900 14342 1:20 1128 2722 15642 2238 7847 2649 6710 15474 14497 723 3621 3155 5245 8952 2319 1398 2860 9767 2729 15094 4034 11657 246012 25246 9418 3099 13275 13832 552 76717 64988 1313 35298 5268 55794 1887 16885 1:10 1466 3115 22001 4209 10398 3233 11466 19566 18623 1118 5852 5141 9134 10693 4442 2476 4455 13930 4025 17442 5103 14604 269882 30916 12320 4038 15093 18334 872 83975 98394 2422 42207 8186 67967 4457 19559 1:5 2032 4105 34702 7850 14948 4266 21274 27418 26486 2030 9728 8372 15837 13739 8281 4456 7944 22057 6736 22535 6938 21199 310055 37820 17703 6077 17457 24202 1552 97376 141628 4185 53976 13249 91359 6908 23046 1:2 4422 6419 83667 19883 30685 7492 49021 50961 51298 4996 20213 19299 33714 22961 18164 9674 19644 45069 14917 36278 12927 39071 424055 63263 32113 11764 34055 43926 3353 125674 259046 8674 93783 26145 158356 14402 33794 8 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 5 - Recovery of metabolites The recovery is defined as ratio of the quantity of spike-in and summed up quantities of individual measured quantification mixtures and extracts. The recovery was calculated at equal concentrations of quantification mixture and extracts. Compound Adenine Alanine, betaAlanine Butanoic acid, 3-hydroxyCinnamic acid, transCitric acid Cytosine Erythritol Fructose BP Fructose MP Fructose-6-phosphate Fumaric acid Glucose-1/6-phosphate Glutaric acid, 2-hydroxyGlutaric acid, 2-oxoGlutaric acid Glyceric acid Glyceric acid-3-phosphate Glycerol Glycerol-3-phosphate Glycine Hypotaurine Inositol, myoLactic acid Leucine Malic acid Pantothenic acid Phenylalanine Proline Putrescine Pyroglutamic acid Pyruvic acid Ribose Serine Succinic acid Threonine Uracil Valine Recovery (%) 112.9 91.3 92.1 109.8 104.7 116.4 132.3 122.2 108.1 110.6 75.3 102.2 102.7 124.1 107.0 119.6 125.0 104.2 111.9 122.5 84.8 113.4 115.9 104.2 106.6 126.9 135.1 86.7 110.8 104.5 119.5 148.3 125.6 119.6 124.6 128.2 69.1 106.8 9 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 6 – Intracellular metabolite concentrations of T98G cells. Data is derived from the reproducibility experiment (see Methods section). T98G cells were incubated with 13C6-glucose for three minutes. Compound Adenine Alanine Alanine, betaAsparagine Aspartic acid Butanoic acid, 2-amino Butanoic acid, 3-hydroxy Citric acid Fructose Fructose-1,6,diphosphate Fructose-6-phosphate Fumaric acid Glucose-6-phosphate Glutaric acid, 2-hydroxy Glutaric acid, 2-oxo Glyceric acid Glyceric-acid-3-phosphate Glycerol-3-phosphate Glycine Inositol, myo Isoleucine Lactic acid Leucine Lysine Malic acid Methionine Pantothenic acid Proline Putrescine Pyruvic acid Ribose-5-phosphate Serine Succinic acid Threonine Tyrosine Uracil Uridine-5-monophosphate Valine Quantity (pmol / 106 cells) Average ± STDEV 77 ± 15 841 ± 89 623 ± 122 202 ± 15 251 ± 22 3,965 ± 702 51 ± 7 327 ± 17 1,068 ± 32 773 ± 45 48 ± 5 135 ± 6 532 ± 27 98 ± 5 235 ± 6 30 ± 2 133 ± 7 90 ± 5 2,332 ± 135 1,203 ± 20 1,960 ± 170 9,873 ± 1,269 2,409 ± 134 1,512 ± 238 547 ± 22 1,009 ± 74 142 ± 3 892 ± 56 36 ± 1 195 ± 31 185 ± 11 2,546 ± 154 30 ± 8 4,971 ± 339 1,101 ± 173 111 ± 21 8,410 ± 615 333 ± 17 13 C-Quantity (pmol / 106 cells) Average ± STDEV n.d ± n.d 10.3 ± 3.7 n.d ± n.d n.d ± n.d 0.4 ± 0.5 n.d ± n.d n.d ± n.d 3.7 ± 2 29.0 ± 2.6 n.d ± n.d 10.8 ± 0.6 0.4 ± 0.2 100.6 ± 6.3 0.5 ± 0.3 2.3 ± 1.5 n.d ± n.d n.d ± n.d 1.6 ± 0.7 4.0 ± 2.4 n.d ± n.d n.d ± n.d 454.5 ± 69.9 n.d ± n.d n.d ± n.d 1.2 ± 1.1 n.d ± n.d n.d ± n.d n.d ± n.d n.d ± n.d 9.3 ± 1.5 n.d ± n.d n.d ± n.d 0.1 ± 0.1 n.d ± n.d n.d ± n.d n.d ± n.d n.d ± n.d n.d ± n.d 10 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 7 – Metabolite specific mass fragments for the calculation of 13C-isotope incorporation. Mass fragments are chosen concerning their uniqueness for the derivate of the metabolite and were evaluated in separately performed 13C6-glucose and 13C5glutamine labeling experiments. Mass fragment (m/z) Labeling with Compound Derivate Abbr. Unlabeled u-13C-glucose Alanine 3TMS Ala 188 190 Aspartic acid 3TMS Asp 232 235 (a) Citric acid 4TMS Cit 273 275 Dihydroxyacetone phosphate 1MeOX 3TMS DHAP 400 403 Fructose 1MeOX 5TMS Fru 217 220 Fructose-1,6-bisphosphate 1MeOX 7TMS F16BP 217 220 Fructose-6-phosphate 1MeOX 6TMS F6P 217 220 Fumaric acid 2TMS Fum 245 247 Glucose 1MeOX 5TMS Glc 319 323 Glucose-6-phosphate 1MeOX 6TMS G6P 217 220 Gluconic acid-6-phosphate 7TMS PG6 217 220 Glutamic acid 3TMS Glu 246 Glutamine 3TMS Gln 156 Glutaric acid 2TMS Glut 261 Glutaric acid, 2-hydroxy 3TMS Glut-OH 247 Glutaric acid, 2-oxo 1MeOX 2TMS aKG 198 200 Glyceric acid-3-phosphate 4TMS 3PGA 357 359 Glycerol 3TMS Glyc 218 221 Glycerol-3-phosphate 4TMS Glyc3P 357 359 Glycine 3TMS Gly 276 277 Lactic acid 2TMS Lac 219 222 Malic acid 3TMS Mal 233 235 Phosphoenolpyruvic acid 3TMS PEP 369 372 Pyruvic acid 1MeOX 1TMS Pyr 174 177 Ribose-5-P 1MeOX 5TMS R5P 217 220 Serine 3TMS Ser 204 206 Succinic acid 2TMS Suc 247 249 (a) – when simultaneously applied with 13C-glutamine labeling, the resulting 13Cpyroglutamate might interfere with this mass range. Labeling with u-13Cglutamine 277 249 250 160 266 251 203 236 251 11 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Figure S 4 - Concentration dependency of mass isotopomer fractions. The mass isotopomer fraction (MIF) of mass fragment m+0 for citric acid (m/z = 273-279) is shown for a broad intensity range (black circles). The expected value (red line) was calculated by Mass Spec Calculator Pro Demo version 4.09 (ChemSW, Inc.). The proportion of m+0 in the mass range decreases and yields higher precision with increasing levels of citric acid. 12 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 8 – Illustration of the position dependent strategy for correction of natural 13C-isotope abundance. 13 C1-Glucose and 12C-glucose were mixed in known ratios to proof the position dependent (targeted) calculation strategy. Two examples are shown for the determination of 13Cincorporation as described. Intensities in (-) 12C m/z 10 % 13C1 MIF in (%) 10 % 13C 1 50 % 13C 1 12C 10 % 13C 1 50 % 13C 1 Snat+1 Sinc+1 50 % 13C1 L Snat+1 Sinc+1 L 9.6 10.2 33.9 50.5 319 m0 156460 153425 84507 66.6 60.2 33.2 320 m+1 48250 63669 112421 20.6 25.0 44.2 18.6 6.4 321 m+2 23579 28289 38071 10.0 11.1 15.0 9.1 2.0 5.0 10.0 322 m+3 5038 7389 15467 2.1 2.9 6.1 1.9 1.0 1.1 5.0 323 m+4 1199 1716 3268 0.5 0.7 1.3 0.5 0.2 0.3 1.0 324 m+5 228 262 751 0.1 0.1 0.3 0.1 0.0 0.0 0.2 Sum 234754 254750 254485 100 100 100 13 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 9 – Validation of correction strategies for the natural 13C-carbon abundance. 1-13C1-Glucose (purity 99%) and unlabeled glucose were mixed in known ratios and measured in three independent replicates. Uncorrected values overestimate incorporation especially in the lower range of isotope incorporation, whereas both calculation strategies consider the natural contribution of carbon-13 correctly. 13 C-abundance in glucose (%) Expected isotope abundance (%) Uncorrected 0 1.98 23.4 ± 0.09 24.7 ± 0.25 4.95 26.4 ± 0.21 9.90 24.75 49.50 29.6 ± 0.20 39.2 ± 0.79 56.8 ± 0.89 10.3 25.3 50.3 ± ± ± 74.25 89.10 94.05 76.1 ± 0.78 89.0 ± 0.04 93.9 ± 0.14 74.2 88.6 93.8 97.02 96.8 ± 0.19 99.00 98.7 ± 0.04 Targeted 0.0 ± 2.1 ± 0.16 0.42 5.0 ± Positionindependent 0.0 2.0 ± ± 0.12 0.32 0.36 5.0 ± 0.27 0.33 1.19 1.18 10.1 25.0 49.8 ± ± ± 0.29 1.26 1.28 ± ± ± 0.91 0.04 0.15 74.0 88.4 93.7 ± ± ± 0.94 0.03 0.15 96.7 ± 0.19 96.7 ± 0.20 98.7 ± 0.04 98.7 ± 0.05 14 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 10 – Biological and technical variation of 13C-glucose incorporation. T98G cells were incubated with u-13C glucose for three minutes and harvested as described in the Methods section. Compound 3PGA Ala Cit F16BP Fru F6P Fum G6P Glut-OH Glyc3P Gly Lac Mal Pyr Suc Mass 357 188 273 217 217 217 245 217 198 357 276 219 245 174 247 Average (13C-Glc incorporation in %) ± STDEV Technical repl. Biological repl. 77.7 ± 4.0 83.2 ± 2.1 4.7 ± 1.3 5.5 ± 0.6 4.2 ± 2.0 7.1 ± 1.2 78.8 ± 1.0 79.7 ± 0.7 10.7 ± 0.7 7.7 ± 0.7 84.0 ± 4.8 83.2 ± 4.0 0.9 ± 0.7 0.6 ± 0.2 74.6 ± 0.5 74.3 ± 0.4 3.2 ± 2.4 1.5 ± 1.6 6.7 ± 2.7 8.9 ± 1.3 0.2 ± 0.6 n.d. ± n.d. 17.9 ± 0.4 18.4 ± 2.7 0.7 ± 0.7 0.2 ± 1.1 18.9 ± 3.0 17.3 ± 1.3 n.d. ± n.d. 1.0 ± 1.2 15 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Figure S 5 - Absolute 13C-quantities of intracellular metabolites in T98G cells. Data derived from the reproducibility experiment (see Methods section and supplement table 6). 16 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 11 – Comparison of carbon routing within the CCM of different cell lines. The labeled quantities of metabolites after 13C-Glucose incubation into T98G, HEK293, HeLa and HCT-116 cells reveal differences in carbon routing in the central carbon metabolism. Averages and standard deviations for labeled quantities are shown relative to T98G cells. 13 Compound 3PGA Ala Cit DHAP F1P F6P Fru G6P Glyc Glyc3P Lac Pyr R5P Ser T98G 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 1.00 ± 0.04 0.22 0.20 0.08 0.15 0.06 0.04 0.07 0.03 0.09 0.04 0.02 0.12 0.21 C-Glucose labeled quantity Average ± STDEV HEK293 HeLa 2.77 ± 0.08 1.98 ± 0.01 9.59 ± 2.65 2.53 ± 0.65 13.32 ± 0.32 9.82 ± 0.34 2.51 ± 0.26 1.68 ± 0.30 0.84 ± 0.06 0.95 ± 0.21 1.11 ± 0.02 0.73 ± 0.05 0.32 ± 0.01 9.56 ± 0.04 3.75 ± 0.02 2.34 ± 0.04 0.67 ± 0.12 3.96 ± 0.09 15.57 ± 0.86 1.85 ± 0.40 8.88 ± 2.56 6.64 ± 0.02 8.34 ± 1.10 4.18 ± 0.80 1.21 ± 0.13 1.21 ± 0.07 17.29 ± 1.68 5.03 ± 0.61 HCT-116 2.47 ± 0.01 1.62 ± 0.63 17.66 ± 0.35 3.04 ± 0.10 65.64 ± 0.07 10.89 ± 0.05 12.40 ± 0.58 6.82 ± 0.06 4.40 ± 0.58 3.78 ± 0.00 12.78 ± 0.53 10.65 ± 0.24 1.52 ± 0.01 7.06 ± 0.93 17 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 12 – 3-Bromopyruvate treatment rearranges central carbon metabolism in T98G cells. T98G cells were treated for 12 min with 2 mM 3-Bromopyruvate and labeled for 3 minutes with u-13C-glucose. Fold changes of peak intensity and 13Clabel incorporation are shown relative to control. Two-sided, heteroscedastic t-test indicates significant changes (+++ < 0.005, ++ < 0.01, + < 0.05, n.s. = not significant, n.d. = not detected). 15min 30 min 15min 30 min 15min 30 min 15min 30 min 15min 30 min 15min 30 min 15min 30 min Label inc. x intensity 30 min Peak intensity T-Test Label incorporation 15min % Change relative to control Label Label inc. x incorporation intensity 30 min Peak intensity 15min Compound Fold changes relative to control Peak Label Label inc. x intensity incorporation intensity G6P F6P F1,6-BP 0,8 3,2 3,9 1,7 8,2 3,4 0,34 0,10 0,37 0,25 0,07 0,44 0,28 0,31 1,07 0,43 0,55 1,68 -17 224 285 68 722 240 -66 -90 -63 -75 -93 -56 -72 -69 6,8 -57 -45 68,0 n.s. +++ ++ +++ +++ + +++ +++ ++ +++ +++ +++ +++ +++ n.s. +++ +++ + F1P Fru 6PG 0,7 1,0 4,5 1,2 1,1 5,1 1,13 0,30 n.d. 0,70 0,30 n.d. 0,57 0,30 n.d. 0,59 0,34 n.d. -26 1 355 21 11 413 13 -70 n.d. -30 -70 n.d. -43 -70 n.d. -41 -66 n.d. + n.s. +++ n.s. n.s. +++ n.s. +++ + +++ n.s. +++ n.s. +++ 3PGA Pyr Lac n.d. 1,0 1,1 0,3 1,0 0,9 n.d. 0,10 0,036 0,07 0,05 0,028 n.d. 0,05 0,039 0,03 0,04 0,025 n.d. -2 6 -69 -1 -9 n.d. -90 -96,4 -93 -95 -97,2 n.d. -94,8 -96,1 -96,5 -95,8 -97,5 n.s. n.s. +++ n.s. n.s. +++ +++ +++ +++ +++ +++ +++ +++ Glyc3P Glyc Ala Ser 0,8 1,1 3,6 0,8 0,7 1,1 4,2 1,1 n.d. n.d. 0,05 n.d. n.d. n.d. 0,07 n.d. n.d. n.d. 0,19 n.d. n.d n.d 0,23 n.d. -16 12 257 -20 -28 7 324 8 n.d. n.d. -95 n.d. n.d. n.d -93 n.d. n.d. n.d. -81 n.d. n.d. n.d -77 n.d. n.s. +++ +++ n.s. +++ + +++ n.s. +++ +++ +++ +++ Cit aKG Succ Fum Mal 0,5 1,4 1,2 0,4 0,3 0,8 1,6 1,0 0,4 0,3 0,094 n.d. n.d. n.d. n.d. 0,11 n.d. n.d. n.d. n.d. 0,06 n.d. n.d. n.d. n.d. 0,12 n.d n.d n.d n.d -49 40 17 -64 -72 -24 58 4 -64 -69 -90,6 n.d. n.d. n.d. n.d. -89 n.d n.d n.d n.d -94,1 n.d. n.d. n.d. n.d. -87,6 n.d n.d n.d n.d +++ +++ ++ +++ +++ n.s. +++ n.s. +++ +++ +++ +++ +++ +++ 18 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Table S 13 – Effect of 2-Deoxyglucose on the central carbon metabolism of T98G cells. T98G cells were incubated with two different concentrations of 2-Deoxyglucose for 15 min. Rearrangement of metabolism were monitored by 13Cglucose incorporation for 3 minutes. Fold changes of peak intensity and 13C-label incorporation are shown relative to control. Two-sided, heteroscedastic t-test indicates significant changes (+++ < 0.005, ++ < 0.01, + < 0.05, n.s. = not significant, n.d. = not detected). 2mM 2mM 10mM -24 -49 -4.9 -6.3 -28 -53 n.s. ++ n.s. n.s. + +++ 0.6 -27 -46 7.8 5.0 -20 -40 n.s. n.s. n.s. n.s. n.s. n.s. Fru 1.1 1.0 0.9 0.8 1.0 0.8 7.9 -0.2 -10.6 -21.7 -3.3 -22.5 n.s. n.s. n.s. n.s. n.s. ++ 3PGA 0.8 n.d. 1.1 n.d. 0.9 n.d. -16.9 n.d. 6.6 n.d. -11.2 n.d. n.s. n.s. n.s. Pyr 0.7 0.3 1.3 0.8 0.9 0.2 -28.7 -71.1 31.3 -21.8 -6.8 -79.0 + +++ +++ n.s. n.s. +++ Lac 0.8 0.7 1.2 0.8 1.0 0.6 -19.6 -28.5 20.2 -17.5 -4.7 -41.0 n.s. +++ n.s. + n.s. +++ Glyc3P 0.9 1.1 1.8 1.3 1.7 1.6 -8.1 14.3 78.2 26.6 72.9 57.2 n.s. n.s. + n.s. n.s. n.s. Glyc 1.0 1.1 n.d. n.d. n.d. n.d. -3.8 5.3 n.d. n.d. n.d. n.d. n.s. n.s. Ala 1.1 0.8 1.7 1.1 1.3 0.6 11.0 -15.8 70.2 5.3 31.9 -44.6 n.s. n.s. n.s. n.s. n.s. n.s. Ser 0.8 0.7 n.d. n.d. n.d. n.d. -17.7 -31.8 n.d. n.d. n.d. n.d. n.s. + n.s. n.s. Cit 1.3 1.9 1.7 1.4 2.2 2.5 30.0 85.6 66.7 36.8 +++ n.s. +++ +++ aKG 1.0 0.5 n.d. n.d. n.d. n.d -0.1 -47.5 n.d. n.d n.d. Succ 0.8 0.8 n.d. n.d. n.d. n.d -17.3 -15.3 n.d. n.d n.d. n.d Fum 0.9 0.6 1.1 1.0 1.0 0.6 -6.2 -38.9 13.1 -2.9 3.1 -41.5 n.s. +++ n.s. n.s. n.s. n.s. Mal 0.9 0.6 1.4 1.1 1.2 0.6 -7.2 -40.6 37.2 11.3 23.1 -35.8 n.s. +++ n.s. n.s. n.s. n.s. n.d n.s. +++ n.s. ++ + + Label Inc. 10mM 10mM 0.5 0.8 115.4 152.6 Peak intensity 2mM 0.7 1.0 10mM 0.9 1.1 2mM Label Inc. x intensity 10mM Label Inc. 2mM 1.0 0.5 10mM 0.5 0.7 2mM 0.8 F6P 10mM G6P 2mM 10mM Peak intensity Label Inc. x intensity Compound 10mM Label Inc. x intensity T-Test Peak intensity 2mM Label Inc. % Change relative to control 2mM Fold changes relative to control 19 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Figure S 6 - Time dependency of 13C-label incorporation into intermediates of the central carbon metabolism. HEK293 cells, grown in DMEM supplemented with 10 % FBS, 2.5 g/L glucose, and 4 mM glutamine, were incubated with 13C-glucose up to 16 min. Harvest, metabolite extraction, GC-MS measurement and determination of 13C-label incorporation were done as described in the Methods section. 20 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Figure S 7 – Graphical representation of small molecule inhibitor induced rearrangement of central carbon metabolism. The incorporation of 13C-glucose and abundance of metabolites are presented by color or size relative to the untreated control after 15 minutes of inhibitor treatment and 3 min of 13C-glucose incubation. 21 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Figure S 8 - Concentration dependency of BrPyr induced inhibition in carbon flow from 13Cglucose to lactate. Three different concentrations of 3-Bromopyruvate were applied for 15 minutes to T98G cells and incorporation of u-13C-glucose was monitored for 3 minutes in 3 biological replicates. Fold change of incorporated label, intensity (peak area) and labeled intensity were plotted relative to an untreated control. 22 Additional file 1 Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2deoxyglucose using pulsed stable isotope-resolved metabolomics Pietzke and Zasada et al., Cancer and Metabolism 2014 Figure S 9 - Time and concentration dependent accumulation of 2-deoxyglucose-6-phosphate (2DGP). Shown are averages of ratios of two biological replicates measured in two technical replicates. 23
© Copyright 2026 Paperzz