TECTONICS, VOL. 12, NO. 1, PAGES 291-300, FEBRUARY 1993 SLOW APPARENT POLAR WANDER FOR NORTH AMERICA IN THE LATE TRIASSIC AND LARGE COLORADO PLATEAU ROTATION Abstract. Several recent analysesof North American paleomagnefic datasuggest fastapparentpolarwander(APW) (--0.75ø/m.y.)duringthe Late Triassicand a modestamount (-5 ø) of ColoradoPlateauclockwiserotation. Paleomagnetic polesfrom the lower (Carnian),middle (NorJan),and upper (Hettangian) stratigraphicintervals of the Newark Basin, however,indicatevery slow APW over the Late Triassicand providean alternativeinterpretation for plateaurotation. The middleNewark pole is supported by positivefold and reversal tests,precluding remagnetization, andagreeswell with thepole reportedfrom the Norian Upper ShaleMemberof the Chinle predictsan angularplate velocity at a constantrate of about 0.75ø/m.y.in the Triassic,anda similarlyfastrate(0.66ø/m.y.) in almost the oppositedirection over much of the Jurassic. This model of APW is a critical assumption in .the determination of rotationof theColoradoPlateauby themethod of Bryan and Gordon [1986, 1990]. They most recently estimated a clockwise plateau rotation of 5.0ø + 2.5ø to optimize the fit of late Paleozoicto Jurassicpaleomagnetic polesfrom the plateauand eratonicNorth Americato a PEP modelpath. EventhoughSteiner[1986, 1988]hasmaintained that somepole-to-poledifferencesindicatea larger plateau rotationof 11ø_+4ø,BryanandGordon[1990]rejectedat a high formal level of confidence(99.99%) the hypothesisthat a systematic difference couldbeaslargeas 10ø. Bryan and Gordon [1990] acknowledgedthat Cretaceous poles,which are not available from the ColoradoPlateau,do not contributedirectlyto the estimateof plateaurotationand shouldthereforebe excludedfrom analysis.We suggestthat Jurassicand Permian poles also do not provide cogent Formation from east central New Mexico as well as the 214 Ma constraints on the amountof plateaurotationin the light of Manicouagan pole from Quebec. Thesepolesprovidea welldefinedmeanNorJanreferencepolefor eratonicNorthAmerica at 57.4øN 91.0øE A95=3.8ø. Paleomagneticpoles from the Chinle Formation on the Colorado Plateau (Owl Rock new data. The synthesisby May and Buffer [1986] already showedthat thereare virtually no coevaleratonicand plateau counterparts in theinventoryof North AmericanJurassic poles. Now even the overall reliability of many of the Jurassic referencepoles has becomethe subjectof debate,with the availabilityof newbut oftenconflictingpaleomagnetic results thatallowratherdivergentinterpretations of Jurassic APW [Van Fossenand Kent, 1990, 1992a, b; Buffer et al., 1992]. With regard to late Paleozoicpaleomagneticdata, Gordon et al. [1984] recognizedthat Permianpoles from on the plateau showedno discernibledifferencefrom thoseoff the plateau, eventhoughTriassicpolessuggested plateaurotationof about 10ø. To explainthisdiscrepancy, Steiner[1988]suggested that theColoradoPlateauexperienced a separate rotationin theLate Permian,prior to the LaramideandCenozoicrotationsthat are of interesthere. The tectonicimplicationof thePermianpoles is complicated,however,by new evidencethat portionsof Dennis V. Kent and William K. WiRe Lamont-Doherty Geological Observatory of Columbia University,Palisades, New York Member, Church Rock Member, and our new result from the upperChinle in Utah) are also well grouped,consistent with slow APW over the NorJan,but give a mean pole position (57.7øN 65.6øE A95=2.5ø) that differs significantlyfrom the Norian pole for eratonicNorth America. The North American Norian poles can be closely reconciledby a 13.5ø + 3.5ø correctionfor accumulatedpost-Triassicclockwiserotationof the Colorado Plateau associated with Laramide deformation and Cenozoicopeningof the Rio GrandeRift. This estimateof Colorado Plateau rotation is consistentwith a systematic discrepancy betweenplateauand eratonicpolesfor the Early Triassic,whereasavailablelatePaleozoicandJurassic polesare judgednotto providedefinitiveconstraints on plateaurotation. A revisedTriassicand Early JurassicAPW path for North America showsthat the virtual standstillin the Norian, the last 15 m.y. of theTriassic,waspreceded andfollowedby intervals of fast(~lø/m.y.)angularplatevelocity. central New Mexico east of the Rio Grande Rift, where some keyPermianpolesthathavebeenregardedascratonicreferences were obtained,experienceda similar senseof rotationas the ColoradoPlateau[Molina-Garzaet al., 1991]. Our attention therefore focuses on the Triassic for which INTRODUCTION To explainCretaceousLaramidedeformationin the Rocky Mountain region and Cenozoicextensionin the Rio Grande Rift, Hamilton [1981] proposedthat the ColoradoPlateau rotatedclockwisein two phasesrelativeto the stableeratonof North America. Becausemany late Paleozoicand Mesozoic paleomagnetic referencepolesfor NorthAmericacomefromthe ColoradoPlateau,detaileddescriptions of the apparentpolar wander (APW) path for cratonic North America and paleomagnetic estimates of theamountof Plateaurotationtend to be stronglyinterdependent. A centralissueis whethernet clockwiserotationof the ColoradoPlateauwas small(< 5ø) or large(> 10ø). The paleomagnetic Euler pole (PEP) modelof APW for North America [Gordonet al., 1984;May and Buffer,1986] recentpaleomagnetic studiesprovidewhatwe regardas more coherentinformationto separateNorth AmericanAPW from ColoradoPlateaurotation. The key pole positionsin our analysis include Late Triassic poles from Newark Basin sedimentary rocks[Witte and Kent, 1989;WiRe et al., 1991] and the compilationof Late TriassicNorth Americanpoles judgedasreliableby BazardandBuffer[1991],with supportive data from our paleomagneticstudyof the Chinle Formation. Our synthesis supportsthe virtualabsenceof APW in the Late Triassicthatwasindependently suggested by theNewarkresults and showsthat post-Triassicnet clockwiserotation of the ColoradoPlateaumusthavebeenconsequently large. EVIDENCE FOR SLOW APW IN THE LATE TRIASSIC Cratonic North American Data Copyright1993by the AmericanGeophysical Union. The Newark Basinis the largest(250 km long and 50 km wide) of a chain of Mesozoic rift basins in easternNorth Americathat developedin the early stagesof formationof the Papernumber92TC01966. Atlantic Ocean. 0278-7407/93/92TC -01966510.00 fluvialsediments in a continuous sequence spanning morethan It contains more than 6 km of lacustrine and 292 Kent and Witte: ColoradoPlateauRotation 25 m.y., fromthemiddleCamianto theHettangian[Cometand Olsen, 1985]. The paleomagnetically well-studiedtholeiitic basaltsand associateddiabaseintrusionsare volumetrically importantbutarenowbelievedto havebeeneraplaced aspartof a short-lived (circa 1 m.y.) igneous episodejust after the Triassic/Jurassic boundary[OlsenandFedosh,1988;Olsenand Sues,1986]. The mostreliable age for the igneousactivity is 201+1 Ma, based on U/Pb zircon dating on baddeleyite [DunningandHodych,1990],whichis in goodagreement with an age of 200 Ma for the Triassic/Jurassic boundaryin the Triassictime scaleof Webb [1981]. Younger agesthat have been reportedfor the igneousintrusionsare now ascribedto resettingby a hydrothermalevent at about 175 Ma [Sutter, 1988],whichmayverywell havealsoremagnefized theigneous intrusionsand overprintedthe basaltmagnetizations [Witte and Kent, 1989, 1990, 1991]. For these and related reasons, the statusof paleomagnetic polesfrom the Newark trendigneous rocks (labeled N1 and N2 by May and Buffer [1986], after Smith and Noltimier [1979]) is sufficientlyin doubtthat these oncekey referencepoleshavenot beenusedin recentanalyses of Jurassic APW [e.g.,BazardandButler, 1991]. The paleomagnetic studyof theNewarkBasinby Mcintoshet al. [1985] included a comprehensivesampling of the sedimentaryrocks. The presenceof normal and reversed polaritiesprovidedevidencefor the preservation of an ancient component of magnetization in the Newark sedimentary section,but the significanceof the paleomagnetic directionsin termsof APW wasobscuredbecauseof incompleteremovalof secondary magnetizations afterthermaldemagnetization to only 550øCfor mostsamples. Basedon completedemagnetization analysis,renewedwork on theNewarksedimentary rockshasyieldedthreewell defined paleopolesfrom threeintervalsin stratigraphic succession.A lowerNewark pole wasobtainedfrom Camianred bedsof the Stockton, Lockatong and lowermost Passaic formations 60øE 90øE (53.5øN 101.6øE A95=4.8ø; Witte and Kent, 1989], a middle Newark pole from Norian red bedsof the PassaicFormation (55.9øN95.0øEA95=4.4ø [Witte et al., 1991]), and an upper Newark pole from Hettangianred beds interbeddedwith the Watchungbasaltsof the igneousextmsivezone(55.3øN94.5øE A95=5.4ø [WitteandKent,1990])(Figure1). Thesepaleopoles are not significantlydifferent from one another;the largest difference(4.5o+6.5ø) is betweenthe lower Newark and middle Newarkpoles,whereasthemiddleNewarkandupperNewark polesdiffer by lessthan1ø. The reliabilityof theNewarkpoles is supportedby a regionally coherentmagnetic polarity stratigraphy,whichis nowbeingcorroborated in detailfrom the resultsof the Newark BasinCotingProject[Kentet al., 1991], and by a positivefold test on a syndepositional fold and a positivereversaltestfor themiddleNewarkpole [Witteet al., 1991]. This evidenceclearlyshowsthatremagnetization is not a viableexplanationfor the similarityin paleomagnetic poles fromlower,middle,andupperNewarkrocks. The Newark Basin developedalong the structuralgrain of PrecambrianandearlyPaleozoiccrystallinebasement[Ratcliffe et al., 1986; Swanson,1986], making unlikely appreciable vertical axis rotation of the entire basin with respectto the stablecratonof North America. The possibilityof "cryptic" tectonic rotations localized to the border fault zone of the NewarkBasinhasbeensuggested by Van Fossenet al. [1986], however,to explainaberrantpaleomagnefic directionsobtained from thewesternlimb of theWatchungsyncline.Regardless of whether the aberrant directions are in fact due to local rotation, for which thereis no geologicalevidence,or can be explained by secularvariationbiasor othermechanisms [Kodama,1987; Van Fossenet al., 1987],we havenotobservedsuchsystematic discrepancies wherewe havesampledelsewherein theNewark Basin. For example,thepaleomagnetic directionsfrom 15 sites takenon bothlimbsof theJacksonwaltsynclineneartheborder fault give a positivefold testandare concordantwith the mean 120øE 60ON ..................... 45øN Fig. 1. SelectedTriassic(circles)andEarly Jurassic(triangles)paleomagnetic polesfor North America with no correction for ColoradoPlateaurotation.Opensymbolswith lightconfidence envelopes arepoles from ColoradoPlateauandsolidsymbolswith darkconfidence envelopesare polesfrom off theplateau (seeTable 1 for abbreviations), with standard error(63% confidence) circlesapproximated as58% of A95. Shownfor referenceby stippledcurvesare the Triassicpaleomagnefic Euler pole (PEP) trackand the ensuingportionof theJurassic PEP trackfrom Gordonet al. [ 1984]. Kent and Witte: Colorado Plateau Rotation directionof eight sites from the interior of the basin where strataof similarNorian age are gentlyhomoclinal[Witte et al., 1991]. The 23 middle Newark site mean directionswere further shownto be statisticallycompatiblewith a circular(Fisherian) distribution, without an elongatedscatter or streakingthat mightbe expectedfrom eitherrotationsaboutlocalverticalaxes or samplingof rapidAPW. Slow APW during at least the Norian stage of the Late Triassicis supportedby the consistency of the middleNewark pole with other paleomagneticresults from cratonic North America regardedas reliable by Bazard and Butler [1991]. A new paleomagneticpole with a positivereversaltest from the early Norian Upper ShaleMember of the Chinle Formationin east central New Mexico falls at 57.4øN 87.8øE A95=5.0 ø [Bazard and Buffer, 1991], which is within 4.2 ø of and therefore not significantlydifferentfrom the Norian middleNewark pole (Figure 1). Similarly, paleomagnetic results from the Manicouaganimpact structurein the Precambrianshield of Quebec[Robertson,1967; Larochelieand Curfie, 1967] give a meanpole positionat 58.8øN 89.9øEA95=5.8ø [Bazardand Buffer,1991] thatis not significantlydifferentfrom the middle Newark pole (Figure 1). New high-precisiondating by the U/Pb zircon method puts the age of the Manicouaganmelt rocks at 214 + 1 Ma [Hodych and Dunning, 1992], which corresponds to theNorianaccordingto time scalesasdiverseas thoseof Webb [1981] and Harland et al. [1990]. The well-definedmeanof the middle Newark, Upper Shale and Manicouaganpoles(Table 1) at 57.4øN 91.0øEA95=3.8ø canthereforebe regardedasrepresentative of thestationary pole position with respect to cratonic North America over the 293 Norian, approximatelythe last 15 m.y. of the Triassic(215 Ma to 200 Ma [Webb, 1981] or 223 Ma to 208 Ma [Harland et al., 1990]). Colorado Plateau Data For the ColoradoPlateau,paleomagneticdata are available from rocksof similar Norian age from the Chinle Formation. The middleNorian Owl Rock Member sampledin northeastern Arizonagivesa pole positionsupportedby a positivereversal test at 56.5øN 66.4øE A95=2.6 ø [Bazard and Butler, 1991] (Figure 1). From paleomagneticresultsobtainedby Reeve [1975] from the stratigraphically overlying(mid-lateNorJan) Church Rock Member in southern Utah, Bazard and Butler [ 1991] recalculateda pole positionat 59.0øN67.0øEA95=2.5ø that is virtually identicalto the Owl Rock pole. Supportfor this early work on the ChurchRock membercomesfrom our own paleomagnetic studyof approximatelyequivalentstrataof the Chinle Formationsampledon the SanRafael swell andnear Moab, Utah. On the basis of completeprogressivethermal demagnetization to 680øC, we obtain high unblocking temperaturecharacteristic directionsfrom nine sitesthatpassa reversal test and give a mean paleopoleposition at 57.5øN 63.3øEA95=7.3ø (seeAppendix)(Figure1). ThesethreeChinle polesfrom the ColoradoPlateauare very well grouped(Table 1). In the absenceof a fold test or a regional magnetostratigraphy, remagnetizationof the Chinle has been suggested[Witte et al., 1991], but we find this explanation increasingly unlikely in view of the positive reversaltestreportedfor the Owl Rock memberby Bazardand TABLE 1. SelectedTriassicandEarlyJurassic Paleomagnetic Polesfor North America Plateall Plat, Plon, Cratonic Plat, Plon, Rock Unit Age oN oE oN Pliensbachian Sinemurian Hettangian 59.0 58.2 66.6 51.9 NWu Kayenta Moenave Newarkupper (58.1 (60.1 55.3 NWm Newark middle Norian K US UpperShale Norian MI Manicouagan 214 + 1 Ma Mean Cratonic Norian (MI, US, NWm): CR2 ChurchRock Norian CR1 ChurchRock Norian OR Owl Rock Norian Mean Plateau Norian (OR, CR1, CR2): NW1 Newark lower Catalan M RP Moenkopi RedPeak Scythian Scythian oE A95, degrees K Ref 92.5) 78.0) 94.5 2.4 4.5 5.4 55.9 95.0 4.4 49 4 57.4 58.8 57.4 87.8 89.9 91.0 5.0 5.8 3.8 60 1 5,6,1 1063 88.4) 92.8) 90.7) 90.7) 7.3 2.5 2.6 2.5 50 72 145 2426 57.5 59.0 56.5 57.7 63.3 67.0 66.4 65.6 (57.3 (58.0 (55.8 (57.1 56.8 100.9 (50.4 46.8 53.5 101.6 4.8 120.9) 113.7 2.3 2.9 155 1 45 2 72 3 50 1630 1835 7 8,1 1 9 10 10 Plat and Plon are the latitude and longitudeof the paleomagneticpole in ColoradoPlateau and/or cratonicNorth Americacoordinates, with polepositionsin parentheses correctedfor 13.5ø of clockwise plateaurotationaboutan Euler pole at 36øN 105øW. A95 is radiusof coneof 95% confidenceaboutpole; K is estimateof Fisherprecisionparameter.References (Ref) are 1, BazardandBuffer[ 1991];2, Ekstrand and Butler [1989]; 3, Witte and Kent [1990]; 4, Witte et al. [1991]; 5, Larochelie and Curfie [1967]; Robertson[1967]; 6, Hodych and Dunning [1992]; 7, this study;8, Reeve [1975]; 9, Witte and Kent [1989]; and 10, Steiner [1986]. 294 Kent and Witte: Colorado Plateau Rotation 60øE 90OE 120OE 60øN 45øN Fig.2. Meanof Norianpalcomagnetic polesforcratonic NorthAmerica compared tomeanof Norian poles forColorado Plateau uncorrected forrotation, bothwith95%confidence circles. Trajectory ofmean plateau Norian polewithincreasing amounts ofcorrection forclockwise plateau rotation about Euler pole at36øN105øW isshown byarrow.Shown forreference bystippled curves aretheTriassic palcomagnetic Eulerpole(PEP)track,theTriassic/Jurassic orJ1cusp, andtheensuing portion of theJurassic PEPtrack from Gordonet al. [1984]. 60øE , 90øE 120øE 60øN 45øN Fig.3. Selected Triassic andEarlyJurassic palcomagnetic poles forNorthAmerica asinFigure 1but withcorrection for13.5 øclockwise rotation oftheColorado Plateau (Table 1). Shown forreference by lightstippled curves aretheTriassic palcomagnetic Eulerpole(PEP)track,theTriassic/Jurassic or J1 cusp, andtheensuing portion of theJurassic PEPtrackfromGordon etal.[1984].Ourinterpretation of Triassic andEarlyJurassic APWtrajectory forNorth America isshown bytheheavier stippled curve. KentandWitte:Colorado Plateau Rotation Butler[1991]andinourpresent study ofstrata equivalent tothe ChurchRockmember.The meanpolepositionfor thethree plateau Chinlepolesat 57.7øN65.6øEA95=2.5 ø,however, disagrees by over13ø fromthemeanNorianpaleopole for cratonicNorthAmericaat 57.4øN91.0øEA95=3.8ø. The case for fast APW in the Late Triassic largely rests on the interpretation thatmost ofthisangular difference reflects anage progression within theNorian (e.g.,between thepolefromthe earlyNorian Upper Shale member oftheChinle offtheplateau andthepolefromthemiddle Norian OwlRockMember ofthe Chinle ontheplateau corrected foronly4øofplateau rotation [Bazard andBuffer,1991]).However, because thelower, middle, andupper Newark poles fromrocks in stratigraphic succession showhardlyanyevolution in poleposition across theNoriantimeinterval, andtheNorianmiddle Newarkpole 295 whichallowsus to direcfiycompare theindividual setsof reliableNorianpolesfromon andoff theplateau.This approach thus resembles thatofSteiner [1986,1988] butinour case thepotential problems of uncertainties inagecorrelation that can complicatethe interpretation of pole-to-pole comparisons if APWwasrapidareminimized. AnEulerpolelocated at 36øN105øW wasusedtoestimate therotationof theColoradoPlateauwith respectto cratonic North America since the Triassic. This Euler pole is a combination of Hamilton's[1981]Eulerpole(39øN 105øW) whichdescribes clockwiserotationof theColoradoPlateauto account for structures associated withCenozoic opening of the Rio GrandeRift, and Hamilton's[1988]revisedEulerpole (34øN105øW) forclockwise plateau rotation to account for structures associated with theLaramideorogeny.Bryanand Gordon[1986,1990]alsoapproximated Hamilton's two-phase agrees withtheNorian Upper Shale pole from offtheColorado rotation of the Colorado Plateau by a single Euler pole, located Plateau, thedifference ishereinterpreted tobepredominantly a in theircaseat 37øN103øWusingHamilton's[1981]earlier consequence ofrelative motion between theplateau andthe estimate of theEulerpole(35øN101øW)for theLaramide cratonsincetheLate Triassic. phase.Steiner [1986,1988]ontheotherhandattempted to ESTIMATEOFCOLORADO PLATEAUROTATION constrainthe location of the Euler pole from the same To estimate themagnitude of Colorado Plateau rotation, we assume likeBryanandGordon [1986,1990]a modelof APW rotation. for North America. Our model,however,featuresa virtual standstillin APW for the last 15 m.y. of the Late Triassic paleomagnetic datausedto estimate theamount of plateau Obtaining an estimate of Colorado Plateaurotationis straightforward. Themean plateau Norian pole(57.7øN 65.6øE A95=2.5 ø) is rotated abouttheEulerpivotuntiltheangular Late TriassicPangea Fig.4. Paleogeographic reconstruction forPangea (after Ziegler etal.[1983] using Terra Mobilis TM) positioned with respect tolatitude according tomean Nodan paleomagnetic pole (57.4øN 91.0øE; Table 1) forcratonic NorthAmerica.Shaded areain NorthAmericais Colorado Plateau. 296 Kent and Witte: Colorado Plateau Rotation differencewith respectto the meancratonicNorth American Norianpole(57.4øN91.0øEA95=3.8ø)is minimized(Figure2). A correction for 13.5 ø of clockwise rotation reconciles the mean plateauNorian pole to within 1ø of the mean cratonicNorian pole. Confidencelimits on the amountof rotation can be obtainedusing the statisticsof McFaddenand Lowes [ 1981]. We find that the plateauand cratonicNorth Americanmean polesfor the Norian are not significantlydifferentat the 95% confidencelevel at rotation anglesfrom 10ø to 17ø. Our analysis thus suggeststhat the Colorado Plateau rotated clockwise13.5ø + 3.5ø with respectto cratonicNorth America sincethe Late Triassic. Alternativeplateau-cratonic North America Euler poles yield practicallythe sameclockwise rotations, for example,13.6ø for thecombined Eulerpoleused by Bryan and Gordon[1986, 1990], 13.7ø for just the Rio GrandeEulerpoleof Hamilton[1981],and 13.5ø for just the Laramide Eulerpoleof Hamilton[1988]. Thus,asobserved by BryanandGordon[1990],estimates of theangleof rotationare insensitive to theprecisechoiceof Eulerpole,whoselocation is mostusefullyconstrained by independent geologic criteria. CONSISTENCY WITH OTHER PALEOMAGNETIC DATA The Early Triassichasbeenpreviouslyconsidered to provide the bestset of intervalpaleopolesto documentrelativemotion of the Colorado Plateau. Steiner [1986] determined that 11.7ø+3.7 ø of clockwiseplateaurotationcouldbe inferredfrom the discordancebetweenthe mean pole calculatedfrom four publishedpaleomagnefic studiesof theEarlyTriassicMoenkopi Formation of the Colorado Plateau and the mean pole from three studiesof the nominallycoevalRed Peak Formationof Wyoming. Steiner[1986] (but seeBazardand Butler [1991]) arguedthat age uncertaintiesare unlikely to accountfor the discordance in polepositionsfrom theMoenkopiandRed Peak rocks but cautioned that the cratonic coherence of the Red Peak sampling sites in Wyoming, an area affected by Laramide deformation,lacks confirmation. Ambiguityrelatedto the cratoniccoherenceof the deformed marginsof the ColoradoPlateauaffectsthe interpretationof someother key palcomagneticdata sets. Data from the Early Permian Abo Formation have been regardedas providing a cratonicreferencepaleomagneticpole becausethe formation cropsout on the eastsideof the Rio GrandeRift [Gordonet al., 1984; Steiner,1988; Bryan and Gordon,1990]. Yet the recent studyby Molina-Garzaet al. [ 1991] showsthat the Moenkopi Formationat their Sevilleta Grant samplinglocality, on the easternmargin of the Rio GrandeRift just to the southof Steiner's[1988] studyareaof the Abo Formationat Abo Pass, givesa paleopolevery similarto Moenkopipolesfrom two localitieson the western(plateau)margin of the rift, which togetherresemblepublishedMoenkopipolesfrom the interior of the ColoradoPlateau. Moreover,at Tejon, a localityto the north of Abo Pass but also on the east side of the rift, magnetizationsof the Shinarump member of the Chinle Formation were shown to contain Cretaceous(?)and recent overprints that were deflected clockwise by over 30ø. Accordingly,Molina-Garzaet al. [1991]suggested thatportions of centralNew Mexico eastof the rift may haveeitherrotated rigidly with the plateau or experienceda similar senseof rotationby independent deformationmechanisms.In light of this evidence,the pole from the Shinarumpmemberof the Chinle Formation [Molina-Garza et al., 1991] as well from the Early Permian Abo Formation [Steiner, 1988] should be considered suspectwith regardto cratoniccoherence.Plateau- relatedrotationof theAboFormation does,however, pointto analternative explanation for thelong-recognized similarity of Permianpolesfromtheplateauandthe"craton"thathaslessto do with an additionalLate Permianrotationof the plateau [Steiner,1988]thanwith an inappropriate cratonicreference. Interestingly,Irving and Strong[1985] suggested the possibility of a large(~ 10ø) clockwiseplateaurotationon thebasis of an analysisof Kiaman (Permo-Carboniferous) overprint magnetizations in North AmericanPaleozoicrocks. REVISED NORTH TRIASSIC/EARLY JURASSIC APW Paleomagnetic poleswe useto delineatea Triassicto Early JurassicAPW path for North Americagenerallyconformto thosediscussed anddeemedmostreliableby B_a7ord andButler [1991,Figure 14], with the additionof the recentlypublished middleNewarkpole [WiRe et al., 1991] and our new Church Rock pole (Table 1). We did, however,chooseto includethe meanRed Peakand the meanMoenkopipolesascalculatedby Steiner[1986] as reasonable if perhapsnotpreciselycoeval(or in thecaseof theRed Peak,not strictlycratonic)EarlyTriassic counterparts from off andon theplateau.Paleomagnefic results of Reeve [1975] from the Church Rock member were also used on the strength of corroborafingdata from our study of equivalentstratigraphicunits. To maintainconsistency with Bazard and Buffer [1991], we use their recalculafion of the ChurchRock pole that was basedon only normalpolaritydata and note that Gordon et al. [1984] calculateda statistically indistinguishable pole(61øN64øEA95=3ø) fromReeve's[1975] data for the Church Rock member that included normal and reversedpolaritiesandpasseda reversaltest. Finally,we omit the Shinarumppole becauseof the complextectonicsetting with demonstratedlocal rotations where it was sampled [Molina-Garza et al., 1991]. Fig. A1. Paleomagnetic resultsfromtheChinleFormation.(a) Mapof sampling localities I (sites TCHFtoTCHJ),II (sitesTCHAtoTCHE),III (sitesTCHKtoTCHM),andIV (sitesTCHNandTCHO) in Utah.(b)Stratigraphic range of sampling sitesshown bysolidbarsatthefourlocalities (representative stratigraphic columns afterStewart etal.,[1972]).(c-f)Demagnetograms forrepresentative samples from the differentlocalities.Open/solid symbols are vectorend-points projected on vertical/horizontal orthogonal planes aftereachstage of thermal demagnetization. Samples in Figures Alc-Ale havereversed polarity,andsample in FigureAll hasnormalpolaritycharacteristic magnetization. (g) Sitemean directions aftertiltcorrection, withopen/solid circles plotted onupper/lower hemisphere ofequal areanet. The two smallercirclesare for sitesTCHI andTCHJ fromlowerChinlethatwereexcludedin calculation of upperChinlemeandirection shown bystarwithcorresponding circleof 95%confidence based onnine sitesconverted to common normalpolarity(TableA1). FOR AMERICA Kent and Witte: Colorado Plateau Rotation 297 Z E elu!qo elu!qo o oE I '- elU!40 elU!4•) I I I I 298 Kent and Witte: ColoradoPlateauRotation After 13.5ø correctionfor clockwiseplateau rotation, the Triassicpolesfor North Americadescribean APW path from about49øN 117øEin the Early Triassicto the virtual standstill at about57øN 91øEby the Norian (Figure3). APW over the Triassicwas about 17ø of arc distancebut the rate of angular changewasnotconstant.Instead,an averagerateof 0.73ø/m.y. calculated for theentireTriassicby BazardandBuffer[1991]is moreappropriateonly for theEarly andMiddle Triassicbecause of negligibleAPW in theNorian. The CarnianlowerNewark pole may recordan intermediatepositionof the TriassicAPW shift(Figure3). The insignificantdifferenceof theHettangianupperNewark pole from the middleNewark andotherNorianpolessuggests that the standstillextendedinto the earliestJurassic. However, the pole from the SinemurianMoenave Formation[Ekstrand and Butler, 1989], even after 13.5ø correctionfor plateau rotation,falls significantlyto the west of the upperNewark pole (Figure 3). The Moenave pole is basedon thorough demagnetization experiments andalthoughthemeannormaland reverseddirectionsare 12øfrom anfipodal,theyformallypassa reversaltest [classC [McFaddenand McElhinny,1990]). The Moenavemaythereforerecorda westerlyexcursion in APW, an obtundedvestigeof the J1 cuspof PEP models. If so, the Moenaveexcursion wasratherbriefbecause a newpolereported by Bazardand Buffer [1991] from the immediatelyoverlying (Pleinsbachian) KayentaFormationaftercorrectionfor 13.5øof plateaurotationis hardlydifferentfrom the Hettangianlower Newark pole. Furthermore,the Pleinsbachian Kayentapole is not significantlydifferentfrom Norian polesfrom the Owl Rock or Church Rock members of the Chinle Formation from al., 1984; May and Buffer, 1986; Bryan and Gordon,1986, 1990;BazardandBuffer,1991]. This is largelybecause the discordance between on-plateau andoff-plateau Chinlepoleswas presumed toreflectmostlyanagedifference.Ourinterpretation predictsthat the Late TriassicChinle Formationshouldshow little change in paleomagneticpole position over its stratigraphicrange at a given locality either on or off the plateau,corresponding to thelackof discernible APW we have documented for thebroadlycorrelativeNewarkBasinsection. For example,the UpperPetrifiedForestmemberof the Chinle FOrmationon the ColoradoPlateau (see Bazard and Buffer [1991,Figure15] for stratigraphic correlations) shouldgivea pole position that is virtually the same as the available paleomagneticpoles for the Owl Rock and Church Rock membersfrom the plateau,but that shoulddiffer from the reported polefor thepresumably coevalUpperShalemember of eastcentralNew Mexico(off theplateau)by an amountthatis equivalent withinerrorsto 13.5øof clockwise plateau rotation. Hamilton [1988] estimatedon geologicgroundsthat the ColoradoPlateaurotatedclockwiserelativeto the cratonby about 8 ø since mid-Cretaceous time: about 3ø was estimated to accountfor theregionalpatternof extension associated withthe Cenozoicopeningof the Rio GrandeRift andthebalance(in therangeof 2øto 8ø)witha prece•g LateCretaceous phaseof rotation to accountfor the spatial distributionof crustal shortening acrossthe Laramidebelt. AlthoughHamilton [1988] seemedto favorpaleomagnetic estimates of plateau rotationthatwererelativelylarge[e.g.,Steiner,1986]compared to the 4ø estimatedby Bryan and Gordon [1986], the compatibility of thegeologicevidence forpost-Triassic rotation the Colorado Plateau. of theColorado Plateauthattotalsto the-13.5ø indicated by This apparentbacktrackof theKayentapolewasinterpretexl to markthe beginningof an easterlyprogression of paleopoles our analysisis not unequivocal[Chaseet al., 1992] and will require further critical evaluationof the extent of Laramide shortening as well asRio GrandeRift-relatedextension.l.ocal clockwiserotationsmay also morebroadlycharacterize the Cenozoictectonichistoryof thewesterninteriorof theUnited that define the J1 to J2 PEP Jurassictrack [Bazard and Buffer, 1991],but thisinterpretation will needto be reconciledwith the emergingevidencefor high latitudeAPW in theJurassic[Van Fossenand Kent, 1990, 1992b; Witte and Kent, 1991]. To the extentthat paleomagnefic polesfrom the ColoradoPlateauare used,any revisedJurassicAPW path for North Americawill also need to take into account a large clockwise plateau rotation. It can neverthelessbe concludedat this stagethat APW for North America musthavebeenat a relativelyrapid (~lø/m.y.) overall rate in the Jurassic,to arrive at the distant and well-establishedmid-Cretaceouspole positionat 71øN 196øE[Globerman andIrving,1988]. DISCUSSION Ourpaleomagnetic estimate of 13.5ø of clockwise plateau rotation based on Late Triassic data is similar to that of Steiner's[1986] 11.7ø basedon EarlyTriassicdata,but it is significantly greater(13.5øñ 3.5ø versus5.0øñ 2.5ø) thanthe valuemostrecentlycalculated by BryanandGordon[1990] fromlatePaleozoic toJurassic data.Wesuggest thatBryanand Gordonunderestimatexl theamount of plateau rotation because theyeffectively averaged thelargesystematic discordance in Triassic poles with the generallysmall discordanceof ambiguous significance in late Paleozoic poles,anduseda Jurassic APW modelthatwe nowregardaspoorlydefinedat best. States[e.g.,Eaton,1979],as documented by palcomagnetic datafrom theeasternmarginof theRio GrandeRift [Molina- Garzaet al., 1991]andsuggested by systematic discrepancies withrespectto globalplatereconstructions of earlyTertiary polesfromwestern UnitedStates sampling localities including northcentralMontanaandnorthwestern Wyoming[Actonand Gordon,1992]. Finally, the revised pattern of Triassic APW for North Americacanbe viewedin a broaderpaleogeographic context. Duringthe Triassic,NorthAmericawaspart of the supercontinentof Pangea. The virtual absenceof APW for North Americaover 15 m.y. of the Norianthereforeimpliesthat Pangeawasalsostationary withrespectto thepalcomagnetic reference frameduringthistime(Figure4). Thelatitudinally staticpositionof Pangeain the Late Triassic,preceded and followed by timeintervals characterized by fastAPWof upto ~lø/m.y., may be relatedto large-scalemantleprocesses [Gumis, 1988]. In practicalterms,the Norian standstillof APWis anidealtimeintervalfortesting andrefiningmodels of Pangea continental reconstructions aswellasfor terrane (e.g., ColoradoPlateau)analysis. APPENDIX: NEW CHINLE PALEoMAGETIC RESULTS At leastfive orienteddrill coresamplesweretakenfromeach An undercorrection of plateaupaleomagnetic polesfor of a total of 15 sites distributedover two localities along clockwise rotation (5øorless)hascontributed totheimpression Interstate 70 on the the San Rafael Swell in western Utah, and of fastAPW continuing throughtheLateTriassic[Gordonet two localitiesalongthe ColoradoRiver nearMoab in eastern Kent and Witte: Colorado Plateau Rotation TABLE A1. Characteristic MagnetizationDirections From the Chinle Formation Site n/N k Dec, Inc, Stk/Dip degrees degrees TCHA TCHB TCHD TCHE TCHI* TCHJ* TCHK TCHL TCHM TCHN TCHO 3/5 4/4 5/5 6/6 4/5 6/7 5/8 5/5 5/8 6/6 5/6 231 37 8 12 79 35 12 36 49 25 182 185.6 2.0 4.1 18.7 166.2 7.2 194.2 184.3 173.0 1.0 351.0 - 19.6 21.5 19.5 27.8 -7.2 22.1 11.7 6.5 -9.9 24.8 3.7 008/30E 013/25E 018/28E 008/28E 000/00E 000/00E 113/10S 113/10S 113/10S 000/00S 000/00S Mean 9/15 24 003.6 12.3 (a95= 10.7ø) Pole position: Lat = 57.5øN Lon = 63.3øE (K = 50, A95 = 7.3ø) ChurchRockmemberor its stratigraphic equivalentat localities II, III, and IV, but the five sitesat localityI were takenin the Monitor Butte and Moss Back members(Figure Alb). All experimentalwork was conducted in a magneticallyshielded roomusingprocedures andequipmentdescribed by Witte et al. [1991]. Samplemagnetization directionswere determined by principalcomponent analysis[Kirschvink,1980]andaveraged usingFisher[1953] statistics.Althoughsomemediumgrain sizesandstones weresampled, redmudstone samples yieldedthe mostinterpretable demagnetization results. Completestepwisethermaldemagnetization to 680øCof all samplestypicallyrevealedtwo components of magnetization, similarto demagnetization behaviourdescribedby Bazardand Buffer [1991] for the Owl Rock member. There is often a northerlyand steeplydown magnetization,with unblocking temperaturesto about 500øC, that most likely representsa recentoverprint(FigureAlc). Elevensitesof the original15 producedat least three sampleswith a well-defined high unblockingtemperaturecomponent,evidently carried by hematite,with either shallowand northerlyor shallowand southerlydirections(Figure Ald). The 11 siteshave a mean direction after tilt correction of Declination/Inclination Columnheadsare n/N, numberof samplesor sitesusedfor calculation/number collected;k, estimateof Fisherprecision parameter; Dec, declination and Inc, inclination 299 of magnetization directionafter beddingtilt correction;Stk/Dip, beddingstrike/beddingdip with quadrantdirection. Lat is latitudeand Lon is longitudeof paleomagnetic pole position based on nine site mean virtual geomagneticpoles; K is estimateof Fisher precisionparameter;and A95 is radiusof coneof 95% confidence aboutpole. *Thesesiteswereexcluded(seetext). Utah (FigureAla). The ChinleFormationin thisregionis a shallow lacustrine and fluvial unit with considerable lateral variabilityand correspondingly variedstratigraphic nomenclature[Stewartet al., 1972]. Our samplingconcentrated on the upper portions of the formation, with 10 sites in the = 2.3ø/12.8ø, k=26, a95=9.2ø. Excludingtwo of these11 sites whichare from thelowerpartof theChinle(MonitorButteand Moss Back members),we calculatea mean direction for the upperpart of the Chinle at Declination/Inclination = 3.6ø/12.3ø, k=24, a95=10.7ø (Table A1) and note that the five normal polarityandfourreversed polaritysitemeanspassa reversaltest (classC [McFadden andMcElhinny,1990]). Thepoleposition basedon thesenine sites (57.5øN 63.3øE A95=7.3ø) is not significantlydifferentfrom thepole(59.0øN67.0øEA95=2.5ø) calcula•exl by BazardandBuffer[1991]fromReeve's[1975]data for the Church Rock member. Acknowledgments. We thank the journal reviewers for constructivecomments. This researchwas supportedby the National Science Foundation, Division of Earth Sciences (grants EAR87-21142 and EAR89-16726) and is LamontDohertyGeologicalObservatory contribution 4996. REFERENCES Acton,G.D., andR.G. Gordon,Palcomagnetic tests New Englandand the ControversyRegarding Triassic/Jurassic boundary,Geology, 18, 795of platemotioncircuitsoverthepast73 million JurassicApparent Polar Wander for North 798, 1990. America" by M.C. Van Fossenand D.V. Kent, yearswithimplications for circum-Pacitic plate Eaton, G.P., A plate-tectonic model for late J. Geophys.Res.,97, 1801-1802,1992. motions and motions between hotspots Cenozoic crustal spreadingin the western (abstract),Eos Trans. AGU, 73(14), Spring Chase, C.G., K.M. Gregory, and R.F. Butler, UnitedStates,in Rio GrandeRift: Tectonicsand MeetingSuppl.,52, 1992. Geologic constraintson amountsof Colorado Magmatism,editedby R.E. Riecker,pp. 7-32, Bazard,D.R., andR.F. Butler,Palcomagnetism of Plateaurotation(abstract),Meeting,Eos Trans. AGU, Washington,D.C., 1979. the Chinle and Kayenta formations, New AGU,73(14)SpringMeetingSuppl.,95, 1992. Ekstrand,E.J., andR.F. Buffer,Palcomagnetism of Mexico and Arizona, J. Geophys.Res., 96, Comet,B., and P.E. Olsen,A summaryof the the Moenave Formation:Implicationsfor the 9847-9871, 1991. biostratigraphy of the Newark Supergroup of Mesozoic North American apparent polar Bryan, P., and R.G. Gordon, Rotation of the easternNorthAmericawith comments on Early wanderpath,Geology,17, 245-248, 1989. ColoradoPlateau:An analysisof palcomagnetic Mesozoic provinciality, in III Congresso Fisher,R.A., 1953,Dispersion on a sphere,Proc. data,Tectonics,5, 661-667, 1986. Latinoamericanode Paleontologia,Mexico, R. Soc.LondonSer A, 217,295-305, 1953. Bryan, P., and R.G. Gordon, Rotation of the SimposioSobreFloras del Triasico Tardio, su Globerman,B.R., and E. Irving, Mid-Cretaceous ColoradoPlateau:An updatedanalysisof Fitogeografia y Paleoecologia, Memoria,pp. palcomagnetic reference field for North 67-81, 1985. palcomagnetic poles,Geophys.Res. Lett., 17, America: Restudy of 100 Ma intrusive rocks 1501-1504, 1990. Dunning,G.R., andJ.P.IIodych,U/Pb zirconand from Arkansas,J. Geophys.Res., 93, 11,721Buffer,R.F., S.R. May, andD.R Bazard,Comment baddeleyite ages for the Palisades and 11,733, 1988. on "High-LatitudePalcomagnetic PolesFrom Gettysburg sills of the northeasternUnited Gordon, R.G., A. Cox, and S. O'Hare, Middle Jurassic Plutons and Moat Volcanics in States: Implications for the age of the Palcomagnetic Euler poles and the apparent 300 Kent and Witte: Colorado Plateau Rotation polar wander and absolute motion of North America since the Carboniferous, Tectonics, 3, Triassic to Lower Jurassic red beds and basalts 499-537, 1984. Gumis,M., Large-scalemanfie convectionand the aggregationand dispersalof supercontinents, W., in the Newark basin, Geol. Soc. Am. Bull., 96, 463- 480, 1985. Plate-tectonic mechanism of Laramide deformation, Contrib. Geol., 19, 8792., 1981. Hamilton,W., Tectonicsettingsandvariationswith depth of some Cretaceous and Cenozoic structuraland magmaticsystemsof the western United States,in Metamorphismand Crustal Evolutionof the WesternUnited States,Rubey Volume VII, editedby W.G. Ernst,pp. 1-40, Prentice-Hall,EnglewoodCliffs, N.J., 1988. Haftand, W.B., R.L. Armstrong,A.V. Cox, L.E. Craig, A.G. Smith,andD.G. Smith,A Geologic Time Scale1989, CambridgeUniversityPress, New York, 1990. Hodych, J.P., and G.R. Dunning, Did the Manicouagan trigger end-of-Triassic mass extinction?,Geology,20, 51-54, 1992. Irving, E., and D.V. Strong,Palcomagnetism of rocks from Burn Peninsula, Newfoundland: Hypothesisof Late Devoniandisplacement of Acadia criticized,J. Geophys.Res., 90, 1949- Voo, S.G. Lucas, and S.N. Kent, D.V., P.E. Olsen, and W.K.Witte, Late Triassicmagnetostratigraphy from the Newark Rift Basin Coring Project: Initial results (abstract),Eos Trans. AGU, 72(17), Spring MeetingSuppl.,101,1991. Kirschrink,J.L., The least-squares line andplane and the analysis of paleomagnetic data, Geophys.J. R. Astron.Soc.,62,699-718, 1980. Kodama,K.P., Commenton "Palcomagnetism of Early Jurassic rocks, Watchung Mountains, Mesozoic basin formation in eastern North America,Geology,14, 419-422, 1986. Van Fossen,M.C., and D.V. Kent, High latitude moat volcanics in New England and the Hayden, controversyregardingJurassicapparentpolar Paleomagnetism of the Moenkopi and Chinle wander for North America, J. Geophys.Res., 95, 17,503-17,516,1990. Formations in CentralNew Mexico:Implications for theNorth AmericanApparentPolarWander Van Fossen,M.C., and D.V. Kent, Reply to R.F. Path and Triassic Magnetostratigraphy,J. Butler,S.R. May, andD.R. Bazard,J. Geophys. Res., 97, 1803-1805, 1992a. Geophys. Res.,96, 14,239-14,262,1991. Olsen, P.E., and M. Fedosh,Duration of the early Van Fossen,M.C., andD.V. Kent, Palcomagnetism Mesozoicextrusiveigneousepisodein eastern of the Front RangeMorissonFormationandan North America determined by use of alternative modelof late Jurassic apparent polar Milankovitch-type cycles, Geol. Soc. Am. Abstr.Programs, 20, 59, 1988. Olsen, P.E., and H.D. Sues, Correlation of wanderfor North America, Geology, 20, 223226, 1992b. Van Fossen,M.C., J.J. Flynn, and R.D. Forsythe, continental Late Triassic and Early Jurassic Palcomagnetism of Early Jurassic rocks, sediments and patternsof the Triassic-Jurassic WatchungMountains,Newark Basin:Evidence tetrapodtransition,in TheBeginningof theAge for complexrotationsalong the Borderfault, of Dinosaurs: Faunal Change Across the Geophys. Res.Lett., 13, 185-188, 1987. Triassic-Jurassic Boundary, edited by K. Van Fossen,M.C., J.J. Flynn, and R.D. Forsythe, Padian, pp. 321-351, CambridgeUniversity Reply to K.M. Kodama,Geophys.Res. Lett., Press,New York, 1986. Ratcliffe,N.M., W.C. Burton,R.M. D'Angelo,and J.K. Costain, Low-angle extensionalfaulting, reactivatedmylonites, and seismic reflection 1962, 1985. Swanson, M.T., Preexisting fault control for palcomagnetic polesfrom Jurassicplutonsand Molina-Garza, R.S., J.W. Geissman, R. Van der Nature, 332,695-699, 1988. Hamilton, Mcintosh,W.C., R.B. Hargraves,and C.L. West, Palcomagnetism andoxidemineralogyof Upper 14, 242-244, 1987. Webb, J.A., A radiometric time scale of the Triassic,J. Geol. Soc.Aust.,28, 107-121, 1981. Witte, W.K., and D.V. Kent, A middle Camian to geometryof theNewarkbasinmarginin eastern early Norian (-225 Ma) palcopole from Pennsylvania, Geology,14, 766-770, 1986. sedimentsof the Newark basin, Pennsylvania, Geol. Soc.Am. Bull., 101, 1118 - 1126, 1989. Reeve, S.C., Palcomagneticstudiesof sedimentary rocks of Cambrian and Triassic age, Ph.D. Witte, W.K., and D.V. Kent, The paleomagnetism of red beds and basalts of the Itettangian thesis,426pp.,Univ.of Tex.,Dallas,1975. ExtrusiveZone, Newark Basin,New Jersey,J. Robertson, W.A., Manicouagan, Quebec, Geophys.Res.,95, 17,533-17,545,1990. palcomagneticresults,Can. J. Earth Sci., 4, 641-649, 1967. Smith,T.E., andH.C. Noltimier,Palcomagnetism of the Newark trend igneous rocks of the north Witte,W.K., andD.V. Kent,Tectonicimplications of a remagnetizationeventin the Newark Basin, J. Geophys.Res.,96, 19,569-19,582,1991. Witte, W.K., D.V., Kent, and P.E. Olsen, NewarkBasin:Evidencefor complexrotations alongthe borderfault", Geophys.Res.Lett., 14, central Appalachiansand the openingof the central Atlantic Ocean, Am. J. Sci., 279, 778- Magnetostratigraphy and paleomagnetic poles 239-241, 1987. 807, 1979. from the Late Triassic-earliest Jurassic strata of Larochelie,A., and K.L. Currie, Palcomagnetic Steiner, M.B., Rotation of the Colorado Plateau, Tectonics,5, 649-660, 1986. studyof igneousrocksfrom the Manicouagan the Newark basin, Geol. Soc. Am. Bull., 103, Steiner, M.B., Palcomagnetism of the late Pennsylvanian and Permian: A test of the Ziegler, A.M., C.R. Scotese, and S.F. Barrett, Structure,Quebec,J. Geophys.Res., 72, 41634169, 1967. May, S.R., and R.F.Butler, North American Jurassicapparentpolar wander:Implicationsfor platemotion,palcogeography, and Cordilleran in Tidal Friction and the Earth• Rotation II, Res., 93, 2201-2215, 1988. editedby P. Borscheand J. Sundermann, pp. Stewart, J.H., F.G. Poole, and R.F. Wilson, Stratigraphyandorigin of the Chinle Formation 1986. and related Upper Triassic strata in the ColoradoPlateauregion, U.S. Geol. Surv.Prof. P.L., discrimination and F.J. Lowes, The of mean directions drawn from Fisherdistributions, Geophys. J. R. Astron.Soc., 67, 19-33, 1981. Pap., 690, 1972. Sutter,J.F., Innovativeapproaches to the datingof igneouseventsin the early Mesozoicbasinsof in the easternUnited States,in Studiesof the Early Mesozoic Basins of the Eastern United States, palemagnetism, Geophys.J. Int., 103, 725- editedby A.J. FroelichandG.R. Robinson,U.S. 729, 1990. Geol. Surv. Bull., 1776, 194-200, 1988. McFadden, P.L., Classification and M.W. of the McElhinny, reversal test Mesozoic andCenozoic paleogeographic maps, rotation of the Colorado Plateau, J. Geophys. tectonics,J. Geophys.Res., 91, 11,519-11,544, McFadden, 1648-1662, 1991. 240-252,Springer-Verlag, New York, 1983. D. V. Kent andW. K. Witte, Lamont-Doherty GeologicalObservatoryof ColumbiaUniversity, Palisades,NY 10964. (ReceivedFebruary18, 1992; revisedAugust 10, 1992; acceptedAugust 18• 1992.)
© Copyright 2026 Paperzz